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ABSTRACT

The problem of a o;nvergent spherical shook wave, near zero radius,
is studied by means of the aimilarity method, It is found that if a fixed
(paticreintion (i.e., iﬂdepehdenf of entropy) is assumed then the method
necessitates taking both pressure and density to be zero shead of the shook,
Obviously, then, the supposed shock becomss a free aurface and the proﬁlom
reducer to that solved in LA;ZIO0 In the preaent report, therefofa, Po Vs
are taken to be rolated by an equation |

P = k"ﬁf (3a)
where k is a funotion of entropy, The nature of this funotion need not be
speoified, since the assumption of similarity determines the dependence of k
on the mass of unshocked material (1,0;, on the variable x introduced below),

The assumption of similarity may be deacribed as followa: With f
defined by

y = nftn, a = const, | (2a)
where y 1 radius, the position of the convergent shoock is taken to be pgiven by
» £ =f, = const | (3a)
the sense of time being revoLsed, and the variables ¥ specifio wvolume,
p pressure, u material velod;ty, are assumed to have the form |
vEav @, pEp (02, u=u (@B )

One finde readily q =0, qé =2(n - 1), q5 =n « 1, MNethods guite analogous

1 _
to those of LA-210 serve in this instance alse to reduce the hydrodynamical
equations to a single first-order ordinary differential equation containing

the parameter n, Since v = vl(fo) is constant on the shook £ = f , its value

p is aloo a parameter, and the general proﬁlom is to determine the pairs (TH -9
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o3 =

= =
for thioh- physicelly satisf'actory solutions exizt, This problen is disouued
in bompleto détail amlyticgllyo and numafical results obtalned for various y,
The plismomenon of & continuous spectrum of values of n first observed in
LA-210 makes ita o.épearamo here alsg, but as in that report, the imposition
of the conditlon of snslyticity appears to specify s unigue n in any given
problem, Vith regard to the walue of y, for a perfect gas, v & 5/3,

of aourse u = (y -0/ + 1), but for other applications envisaged, this
ocoondition need not be enforced, It is iround, however, that always |

p<y/ (¢ + 1), since otherwlse the ahock is not subsonic with reference to

the material behind it, Moreover, if p = li:\r"Y

is taken to be universal,
rether than valid only for ¥<< ®m, then p § (v - 1)/ +1),

The analytio solution for y = 3, u = 497, vhen n = 636, 1s
determined completely and the results presented in the form of a table and
graphs, In order that thess, as wall as the gr.aphs dealing with the (u,n)-
reiation oan be understood without a detailed reading of the report, a ahortn

explanation is given separately (pp 47-8 ).
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THE SIMILARITY SOQLUTION FOR A CONVERGENT

SPHIRICAL SHOCK W®AVE NEAR ZERQ RADIUS

1, Description of the Problem, Suppose a strong shock of uniform intensity

to be oommunicated to the surface of a sphere of inert material. A shook wave
will then be induced in the sphere, travel inwards with Sphericai symmefry
about the center, and ultimately be reflected from that point, Given the
initial strength of the shook and the requisite thermodynamio.1nformation
ebout the substance composing the sphere, the hydrodynamical problem of the
motion which takes place is complotély defined, and susceptible of numerical
integration over a considerable portion of the inward motion;z The center
of the sphere, however, is a singularity of the hydrodynamical equatibns9 and
in cmsequence straightforward numerical integration is not indefinitely
poasidle, Ono has, therefore, to resort to other means to determine the
motlon near this point; and it i1s this problem with which we are concerned,

To investigate it we employ the so-called "similarity” methode)a
Taking the point to which the shock converges as origin, and reversing the

sonse of time, t, the assumption of similarity amounts to this: <that the

equation of the incoming shoock has the form

y=af t° (y = radius) (1.1)
and that, with f defined by

yFaft | (1.2)

1) ¢f, a farthcoming report by Christy,

2) Cf,, for example, LA-210,"The Similarity Solution for a Convergent Free
Surface near Zerc Radius™, and BM 210, "Powerful Spherical and Cylindrical
Shocks in the Neighborhood of the Center of the Sphere and of the Cylinder
Axis", G, Gud~rley. Translated by M, Flint from Luftfehrforschung, vol. 19,
No, 9, 20, 10, L2, pp. 301 - 312.

—
—

[
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behind the shook, the variables p(pressure), v (specific volume), and u

(velosity) are of the form

p e p()tY, v =ve(H)t D, u=ui(n)e) (1.3)

Here a is a scaling factor which it is oconvenient to leave free, Continuing
the naaumpti_on of aimilarity boyond t = 0, we aiao expect the reflected shock
to have the form (1,1), and the form of the functions (1.3) to remain
unchanged, time being measured now in the ordinary sense, The problem then
is to determine the eprnenta n, ql; %s q3“ and the funotions i:', v?, u’,

2; Shock Wave Boundary Conditions and Their Implicationa,

Aoross any shock wave, the quantities p, u, v, are discontinuouao
with the discontinuities subject to the conservation laws of Rankine, Hugoniot,
Let the values of a variable on the two sides of the shock be distinguished
by the subsoripts 1,2; let U denote shock velooity, and E the internal energy

of the nubatarioao Then these laws can be written as follows:

(Conservation of Mass) (vl - va)ﬁ = vyu, - VU (2.1)
{Conservation of Momen tum) (vl - v2) (p2 - pl) = p,(u; = u1)2 (202)
(Conserv&tiqn of Energy) EZ - E1 = (1/2) (p1 + pe) (vl' - ve) (2.3)

In (202)D which is not the direct e:v;preaaion of the'oonaemtiqn of momentum,
.since it takee account of (2.1), p, denotes normal density,

Our present concern 1s only with {(2,1), (2.2), First, we observe
that for the incoming shock, we have u = o, v\l =v, = constant, so that (2.1)
becomes simply {2.L) '

(- vy v, U =uy (2.1

APPROVED FOR PUBLI C RELEASE
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Hence it is at onoco clear that a solution of the form specified in (1.1),

(1.2), {(1.3) is possible only if

v (f) =0 orq, =0 gz =n-1 (2.5)

But if v?(f) = 0, then (2.4) becomes U = sy which states that no material
crosses the shook, Furthermore, taking v“(fo) = 0 means in effect that wa
are neglecting entirely the density of the matériai ahead of the ;hook° Henoce,
under the only reasonable interpretation, (2.,2) reduces to P, = 0,
Now, the conditions U = Uy, Py = OIaro, in fact, the conditions
for a free surface and thus thg alternative v*(f) = O leads to the motion of
such s surface as the nnyﬁptotip 1imiting form of a convergent spherical shock,
This is not qntirelj ﬁﬂreasonaélep moreovér; fbr while the condition p, =0 |
seems inconsistent with the concept of a shock, it ia %0 be remembered that
behind suoch a surface, the pressure rises very éteeply to a maximum which
besuuns infinite a; ﬁ—-)O, and of course the distance of the maximum from the
fres surface approaches zero, Thus it is only very near the surface th#t the
behhviof of the pressure 13 qualitatively different froﬁ that behind a shook,
The problem to which this alternative leads, hﬁwavero has elready been solved
(cf. LA=210), and we shall not; therefore, be fufther concerned with it here,
Rather, vwe devote our entire attentidn to the case q = 0, where
v is a constant on each eimilarity curve, including, in particular, the shook,

1l
in this case

Taking v. =1, Y, T He By T 0 the equation (2.2) for the incoming shock becomes

2 o
(1 - P)'E’a = p0u2 ’ (206)

and in counsequense g, = 2(n - 1), Thus 9y 9o q3 are all determined in terms

e e ——y
—— —
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of m: aumning up we have

qlag(n-l), q2=°o q3=n—1 : : (2.7}

In view of the singulerity at the origin, moreover, we ahéuld have 04 n <1,
and hence, since pvdopendl on t, while v does not, a fixed (p,v)=equation
behind the shook iIs impossible, In‘othor words, under the assumption of
similarity, and the exclusion of the froeéﬁurfaob solution already discussed,
one cannot neglect the dependence of the preagizre on entropy, Acocordingly,
in treating the alternative 9, = 6, we aré led to assume an adiabatio
oqua.ﬂon of state of the form
P= kv ¥ | (2.8)

where k is a funotion of entropy, S, |

The applications of the present snalysis are, therefore, limited
%o those cases in which (2,8) "is at least a fair approximation, This includes
in particular, of oourse, for 1<y é 5/3,, the omse of a perfobt ganB);
in addition it is hoped that with y~.3, (2,8) may be approximately true for:
various metals. Finally, : convergent‘ detonation wave may be regarded in
the 1imit as a pure shook, 8o that to the extent that (2.8) 1s a good
approximation i‘or the end prodwts of an exploaion, the problem of the
asymptotic limiting form of such a wave is subsumed here, This applicetion
is not, of course, of immediate practical significance, but is mentioned as

of possible inoidental interest in commeotion with previous \mrkm o

2) Cf, BM-210, cited in footnote 2,
L) La-1L3
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3. The lagrangian Equation of Notion, Ons can now proceed immedlately to
aubstitu‘i:e (1,2), (1.3), (2.7), (2.8) int> the B‘ulerian.aquatiom'or
hydrodynamics for the conservation of mass, momentum, and entropy, thus deriving
a system of three ordinary differential equ;tione for the determimation of
P’y ¥, u° (Cf,, the paper of Guderley cited above), Alternatively, one cen
introduce a Iagraggian variable x - the radius of a lamipar shell of the
material when it is distributed at fiied constant density - and reduce the
 lagrangien equation of motion to a single ordimry difrereﬁtial oqt;ation
(Cf LA-210), The latter procedure is by far the less cumbersome, and leads
morae readily‘ to a happy choilce of tafiablel; accordingly it is the cne
which wo adopt, As om" Lagrangian state of reference, we take the state
of the mterial ahead of the shook,

