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ABSTRACT

The problem of n oonvergmt spherical &hook wave, near zero radius,

ia studied by m.ennaof the similarity method. It is found that If a fixed

(p&v)-relation (1.0., Mdependent of entropy) is assumed then the method

neoassitate$ taking both preewre and density to b. zero ahead of the sheoku

ObviouslyO thene the supposed shook beeomes a free surfaoe and the problem

reduoe~ to that golved in IA.2100 3n the pruaent report, therefore, p. V9

are taken to be related by an equation

whore k is a funotion of entropy. The nature of this funotion need not be

speoifled, sime the assumption of similarity determines Me dependence of k -

on the mass of unshooked material (i.e., on the variable x introduced below).

The assumption of similarity maybe deaoribed as followa;”With f

dsfined by

Y =aftnO a =oonatO (2a)

where y Is radiu~, the position of the convergent shook is taken tobe given by

f’~fo = Oonst (3a)
I

the sense of tium being reversedO and the varlablee v speoifio volumeO

p preasure~ u nmt~ial velodityO we ●ssumed to have the form

w =Vl(f)tqlo p =pl(f)t% u =uJf)tq3 (b)

One finalereadily ql =0, q2 =2(n- 1)0 q5 =n- 1. Methods quite analogous

to those of IA-210 serve inthls inatanoa hlae to reduoo the hydrodynamical

equationa to a single first.=orderordinary differential eq-tion containing

the parameter nb Sinoa v = vl(fo) is constant on the shook f = fo~ itrnvaluu

p ia alao a prametero and the generyd pro~lem is to determine the pairs pa ne
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for whioh physically satisfactory 801UtiOllSexizta This problem is disouused

in oompleto detail rnnalytically9and numerical results obtained for various y.

The phunomonon of a oontinuoua speotrum of values of n first observed in

LA.21O makes its appearamc hero alao~ but as in that report,

of’the condition of analytioity appoarc to speoify a unique n

problemO With regard to the vnlue of y. for a perfeot gaao y

the imposition

in any given

5 5/%

d aouree ~ = (y - 1)/(Y + 1), but for other applioatione envisaged. this

aondition need not be enforoed. It ia found, however, that alwmys

p<Y/(Y + 1), since othefise the shock ia not nubsoni~ with refore~e ~

tho material behind it. Moreover, If p =kv”y Is taken to be univeraalo

rather than valid’only for v<< m. then w & (Y o 1)/(Y +1).

(-

determined

The analytio solutiQn for y = 3$ p = .497. *en n = .636, i8

oompletel~ and the results presented in the form of u table and

grapha. In order that these. as well aa the graph dealing Iwiththe (k,n)-

relation aan be understood without a detailed reading of the report, a short

explanation is givm separately (pp47-8 ).
)

/--’.
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THE SIMILARITY SOLUTION FQR A COi’WUiGENT

SPHliRICALSHOCK WAVE HEAR ZERO WIUS

1. Description of the Problem. Suppose a strong shook of uniform intensity

ta be oonmmnicated to the surface of a sphere of inert =terial. A shook wave

wili then be induoed in the sphere, travel inward6 with 6pherical 8ymme&y

about the oenter, and ultimately be refleoted from that point~ Given the

initial strength of the shook and the requisite thermodynamic information

about the aubstanoe oomposing the spheree the hydrodynamioal problem of the

motion whioh takes place is oompletdy defined$ and susoeptible of numerioal

1)
integration over a oonaiderable portion of the inward motian . The oentor

of the ophere,

in Qalsequer!oo

possible. One

hoprere is a singularity of the hydrodynamical equations~ and

atreightformrd numerioal integration is not indefinitely

has. tharef’ore~to resort to other means to determine the

motion near this point, and it is this problom with whioh we are conaerned=

2)
To investigate it we employ the so-oalled “similarityn method .

Taking the point b whioh the shock converges as origin. and reversing the

sen~e of time, to the assumption of similarity amounts to this: that the.

equation of the incoming shook has the form

(1 .1)y=afokn (y = radius)

and that. with f defined by

y~aftn (1.2)

1) Cf. a fmthooming repoti by ~hr~sty.
2) Cf., for exampleO LA.2100‘Tho Similarity Solution for a Convergat Free

Surfaoe near Zero Radius’, and W 210,‘PowerfM Spherioal ad CylIndrloal
Sheeks in the Nei~hborhood of the Center of the SMere and of the CY1inder
AxiE‘, GO Gti~rle~. Translated by M. Flint from
NO. 90 2~0 10. &, pp. ~~~ - 312.

s—
I

Luftfahrforsohung, vol. 19,

.———
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behind the shook, the variables p(preasuro). v (speoifio volume)~ and u

(veloeity) are of the form

p =p@(f)tql# v (1.3)

Hare a i8 a soal~ faotor which it is convenient to leave free, Continuing

the assumption of similarity beyond t = OS we also axpect the refleoted shook

to have the form (1.1], and the form of the funotiona (1.3) to remain

unohanged, time being measured now in the ordinary sense” The problem then

%8 to determinm the exponante no ql, q2, q30 and the finotions pQ@ VU. UD.

2* Shock Wave Boundary Conditions and Their Implication.

Aoroaa any shock wave, the quantitioa pa UD Vm are diacontinuouso

with the disaontlnuities subject to the oonaervation

Let the valuea of a variable on the tm aides of the

by the subaaripta lD2~ let U denote ahbck velooity,

of the oubatanoe. Then these lawa oan be written as

(Conservation

[Conservation

(Conaerva*iqn

laws of Rankino, Hugoniot.

shook be distinguished

and E the internal energy

followsa

(2.1)of Mae) (Vl - V2)U =V u
12 “ ’25

(Vl -
2

~2)(P2 - PI) = PO(U2 - ~1) (2.2)of Momentum)

of Energy)

In (2.2)0 whioh is not the

E = (1/2)(P1 + p2)(v1 - v2)
‘2- 1

(2.3)

.

direot expression of the aonaervation of momntumo

~shoe it takea acoount of (2.1)Q P. denotes

Our present conaem is only with

noxmml densityo

(2.1), (2.2)0 FirstO we observe

that for the inooming shock, we have =0, Y =*0
?1

= oomtaat, 80 thit (2.1)

P ; beoomea simply (2.4)

. . . . ..-— - .—. .—. -
.—. . “. .——

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



.

r’

(-

-6-
—.,—

Hmo4 it is at onoe clear that a solution of the form apeoified in (lQI)B

(3.2)0 {1.3) ia possible only if

vi(f) = o or~=o; q3=n-1 (2.5)

But if v~(f) = O, then (2.4) beoomes U = u
2*

whioh atatee that no xmterial

erooses the shook. Furthermore. taking v’(fo) = O means in d’feet that wa

are neglecting entirely the de,nsityof the mat&ial ahead of’the shook. Henoeo

under the only reasonable interpretation (2.2) redmea to P2 = Oo

Nowe the conditions U = U2. p2 = O are, in fact, the conditions

fora free mrftioeand thus the alternative ~’(f) =Olead8 to the motion of

suoh a surfaoe aa the naymptotio limiting form of a convergent spherioal shook~
.

This ia not entirely unreasonableo mctreover~for while the oondition p2 =0

seem inoonsiatentwith the conoept of a shock. it 18 to be remembcmed that

behird suoh a uurfaoe$ the pressure risen very steeply to a maximum whioh

free surf’aoeapproaches zero. Thus it is only very near the surfaoe that the

behavior of the pressure ia qualitatively different from that behind a ahooko

The problem to whioh this alternative leadaO hwevero has already been solved

(Cf. LA-21O), and we stall not, therefore~ be further oonoerned with it here.

