Series A

LOS ALAMOS SCIENTIFIC LABORATORY of the

UNIVERSITY OF CALIFORNIA

PUBLICLY RELEASABLE LANL Classification Group

Classification changed to UNCLASSIFIED
by authority of tine U. S. Atomic Energy Commission
Per 2/, 7 . Resale $10.4-5$ L
By Report library Don. Dognthi. $1 \cdot-9-56$

SOLUTION OF THE TRANSPORT EQUATION BY S_{n} APPROXIMATIONS

Report written by:
Bengt G. Carlson

PHYSICS \& MATHEMATICS

Distributed: FEB 231954

LA-1599

1-20
Los Alamos Report Library
AF Plant Representative, Burbank $\quad 21$
AF Plant Representative, Seattle 22
AF Plant Representative, Wood-Ridge 23
ANP Project Office, Fort Worth 24
Argonne National Laboratory $\quad \mathbf{2 5 - 3 2}$
Armed Forces Special Weapons Project (Sandia) 33
Army Chemical Center
34
Atomic Energy Commission, Washington \quad 35-37
Battelle Memorial Institute 38
$\begin{array}{ll}\text { Brookhaven National Laboratory } & 39-41\end{array}$
Bureau of Ships 42
California Research and Development Company 43-44
Carbide and Carbon Chemicals Company (C-31 Plant) 45
Carbide and Carbon Chemicals Company (K-25 Plant) 46-47
Carbide and Carbon Chemicals Company (ORNL) 48-53
Carbide and Carbon Chemicals Company (Y-12 Plant) 54-57
Chicago Patent Group
58
Chief of Naval Research 59
Columbia University (Havens) 60
Commonwealth Edison Company 61
Department of the Navy - Op-362 62
Detroit Edison Company 63
Directorate of Research (WADC) 64
duPont Company, Augusta • 65-67
Foster Wheeler Company 68
General Electric Company (ANPP) 69-71
General Electric Company, Richland 72-75
$\begin{array}{ll}\text { Goodyear Atomic Corporation } & \text { 76-77 }\end{array}$
Hanford Operations Office 78
Iowa State College 79
Kirtland Air Force Base 80
Knolls Atomic Power Laboratory \quad 81-84
Massachusetts Institute of Technology (Kauimann) 85
Monsanto Chemical Company 86
$\begin{array}{ll}\text { Mound Laboratory } & \text { 87-89 }\end{array}$
National Advisory Committee for Aeronautics, Cleveland 90
National Bureau of Standards 91
Naval Medical Research Institute 92
Naval Research Laboratory $\quad 93-94$
New Brunswick Laboratory 95
New York Operations Office $\quad 96-97$
North American Aviation, Inc. $\quad 98 \mathbf{- 1 0 0}$
Nuclear Development Associates, Inc. 101
Patent Branch, Washington 102
Phillips Petroleum Company
103-106
Pratt \& Whitney Aircraft Division (Fox Project) 107
RAND Corporation 108
Sandia Corporation 109
USAF-Headquarters 110
U.S. Naval Radiological Defense Laboratory 111

UCLA Medical Research Laboratory (Warren) 112
University of California Radiation Laboratory, Berkeley 113-117
University of California Radiation Laboratory, Livermore 118-120
University of Rochester
121-122
Vitro Corporation of America
Walter Kidde Nuclear Laboratories, Inc.
123-124
125
Westinghouse Electric Corporation
126-129
130
Technical Information Service, Oak Ridge
131-145

ABSTRACT

A method for reducing the Transport Equation, an integro-differential equation, to a set of ordinary differential equations is introduced. The reduction is applied to the case of spherical symmetry, and numerical methods for solving the resulting set of equations are developed. The stationary, as well as the time-dependent, equations are considered in detail.

1. Introduction. The present report describes, in brief outline, a new approach to the solution of a large class of diffusion problems. This approach, referred to here as the S_{n} Method, is, in generality of application, comparable to the well known Spherical Harmonic Method.