To see that the leagrangian formulationlia equivalent to that of

§1, we start with the eguation

vey¥xty, | | (3.1)

which, with (1.2), (1.3), a, = 0 givea

x> ax =ad vi() £ ¢ ar o

Thus

x> = F(f) £ 4 6(e),
and since on the shoock y =x, £ = i‘;, wo have G(t)~ t3n° Hence we are
justified in introducing

x=awt, y=af (11)‘l:n° (3.2)

Now the function k in (2,8) depends only on x, not on t; 80 by (1,3),(2.7),

APPROVED FOR PUBLI C RELEASE __r




APPROVED FOR PUBLI C RELEASE

we have

2(n - 1)/n 2(n - 1)/a 2(m -1/ 2(m - 1)
2, w <t

k(X) = Ax =4 » (3"3)

where A ls a constant over any region in the (x,t)-plane which contains no
ahocks; but can of course have differcnt values in two> such régioha separated
by a shook,

With (3.2), (2.8), (3.3), we can proceed to derivo the governing

ordinary differential equation, The Lagrangian equation of motion is

[~ 2 L=d "
Ve T Po R y x 2l"‘x- (3.4)
From (3.2), we have
-1, ‘ na-1
% =a 11-, o %‘; » ¥ =15, Vi = an(f - wf')t > — (305)
e, 2 n-2 _.
Y. =80 (w £'' +onf’ - mf)t (3.6)
tt )
where \
lﬁ *= (1 = n)/n - ‘ (3u7)

For the right side of (3.4), we obtain, using (3.5), (2.8), (3.3),

2, - o my
X 2 -1 a'gm -1 Afaw 2(1‘ e.rf‘f"Y '2(1' T =2 (3.8)

o 2”
Po ¥ X Py =P,

Acoordingly, with .
' 2 2+2m

A=n a P, ‘ (3.9)

whioh simply fixes the unit of pressure in terms of 4, (3.L) becomes

Y - - '
R el s L (3.10)

APPROVED FER=FUBLTC RELEASE
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For certain purposes, there is an advantage in the further ohange of variable

glo) =fw ', o=w o (3.11)
From_ this we bhave
f"=geog', ' = 03 g" ‘ (3912)
and (3,10) becomes
< omY ¢
cg”emg' =g Yarg ef(s gY) T g ] - (3.13)

For future reference, we note the relations

- D=1
u=an(f-w) t¢ lzang‘t ,
- 2
v=ffw? = g (g =og%, (3.14)
b= ol azpo 2w =2y v 2l ) 2 2 Pog “2f (; _ ogr)~T2NEH 1)

In all tk;e above aquﬁtions involving ¢, the sense of time im reversed for the
towerd motion, Also, it 18 to be borne iz mind that simce A has two different
values on the two sides of a shock, the same is true of a, by (3.9),

Bouation {3,10), or alternatively {3,13), then, 1s the
Lagrangien equation of motion, essuming similarity of the type described in
5) 1, ‘'and it is worthwhile to examine from a slightly different point 01:
view the significanco of this aagumption. In the first place, the assumption
that the shoock hus the form y = afotn n;eny be regarded, not as an assunption
at all, but merely as a foousing of attention on the term of lowest order in
the expansion of the shock. In this semse, the only assumption is that y. oan'
be expanded 1n powers of € along the shocﬁo Next, without reference to (1.,3),

the introduction of the varinble w is certainly a natural procedure, since it

has the effect of replacing the region in the (x,t)-plane bounded by t = 0
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.. S

and x = afotn, by & quadrent in the (w,t);plane, and simply introduces instead of
(3.4), an eguivalent differential equation, Now a matural and familiar method for
solviﬁg such a pgrtial_ differential equation over such a regi‘on, is t@ agsume an
expansion of the form
@ nj ‘

y=a JZ=1 £ t. | |  (3as)
and this leads in general to a sequenoé of ordinary differential squations for the
funotiors fj,, 'In our case the equation (3.9) is eimply the firat equation of
this seguence, Regarded in this light, th#ma the assumption of similarity is
only an assumption regarding the regulurity of the function y in its dependence
on vr,,'tn,, and thus @e of the kind that is necessarily consistently adopted in
physics, This, of course, says nothing. with rezard to the adiabatic eguation
. of state (2,8), but even there & similar point of view may be adopted, For

p is completely determined by 8, v‘; and thus, for v~0, p~@, we may reasonably

p\= i kJ(S) v

j=1.

agsume

' The equation (2,8) may them be taken as tl}.e first term in this expansion, and

thus (2.8) 1s valid to the extent that only this first term is significant, Hence,
irrespective of quantitative considsrations and the gaps in our experimental
koowledge, results derived from the procedure wo have adopted d.b af the least furnish
gualitative iﬁsight into the problem, and must desoribe the limiting behavior .

correctly to the extent that fhe hydrodynamical idealization itself has validity,

Ly The Boundary Conditions, There are four curves in the (x,t)-plane which
play a critical role in the problem before us, namely, the incoming shook, the

line t = 0, the reflected shock, and the half-linme x = 0, t >0, We conslider now

R SRS —
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the conditions to be satisfied on these,

{a6) The comverging shocks .Here v=x, 60 £ =w, or g(c) =1, Next
‘the constent compression ratio on the shock is a pe;rametcr in the problem,, and )
must be given before guantitative resulte cen be determined, We denote its
value by p, 28 above, Finally, we must satisfy (2,6), which in view of (2.L)

mey be written

pep, (1) (L.1)

= 2 - had -
Nowy, by (3.3), (5.4, p = De 32 Po ¥ i Gam t (@ - 1) end 02 = aanecr 2t2(n ) s

[y

Thus, {L,1) becomes ‘ oy

R T )

Rence, using (3011;), we have ou the converging shock
1/ [2(1 + n] | |

°=@‘H)HT) » E=1, g=0g" =p (Lo3)
Note that since = is & frees scelar, no polut in the incoming shock is deter=
pined by (Lo2)o

The r31; of the equation (2.3) for the conservation of energy is this:
It permite us te find E es & funotion of p, v, end the parameter p, in the
1ight of (2.,8), For we have |

dE = =pdv + TAS

(P = temperature), and thus, by (2.8)

B= qFy) v 6 | (s

Now, taking G(k) = 0 for p = O, we have on the high pressure side of the sheck,
from (2,3%)

E = %-p(l-p.); (Lo5)

|
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Thus

o) =ppa-w- 2o = Foa- 12,

Hemoe
o) =0k, © = 5 (1= LI, S (48
and , _
Ea%[l +{r - 1) CvT-l]' o (bo7)

For an ideal gas, of ocourse, C = 0O, and one has nc}aesaarily the familior
result p = (y = 1)/(y + 1) ; for the other applications mentioned, ‘however,,
this value of p is not necessarily presoribed, -

(v) t =0: Here, for fixed x, w-yoo, f(w)~—>00, 0 =20, However, y,

¥ must be regular functions of x, Since, almys, y = g(o)x, 1t follows that

gla) = C,>0, and since y, = ang‘"tn -1 al/n g? o"Px~™  ge have giaso™
‘i‘om g~>30, Thus, at ¢ =0
1+m
g(o‘) =‘C° + Clc + wemnnc, CQ>0D cl £ 0. U-I-os)

It is readily determined that the general solution of (3,12), in the neighborhood

-

of o =0 is _
2 i +m) ‘
glo) = 3 __ ¢y | (.9
J=0 ,
with C , C, as constants ofj integration, CJ = CJ(do’ Cli’ m), §>1; Since,

for the inward motion, tho seuse of time l& reversed, the continuity of y, u
at t = 0 impliee that C, 1s the same for the inward and outward motion, while

the values of C, for the two phases differ only in sign, C) >0 (ioward),

¢, {0 (outwurd), —

APPROVED FGR PUBLI C RELEASE
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(c) The reflected shock: Since A, a have different values on the tw
sldes of this. shock, while x, y,n‘t are of course continuous, f, w are dise

continuous ; &lfl = a2f2" alel = a2w2° Accordingly ¢ is diecontinucus, g

continuous :
8,0, =850 5, B = B0 : (L .10}
From {2.1), (2.3},

73200y = my) = o (ry - W) (0 - w)e

noll o)

Nowo'(laul=a1nw1f1t .