Rather, we devota our antire attention te the ease q2 = 00 whero

v %s a oonatant on each similarity curv?~ inoludinge M ~rticularO the shook.

Taking VI = 1, V2 = p, pl = O the equation (2.2) for the incoming shook becomes

in this oaee

0- iJP2=POU22, (2.6)

Thus ql, q2, q3. and inooneequexme ql =2(U . 1)0 are all determined in terme

. —. .—

.—
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or n: ●umning up we have

q~=z(n-l)s ~=% ~j =n-1 (2.7)

In view of the singularity at the originm moreovera we should havs O ~ n <10

and henoeO shoe p depends on to whlla v does not. a fixed (pov)-equation

behind the shook ia impossibleO In other wordsO under the aoaumption of

nimilaritiyaand the exolusion of the free=.surfaoe

one oannot negleet the dependence of the pressure

in treating the alternative ~ = 0, we are led to

equation of state of the form

P = ~=v

P where k 2s a funotion of entropy.

r’

s.

aolutlon already ditzcussed~

on entropy. Aogordinglyo

asaume an adiabatio

The application of’the present malyalo are. therefore, limited

to thoso oasee in whioh (208) i8 at least a fair appr-imtion. Thim includes

In Particular, of oour8e0 3)for l<y $7/30 tho mime of a perfeot gae ;

in addition it 16 hoped that with y~30 (2.8) imy be approximately true for

vurious metals. Finally, a oonvergant detonation wave my be regarded in

the limlt as a pure shook, so that to ‘theextent that [2.8) ie n good

approximation for the end produots ef an explosion, the problem of the

aaymptotio limiting form of suoh a nave IS subsumed here~ This application

5s not, of aourae, of hmediate practical slgnifioanos~ but is mentioned au

4)
of po$eibk incidental interest $n oonneotion with pruvioua work .

3) Cf. BW21O, oited in footnot-e2.

4) IA-143

-–

,.
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3. The Lagrangian Equ6ttionof Motion, One can now proceed immediately to

substitute (102)0 (103)s (2.7)P (2.8) inti the Eulerian equationa of

hydrodynamics far the conservation of xissO momentum; and entropy, thus deriving

a eystwm of three ordinary differential equatione for the determimtion of

p~o Vsg u’ (Cf. the paper of Guderley oited above). A1’ternakively,one can

introduoe a Ia@angian var~able x o the radius of a Iaminar shell of the

material when it is distributed at

bgrangian equation of motion to a

(Cf IA-21O). The latter prooedura

,

fi&d constant deneity . and reduee the

eingle ordimry differential equation

is by far the less cumbersom, and leads

moro readily to a haDpy choice of yariables; accordingly it is the oqe

which we adopt~ As ow Iagrangian state of referenoe5 we take the state

of the mterial ahead of the shook.

To see that the Iagrangian

f 1, we start with the equation

v *2= y2 x yx,

formulation is equivalent to Mat of

(3.1)

whioho With (J02), (103) ~ q2 = o dven

X2 dx = a3 v-~(f’)f2 ~ df ~ *3n

Thna

X3 = F(f)t3n -i-G(t)●

Sn
and since on the shook y = XS f : fo~ wo have G(t)W t Q Henoe we are

justified in introdusing

x =awtn, Y = a f (w)tn.

Now the funotion k in (2.8) depends only on X9 not

(5.2)

f-
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we have

k(x) = k2(n - 3)/n= Ata2(n- ‘)’n :(R “ ‘)’n *2(n - 1), (303)

where A Is a constant over any region in the (xot)-planewhioh containu no

ahockz~ but oan of course have differ~nt values in * auoh regions separated

by a ahookc

With (3.2), (2.8)0 [3.3).

ordinary differential equation~ The

we oan prooeed to derive the)governing

Lagrangian equation of motion is

Y*t ‘- fJo
.* Y2X.2PX* “

From (3.2), wo have

(304)

(3.5)

(3.6)

(3’7)

Aooordingly, with

22+2m
A =n a P. [3.9)

whioh simply fixes the unit of pressure in terms of AP (3.A) become~.

2wfl*+mwff- m.f= f2w-2(f-*f”
# - yw2(y - m) 1

) . .

. .

(3.10)
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For curtain purposes, there is tina~vantige in the further ohange of

.g(cJ)
-=1=fw ~ -1

a=wo (3011)

From this W@ iMVf3

fw=g-gg’o fQQ=G~8’@ (3.12)

and (3.10)beoomes

variable

f’-’

For future reference, we rioto the relations

n-1 n-l
=an(f.ti*)t =a n g’ t

)

In all the above equatiom involving t, the sense of time in reversed for the

inward motian. AlsoO it ia to be borne ti mind tluat~ho~ A has two different

values on the two sides of a shook. the same is true of aP “by(3.9].

EquatioD (3.10), or alternatively (3.13)Q thcmO Is the

Iagrangian equation of moticm~ asaumin,gsimilarity of the type desoribed “in

~ 10 “and It is worthwhile to examine from a slightly different point of
\

view the significance of this assumption. In the first pla60, the assumption

that the shook lwa the form y = afotn my be regarded~ mt aa an assumption

at all~ but merely m a Foousing of attention on the term of lowest order in

the expansion of the shook. In this sm6e9 the Only aslnlmptinni6 that y Oan

be expanded in powers of t along the shook. Newt, without refereme to (1.,3).

the introduction of the variablo w is certainly a ~tmal prooedure, sinae it

h~s the effeot of’replaoing the region in the (x,t)-plane boundod by t = O

~.-–’ ‘“~
—. . -.-,

-. —
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and x = afot‘, by a quadrant in the (w,t).planei~and simply introd~ea

(30h). aneq~i~l~k differential a~iuati~. No~amtural and fwniliar

instead of

method for

solving suoh a partial differential equatioa over suoh a region, is ta assume an

ax~pansion~f the form

m n.
Y=a JL- fj(w) t J

ill=

and this leads
d

funotio:.sf
Jo

thi8 Eeq.lenoe”

in general to a 8equenoe

In our ease the equation

Re,ardd in this Ii@t,

(3.15)

of ordiaary differential eqwtions for the

(309) iS simply tho first equation Of

thenO the assumption of similarity is

only an assumption regarding the regularity of the finetion y in its dapendenoe

on WO tn$ and thus one of tie kind thst is necessarily consistently adopted in

,m
physics. Thi8,

Of 8’tate(2=8)*

p is completely

a88ume

of cour8e, says nothing with regard to the adiabatic equation

but even there a 8imilar point of view my be adopted. For

detemined by S$ V, and thus, for v*O, pxcD, we may reasonaby.y

P= f kj(S) V-y$
j=l

The equation (2.6) my then be taken as the first term in this expaneione and
1

thus (2.,8) ie valid to *he extant that only this fk8t term is signifloent. HenoeQ

trreapeotive of qUmtitativo considerationsand the gaps in our experimental

knowledge$ results derived from th prooedure we have adopted do at the least furnish
.

qualitative insight into the problem. and must de80ribo the limiting behavior
.

oorreotly to the extent that the hydrodynamioal idealization itself has validity.

4. The Boundary Conditions. There we four ourve8 in

f-.
play a oritical role in the problem before US. namely~

line t = O, the rafhoted shook, and the half.lina x =

the (x,t)-plane which

the Inooming shook~ the

o* t >0. We aonsider nuw

.- —
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the conditions to be satisfied on these.

(a) The converging shock$ Here y=x, 60 f’ =W9 or g(a) =10 Next

‘the oonsttantcompression ratio on the shock is a parameter in the pro~lemo and
●

must be given before quantitative result6 oan be ddxmxnimdo We danote its

above* Finally, wemuat 8atiBfy (2.6), which in viw Of [2.4)

(4.1)

(3.4) , P = n2 .~2 PO

‘lhus~(401) bwom.es

~2+2m
=(1-

f’

,
.1”

(4.2)

(L.3)

Note that since a is a free scalare no point in the incoming shock is deter-

mined by (4.2).