The equation which represents the mathematical formulation of diffusion problems involves, in general, both an integral operator and a first-order partial differential operator. In neutron diffusion work, it is usually referred to as the Transport Equation. Exact analytical solutions are obtainable only in the very simplest cases. Many approximate methods have, therefore, been proposed and explored. Some of these, including the S_{n} Method, can be used to obtain approximate analytical solutions if sufficiently simple problems are considered. In general, regardless of method, one has to resort to numerical methods, usually difference techniques. Here the S_{n} Method seems to offer many advantages over earlier methods.
2. The Transport Equation. For the case of spherical geometry, one neutron velocity group, and isotropic scattering the Transport Equation has the following form:

$$
\begin{equation*}
\left[\mu D_{r}+\frac{1-\mu^{2}}{r} D_{\mu}+\sigma_{k}\right] N(r, \mu)=\sigma_{k} c_{k} N(r) \tag{1}
\end{equation*}
$$

$N(r)$ is given by (2), and the bracket denotes a partial differential operator. $N(r, \mu)$ represents the neutron flux (neuts $/ \mathrm{cm}^{2} \mathrm{sec}$) at the radial distance $\mathrm{r}(\mathrm{cm})$ in the direction $\theta(\mu=\cos \theta)$ with respect to the r-direction. The parameters σ_{k} (colls/neut $\cdot \mathrm{cm}$) and c_{k} (neuts/coll) describe the media which make up the sphere, and are regarded as step functions of r. For the central sphere k equals one, for the first shell k equals two, etc. The average flux $N(r)$ is defined by:

$$
\begin{equation*}
\mathrm{N}(\mathrm{r})=\frac{1}{2} \int_{-1}^{1} \mathrm{~N}(\mathrm{r}, \mu) \mathrm{d} \mu \tag{2}
\end{equation*}
$$

Equation (1) also implies a time-independent situation and the absence of separate neutron sources. Generalizations of this case are discussed in Sections 10 and 11.
3. Definition of S_{n} Approximations. We divide the μ-interval ($-1,1$) into n intervals (μ_{j-1}, μ_{j}), $\mathrm{j}=1,2, \ldots, \mathrm{n}, \mu_{\mathrm{o}}=-1, \mu_{\mathrm{n}}=1$, and approximate $\mathrm{N}(\mathrm{r}, \mu)$ by n connected straight line segments as follows:

$$
\begin{equation*}
N(r, \mu)=N\left(r, \mu_{j-1}\right)+\frac{\mu-\mu_{j-1}}{\mu_{j}-\mu_{j-1}}\left[\mathbf{N}\left(r, \mu_{j}\right)-N\left(r, \mu_{j-1}\right)\right], \tag{3}
\end{equation*}
$$

where $\mu_{\mathrm{j}-1} \leq \leq_{\mu} \leq \mu_{\mathrm{j}}, \mathrm{j}=1,2, \ldots, \mathrm{n}$. The integro-differential equation (1) can now be reduced to a system of $n+1$ ordinary differential equations. in the functions $N\left(r, \mu_{j}\right), j=0,1, \ldots, n$. The reduction is accomplished by:
(A) substituting $\mu=-1$ directly in (1), obtaining one equation, and by:
(B) substituting (3) in (1) and then integrating both sides of (1) over μ from $\mu=\mu_{j-1}$ to $\mu=\mu_{j}, j=1,2, \ldots, n$, thus obtaining n additional equations.
4. The S_{n} Equations. Performing the above operations we obtain the following general S_{n} equations:

$$
\begin{align*}
& {\left[-D_{r}+\sigma_{k}\right] N(r,-1)=\sigma_{k} c_{k} N(r), \text { and }} \tag{4}\\
& {\left[a_{2} D_{r}+\frac{b}{r}+3 \sigma_{k}\right] N\left(r, \mu_{j}\right)+\left[a_{1} D_{r}-\frac{b}{r}+3 \sigma_{k}\right] N\left(r, \mu_{j-1}\right)=6 \sigma_{k} c_{k} N(r),}
\end{align*}
$$