3
l
80 we have

2(n - 1)

2 =2
Po% (v1 - va)t

2 2

§(p, - py) =58,
Also

p, = ala clam v1-{t2(n -1 = a12°1-2012+2m vl"T t2(n-1)'
and uwsing (4,10},

Py = 522 oeam v;y t2(n - 1)_ “12"1’2“22%1 v;V’ t:z(n.=.1) .
Thus, (2,2) bocomea‘ |

242 o

or : .
=3 2+2m 9, =Y 2+2m 3y =Y v ‘
g % (8 -08,) =9 (&=098) ] =g, =g .(H12)

Finally, from (4.7}, (2.3), {L.10)

(02)2 ' QE(E)T s bsnvy - & - Dvp ey - NonyT
\$-)

9

Ce -+ 1)72 - (Y - 1)v1 +2(y - 1) CV‘ET (L.13)
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(6) x =0, +>0: Here we ave w = 0, f{w) = 0, 8o it is convenient to
use (3,10}, ratber then (3.13). Setting

£oxhgy w? (Lo1l)

we obtuin for the term of lowest degree on the left side of (3,10),

Agl(p-1) (B+m wh

and for the term of lowest degree on the right-hand side

. 2% (2-3)f+3(r-1) -2n

BV ap Z’*[ﬁ(l,ﬂ),zm]w A
Now, if /5’ = 1, the left side coniributes only terms of degree greu.tar. than 1,
waile the term of lowest degree on the right has degree =1 - 2m, obviously less

than 1, So f=1 is impossible, and £ =« m is obviously absurd, Hence we have
B= (3 -2m)/5% , Ag arbitrary; (Lo15)

or the twa above expressions are of the same degree and

_3 -V -2n , 1-3 _ 3¢ -10 +mpY ,
A s S A (v R (20
| 3(p- 1)

In both oases B < 1, and since ¥ ~ W s w20, wo have v 00 in both

- <=2 -2!3-
cases, On the other hand p~w =Y ".’ﬂ il « So, acocording as (L4,15) or

(6r +2m)/(3¢ - 1)
w

(L4Lo16) holds, we have p~sconst,, oOr p ~v —»0 for w-»0,

We shall soo in ¢ 9 that (L.15) is actually the only possibility, since the

boundary conditions (o) cannot in faot be satisfied for (4.16).

S. Thermodynamic Considerations, The problem cutlined in éS’ 3,4 18 completely
deternmimte from the point of view of dynamics, Thermodynamically, however, it
is indeterminate without the postulation of a further relation - for example,

specification of the dependence of k on entropy would sufﬁce; However, even

APPROVED
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without this (2,8), (L.7) have certain thermodynamic implications, and we

pause to consider these, Using (2,8), we bave from (4.7),

aE 1 oy +1 a
T = (3§ v = m (v -+ (‘Y = 1)0 ag » . (5 al)
Now, certainly dk/ds > 0, so we must have
=y t1 .
v +{y =1) ¢ 20 : (5.2)

But we have just seen that at x =0, t >0, v >0, and thus (5.2) reduces to
¢20, p&G=10/x+1. (5.3)

There are two points of view which one can a;iopt with respect to (5.3).
First, if one regards (2,8) as universally valid, then (5.1) 1s also
universally valid and (603)_ is a necessa;ry condition on p; On the other hand,
if one takes (2.8) to be an approximation valid only for v{(w, then (5,3)
has no special significance, In this instance however, (2;8) must be
replaced by something else behind the roflected shock, and cne 18 not in
position to considor‘ the reflection problem at all, without knowledge of the |
adiabatios for ¥ ~ 0, - So (595) must certainly be satisfied if the problem
of the refleoted shock is to be aonsidered by the mothod adopted in §F 3oke
By way of further orientation, let us suppose that

T =h(v)pf . (54L)
This is justifiable, insofar as we are int-ergated in p~oo, T~oo, Then,
from (S5.1), (5.4

h(v)vd{ﬂkp = ‘?-%_T [V-T 1 -+ ("f = 1)0] % °

Since k 18 & function of S alone, this yields

—
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‘Y(l o ) + 1
hiv) =D [V ﬂ + (v - 1) Cva] » D = const, > O,

dk A

e Dk °
Ir B =1, we have

D3

k=Ke . (5.5)

otherwise
/(1 - 4) N
k = {08 + d) (5.6

Since, for S —w, k—w, we hove £ $ 1. Now, from

4 (@ ep) 1 |
Dpﬂ(vv( Al + . e - Doy -1
wo have
G-v@-p) +vpe-ner 20 ey

since for T = const,, p must be monotone deoreusing in v, Thie is always
satisfied if A2 r - /Y . but oan fail for smller 4., Thus, for such B,
(5,7) cen result in a stromger restriction om u, Or, to put it another ﬁy,

to assume a fixed value vf’or p is ioconsistent with too smali a 4 in (5.4),

i,0., implies A2 A . The value of A, however depends in general on the

range of v 1in the problem, and has a&s we have obzserved the value (v - 1)/1'

only for p = (Y - )/(x +1), We do not pursue this matter further, but

mention it simply by way of emphmsizing that the choice of p imposes restrictions
on any thermodynamic assumptions which one may wish to make subsequently,

—

6, Transformation of the Fundamental Equatlon to an Equation of the First Order,

We now apply to (3.13) the techuique used in L8=210, The analytical details
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are so closely similar to those of the report cited that we need only outline
the procedure and give the results, The first step is to introduce new

varisbles s, h, ./ , defined by the equations
s as as
c=e,g=0¢ h,g-0cg' =0 [, {6.1)

Prom the secoxd and third eguatiouns we have

| [(1 - a)h .,il "de = dn, '_ : ' (6.2)
Substituting (6,1) in (3013)q we find thet the ohoio.e.
2(a ‘+ m) -
T o (6.3)

ronders the eguation homogeneous in o, and using {6,2), we obtain accordingly

TN -2, 440, . |
(1 A U»)h -1 l «vh 2, 4 L =
[ | ] [ ' ] (6.L4)

={afh1 ® 2’[_ -Y [(1 - a)h -)_] a»[(a «mwf +mh = _(aqe)h2°2f£'T]} dh

Next, in order to get rid of the ¥ in the exponents, we set

fo ot n= =y Y 0 \ (6.5)
Then (6;&) b&omes simply
§:§1 = _?_ ..g_ . (68)

vhere

N=(21=1)j2+.mg==f2r-3 +(Y-’2)t9§=3m+vm. \
(6.7)

p=ff.mmg - Q-mf + -2 -
One obtains readily the relation
K+yD= (3 -1 (§ -1+a)(f=-vn), - LeB)
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the importance of which will appear presently, and finally, from (6.2), (6.4),

(6,5), we have

aan,“%_&%:gu“_;;d

For subseguent reference, we now note varlous relations between the

-

. (6.9)

=}

varizbles go M) 5 and the variables, g, ¢, v, v, b:
f= 1-¢" g, .
=g =% (g o)™ Bl m) 5 - '(6.10)

—V(m-l)f -t/(Gr-1)

_— &, (6.11)

v=t, u= a0 (6.12)

p = n2 a’ P g’lc"eyltz(n - 1).
)
Next, we formulate the boundary conditions (a), (b}, (o), (d) of

§l4 in terms of § , W, 8 (a) The converging shook: Substitution of (Lo3)

in (6.10) yields at once

§=p M=1-u P =gui:;-,;y log (1 - Wy ’ (6.13)

(b) ¢ = G: Hero ¢ — 0, so 8—> = 00, Substituting (4,8) in (6.10), moreover,

gives

(1 +ms
[ ]

+ °ca g

-1
f=1.-( +mc, ¢

(6,1L)

1las 21 + m)s X
qmc =3t 2 rme

——
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Thus, f =1, V=0, for 5 == @, Horeover, we have, from (6,1k)

o 1 L X2

g'él- ) .,___?__(1‘*::;) c B(Y_-l)/? cn'1/2+

Thus, summing up,

/2

b
s—3- o, f—21, M —>0, §=1=Bq"’ + oso (6.15)

where

3(y - 1)/2 c

B=(1+m) C, 1 ° (6,26)

We have already observed that the Co is the same for the imward and outward
motions, while the two C,'s differ in sign, the C, for the imwerd motion being

positive, Henoe B> 0, for the inward motion, =nd its negative belongs to the

outward motion, (o) The reflected shock: From (6,10), we have
1«3 2(1 +mn)
g’ =g s o

Hence, since g 1s continouous,

c22(1 - Ny = "12(1 T T2 §2Y . (e

Using the first of the squations (6.12), with (L,11) we now obtain

1-3 2+2m, = 2 +2n, o .
& (g 52 =9 §0= 8 -% o
and this v:ithqf*-':gl"h' & T ives
.18
SR PRI P _ (6:38)
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Finally, {4.13) cen be written

2{(1 + m) . = 1)
!ﬁ) (fg_jr = (x +1)fy = {y = 1§, + 20y - I)CgB(Y 5.7
\ %

¢ - - ':'.5(.'{ - 1) Y
(r + 1)§2 or - 1)‘51 +2(¢ - 1)Cg §o
Combining this with (6,17), we obtain

s}

@

e | e+ 0§ < r = 180 v - l)cg??(‘f - 1)531
Ym (Y + 1)52 - ("f - 1)&1 + 2(»( - 1)053(1' - 1)527

(619}

Now, let the subscripta 2 denote the highepressure, and thus high—donsify side

of the shoock, Then, since Py = P~ Sl e §2 » we have, using also (6,18)

?2 < fl » M2 2N, - ‘ (6,20)

It ie to ba observed that the comditions (6,18) (6.19), (6.20),
while of spscial interest to ue with respeot %o the reflsoted shock, ars in
reality entirely general snd apply to apny shock in the material after the
initisl shock, however induced, They imoly, incidentally, that sﬁch 2. shock
must be on a simllarity curve y = af(w) tn, and thus render our assumption in
§ 1 that the reflected shock is such a curve, a theorem.