The r&e

It permits Us tO

light of (208)0

of the

flad E

For we

equation (2,,3) for the

a8 a funotion of p~ V*

Cl-E==pdv + TdS

(’f = temperature), and thus, by (2.8)

E = #+1) + G(k)

Now. taking G(k) =0 for p =0, WI have On the

from (2.3)

E= &PO-P).

conservation of energy is this:

and the parameter p. in the

(404)

high pro6sure side of the shcmk$

(4.5)
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mno e

and

For an ideal gasO of Oourseo C = 00 and one has neaossarily the familiar

result p = (T - 1)/(? + 1); for the other applioation6 mentioned, however.

thi8 valuo of p is not necessarily prezwribode

(b) t=O: Hera, for fixed

yt mu8t ‘be‘regularfunotions of x.

g(a) = Co> 00 asilsince yt = ang”tn

folra +0. Thu60 at a = O

l+ ITI
g(u) = co +-C39 + -.--.==-,Co>o, Cl+o . (4J3)

It is readily determined tht the generml solution of (3032). in the neighborhood

efcr=ois

(4.9)

for the j.nrardmotionp tho ~Qnse of time is raversedO the continuity of yO u

at t = O impliee that Co Is the same for the inmard and outward motion, while

the values of Cl for the two @aaes differ only in sign@ C1>O (inward),

(.

.—
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(o) The reflected shook: Since A9 a have different values OR the tw

aida6 of this 6hodcewhile X9 y~‘t are of course continuou80 f, w mre dis-

aentinuoua;
alfl ‘a2f2” %% ‘a2w20

Accordingly a is diacontinuouoO g

Oolltinuous:

alQ2 =a2a1 ● gl =g2S
.

l’-

Also

and using (4.10),

2m .y ~2(n . 1)= 20 .2Q 2-M?m
P2 =~22 ~.2 pa

=T #-1),
% 1 2 ‘2

Thus~ (2.2) becomes

{4.11)

Finally, from (407), (2.3), (40@
,

f-’
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ww obtMin for the tmn of lowest degree on the left 8ide Of (5.1O)*

the right.hand oido

2m] w
(2.3y)/4+3(y .1) .2m

m

Now, if/d=l, the left side contribute only terms of degree greater than 10

while th~ term of lowest degree on the right has degree -1 . 2m0 obviously 10SE

than 1. So /?= 1 is impossible,ad ~ = - m is obviously absurd. Henoe we have

~ = (3Y - ti)h , A/g arbitrtaryj

or the lnm above expreasioua are of the same degree

(4019

and

P=3(Y”l)-~,A~-%=3(Y-1)(3 +m)2By.

3Y”~ P
~%-l)(fi+m)

(4.16)

3(/?9- u
h bdh oases @ < la and Sime v -W W+oo W@3hEkV(9V+O0in both

.av-y
On the otier hand p-w

~ VW&p ~
oaeea. So, aooording aa (4.15) or

[4.16) holds. we have p ~aonst.,,or p X w
(* + 2m)/(3Y - 1)+0 for W+o

0

We shall see in ~ 9 that (4.15} is actually the only possibility, sinoe the

bcnmdary conditions (a) oannot in f’aotbe satisfied for (L.16).
i

~. Thermodynamic Consideration. The problem outlined in f{ 3,4 is oomplete~y

datiermha%e from

i.eindeterminate

apeoification of

the point of view of dynamioa. ~hermodynamioal1y, however, It

witiout the postulation of a further relation - for mmples

the dcpendcnc e of k on entropy would suffice. However, ewa
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without thi8 (2.8)0 (407)

pau8e ta oonsidor theeoo

have certain thermodynamic implications, and we

Using (2.8)9 we kmve from (4,7)9

Butww have ~u6t seen that at X+oo

have

(5.2)

t>o, V+ooa and thu$ (5#) ~duQes tO

c&o* p& (Y” I)/(y +0. (503)
. .

There are two points of view which one oan adopt with respect tO (5.3).

First, if one regards (2.8) m universally vulidO then (5.1) is alBo

universally valid and (5.3) is Q neoes5ary condition on M= On the other hand~

if one takes (2.8) to be an approximation valid only for v<<m, then (5.5)

has no apeoial Bignificqllceo In this instance howovore (2.8) mU6t be

replaced by something elso behind the rofleoted shook, and one is not in

position to con8idor the reflection problem at alle without knowledge of the

adi~batios for VXOOO So (5.3) must oertainly be eati$fied if the problem

of the rofleoted Shock iS to be @onsidered by the method adopt~ h3 $394.
f

Byvay of further orientation let us euppo8e that

T =h(v)p~ . (50M

This is justifiable, insofar as we are ixkereated in p+m, T-m, Then,

SinOa k is u function of S alone. this yieldo
,-
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H’ /9 = 10 we h.%ve

I)s
k =Kc , (505)

(5=6)

W@ have

(%7)

since for T = const., p must be l~ouotonedeorwsing ~ PO Thiu iS alwayS

satisfied if /9 ~ (y - 1)/~ ~ but oan fail for sumller # , Thusa for suoh # D

(5G7) can remalt in a stronger restriction on p. Or, to put

to assume a fixed value for p is imonniatent with too mall

i.e., implies p ~ } o. The value of ~o, howevar depends in

range .Qf v in tha problem~ and tie as we have observed the

it anokhor waye

a # in (50410

general on the

value (y . M

o~b.for H=(Y - I)/(y + I)o We do not pursue this mntter further, but

mention it simply by way of empkaizing that the ohoio~ of p imposes reatriotions

any thermodynamic!assumptions which one may wifihto make subaequentlyO
-.

Transformation of the Fundamental Equation to an Equation of the First Order.

now apply to (3013) the taohnique uSed in Mo~OG The analytical details

.-.-_ —’—.——
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P

are”so clmely similar to thoso of the report ciked that we need only outline

the proaeduro md give the results. The first 6tep h to introduce new

From the second and third equatio~m we have

2(1 + m]a=—.—————
3Y-~

rondera the equation homogticmm in OS aad using (6.2)~ we obtain aooordingly

(64)

Next. in order to got rid of the y In the exponents, we set

Then (6.4) beoomes simply

where

(605)

one obtains readily the relation
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the importance

(6.5), we have

of which will appear presently, and finally, from (6.2), (6.4],

--T+74 - dq
(6,9)

T“’

now note various reletions between the

V+p u = anga“10 -pt” -1,
22 2(n - 1)

p=na p. g“%p~t . 1

‘(6.1o)

Next. wo formulate ths boundary ooaditions (s). (b), (o), (d) of

~4 interma of f , ~, a: (a) The converging shook: Substituticinof (LO~)

in (6.10) yields at onoe

(b)t=O: Herea~O,M@--9-m. ●
Substituting {4.8) in (6.10)~ moreoverp

givam

!
-1 ~ .(1 +X46-

=l-(l+m)Co 1 + 000 a

[

(6a4)

q= Col -fie2(l+m)s
+-**O ●

.