where $a_{2}=2 \mu_{j}+\mu_{j-1}, a_{1}=\mu_{j}+2 \mu_{j-1}$, and
$b=2\left(3-\mu_{j}^{2}-\mu_{j} \mu_{j-1}-\mu_{j-1}^{2}\right) /\left(\mu_{j}-\mu_{j-1}\right)$. For reasons which we shall not go into here we prefer to divide the μ-interval ($-1,1$) into an even number of intervals of equal length.
5. The S_{2} Equations: We have two intervals: $(-1,0)$ and $(0,-1)$, and denote $N(r,-1)$, $N(r, 0)$ and $N(r, 1)$ by $\leftarrow(r), \bar{N}(r)$, and $\vec{N}(r)$, respectively. From (4) and (5) we obtain the following three differential equations:

$$
\left\{\begin{array}{l}
\left(-D_{r}+\sigma_{k}\right) \leftarrow \stackrel{\leftarrow}{N}(r)=\sigma_{k} c_{k} N(r) \tag{6}\\
\left(-D_{r}+\frac{4}{r}+3 \sigma_{k}\right) \bar{N}(r)=\left(2 D_{r}+\frac{4}{r}-3 \sigma_{k}\right) \leftarrow \stackrel{N}{N}(r)+6 \sigma_{k} c_{k} N(r), \\
\left(2 D_{r}+\frac{4}{r}+3 \sigma_{k}\right) \vec{N}(r)=\left(-D_{r}+\frac{4}{r}-3 \sigma_{k}\right) \bar{N}(r)+6 \sigma_{k} c_{k} N(r)
\end{array}\right.
$$

6. The S_{4} Equations: We have four intervals: $(-1,-1 / 2),(-1 / 2,0),(0,1 / 2)$, and ($\left.1 / 2,1\right)$, and denote $\mathrm{N}(\mathrm{r},-1), \mathrm{N}(r,-1 / 2), N(r, 0), N(r, 1 / 2)$, and $N(r, 1)$ by $\leftarrow(r), \stackrel{\mathrm{M}}{\mathrm{N}}(r), \overline{\mathrm{N}}(r), \vec{M}(r)$, and $\vec{N}(r)$, respectively. From (4) and (5) we obtain the following five differential equations:

$$
\left\{\begin{array}{l}
\left(-D_{r}+\sigma_{k}\right) \overleftarrow{N}(r)=\sigma_{k} c_{k} N(r), \tag{7}\\
\left(-2 D_{r}+\frac{5}{r}+3 \sigma_{k}\right) \stackrel{-}{M}(r)=\left(\frac{5}{2} D_{r}+\frac{5}{r}-3 \sigma_{k}\right) \overleftarrow{N}(r)+6 \sigma_{k} c_{k} N(r), \\
\left(-\frac{1}{2} D_{r}+\frac{11}{r}+3 \sigma_{k}\right) \bar{N}(r)=\left(D_{r}+\frac{11}{r}-3 \sigma_{k}\right) \overleftarrow{M}(r)+6 \sigma_{k} c_{k} N(r), \\
\left(D_{r}+\frac{11}{r}+3 \sigma_{k}\right) \vec{M}(r)=\left(-\frac{1}{2} D_{r}+\frac{11}{r}-3 \sigma_{k}\right) \bar{N}(r)+6 \sigma_{k} c_{k} N(r), \\
\left(\frac{5}{2} D_{r}+\frac{5}{r}+3 \sigma_{k}\right) \vec{N}(r)=\left(-2 D_{r}+\frac{5}{r}-3 \sigma_{k}\right) \vec{M}(r)+6 \sigma_{k} c_{k} N(r)
\end{array}\right.
$$