For a glven 31, My » & the corresponding §2’ v]2' are obtained by
intersecting the straight line (6.18) with the ocurve (6,19), One point of

interseotion 1is g?, = 51, vze = Yll , and the secon§ is the desired one, That

‘thers are only two 18 mpparent from the fact that for any o,, the curve (6.,17),

and (5,18) have at most two points of intersection, To determine when there

is only one point of interseoiion, we set
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Then, (6,18) sives M= My = €, snd (6,19) becomes
Y, = -1 + 0{¢g)
=Y 8y

Henoso the highopressure side of the shook is always above, the lowepressurc

side always below, ¥ n = § = 0, if,oo
YN =§,>0 TNy =f 40 . (6.21)

Thus as the strength of the shock spproaches gero (gi‘ql)g (?2*] 2) tend

to soincidence on the line le»»? = 0, This is in fmct to be expected

sinoe 1Y "?, =0 is one of the 'conditions for a characteristic through the

origin, end thus a necessary ccndition for a sound weve through the origin,

To see this we hauve only to note that in such a cimracteristic the coefflcient of

g" in {3.13) mast vanish, This coefficient is readily found to be

oﬁl - Yga -2 02 ¥ 2m(g; - og")"Y - 1] ‘which by (6.10) ia o(1 - YY{E -1') o
Thus it venishes for vy =§ = 0 and o = 0, The latter root corresponds te
x =, p=0, sound velocity = 0, so the significant one is tTN= § =0,
(d) The line x =0, $ > 0: Here w—0, o>+ @, 8 4+ w, From (L.1L),
we have |

0‘1 ‘ﬁ

g=AF +nnogs°°5'=pﬁpc + ceo °

Henoe, by (6,18),

1 - 3 (3¥~1),3=3«r+5+2m
) g +eun

¢ —pg, =P 2
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Honce, 3f (4,15) holds, we have

§— 1*-5-}-22‘-’-‘-, N> - (6522)

»

while if (L4,16) holds, we have

3 - 1) -2 3y - D +mE ,
Gr-1 U T DGy (6.23)

f—

¢ is convenlent now to introduce as follows symbols for the points in

the ( g o M )=plane viich correspond to our boundary conditions:

’PP= g-‘-l“w 1’1:1.,(},,5 Pl =§=13 n=0;

Poo: g = .3%%2_& s M =®; ) (6.24)
P sg 3(Y=1)=2m" =3(T-1)(1+m)2‘
° 3 -1

(3% - 1) (3 +n)

Our reguired solution can then be desoribed as follows: It is composed of

two integral curves of (6.6); one a curve PHPIPS , where Py is the point
1 1 ‘

(gl 711). corresponding to the lowspressure side of the reflected shook; the
o

other a ocurve PsaPOD’ or JPSQP0 vhere P82 is the point (EE,T( 2) corresponding -

to the high-pressure side of the reflected shock, The points (§ P 7)1) o ( g o ne)

are related by (6.18), (6.19), The curvs Pp P1 Py must have d\q/dg =0
1

al Pl’ and on P“t Pi o 8. must be monotone decreasing from its value at F‘}l to

< o at By, On the disoontinuoum. curve Py PSl - PS2 P (P,) S must be

monotone increasing from - o at Pl to + @ at P, (Po) > In order to under-

stund et least qualitatively the implications of all of these conditions,

we turn next to an examination of the vector field of (6.6,
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7. Qualitative Discussion of the Reduced Differential Equation, To begin,

we consider the implicationa of the required monotonicity of S on the curve

P}*PI" For this we must have
"._!rf d§ -Y:! -f ay
; [

by (6.9)c From (6,12), %N &0 implies p { O, while g { O Luaplies v £ 0, %0

\'4

always § 20, N20 . From the oquation (6,6) itself, it follows that a
change in sign in ¢ §, (d M) implies and is implied by & clenge in sigﬁ in
D{N), except at singularities of- the differential equation, Hence, what
mtters is whether or not Pp-Pl crosses YY(-§ = 0, Now PPL 18 on the iine

g + N =1, and this intersects ynaii =0 at g =T/(Y +1), "= 1/(7 +1).
Hence if {5.3), p & (v - 1)/ (¢ + 1), ie to be satisfied, Py. lies nbove
yvlag = 0, and Pl is always below it, BEven without (5,%), inm fgct, the
point Pp must lie above TY\-S = OP- For from (6.12), we have for sound

voelaclty o ralative to the material

@ =Ypp =Yoo g% 2q§

80 u+o=anga°1 [1_='§+/yrl§] tn-l

t2(n o 1)

' -1
Henoe U/(u +¢) = (1 = § + My 511 ) o, and this is less or greater than

unity according &6 ¥y % § . Hence, without referonce to (5:3),

¥
A (7-2)
since a shock with velooclty less than sound velocity behind it could not

be sterted, This needs to be noted in any problem in which (2.8) is not

talken to be universal,
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From (7.1), (6.8) it follows thet the solutlion PP‘Pl must cross
TV - § = 0 at a point of intersection with N =0, D = 0, and hence we
must insist on the existence of such a point, Substitutlag yn =§ in N = 0,

wo obitsin the twe roois

¢ caxr-2nt/lrsro2nl” - e

and thus .havc
2
er + (r - 2m] © - eyemgo,

vhich iavequivaient to
2
mg2r {JF +4B)°, or m2 2r( /F = /2)°5, (7.1

as a condition on m, It is reea.di].-y~ determined from (7,3), moreover, that
for m 2 2y (J?'--‘/é)"e, we have § + &QOor §+ >3 according as v § 2,
Fow § . >1 means u {0, and on P“P: this wou].:i- mean that the materisl is
moving out rather then in, whlle §+ < 0 maans, as we have noted, negatlive v,
Henoo
| n L AT+ (7.5)

it 1s now helpful to e;:amine the configuration of curves N =0, D = O,
tN-§=0,§+1n =1 1na fow typlosl onses, These are shown in Figs, la,
ib, 1o, for ¥ =1k, m = iy =3 m = Q55 ¢ = 8, m = ,8; respectivaly,
The signs in the various portions of the plane separated by N =0, D = 0,
are the signs of du/dv in those regions

Our next step 1s to analyze qualitatively the veotor field of the
differential equation, To this end, we begin by considering 1lts behavior lin

the nelghborhood of ite singulerities, i.e,, points of intersection of the
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looi, ul = 0, vD = O, 1In the portion of the plane in vwhich we are interested,
these points are as follows:

(0): the origin: f =0, 1 = 0;

(1): py t =1, n=0;

(2 s Py f =0, M= m/3,

"(3) : the pointe Poo P_o Poo

As in LA=2io, excluding the special cases of coincidoq;oe of one or more of
tho;ac points, the posaibiliti_es for any one of them is that it be hyperbolioc,
e spiral point, or a sheaf-point, The reader who is unfamiliaf' with the
meaning of these terms, or with the amelysis of singularities of firstsorder
differential equations, is referred to § S of 1L4-210, whore a brief discussion
is giverio .Wo assun® hereo complete fmmili&rity with that material and turno
now to & disoussion of the points listed above, .

(0) : fz 0, =0, This point plv&yll no direct réle in our
problem;, but it is worthwhile to note its pature, It is readily sewn to be
a hyperbolis polinit, the two soluticans tmough 1t telng g =0, 1=0,

1)+ Py g =1, N =0, This is the point corresponding to
t = 0, as we have noted in ¢ 6, (b), Setting q=,A(§ = 1)+ cee o 10 (6.6),

we find the integral

- 1 . . °
A R { B VI (7.6)
and the integral

Yl.g 392 (g . 1)2 + oso (707) ]

where B 1s arbitrary and related to C,, Cy, by (6016); nocording te § 6, (v),
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Pig, 2 shows the dispesition of solutions in the neighborhood of Pl' The arrows
on integral curves denote the direction of decreasing s,
(2) : P, g =0, 1= n/3, This point is hyperbolic, one obvious
solution being g =0, To find the other, we proveed as above, setting
N=w3+x §+ o,

in (6,6) ., The result is the integral

;o= B[y L 20 - 3)m +3(2r - 3) 4 |
T ¢ Y( H [1 9y -+ 3(Ym- l)jm - 20 g+ eee (7.8)

Note that hers A is negative for v 2 3, positive for v ¢ 3/2, and may have
e.ithor ai@ for imtermediate values. The disposition of solutions for the
two oalsns are shown in Figs, 3a, and 3b, The arrows have the same signifioance
as above,

(3): The points Py,
of one of these polnts, and let }‘N’ )"D be respectively the slopes of N = 0,

P, Py Let (§*. 0" be tho co-ordinates

D = 0 at the point, Let
.o ~ .
'§=‘5+§°»’1=7t+*l‘° (7.9)
and let |
Y’lvq = A S LI PO ° . (7.]0)
Then, from (6.6), (6.7) |

*  y(3-8000- 2y
g O -2 gh-ay)

A=
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‘; = | . :

or

(3r - 20 = 30§ "N +[I-’L G -§) - Gr - 2 - Brg')kaaLD,-U f, =0
(7. 11)