.—

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



f-’

P

{603.8)

P_

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



. .... —— ..——-——

.~

P

r

Combining this with (6.1~)o we obtmin

& tho i?3hOOkoThen, since p2 D PIZ

It ie to ba ob8cwved that the

whilo of Spsoial intsx’e?$tto us with

rod ity entirely general md apply to any GhoQk in the matarid af%er tho

initial shockO howevor induoed. ~8y imo~ya inoideutallyfithnt SUCha shock

must be on a

f 1 that the

For a

int9r8eLlting

intermotion

.thenwIMW only w iIFJappar@ from the fact that for any 92, *O ~~rve (6J?)fi

and (6.18) have at mo8t two points of intemsootionO To determine when there

is only one point of ~.nterseotion~we set

the straight line (6.18) with ‘de ourve (6.19). One point of

“e
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Henoa the hQh=pre8aure side of the shook ig always above@ the 10W.preBaurC

side always be?.owOy q - E = 0“ ‘?O”

(6.21)

we have

w
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while M (4:16) holdsO we have

(6.22)

It iE convenient now to Mmm3uce as fallow symbole for the points in

the ( ~ ~ ~ )-plane whioh eorresporidto our boundary conditions:

r (6.24)

Our required solution oan then be deaoribod as follows: It is oomposed of

two integral oumea of (6.6)j me a tiufveP P P where P& is the point
v 1 Sl” 1

(\ ~ ~l). corre8p011diW tO the low-pressure 61de of the refleoted shook~ tha
n

‘ther a ‘*no %2%9 ‘r %2P0 *ere %2 h the point ( fa,~ ~) 00~e6p0Rdillg

b, the high-praseure side of the refleoted shock. The Pointg (~1,ql),(~2, ~e)

are related by (6.18). (6.19). The oUrV@ Pp ‘~ ‘Sl must have d~/d ~ = O

at ‘1’
and On P P s,must be monotone decreasing from itm value at Fp to

P1°

m CD at PI. On the discontinuous curve PI ?S o PS Pm (Po) S must be
12

monotone increwshg from - 00 at F to + co at Pm (Po);“ In order to under.
1

stknd et least qu~litatively the Implications of all of these oonditions~

we turn nekt to an exminatim of the vector field of (606]0
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70 Qualitative Discussion of the Reduced Differential Equationo To begin,

we oonsider the implioationu of the required monotonici~ of S on the mrve

For this we must have
‘A 0

(7.1)

,.

from (6.12), we have for sound

+/~-] tn- =
~ and this is less or greater than

unity according am y’~ *3. Hence, Witiout reference to (5.3) ~

.

K (7.2)

8i.nce a shook with V03Qoity les6 thn sound velocity behind it could not

be started. This needs to be notod in any prebl.em

taken to be universal.

e

in which (2.8) is not
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From (7.1), (6C8) it fo31ews t%at the solution FPP1 must crose

Yq”\ = O at a point of intersectionwith N = 00 D = 0, and henoe we

must insist on the existence of staoha point.
1

SubstitutMgy~ = In N=O,

wo obtain the tm root~

nh$oh in equivalent to

m$2y{fi +@)-2Borm~2y(fl .@)”za (?.4)

as a condition on m. It is readily determined from (7.5) ~ moreover, that

.-

moving out rather than ins while $ + <0 momnso as we

Eenea

m 9yw+Jw2

signs in tha various portions of the plane separated by

the signs of du/dv in those regiO1lSC

our next step i8

differential equationc

the neighborhood of it6

to malyse qualitatively the veotor

respectively,

N =O~D=OO

field of the

To this end. we begin by considering its behavior in

singultiritices ‘i~e~O points of inter8eetiou of the

__
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As in IA.21Q* exoludimg the special oaeea of coinoidenoe of one or more M

these points, the possibilities for any one of them is that it be hyperbolize ‘

a spiral pointO or a sheaf-pointO The’reader who i8 unfamiliar with the

@caning of theso termoe or with the amdyais of singularities of firsbordor

differential ecy.uitionaeiISreferred to f5 of LL21O, where a brief disaus8ion

is given. We asm.mo here oompleto familiarity with that material and turn

now to IRdimmasion of the points listed above.

~oint pl~ya no direot role in our

ite nature. Zt is readily seem to bo

through it being f =0, q= 0.
a

‘3” 1=0” This is the poin$ oOrre8ponding to

in j 6, (b). Setting ~=A{~- 1)+ ... . in (6.6),,

(7.6)

and the integral

q& 1$”2(
!“

. 1)2 + ... (To?)

where B is arbitrary and related to Co, Cl, by (6016)~ aooording to $ 6, (b).

~..,. ,-

— —.
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Fig. 2 shows the disposition of’solutions in the neighborhood of PI. The arroti

on integral curves denote the direotion of decreasing so

(2): P* :
!

=0, ~=ti~. This point is hyperbolic, one obvious

solution being
1

= 00 To find the otherO we proooed as above, setting

7pl/’3+Af+o. e,

in (606)0 The result is the integral

,

(7.8)

eithwr sign for intermediateVU1UQ8c Tho disposition of solutions for the

two uaam aro shown in Figs. %0 and 3b. The arrows hav41the same signif’ioanoa

(3): The points PO, P_, P>. Let (!* ,~*) be the oo-ordinates

of one of these points, and let kNe ~ bo respootively the slopes of N = 00

D = O at the pointo Let

and let

(7.1.0)
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1

(-

J (7.11)

tha vcmtical ~symptote of D = O, WQ have

thsse potita and thus at each point where

of (7.11) are real and it is not.a spiral point.

aeeti&n of these two ourve80 N = O oroe.sesy ~=
~

= O from below to abovej

henoe at P+ AN >0 mnd P+ is never spiral. Moreovera for the minimum on

N = 00 we fi~ the
f

oo-ordiuate

(7.12)

.

and for m satisfying (7Q5] this ia al%mya loss than fo=(3Y. 3-2m)/(3Y-l)o

So P. always 2iea to the right of’the minimum. AN > 0 thero$ and it is not

Now ooneider the point of the three farthest to the right~ sinoe

p~p+ this will be eiher P. or P+..-

reapeatively, the vertioal asymptotes ~

above N = O to the right of “thispoints

of and above the point, to the right of

Sinoe the curvcIsN = 00 D = O havao

=3. $=[%

Now consider

DqOO andto

a)/3Y, D = O lies.

any point to the right

the left of N = 0. Then

the integral Qume of (6.6) through this point has positive

mnnot crosu N = O

and the point muet

or D=O. He=e it goes to thm point Po

bo a eheaf.point. On the other hand, at

slopes and 80

or P+ itr3elf0

the next farthest
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point to the right, i.@., the middle one of the three poiats (whioh can

be either P_~ P+, or FO)O N = 0 crosses D = O from below to above as
f

inoroasesO

and it is readily soon that this implies that tie point is hyperbolio~ Finallyg

at the point farthest to the left the creasing M similar to that at the point

farthest to the rightO and this point is therefore-a sheaf-point if it 18

P*O a sheaf-point or a spiral point if it is P . From these camluaions,

integral curves of (606) in the region

this ie shown in Fig. & for the

ordeming PA Po, p+ for @ aase in which P_ia not spiral. As before the

rnrr’owadenote the direotion of decreasing IS. The r~tura of the other ca8eeo

i.e., those invhioh the middle point is P or P+ ia readily peroeived as

follows: IiAerchange the xmmnings of P. and P_(P$ in Fig. ~f drawa6

Yq “
t

= o a line through tha approprist? pair, and o~nge the arr~s to

GOrr68pOndo ,
‘,

The integral ourves marked I_,Io, I+are

algebraically amller of the roots of (7.11) in

expan8ion0 In every cases only integral powers

tha .sIgebraioallylarger root is

only integral powers will appaar

Po~tB po, pa, p.~a At the otier

taken, then at

obtained by substituting the

(7.10) and continuing the

of \ ‘ will appear. If

tha middle point, aguin

and (7G10) will be the mrve through the

two pointe howover$ the -pamion fith the

larger root till yield non-integral powers, the smallest l.esathan 2, and

this term will have a free coefficient, thus Siving the multiplicity of

(-” Fh.ally,the special caaes inw~ch ~ or more Of the Yinta p+ F.

coinuide have not boon discussed but the configuration of integral ourves in

—.
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thooa instmoes is readily imagined.