Since g = (2y - 2m)/3¢ 1s the vertical asymptote of D = 0, we have

§< (3r - 2m)/2y at euch of these poicts and thue at emch point vhere

' M 2 0, certainly the roots of (7.11) are real and it is not.a spiral point,
Now at § =0, N = 0 1lies above 1| =§ = 0, and hence at P, the second inter-
sobotion of these two curves, N = 0 orosses yqug = 0 from below to above;
hence at P, 'AN >0 and P+ is never spiral, Moreover, for the minimum on

N =0, we find the g co-ordinate

. 3. [li’r = 2fr -5)m]1/2 |

Snin, (7.12)
and for m satisfying (7.5) this is always loss than (go = (jr.a 3 ‘- 2m)/(3y - 1),
Sa P, always lies to the right of the minimum, ky > O there, and it is not
& spiral point, On the other hand, )‘N can have either sign at P ,s0 this
point may be a spiral point,

Yow consider the point of the thraee fartrhest to the right; since.
P_< P, this will bs either P or P, Since the curves N =0, D = 0 havs,
respectively, the vertical asymptotes § = 3, g = (% - am)/ﬁy, D ;-.o.lien
above N = O to the right of thls polnt, Now éozp.sider any point to the right
of and above the point, to the right of D % 0, and to the left of N = 0, Then
the integral curve of {6.6) through this point has positive slops, and 8o

cunnot crose N =0 or D = 0, Hence it goes to the point P, or P_ 1tself,

and the point muet be a sheafepoint, On the other hand, at the next farthest

APPROVED FCR—EGE




APPROVED FOR PUBLI C RELEASE

point to the right, i.e., the middle one of the three points (which can

be oither P_, P+; or Po)" N = 0 crosses D = O from below to above as g inoreases,
and it is readily soen that this implios that the point is hyperbolic, Finlly, |
at the p§int farthest to the left the cx;oaeing is similar to that at the polnt
farthest to the right, and this point is thercfore a sheaf-point if it is

Py, & sheaf-point or a spiral point if 1t is P_., From these conclusiouns,

we ocon got a qualitative ploture of the integral curves of (6.6) in the region

of the plene contalning P_, P,, P\ , and this is shown in Fig, L, for the

o

ordering P , P, P, for & case in which P_ is not spiral, As before the

o*
arrows denote the direotion of decreasing 8., The nature of the other cases,
i,e,, thoss in which the middle point is P_; or P, is resadily perceived as
follows: Interchange the méningS‘ of P, and P_(P -l-) in Fig. Lf\’ draw as

Y = g = 0. a line through the appropriatg palr, and ohange the arrows to
correspond,

The i_nteg;ral curves marked i, Io’ I + ;re obtained by substituting the |
algebraically smaller of the roots of (7.11) in (7.,10) and continuing the
expansion, In every case, only_integral powaré of §' will appear, .If‘
the slgebraically larger root is taken, then at the middle point, ageln
only integral ‘powers will appear and (7,10} will be the curve through the
points Po» P, P, At the other two points however, the expansion with the
lerger root will yield non-integral powers, the smllest less than 2, snd
this term will have a fréc coofficient, thus giving the multiplicity of
sclutions,

Finally,the special cases in which two or more of the points P, P

coincide have not been discussed but the configuration of integral ocurves in
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- 30 = E
those instances is readily imagined,

8, The Inward Motion; Dependence of the Exponent on the Compression Ratio

of the Converging Shock, The problem of the inward motion can now be put as

follows: For a glven y, we require the value or values of m for which an

integral curve PM P + Pl existe and has the following propertles:

(1) it orosses y v = g = 0 only &t P}
(2) 1t does not go through P,;

(3) at P; 1t lies below‘ L. -

From § 7 we sse that there are always infinitely many integral ourves

through one of the points P_, P, snd in general at least two through the

other, This is a reflection of tho fact that Y‘T‘f = 0 is one of the conditiouns
for a characteristic through the origin, and in fact P_,P, correspond

to curves y = af £ wiich are characteriatics, This can be proved direotly;
alf.ernatively,, h;vever, the existence of two vaiues for du/dv is in itself
proof, For it implies the possibility of a d‘iv.aoontinuity, for example,

in 3p/dy there, and, sino-e P,4,V are continuous, this would correspond to a
sound wave, We have noted alsc that at P, we have in general 412!.1/;1*72 =+ oo,
and this gives Bap/Bya = + 0, again a sound wave, On the other hand, as

we have observed im § 7, there are, if ‘the two roote of (7.11) are distinot,
twb solutions through P_and P, which are analytic there, Thus, acoording as
our solution coincides with one of these or not, a sound wave conferging to
the origin behind the shock rwave will not or will be presen_t in the solution

obtained,

The condition (2) has not been explicitly noted before, but from

(6.9) it ia evident that P, is a pole of & and so must be excluded,
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From Figs, 1 and L, it is at once evident that solutions Qxist for
some pairs (y,u), bu‘t we want to dlscuss the problem systematically, To
begin, ws shall disregard the restriction (5.3) on u, and observe oply the
weaker condition (7.2), Apart from the fact that undeér the weak interpretation
of (2.8) only (7.2) is significant there are analytic sdvantages in studying
the problem in the neighborhood of /(v +1,

In particular, if we consider the limiting oase when the shock is
exactly sonic and p = v/(y + 1), then the point P_or P, through which the
solution goes must lie exactly on the line g +nM =1, and §+ = Y/(Y +1).

Combining this with (7.3) we obtain

Y -1 (¢ - 2)m .i/[t?f+(v-2)m]a-8r?m - \
B+ T T W T T Iy , . (8.1)

For v & 2, the left side of (8.,1) 1s always positive, while for y > 2, it is

negative or zero only for m 2 2¢y{y - /(¢ +1) (¢ - 2o By (7.4) this is

only possible if

Y =2 >t =1

@2 TR
or

X-vZ 5 y-3

JST+E Tl
which 1s equivalent to v & 1/2. So (8,1) only has a solutlon for the positive

radical, that is we cen only have g+ = Y/(Y + 1), Solving (8,1), we find -

== ST (8.2

Now the above argument which excludes S _>'r/(1' + 1), also in fact

exoludosg _)7/(1- + 1), while for §+=T/(T +1) =y, Pp = Pp s We have




APPROVED FOR PUBLI C RELEASE

m given by (8,2), We now propose to show that for & solution PPP+P1°
w<y/(r +1), P, must be below f +7 =1, To this end we substitute

g =1 ‘in (6.6), obtaining

an _ -1+ Tr 43 (- 2alt v (3em
§r - 3m - (3 + 1)

Now, in the positi#e ¢ ~direction, solutions oross § +7 =1 from above

(8.3)

to below, or below to above, acocording s (8,3) is less than or greater than

-1, or according as

(r +1§ -y <oy
3 - 3m - (3¢ +18 2 )

(8,L)

as is reedily shown, Here.the root of the numerator is the intersection of
g +N =1 withyn - S = 0 when (8,3) has the value =1, while the root of
the denominator i1s its intersection with D = O, -where (B8.3) has the velue
o, So, in the\ direction of inoreasing g » &t a point above or below both
ourves, solutions cross g + Q =1 from a‘oové to below,' whlle between
the two, solutions cross in the other direotion, Suppose then, that P+ lies
above § +N =1; it will then 1lie to the right of g =v/(y + 1),

0 = Vi +1), Suppose also théd; p < tly +1), Then a solution through
PP crosses from above to below Sl-i- N1 =1, and v‘d.ll 'certainly Temain below
until it ﬁeeta YN -g =0 or D =0, But since P_ 18 above i +0 =1, the
solution will - unless it goes to P_ - intersect v1 - g =0 bsfore. D=0,
Hence it cannot go t;a P.o
One further faot emerges from the above argument, From (7.6), the

slope of the solution Il at P iz -(1 + m)/2m and for the m given by (8,2),
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this is less than -1, Hence I lies above % +] =1 at P, and camot cross

1 1

it again without first crossing v )~ § = 0. He;me the solution I, through
P, for the case just diaougaed, 1.0, 1 =Y/('f‘ + 1) must lie below I, at Py,
aﬁd hence must be a solution of our problem for the case of an exactly sonio
shock,

Now consider e value of p near y/(y +1); then m must be near

2r/3(y +1), We set v )

hEelr Q=) meEglr QO (8.3)

here, of course, & >0, From (7.3), we have

2 22
I 2(2y 13r+2) e (y - 2)
§+ W“*l"(‘r"e)”(e'_'l)/{' (27-1)7”'12%-1)113

(8,L)

oy
S, ==t [- 2 3-6(""*‘1)2 2 4 8,5)
+ ¥y F1 B =17 ms e 060 | (8,5

From the faot that P, lies below § +™M =1, we have ¢ > O,

. .
Next, we consider the solution I, through P, For § = §

nazl‘felﬁg N (7.11) reéuaea to

_.J .