80 The Ihward BWionj Dependent@ of the Exponent on the Compression Ratio

of the Converging Shook. The problem of the inmmd motion can now be put a8

follows: For a given pO we require the value or values of m for which an

integral ourve P P exists and has the following properties:~%1

.

From $ 7 we sbe that there cme always infinitely many integral ourveo

through one of the points P~ ~+ md in general at 1-s* two through theJ

other. This ia & reilectioaof the fa~t tluaty~-\=O is one of the conditions

for a charaoteristio through tlnoorigin, and in fact P~P+ oorreapond

to aurves y = @f+ tn wiliahare oharacterlsticso This oanbe proved dir~tly;

talternativelyohowever, the exietenoe of two values for du/dv ie in itself

proof. For it implies the

in ~p/~y there, and~ sinoe

eound mave. We have noted

and thiB giWJ8 b2p/by2 =:

possibility of a dieoonti.nuitysfor examples

p9u9v @.recoutinuous$ this would ~orrespond to a

also that at PW we have in general d2u/dv2 =+00,
.

(ma again a sound wave. On the other hand, as

we have obsorved in $ 7, there are, if the two roots of (7.11) are diatinot,

two solutions through P and P+whioh are arudytio there. Thus, aooording as

our solution ooinoides with one of these or not, a sound wave converging to

the origin behind the shook wave will not or will be present in the solution

ebtalned.

.
The oondition (2) hma not been

evident that P. la a pole of ,*
——..— —.-.——.-.———. .. — .---

-explicitlynoted before,

and so must be exoluded.

but from

.——_.-. . . ..—
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From Figs. 1 and 4, it is at once

SOmQ pairs (y,~)s but we -t tO discu88

evident tht solutions exist for

tho problem systematically. To

begin$ we shall disregard the restriction (5.3) on p, and observe oPly the

weaker condition (702)0 Apart from the fact t~t under the weak interpretation

of (208) only (7.2) is significant there are analytic advantages in studying ‘

the problem in -theneighborhood ofy\(Y + 1).

In partioular$ if we consider the limiting ease when the shock is

acao%ly sonio and p = Y/(Y -+1), tien the pdnt P_or P+ through whioh the

solution goes must lie waotly on the line f ‘1 f+=y/(y+’)0= 1, and

Combining this with (7.3) we obtain

For y <20 the left side of (8,1) is always positives while for y >2, it 1S

negativa or zero only for m ~ 2f(y - IMY + 1)(Y - @ . By (7.4.)this is

only pos6ible if

or

radiml * thatiis we

P

Y“2 >1’”~

(JT+J@ ‘Y+~

&E >y-1

R +&? =y+l

to y s 1/20 So (8,1) only hm a solutlon for the poaitlve

cm only have ~ ~ = y/(y + 1). Solving (8.1), We find

“m%” (0.2)

Now the above argument which exoludes ~ }y/(y + 1), also in faot

exo>udes
$- > Y/(Y + 1), while for t += Y/(Y+l)=l%P+=Pp9”m kve

.-— ....... .—-– — -—-----.... ....- ---
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m given by (802)o We now propose to show that for a solution P P P
p+l’

M < Y/(T’+ I)o F.hmust be below f +~ = 1. To this end WQ substitute

5 =n-q in (6.6), obtain$ng

Ihv, in the positive $ -directions solutions moss ~ + ~ = 1 from above

to below, or below to aboveg according as (803) is lese than or greater than

-1, or aooording as

(8.4)

(- as is readily shown. Here the root of the numerator is the intersection of

~+l=lwithyq-~= O when (8.3) has the value .1, while the root of

the denominator is its intersectionwith D = Oe -where (803) haa the value

co. SO* in the direction of inoreaeing
f

~ et a point abbve or below both

ourves* Solutions cro138 ~+? = 1 from above to below. while between

the twop solutions czrossin the other direotiono Suppose then. that P+ lie8

(-

above fl+ =

~=ti(y+l)o

P..oroases froxn
P

until it

6c)lUtiOU

Eeriee it

1A it will then lie to the right of =
5

YI(Y + 1)*

Suppose also th~~ y < y (y + 1)o Then a solution through

~~above to below + = 10 and will “oertainlyremain below

meets y q -
f

=Oor D=OO
!7

But since P+ is above + = 1, the

will . unless it gOeB to P- o in+erseot Yq - = O before D = O.
t

Oannot go to P+.

One further faut emerges from the above a“rgument~ From (7.6)~ the

slope of the 6olu*ion \ at PI ie -(1 + xL)/2mand for the m-given by (6.2),

-
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this io Ieos than -1,, Henoe 11 lies above \ +1 = 1 at PI and cannot cross

$t again without first crossing y~-f =0~ Henoe the solution I+ through

P+ for the woe just diaouased, i~e.o N = y/(y + 1) must lie below ~ at PIO

and henoe must be a solution of our problem for the ease of an exaotly sonio

shook~

Now consider a value of p mar y/(y + 1)~ then m must be near

here~ of 00urse~ 6 >00 From (7.3)* we have

(8.3)

/

Substituting (8.5)...

(3.6)

in (8.6). we find, to terms of order one in e

●

+’
1

%(* -’4 1

~(~ +4}(Y +1] + 239Y3 + 603Y2 +MW + 126 ~+.oo

J21y2 + 2&f + *

.—e

_._. ——.——---
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P

(808)

in (6.3,6) ~ and using [805)* (807)~ we obtain, to terms of order zero in e

,

EMting

e =

P
Y = 5/3, al = .309, a2 = -i3~7i Y = 3, al = .’5~k a2 = -.772i

the f01.1owing meaxing~ No observe

m given by (8.10) is not tho only

is(3y -3. 2m)/(3y - “1), and this

Thus, we haveP for m as a function of p$ near p = Y/(Y + 1)s a curve of

the type shown in Figo 50

The shaded area in the figure has

that for p near yi(y i-1)~ the value of’

solutiong Ftirthe
i

oo-ordinate of PO

is loss than Y/(Y + 1) for m -W/3(Y + 1), Y > 0. HenOO ‘p+is a sh~f-po~t~

and the

for the

solution

irrtegral

configuration of solutimm about it is that’shown in Fig, 6. Clearly

value of m whioh thi8 figure represents we have as well as the

1+$corresponding b p = W* ~ all solutions between 1+ and the

Ourvo P P as posaibla integrals from
Y/(Y + I) +

~+~ =lt9P+l,

—
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solutions exist are not only the points on the curves given by (8.1O)* shown

in Fig. 50 but rather all.pointe in the s“lmdedarea shown,,

One faot~ however, ie to be observed vith regard to the multiplicity

of eolutione. Of the ourvea through Pw the integral 1+, and one of the

all others have

solution PP* P+

seoond analytio

%’~-~ = OS and

infinite curvature, Thus we havo certainly one analytic

‘Is
and po6sibly one other . the other will exirs%if the

solution through P+ Iim between 1+ and P
Y/(y + l)p+abovo

betwe~ 1+ and P+P_P1 (P+POP1) below Y ~. ~ = O. Whether

1-
this Seoondanalytio solution exists or not can onlybe investigated

numerioallyo ahd we shall not consider the question hereO 1% may observeO

however$ that in the ease of a preaiaely analogous question in the problem

It wil~ be seen from FigO 6th.at *here are actually two solutions

through P -whiohgo to PI. Both uorresuond to .mkctly saniu shocks - the
y(y +~)g

corresponding curve in the (yat)-planeis an envelo~e of ch~~rec%e~iaticsbehind

it. Ilowevar,the one which lies alway8 imlowy~-\=O, gives a cnmve in the

(y, t) -plane wkioh has at eaah point greutar curvature
ti-Ianthe characteristic

through that point and so is in remlity supersonic
with refermce to the material’

.
behind it.