ECR- P NI U SR N S N M R L B

(8.6)
Substituting (8.5) in {8.6), we find, to terms of order one in e
N +3+,/2112+26( + 5L
% BN CR)
1 3(3r + L) (r +1) +239¢7 + 60%° + L0y + 126
¥ %TEY - 1) 2 " 8t.o0
' \/217 + 26¢r + 54
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- 3l -
Finally, substituting
M=y g e (gD (8.8)

io (6.16), and using (8,5), (8,7), we obtain, to terms of order zero in ¢

-2 +1) L7 v sty v 8w - 3] v (72 + 25¢ + %9 Jere « 26y + o
" 30 + 79¢ + 18¢% + 3(6r +5) VeI® + 26y + 54

(8 09)
Setting

- _
= ala + aea + soc . (8.10)

(8,5), (8,7), (8,8), (8,9) are now sufficlent to determine &), 8,3 We give

below some numeriocal results

¥ = 5/3s al = 03093 ae = “;3275 Y = 35 9‘1 = 051!4: 3-2 = "07725

(8.11)
T =8, 8, = .98, a, =-3.20

Thus, we have, for m as a function of p, near p = Y/(Y + 1), a curve of
the type shown in Fig., S, |

The shuded area in the figure has the following meaning: We observe
that for p near /(v + 1), the value of m given by (8,10) is not the only
solution'g For the § co-ordinate of P, 1s (3¢ = 3 = 2m)/(37 - 1), and this
is less than v/(y + 1) for m~2¢/3(y +1), ¥ » O, Hence P, 1is a sheaf-point,
and the configuration of solutions sbout it is that shown inm Pig, 6, Clearly
for the value of m which this figure represents, we have as well as the |
solution I, corresponding teo p = p.* » 811 solutions between I and the

integral curve P a8 possible integrals from § +MN =1t P

+ 0
—

—

/(¢ +2) Ty
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and thus all vslues of yu on the interval p.* < < Y/(Y +1), .Also as
possible integrals P+P1, we hr;ve,I s well as I, all ourves below I,

up to and including PP P, if §_ 2 §°,, 2ll ocurves up to but not including
PP, 1f §_ <€, Thus, for p~y/(y + 1), the paire (u,m) for which
solutions exist are not only the points on the curves given by (8.10), shown
in Fig, 5, but rather all.points in the smded area Bhown.\-,

One fact, however, ie to be observed with regard to the multiplicity
of solutions, Of the curves through P, the integral I " and one of the
family of positive slope are analytic there, as we have obéemmd earlier;
all others have infinlite curvature, Thus we have certainly one analytic

solution Pp* P , and possibly ons other - the cther will exist if the

+ P]_
second analytio solution through P, lies between I, and PY/(_Y +1) P, above
- g = 0, and between I, end P_'_P__P1 (P+P°P1) below ¥V - g = 0. Whether
this second analytic solution exists or mot can only be investigated
numerically, and we shall uot consider the question here, We may cbserve,
howsver, that in the case of & precisely amalogous question in the prodlem
of a converging free surface (LA-210, p. 27) the answer was maga't:j.vea.D

| I:t; will be seen from Fig, & that there are actually two solutions
through PY (Y. +1)° which go to Pl' Both corrésoond to exzctly sonic shocks - the

corressonding curve in the (y,t)-plane is an envelope of charscteristics behind
& . Rt w] -

it, However, the one whlch llies always below y W - § = 0, gives a ourve in the
{(y,t) =plane which has &t each point greater curvuture than the characteristic
’ : v } E

through that point and so 1s in reality supersonic with reference to the material:

behind it

Freserving the meaning given to p* in Fig, 6, i.e,, the § co-ordinate
of the intersection of I, with g +Y =1, we have now to consider how the

funotion m(p*) whose asymptotic value for p*—yv/(y + 1) ie riven by
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(8,3), (8,10) may behave as pu* deoreases to values &/l +1), We
enumerate the possibilities which are critical,

(1) I, and I, through P} become coincj,dentg

1
(2) I, and 12 through P_ become coincident;

2
(3) P, and P_ become coincident;
(L) P, and Po become coincident,
The third and fourth poszibllitiee are not critical in the same sense as
the first two, and we shall consider first (), If this happens for a
particular u* = s B =Dy, without (1), (2), (3) having happened earlier,
‘then for a slightly smaller value ‘of Br P, will lie above P , and P
will be hyperbolie, Hence the multipliolty of soclutione for e given m,
corresponding to p*¢ p ¢ Y/(y + 1) will disappear at ‘thia point; beyund
it « 1,0,, m> n,, we will have only, for given m, the sclution corresponding
"to p = p o This situation moreover, up to the point whers (1) ,v (&), or
(3) ocsur, could only be sltered by m reaching a wvalue for which Po is
e.bov? g +N =1, But, for this, m would hav’e to be less than /3y +1),
since for all greater values, §° < r_/('r + ‘1) is readily derived, and both
numerical and geometric considerations indicate that m(p*) is monotone de;
oreasing,
| We turn next to the possibility (1), If this occours, then I, no longer
represents a solution of our problem, so we have to consider it., In the
first piaoo,, we observe: that for this to happen;, m must attain a value for
which I]. at Pl l‘iea below g + Y} =1, by virtue of the argument based on the

equation (8,3) and following that equation in the above text, Since always

m & 2¢/(JF7 + V2 F, while the slope of I at P i -0 + m)/2m, this oan only
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happen for 2~r/(,/7f' +J—) > 1 which is equivalent to v D> 6 + L4V2, Since we
are not interested in values of ¥ of this order, we do not consider (1)
further,

Now suppose {2) ocours, Then, insofar a8 the function Tl(g) is cone
cerned, we have at this point a solutipn of our problem corresponding to
p =0, For we can teke as our integral the line g = 0 from g = 0, = 1
to Pa,'and the integral curve I, t‘rom‘P2 to P1° Howover, P2 is a pole of s,
80 this does not satisfy (7.1), Bubt consider a valus of p* slightly larger
than zero. Then I, will lle slightly above I, and we have in fact solutions
for p arbitrarily close to zero, Thus the region in the (u,m)-plane for
points in which solutions exlst would look qualitatively as in Fig, 7., Here,
if (L) has not occurred before (ll),, thé point (pl, ml) will not appear
as shown in the figure, and the shaded portion of the plane will extend to
the horizontal line t}u;ough the intersection of m = m(p*) and p = 0, We
have; of course, assumed implioitly that m(p‘) remains single-valued and
increases as p* deoreases throughout the range 0< p‘( 1’/(7 + 1), There is
no way to establish this anslytically, but it is borme cut by rough
geometrio oonsiderations as well as by numerical results, We do not,
therefore, oonsiéor such poesibilitles .as dm/dp'-» o, sto,

Finally, supposs we have (3). Then for some value p* =p >0,
m(p*) takes on the value m, = 2y/ (/7 + Jé) and the above analysis exhausts
all cases in which I+ is & solution, The continuation of the function
m(p') then obtains by passing to the integral I_ through P_ For consider
a value of m slightly less than m , and lot pu ,pu_ be the poiﬁts of intersection
of I, I_.with g+ = 1. Then it is reasonable to suppose n, - p_~§+ - % -

e

RIS
LIRSS
- puinER——)

S
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N

' ) 1/2
and from (7.3), §+ - §_~ (m, - m) / o So at (P'o"mo) we have

my = m(*)~ (g = &7 (8.12)

end thus m(y") has a horizontal tangent et p*= Bgs B =M, = /(ff + ,/'2.)'?0
The value 4, must be found numerically in any given case, |
_ Now let us return to a consideration of (L4}, and let us aleo consider

the question of the coincidence of P, P_, We have than go = g_,_. or

5 -3 - Em_ar+(v-2)m;\/[2v'+(~r-2);n]2—8r2m
BY - - R » . (8013)
isg
or

2w -5 - Gl ry+Am=20r -0y + - 2u - &% (810

In particular, suppose all three points Po’ P, P+ are coincident, Then

m = 2v/(/F +VE)° = 20 (3 - 5)/(3° +v +2)

apd this yields

32072 - 100™% - 8 =0 (8.15)
This equation hes one r;al root, mmely,

Y = 2,289730 | (8.16)

Now suppose Y is less than this root, Then the left side of (8,1l) is
negative for m = Er/(ﬁr' + Jé)z and increases to 2y(3y - 5) as m decreases
to zeuvxl'r.’o "The right side (with the negative sign) decrenses from zero te
=2¢ (3¢ - 1)‘5  Hence for v > 1, there will be a value of m for which the

two sides are equal, that is for which the points Po’ P_ colncide, On the

‘ 2
other hand, suppose y exceeds the root of (8,15), Then for m = 2r/(/? +ﬁ) s
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the right sic.ie‘ of (8,14) is positive and P, 1ies to the right of P, Since .
we have already seen that it lies to the l;ft for m = 2¢/3(y + 1)‘a there ie
an intermediate value for which the two cqincide;, -

In either of the above cases, or in the exceptional case when P,, P,
P_all coincide ((8015) holds) 5 the value of m where Py ooincidea‘ with

P, P,, 1s obtained by solving (8.14), Squaring both sides and collecting

terms we have .
brir-1) - 322 oy + Dm- (32 - 3r +2a =0 (8.17)

This equation has only one positive root fory > 1, ®o P, soincides with
P_or P, for exactly one value of m on the interval 0<m ¢ 2/ (F + ~/§)2°
The coinoidence is with P_, both, or P, socording Q.s ¥ is less than, equal
to, or greatei' than the root v, of (8,15) . We also observe that for y =l76,
nvm, = 2rh/(f~(_° +J32) 2, € _decreases as m decreases, §+ increases with