* in FigO 6B ‘oea~Preserving the .mea.ninggiven to p the
f

Oo-ordinate

fl
of the intersection of I+With + = lQ we have now to consider how the

fun@i.onm(~*) whose asymptotic value for ~*~y\(y + 1) i8 )~ivenby

,
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~ (8.3), [8.10) may behave as p* deoreases to valuea <<y/(y + 1). We

enumerate the possibilities whioh are critical~

(1) 1+ And II through PI beoome coincident&

(2) 1+ and 12 through P2 become coincidentJ

(3) P+ and P_ beoome coincident~

(4) P+ and P. beeome coinoidentO

The third and fourth poaaib%litiee are not

the first twos and we shall oonsider first

critioal in the same senee as

(4). U this happema for a

prticular p* = ~, m = ~, without (1), (2), (3) having happened earlier,

then for a slightly smaller value of P* , Pa will lie above P+ and P+

will be hyperbolia~ Henoe the multiplicity of solutions for taKiven m9

corresponding to v*.< N < y/(y + 1) will.disappear at this point~ beyond

it - ioe0, lu>nj, wowi13 ,haveonly, for given m, the solution corresponding

to~=~*. .Thiasituatio~ moreover. up to the point where (I)e (2)* or

(3) 00GW, oould gnly be altered by m’ reaohing a value for which P. is

since for all

rnuaerioaland

oreasingo

We turn

1. But, for this. mwould have to be leas than 2y/3(y +1)0 ,——

greater valueas
f
o< y/(y +1) is readily derived. and both

,geometrioeoneiderationa indioate that m(~*) is monotone de-

next to the possibility (1)0 If this OOOUra$ th- 1+ no longer

represents a solution of ou problemc so we h-e to oons~der it~ EL the

first plaoeo we observe that for this to kppen~ mmust attain a value for

tiiah 11 at P, lies below ~ + Y)= 1, by virtue of the mrgunent based on the

equation (803) and following that equation in the above texts Sinoe alwayo

m$2y/(fi+J’2)2, while the slope of \ at PI i8 -(1 + m)/~ thi8 oan only .

~=== -— -- -_.. - ..-.. .
1 —..

.—
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r

happen for 2y/(fi +@) 2>1 which is equivalent

are not intareated in values of y of this order~

further.

Now suppo6e (2) oooum e Then~ insofar as

cermdO we have a-tthis point a solution of our

1

1

tp y>6 -tLfla Sinoe we “

we do not oonsider (1)

thefunotion ~ [f) h OOn-

problem corresponding to

=
P 00 For we oau take as our integral the line

f
= O from

$=o~7=’

to P2, and the integral ourve 1+ from P2 to P Howevmo P2 is a pole of s,
1“

60 this does not satisfy (TQ1)~ But oonsider a valw of P* slightly larger

than zero= Then 1+ wil1 lie alightly above 12, and we have In fact solutions

for ~ arbitrarily close ta zero. Thus tie rqgion in the (p~m)-plane for

points in Wioh solutione exist would look qualitativoly as in FigO 76 Here.

if (4) has not oocurred before (1)~ the point (pi, ~) will nut appsar

as shown in the figureO and the ahded portion ef tie plane will extend to

the horizontal line through the intersection of m = m(p*) and p = 00 We

haves of Oourseo aseumed implicitly that m(~’) remains single-valued and

inoreases m p* deoreases throughout the range O< K*< y/(y + 1). There is

no may to ostablish this analytIcally, but it is borne out by rough

geometrio oonsideratione as well as by nmerical resultse We do not$
I

therefore, oonsider suoh possibilities as ~dp*+ ~, @to~

Fimlly, suppose wo have (3). Then for some VUIW P* = PO> ~a

m(~*) takes on the value’mu = 2Y/”(/7+ 72)2 and the above a=lysis *usts

all oaaes in whioh 1+ is a BolutionO The continuation of the &notion

m(p~ then obtaine by passing to the integral I_ through P-w For oonsider

a value of m slightly less tkn mos and let p+ V_ be the Points of’intere~ti~

of.1+, I_with $+~=lo Then it is reasonable to suppose p+ -
“-d5+-t -
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and f’rom(7=3),\+-f_N (mo - m) ~ Seat (Noomo) ~~h~~e

*2
m. - m(p*)#(po - 1A)

and thus n(j? ) has a horizontal tan~ent at p*= PO, m = m.

The value PO must be found nummrioal1y iu any given oaae*

I?oulet us returrito a consideration of ()+)~ and let us alao oonsider

tie question of the colncidenoe of Po, P o We have than
fo=!:~~ “ ‘

or

2r@Y - 5) -

In particulars

2f+ (y-

br
8 (8.13)

(fi2+y+2)m=~(fi- 1)~[?y + (y . 2)m]2 - W2E (8.14)

suppose all three points Po, Pg P+ are ooi.ncldenta Th~

“=*/fJvd =*(3Y - 5)hY2 +Y +2)

and thin yielde

,@Y)3/2 - lo(2J/2 ., = o (8.15)

This equation has one real root$ rnmelyo

Y = 2.289730 (8*16)

Now suppose y is le8S thanthis root. Then the left side of (8.14) is

negative for m = 2Y/(~ + ~2)2 and inor=ses to 2Y(3Y - 5) as IIIdeoreases

to zero. The right side (with the negative si~) deoreases from zero te

-2Y(3Y - 1). Henoe for y > Is there will be a value of m for whtoh the

two sldea are equal. tlmt is for whioh the points Fo, P_ coinoidoO On the
n
(

other hands suppose y exoeeds the root of (8.15) ~ Thd for m = *W + A 2*

,, /
_.
—
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the right side of (8.14) ia positive ati’P. lies to
.

we have already seen that it lies to the left for m

the right of P+. Since ,

=~/3(Y +1), there ie

an intermediate value for whioh the two coincido.

k either of the above caaes, or in the exoeptlonal oaae wh~ POO Pd

)
P+all coinoide f(8015) holds ~ the value of mwhere P. ooinoides with

P= P+ 18 obtainedby solving (6,14)Q Squaring both sides and collecting

terms we have

&(Y-l)== 3(2Y2-y +l)m-(3Y2-fi+2)m2 =0 (8.17)

This equation has only one positive root fory>l~ @o P.

P-or P+ for exaotly one value of’m on the interval O<m

ooinoides with

$ &y/(fi ‘+@2.
le6s than~ equalThe ooinoidenoe is with PA both, or P+aooording as y is

to, or greater tlusntho rootyo of (8~15). We also obaervo that for y = Y~o

Wmo = */(F. + @ 2s $- decreases aa m deoreaseae
!
+ increases with

(m. - m)1/2, f ~ with (m. o m). So for y = YQ, P. lies al-ys between

P= P+.

We are now in position to uontinue our analysis of the dependence

Of m on PO Consider first the solution I through P for values of m near

2r/(JT + @ 20 If we do not have”forsome m<mo, the situation piotured in

Figo ~, and already disoussedg then for m~mo~ I-intersects f+q=l

at a point f =N*, ~=1 - p?, M*> 0. The point P“will be a sheaf-point

or a hyperbolic point- moreover~ a~cording as P. Iioe to its right or i*6

leftsthat is~ acoordingas y~yo~ or y< Yo. Henoe in the aooond ease,
.

for the value of m in question@ Mere if? only the eolution Id while in the

first the solutions In the neighborhood of P_look as inFig~ 40 Not only
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pldoes the uurve I-interseot + = 1, but all integral euryes entering

. P from above and lying above the solution 12 at P* do lalao#giving valu@

of ~ on the interval OZP<V*O Moreover, not only canwe take l_aa the

integral from P_to PIS but also any iqte@al curve between I_and the

brokea curve P_PoPl~

It remains to be considered what IMy happen on the left-hand brnnoh

of the funotion p*(m) as mdeor-$es to values f~~/(fi

,poesibilitiesare as follows:

(1) I_ beoomes coincident with ~ through PI~

(?) U*+O, m-o$

P

(~) I_ beoomea ooinuident with 12 through P2i

(h) P_ becomes a spiral point.

+ JZ)20 The

We dispose of the first at onoeo By an argument previously given it

oertainly oannot happen for y $ 6 + 4@~ and we are not conoerned with

by (7.12)0

This holdo

regard to (3)0 (4) both~ we first Obse~e that

the

and

for

minimum point of N =0 lies to the left of

neither is possible

5
=0, that 18 as

3==
[* d

1/2
1~-2(Y-3)m <o

.

thus as long as ●

3(a-3)+2(Y”3)m~o

all mif y $ 3/2, so for suohy we have definitely (2)0 For

5--+0, the solutions of’our equation apart from 12 through P2 are

i’ . .... . .. .. . ___ —

——- -—__”. .-, ——-”
—
+.-
—-. .
——

I
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Thus the desired solution is asymptotioally

has a vertioal tangent at m = 0.

HOW oonsider Y > 3/2s m wO. To terme of ,order1 in ~ we have

, ~-= ti2, n= m/~, while Me ~-.oaordi~te ~ P, ‘s ~3. ad ‘he ‘lQpe Qf

12 is -(~ - 3)&9f. Hem., for \ ~ jd the ~ -oo-ordinate

pending point on 12 iS m/3p~0 term of order one in % ~lla

HmooO for some value of m > 08 eith.r (3) Or (h) o~ai-.

of the oorres-

T-
= Q/w.

Our analyais of the interdependemeof me p is now as oomplete as It

oan be made without resort b numerical methodsO In particular, the question

of whether (3) or (~) holds for y> 3/2 oan only be determined ntrmerioallyO

If (3) holds. then p*(m) approaohee ~ero ma m .approaohessome value great-or

than zeros while if (~ holds there is a point p*> Op m >0 on the curve

~ = ~*(m) beyond which it aannot be defined, and the region in the (m,p)-plane

for whoa. points solutions exiSt will have a qml itatively dlfferent appearanoeo

In Figse 8 we’show in a qualitativ. may the nature of tiia regione In eaeh

of the various oases pictured in Figs~ 8a to 8d the oomplete ourve It= p*(m)

is drawn assuming (3) . E (4) holds inst~d, th. left-~~ em of th.

shaded portion has the appearance shown in Fig..

there ia an interval of valuee of N for whioh a

P intO~l of oowse beoomes ● petit for T ‘,Yo~

this interval eaoh point of the region pioturod

one-parameter family of solutions, by virtua of

&o Bote that in all oases

unique m exists. This

Note also~ that exoept on

represent* not one. but a

the multiplicity of solutions

—..
.— -
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from P+ to PI in any given cssea Finally, it ia to be reoalled that far

eaoh point On the CUrVe p = P’*(m) it is posaibla t-ofind an analytic

solution P P P namely 1+0 It is possible also that the shaded regions
p~l~

oontain ares along whioh th.iais possible (Cf’pp. 35 )$ but in genenlo

solutions corresponding to points in the shaded regions lead to solutione

of the or~ginal problem in which a sound wave converges to the origin behind ‘

the shcmko arriving simultaneouslywiti it= It seeme reaaonable~ ‘cheraforeO

in the absenoe of other criteria. to prefer the solutions corresponding to

points on the curve v = p*(m)O

Figs, 8 aree of octurae~to be taken as giving nothing more than a

qualitative picitureof the solution; quantitative reaulta oan only be

obtained

data for

h

by numerical analysis. In ~ 100 we shall give some numerical

various yO

oonolusionO we note that in addition to the Eolutions we have already

taken aooount of, there are others as well, in which more than one converging

shoak wave ie presents ForO first consider the aolutlon 1+ from F+ to PI.

For p~y/(y + 1)0 we have from (8,7) t~t the slope of I+ at P+ iS lees

than .1. Hexme the point (~2~2) into whioh a point (fl~ ~) near P+en

I* beMwy~=~=Oo is transformed by (6.18), (6.19) lieu to the right of

+ 1
=1. Henoe it lies

That is. fram the point

to P+ and theme to PI. Or

.
. ..—

~.
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P solutlone between I_ and 12 through P2, above y ~= ~ = 0, and sinoe all of

Mese go to P without crossing that line~ we oan wss by shook to any one

of them. This prooess also oan be repeated an oft= as one likese

The ciroumstazwe6 under whioh it in not olear from the above that

solutions involving more than one oonwergent slmsk exist are these: (1) the

oaae piotured in Fig, 7 with 1A<<Y/(y + 1); (2) the ease of a solution

through P+ if N + O on the left hand branoh of’the ourves shoam in FigsO 90

for a value of m >> 2y/3{y + 1)J (3) the aaae of a solution through Pd when

P- is a hyperbolic point~ Whether or not there are paira (p~m) falling

under one or another of these oases and for whioh no further slmok in posuibleo

is a question whioh oan only be investigated numerically,

90 The Solution for the Outward Motion. From the discussion in ~ 6 of the

boundwy conditions (b) for t = 00 it is clear that the solution is oontinued

beyond PI to the region t >0 (in the ordimry sense)* simply by taking the

—

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



. .. -- —--- . . ... . .

-44-

(-
.

.

P

analybic continuation of the solution P P
:1

oontinues to a point (f ~q ~) for which the

(6.%9) lies on a curve entering PO. or on the OUX’VOthrough Pm,

~= 0Y”3-w OY”l):7=mo Sinoe the latter is not a singular point,

there is only one solution through ito

We shall n’owshow that the latter is the only possibility For,

suppose P. is above y
~-!=o”

Then it lies e~ther to tho right of P+

or to the left of P-O and

configuration of integral

inFige 9a, or that shown

of deoreaeing SO Sinoe s

is thus a Sheaf-pointQ aooordlng to
$
7. The

curves about it is therefore either tlmt shown

in Fig. 9b0 the arrows indicating the direotion

must inorease ~+matx = o* it follows tlmt

none of these sqlutionn is aoceptable~ on~all of them s+- OOQ as (fg~)+poo

Next oonsider the ease that P. lies below Y ~ - \ = 0, Thm tho

configuration of integral curves about it ia that shown in Fig. ho Of the

two curves through its 10 is tho only one along wlnicho inoreasem to

!
+ooas( ~~)jpoo But the point (f2~2) must lie abovey~ . =0

f

and 10 oannot oroas y ~-~ = O at either

a solution ending at P. is impossible.