(m

y = ™) 1/2, Eo with (m - m), So fory =<, P, lies alweys between

P, P,
We are now in position to ’continuo our analysis of the dependence

of m on p, Consider first the solution I_ through P_ for values of m near
2r/(ﬁ' +J2) 20 If we do not have for same m< m,, the situation pictured in
Fig. 7, and already discussed, then for m~m,, I intersects § +M =1

at a point § =u* =1 - Y, w¥> 0. The point P_will be a sheafspoint
or a hyperbollc point, moreover, according as Po' lies to its right or its
left, that is? according as v >= Yo OF Y < Yoo Hence in the second case,
for the value of m in queatién,’ there is(only the aovlut'ion I_, while in the

first the solutions in the neighborhood of F_ look a8 in Fig. L. Not only
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does the curve I_ interseat § +Y =1, but all integral curves sntering
P_ from above and lying above the solution 12 at P2 do also, glving walues
of u on the intgrval 0< p(p*o Moreover, not only cen we take I_as the
integral from P_ to Pl’ but also any integral curve between I_and the
broken curve P_P0P1°

It remains to be considered what may happen on the lef‘bahand branch
of the function p*(m) as m decreases to values <(L ar/(ﬁ + ,/5)20 The
‘p'ou;sibilitiea are as followsa: |

(D I_ becomes coinoident with I, through P, ;

() u*—»0, m—>0; '

(3) 1_ beoome;s coincident with I, through P,;
(L) P_ becorﬁea a spiral point,

We dispose of the first at once, By an argument previously given it
certainly oannot happea for y < 6 + L4 /2, and we are not concerned with
larger v | |

With regard to (3), W both, we first observe that neither is possible
80 long as the minimum polnt of N = 0 1ies to the left of § =0, that is as

long as

| 1/2
12¢ - 2(y - 3)m
3:[ T ] {0

by (7.12), and thus as long as .

3(2r - 3) +2(r-3m L0
This holds for all m if y £ 3/2, so for such ¥ we have definitely (2)., For
g-—»o, the solutions of our equation apart from I2 through P2 are

asymptotically
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so for nAs0, M>20,
Y]? = const,
Thus the desired sclution 18 asymptotically
| S =w .
for m —>0, Slnce g_ ~ q‘.—N_‘m" we have, for ¥ £ 3/29 and the curve m(p*)
has a vertical tangent at m = 0,
» Now oont;ider ¥ > 5/2, mn ~0, To .t.erma of order 1 in m, we have
§'_= n/2, M =mn/2p, while the ¥ -oo-ordinate of P 1s n/3, and the slope of

e
I is g(e\r - 3)31/9'(., Hence, for § =:§_‘, the Y| «oo-ordinate of the corres-

2
ponding point on I, is m/}, to terms of order ome in m, while )2_: m/27,
Hemoe, for some value of m > 0, either (3) or (L) obtains,

Our snalysis of the inter@ependeme'of m, u is now as complete as it
can be mde without resort to numerical methods, In particular, the question
of whether (3) or (L) holds forb YD 3/2_0&:1 only be determined numerically,

If (3) holds, then p*(m) approaches zero as m approaches some value greater
than zero, while if (L) holds there is a polnt *» O, m ) O on the curve

b= p*(m) beyond which it cannot be defined, and the region in the (m, p) ~plane
for whose points solutions exist will have a gulitatively different appearsnoce,
In Figs, 8 we show in a qualitative way the nature‘ of this region, In each
of the various cases pictured in Figs, 8a to 8d the oomplete curve ;s = u*(m)
1s drawn assuming (3)0' If (L) holds inatead, the left-hand end of the

shaded portion has the appearance shown in Fig,. 80;, Note that in all cases
there ig en interval of values of u for which a unique m exists, This
interval of courss becomes & point for ¥ = Yo" Note also, that except on

this interval sach point of the region pictured represents not one, but a

one-paraneter family of solutions, by virtus of the multiplicity of solutions
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from P, to Pl in any given case, Finally, it 1s to be rocalied that for

each point on the curve p = p*(m) it is poseible to find an apalytic

solutlon Pp P + Pl’

namely I,, It is possible also that the shaded reglons
contain arcs along which this is possible (Cf pp. 35 ), but in gemeral,
solutions corresponding to pointa in the shaded regions lead to solutions

of the origiml problenm in which a sound wave converges to the origin behind -
the shaok, arriving simultaneously with it, It seems roasonable, therefore,
in the absence of other criteria, to prefer the solutions corresponding to
pointe on the curve y = -p“(m)o |

Fige. 8 are, of courss, to be taken as giving nothing more than a
qmlitative picture of“ the solution; quantitative results can only be
obtained by numerical analysis, In § 10, we shall give some numerical
data for warilous ¥y,

In conclusion, we note tfmt in addition to the solutions we have already
teken account of, there are others as well, in which more than one converging -
shock wave is present, iFor, firet consider the solutlon I, from P, to P]].‘;
For p~~r/(y + 1), we have from (8.7) that the slope of I, st P, is less
than <1, Heme the point ({,Y,) into which a point (l§ 114) mear P, on
I, belowyq-§=0, 1s transformed by (6,18), (6.19) lies to the right of
I,, and of course sbove ¥ Y "E =0 and bole\v- g +Yl =1, Hence it lies

on an integral curve which can be taken into P,. That is, from the point

§1 Ny° We oan pass by shook t0 %+ 1 , then back to P, and thence te P,, Or

this procedure can be repeated as often as one likea;

Next,consider the behavior of the point (§21 2) as (§ ) moves away

, 13
from P4 on I,, As (§1; Q 1) approaches P, g 2=—>0, 1, —>1. 8o for some
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(s IY‘I)B (g.aqz) lies on I, above P, and we oan pass to (ga‘qa) by shook,
and then again along I %o (glf(l) » This also can be repeated as often as
one likes,

Now, suppose u* << Y/(Y +1), but still greater 'thm kge and consider
the point (32‘12) as (glql) varies from P, to P,. Again (§ 2\12) moves
from P_ %0 ¢ , =0, Yza =1, and hencg,, if I_ interseots § +1 =1,

(¢ 2" 2) lies on I_ for some (glﬂl).g In this omse, we can pass by shook
from the point (g 1 1'(1) to (gaqa) on I , and thence to P_ and P1°
Finally, consider the solution I_from P_ to PI‘;‘ in the case that P_

_is a sheaf-point, As (§1- Y(l) moves along I , the point (ge‘, ﬂa) into
which it is transformed by the shock conditions, must ultimately cross all
solutions between I_and I, through P,, above tN=§ =0, and since all of
these go to P_ without crossing that iine,, we oan pass by shock to any one
of thsm.., This process also can be repeated as often as one likes,

The ciroumstances under which 1t is not clear from the above that
solutions involving more than one convergent shock exist are these: (1) ths
case pilotured in Fig, 7 with p.((Y/(T + 1)‘5 (2) the case of & solution
through P, if p >0 on the left hand branch of the curves shown in Figs, /93
for a walue of m >) 2¢/3(y +1) 3 (3)\ the case of & solution through P_, when
P_ is a hyperbolic point, Whether or not there are ‘éo.ira (p,m) falling
under one or another of thel;e cases and for which no further shock is posaidble,

is a question whioh can only be investigated numerically,

9. The Solution for the Outward Motion, From the discussion in § 6 of the

boundary conditions (b) for t = 0, it is clear that the solution is continued

beyond Py to the region t >0 (in the ordimary sense), simply by taking the
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_analytic continuation of the solution P: Pl for § > 1. This solution
continues to a point (§ 1111) for which the ( } o1 2') given by (6,18),
_ (6.19) 1ies on a curve entering P , or on tho curve through P,
g: (3¢ = 3 - 2m)/(3y - 1), M = . Since the latter is not a singular .point,
thers is only one solution through it,
We shall now show that the latter is the only pouibility; For,
suppose P, is above Y1 - g = 0, Then it lies either to the right of P,
or to the left of P , and is thus s sheaf-point, aocording teo § 7. The
oonfi'g;uratio_n of iﬁtegral curves about it is therefore slther that shown
in Fig“, 9a, or that shown in Fig-c gb, the arrows indiocating the direction
of deoreasing s, Since s must increase t? + o atx = 0, it follows that
none of these snlutions is soceptable; oni all of them 8-y - @, as (§ ,\?)-—)Po.
Next consider the case that P, lies below yY| mg = 0, Then the
configuration of intégrul curves about it ie that shown in Fig, L, Of the
two curves through it, I, is the only one along which s inoreases to
+ 00 as (g 2 M) — P, But the point (32\12) must lie above N - g =0
and I, éannot oross ¥ Y .-g = 0 at elther P_or P,. 5So in this case elso,
a solution ending at P, is impossible,

The only possibility, therefore, is the solution ending at

-1l) - Zm
§=3(Y3Y “)j1 . M=o

Note that g = [}(‘f -1) = 2m]/(5¥ - 1) is the vertical asymptote of D = 0,
and that b'y simple goometfical conslderations, the integml curve in queétion
remains between this asymptote and D = O until it enters the uppermost of the
points P,, P,, whioch At must dc:vo To find the polint on it corresponding to the

shook, one hus in general to integrate both (6.6) und (6,9) through the point
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P,, and then taking as (€1)7y) = point on the continuation of the

(3 » )=curve through P,, form the (§ - Yla) of this point by (6.18),

(6.19) and find the ( g 2"(2) which 1iee on the ocurve which is shown above
to correspond to the high-pressure side of the shook, Only in the case
p=(r- 1)/ (v + 1), c = 0, when g disappears from (6.19), is a simpler
alternative availeble; In this case we oan form the (g 1 Ytl) of all

(ga, 7(2,) on the curve through Py, end then seck the poinf. of intersection
of the resulting (g I,Vll) -curve with the solution from P. .