The only posaibilityo therefore~ is

P-or P+. So in this ease alsoa

the solution ending at

Note that f = [3(Y - 1) - 2m]/(3Y - 1) ia the vertical asymptote of D = O,

and that by simple geometrical consideratidnso the integral curve in question

remains between this asymptote ad D = O until it enters the uppermost of the

points PO* P+, whioh It must do. To find the point on it corresponding to the

sliookoone has in general to integrate both (6.6) and (6,9) through the point
-.. ... ..——-—- ..—

_.:—

—
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‘v !?and then taking as ( 1~~1) a point on the continuation of the

(~ . ~)-curve through PI, form the ( ~, z) of this point by (6.18).~Y

(6.19) and find the ( ~~ ~) whioh Iiee on the Qume whioh is showu above
!

to correspond to the high-pressure side of the shooko Only in the ease

~ = (Y - MY + 1). c = 0, when g disappears from (6.19), Is a simpler

alternative available, Inthia case we oanform the (f,, ~,) of m~l

( f p ~2) ~ the CUI’VOthrough Pm, and then seek the point of intersection

of the resulting ($I,ql) -curve with the solution from P ~
1

10. Mamerioal Reaultso For the determination of the funotion p = p *(In),

we have as a starting point, for any value of y. the point p = Y!(Y + 1),

m= 2y/3(Y +1), and byuae of equtio~ (8.3) -(Uo), we O- fid the

,(-’ slope and curvature at thlu points as illustrated in equation (8011)0 A

(-

natural next step is to determino Ho = W* for m = */(w + /2)2, where

wa know dm/d~ =.Oa This we have done for w = Ij\30Y = 30 y = 8fifinding,

respectively~ PO = .31180

five d~ta to which to fit

P = Y/(Y + l). ~ =2Y/3(Y

#o = .2?300 W. = .0650 This pravidea us with

the desired ourve, namely, the k points

+l)ik=~/ti+@)2sm = no; the slope and

aurvature at the first~ and the slope at the second. Approximation ●o

determined have been found quite aoomate~ exoept near p = 0~ thus, for

Y = Ij/3* the approximation gives m = ~@3, for p = (Y’ - 1)/(Y + 1) = .25,

while actual integration

Y = 3, the approxiumtion

with m = A53, gives 1A= @520 si~ilarlya for

gives m = .572 for p= .50P while aotual integration

Within= .572 gives I-L= .497=

For the sake of oompleteneas, In one oa8eD y = 30 the ourve w =w*(Jn)

I

.

.

.—
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has been investigated in the neighborhood

m= 04.33,I_ and 12 becaue ooinoident, so

endpoint on this ourve. InadditionO the

of~=o, It was found that fOr

& =OOm= 0433 is the left-hand

point m = .5U p = .030 wa6 found.

On the basis of’these var5.ousnumeriaal results: we have provided, in

Figs. lose 10b, IWS approxi~te graphs ShOW.@ the regions in We (P~m)oPlane

for points inwhioh solutions exist, for the three values y = 5/3, Y =39

Y = 8, respectively, and omitting the lower lef%hand portions for y = 5/3s

Y =80 These graphs are believed to be aoourate to within two per

&the oasey = 3, m

integration of the problem

= .572 @ = ,636), ~ = .497, a oomplete

has been ’oarriedoutO Fig. 11 show8 in

PPP
+lsl

, where PS corresponds to the
1

Cent.

numerioal

the

low-

pressuro side of the reflected shook, and the ourve P~ Pm, P~ oorrespondi~
2 2

to the high-pressure Bide of that shook. The orltioal ourves N = OS D = OQ

~n - f = o are also shown in the flg~re. ~ Fig. 120 *e fun~ti~n s == log w

in its dependence on $9 is given. From these two curves. all physically

pertinent funotions @an be determined. In Particular$ for the inward motion,

n
x =awt,y = af(w)tn, while the positim of the shook in the two

referenoe is x
s
= awStn, yS = aw tn, w

s s : @ . ,)pY] ~a(l + m)~

x/Y~ = ~lw~a Y/Y~ = f(w)/wS, ad f(w) gives us y/ys as a funoticm

flames of

so

of dx~.

This funotion is shown in Fig. 13. Moreovers all physical quantitio8’are

funotions of f ad thus Of Y/YS multiplied b

and powers of ta 60 that by a suitable choioe

appropriate aoaling faotort3

of units (depending on time)~

all suoh quantities oan be expressed as funotiona of y/y alone.s
Thu6, if

U M ahoek velociti, PS pre88ure at the shook fronb~ both at time te then

duo p/p~are ‘Wotiona ‘f yly~~l?e~. ~m_.. ...aimilarl~ p/p. ie a funotion of y/ys
—~ —— -“ –--”
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alone~ These funotionao P/PO, u/U, dps are m=phedi~ %8S % 15s 16

ret3peoti.valy. h order to have oomparabla graphs for the ou-d motionO

is now canvonient to imagine the inoident shook mirror-refleoted in the

/ u/U, P/p~. Adopti%y-axis, thus preserving the meaninga Of ~Ys, Y Y38

this prooedure. we @ve sh-~ in Figs@ 175 38, 190 2% dy~, P/Po@ A

p/ps aa funotion60f y/y~Q Thus for examples to read from Figo 20 the valua

of the preseure p at a point y and time to after oollapae one finds the
9

values of yS a~ pS at the t~ to before oo11ap8e, md find6 p/pS at

YJYS 0 A table of valuea of
3

~ n, s, dy~g Y/Y& P/Poe U/us P/P~s over

t@h epoohs of the problem is given in Table 10

~plabati.iuibf Table@ ad Granhe~
#

As po~nted out in the abstraot~ a value

n ,kp(th atis , the value of v on the i.neidentshook), l-ds in general to

a range of values of n, of whioh one corresponds to an atilytio solution.

Thus. if m= 1 -.n/& there”will be a function m(p) defined on the interval

06wcY/(Y + 1) oorr-wn~ng

exist, and other points in the

non-analytioy’solutionscmiata

funatl.onsIs shown in Figs. 7,

portions represent the regions

to pairs (m,p) for whioh arnlytio solutions

plane oorreaponding to pairs (%N) forwhioh

The possible (qualitative)nature of these

& to 8d, and in eaoh figure, the shaded

corresponding to non-analytia solutions. The

Val;e Ofyo is 2~2897+o Fig, & shows a variant of the left-hand end of the

figure whioh is poe~ible rather than tkt shown in Figs. “8bto 8do No

instano es

Of Fige 7

Iargey .

For

pardgraph

of this have been

have been founde

that is y >8e

Y = 5/3. ‘f= 3s ‘f
●

founds however, and in adtition~ no tista~es

If the latter oooum at.all, it iS only for very

= 8, the function m(p) disous~ed in the preoeding

has beeh determined to within about 2 per oe?t~ =oept for # +0

—... _ ._. .. ....

—.
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in the oases y = 5/3, Y = 8, and ie shown

For Y=3, ~= &97, we have m(~) =

oases a oomplete n~eriaal ~tegration of

(-

,f-’

in Figuo 10a, lob, 100.

.572 (n = .636). and for this

the problem has be- oarried out,

If Y~g US pa represent reapeo~ively the poaikionn velooity, ad pressure of

the inoident shook at time to then by virtue of the assumption of similarity,

~%, ~/po,~u, p/p~,ti.r.. i.the U~r-~bn r.diUa.Pia~.n8iti. Poi6

normal densitye u la ~e~~itY# P is preseur% are all funotions of y/ys.

~ese funotiona are 8howrlin Figs.-139 14, 15, 16.

men the inoident shook reaohes the oenter~ it is refleoted and moves

out through the material againo To see this epooh of the motion on the same

soale a$ tie inoomingn we imagine the inoident shqok mirror-reflected in the

y.axia, so that tiyS, p/po, L/n, p/ps, r-in f’~tio- Of Y/Yso The~o

are ahowm in Figs. 170 18, 19, 20. That ia9 for example, to find p at

a time to a’fteroollapse and positions Yos - findsY5 C@ PS at me tiMO

to before collapsea d’thm dete-nes P/PS at Yo/YS from FigO ~0

The laat five oolumns of Table 1 give the results desoribed in the

twa preoeding Paragraphso-$n.tzabu!larform...>~n. . -.——._ .—
‘— -- ..+—.. .,

-

—
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