1
10, HNumerical Reeults, For the determination of the function p = p *(m),

we have aa & starting poinﬁ, for any value of ¥, the polnt u = T/(Y +1),
n = 2¢/3(y + 1), and by use of equations (8.3} = (8.10), we can find the
slope and curvature at this point, as 1llustrated in equation (8,11)‘0 A
natural next step 1s to determine “§ = u* form =2/ (F + Jé)z, vhere
we know dn/du = 0, This we have done for v = 5/3, v = 3, v = 8, finding,
respectively, p, = o3118, u = 02530, 4, = +065. This provides us with

five data to which to fit the desired curve, namely, the two points
: 2
P =¢/(¢ +1), m=2¢/3(y +1); p =2/U¥ +2)°, m =m ; the slope and

ourvature at the first; and the slope at the second. Approximations so

determined have been found quite adouro.te, except near y = 0; thus, for

Y = 5/3, the approximation gives m = oL53, for u = (v - i)/(’( +1) = .25,
while actual integration with m = 153, gives . = (252, Similarly, for

¥ = 3, the approximetion gives m = 572 for u = .50, while actual integration
with m = 572 gives u = LI7-

For the sake of completeness, in one case, ¥ = 3, the curve u = u* (m)
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has been investigated in the neighborhood of p = 0, It was found that for
m = L33, I_eand I, become coincident, 80 p = 0 m = W33 is the left-hand
endpoint on this curve, In addition, the polnt m = 5, p = °658 was found,

On the basis of these various numerical results. we have provided, in
Pigs, 10a, 10b, 10c, approximate graphe ahowiﬁg the regions in the (u,m)eplane
for points in which solutions exist, for the three values y = 5/3, v = 3s
¥ = 8, respectively, and omitting the lower left-hand portions for y = 5/33
Y = B; These graphs are believed te be accurate to within two per cent,

In the case y = 3, m = .572 (n = ,636), p = 497, & complete numerisal
integration of the problem has been carried out, Fig, 11 shows in the

(g *l)pplans the curve P P P P , where P, corresponds to the lowe

+71 5 Sy

pressurs side of tha reflocted shook, and the ourve PSEPOD,'Psa corresponding
to the high-pressure side of that shock, The critical curves N = 0o, D=
ya - § = 0 are also shown in the figure. In Fig, 12, the funotion 8 == log w
in its dependence on gja is éivana From these two curves, a1l physically
pertiment funotions can be determined. In particular, fof the inward motionm,

= awtn, y= af(w)t , while the position of the shock in the two frames of

8

x/&s = w/%s, y/&s = f(uﬂ/héé gnd f(ﬂﬁ gives us y/&s as a function of x/iso

reference is xs = "'S n. yS = aw, t . w [(1 - P) Y:l 1/2(1 + m) 'So

This function is shown in Fig, 13, Moreover, all physical quantities are
funoctione of f and thus of y/js multiplied by appropriste socaling factors
and powers of t, Bo‘that by a suitable choice of units (depending on tine),
all such quantities oan be expressed as funotions of y/&s alone, Thue, i

U is shoock veloclty, pg pressure at the shook front, both at time t, then

v T —

w/U are funotionﬁ of y/& alone; eimilarly P/b is a function of y/&
s MPg O Y Ig AR s

s e R}

=N
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alone-o Thess functions, p/po, w7, p/ps are éra.phed‘in’l?iga, 1, 15, 16
respectively. In order to have comparable graphs for the outward motilcm,, it
18 now convenient to imagine the incident shock mirror-reflected in the
y-axis, thus preserving the meanings of x/ Yas .y/ys, u/U, p,/ps. Adopting
.'bhi.ia procedure, we have shm, in Figs. 17, 18, 19, 20, x/ys, p/po, v/,

' p/ps as functions of y/y‘.-:..° Thus for example, to read from Fig, 20 the value
of the pressure p at a point Y, end time to. after collapse one finds the
ve.lue:l of Y5 a_nd'ps at the time to before Qollapso, and finds p/ps at

yo/ys" A table of values ofg o Dy S, x/ys, y/ys, p/po, u/U, p/ps, over

both epochs of the problem is given in Table 1.

Bxplenatior of Tables and Graphso A8 pointéd out in the abstraoct, a value
61' # (that is, the value of v on thevinoident shook); leads in general to

a range of values of n, of which one corresponds to an ahalyti.c: solution,
Thus, if m =1 - n/n, there'will be a funotion m(u) defined on the interval
ol u < v/ (¢ + 1) corresponding to pairs (m,pu) for which amalytic solutions
exist, and other points in the plane corresponding to pairs (m,u) for which
non-analytioysolutions exist. The possible (qualitétive) pature of these
functions is shown in Figs. 7, 8a to 8d, and in each figure, the shaded
portions repreuent'the' regions corresponding to non-amly‘éio solutions, The
‘78.11;9 of Yo is 2,2897"':. Fig, Be shows a variant of the left-hand end of the
figure which is possible rather than that shown in Figs. 8b to 84, Ho
instances of this have been found, however, and in addition, no instances

\

of Fig, 7 have been found, If the latter occcurs at.all, it is only for very
large ¥ - that is vy > 8.
For v = 5/3, ¥ = 3, v =8, the function m(u) discussed in the preceding

paragraph has been determined to within about 2 per cent, except for u ~ 0
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in the cases v = 5/3, v =8, and 18 shown in Fige, 10a, 10b, 10o.

For ¥ = 3, p = o497, we have m(u) = 572 (n = .636), and for this
case, & coxﬁplete numerical integration of the problem has been carried out,
.If Vg U, Pg represent respesotively th_e poeition, veléoity, and pressure of
the incident shook at time t, then by virtue of the essumption of si;nilarity,
x/xs, p/po, u/U,:: p/ps, where x is the Lagrangian radius, p 1s density, p, is
normal demsity, u 1s-valooit;y, p is pressure, are all fuactions of y/ys.,
These funotions are shown in Figs, 13, 14, 15, 16, |

When the incldent shock reaches the oenter, it is reflected and moves
out through the material again, To sce this epoch of the motion on the same
goale as the inooming,, wo imogine the inoidant shook mirror-reflected in the
y-axis, so that x/ys, ;S/po, u/U, p/ps, remain functions of y/yso These
are shown in Figs, 17, 18, 19, 20, That is, for example, to find p at_-‘

e time t, after collapse and positions y,, one finde y. and pg at the time
t, before collapse, and then determines p/ps at yo/ys from Fig, 20,
The last five oolumns of Table 1 gi&e the resu]_.ts described in the

two preceding paragraphs, in tebular form,
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¢ | | s x/xg ¥/ oo, u/U © wpg
70)_‘,97 . 0503 - 08856 1.000 "~ 1,000 - 2,012 ° 5030 . 10000
256 37T -~ 997 1.118 1.062 2,085 A N 2987
62 .2821 =1,1082° 1.250 1,133 2.165 CWoh43oly -966
.68 02050 «1.2307 1.432 1,226 2.24) - «3925 935
o?h» olhl9 -l 03&2 1,620 h 0352 20 325 o 3516 '0887
.80 «0905 =1.5330. 1.911 1.5%5 2,408 3071 817
| .86 T .0L95 «1.7481 2,370 1.837 ' 2.1496 22572 Y V-
| 092 20190 -2.078L 50297 2.L67 2:595 21973 o548
‘ 295 0083  =20354, <353 3.200 2,650 21600 oLes
«97 7 20037 «2,6626 50384 30,911 2,689 01173 =259
1.99 -000L =3+3160 11.381 8.152 2.75hL 0815 2147
1.00"* o* - % ot @ * 25759 * L - 0*
1,01 200045 -3.3188 11394 8,075 2,782 -<0807 164
1.0301 +005 =2.5601 5.385 3,762 2.846 -:1132 . 2L12
1.0582 +050 -2.0314 30145 2.140 3.001 =125 867
1 oOG.;h 060 -1 08561 20587 1'07‘.]:6 3o 057 - '0112’-& 19183
1.0635 2075 <1.TT57 2.435 1.657 3,096 =01039 1315
_ 1.0588 oi0 =1.7011 20258 1,511 3.148 -20888 12515
. 100“5‘4 o1l whoéles 2.077 30384 30235 ~20628 1.802
1.0267 218 =1.5591 1,961 10303 0318 =o0347 2,071 -
1.010 ** (.21 > ' =105273 e i 900 L J 1 D62 &k 53"377 {-001‘26 - 29268} *
-820 o440 <1.5213 ° ° L.160Q .2272 Ls320
83126 NICICL «1oL2l7 1.72L 1:165 5.900 21966 3964
«8L4293% 055556 -1:2936 1.513 1.0LL %,608 1640 . 30663
085201 731429 ~1.1L466 1.306 -922 30337 136, 3eLi31
85936 1.00000 - 9845 1,088 788 3,060 41108 3,258
86537 1.66667 - 7047 »839 <630 2.729 - -Q8L8 30106
&  .8705L 500000 - 01710 g2 2306 2.197 20513 2.99
087163 1.0.00000 + 2466 0358 2300 109’43 . -0365 2499
°87289 = o @® « . 0 0 0 0 2099
* These values correspond to t = 0 (or x = ).
** These values correspord to the reflected shooko
Table I
1
e 19 =
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