7. The Numerical Procedure. We let $N(r)$ in equations (4) and (5) be given initially as identically equal to unity or some other suitable trial function, and go through an iterative procedure to improve $N(r)$, each time solving (4) and (5) for the $n+1$ flux functions $N\left(r, \mu_{j}\right)$, obtaining the next iterate or improved version of $N(r)$ from equation (8) below:

$$
\begin{equation*}
N(r)=\frac{1}{n} \quad \sum_{j=0}^{n} \quad w_{j} N\left(r, \mu_{j}\right) \tag{8}
\end{equation*}
$$

where $w_{0}=w_{n}=1 / 2$, and $w_{j}=1, j=1,2, \ldots, n-1$.
A convergence test of some kind is applied to $N(r)$ and its successor after each iteration. If it leads to the termination of the iterative procedure, we say that (4) and (5) have been solved numerically relative to this particular test.

The necessary stability conditions on the integration of equations (4) and (5) are: (a) That the first $\frac{n}{2}+1$ equations be integrated in the negative r-direction, i.e., from the outer boundary ($r=a$) inward to the center, and (b) that the remaining $\frac{n}{2}$ equations be integrated in the opposite or positive direction. If these conditions are not satisfied, the significant figures in the calculation will rapidly be obscured by an accumulation of errors.

For the first group of equations ($\mu_{j} \leq 0$) the initial conditions are applied at $r=a$ and given by: $N\left(a, \mu_{j}\right)=0$. For the second group $\left(\mu_{j}>0\right)$ the initial conditions are applied at the origin and given by:

$$
\begin{equation*}
\mathrm{D}_{\mathrm{r}}\left[\mathrm{~N}\left(0, \mu_{\mathrm{j}}\right)\right]=-\mathrm{D}_{\mathrm{r}}\left[\mathrm{~N}\left(0,-\mu_{\mathrm{j}}\right)\right]=\mu_{\mathrm{j}} \sigma_{1}\left[\mathrm{c}_{1} \mathrm{~N}(0)-\overleftarrow{\mathrm{N}}(0,-1)\right] \tag{9}
\end{equation*}
$$

At interfaces one simply changes parameters and applies continuity conditions on the flux functions.

Summed up, the S_{n}-Method has the following important features: (A) the $n+1$ equations (4) and (5) need not be solved simultaneously, (B) further complications of the left hand sides of (4) and (5) do not require any changes in the basic procedure, and (C) the stability conditions as well as (D) the boundary conditions are simple in formulation and simple to apply.

To perform the numerical integrations a radial mesh must be introduced (if possible defining equal intervals in each medium) in the core and in each of the spherical shells. This gives rise to a set of $r_{i}^{\prime} s, i=0,1, \ldots, I, r_{o}=0, r_{I}=a$, where we let $r_{i_{k}}$ denote the interfaces, $k=1,2, \ldots, K, r_{i_{K}}=r_{I}=a$. To assure accuracy in the final result, no interval should be longer than $1 / n$ mean free path units.
8. The S_{2} Difference Equations: From (6) we derive the following difference equations if we center the functions at $i+\frac{1}{2}$ and use two-point formulae for derivatives and averages:

$$
(10)\left\{\begin{array}{l}
\stackrel{\sim}{N}_{i}=\frac{\left(2-\sigma_{k} \Delta_{k}\right) \stackrel{\leftarrow}{N}_{i+1}+\sigma_{k} \Delta_{k} c_{k}\left(N_{i}+N_{i+1}\right)}{2+\sigma_{k} \Delta_{k}}, \\
\bar{N}_{i}=\frac{\left(\frac{2}{3}-\sigma_{k} \Delta_{k}-4 s_{i+1}\right) \bar{N}_{i+1}+\left(\frac{4}{3}-\sigma_{k} \Delta_{k}+4 s_{i+1}\right) \overleftarrow{N}_{i+1}-\left(\frac{4}{3}+\sigma_{k} \Delta_{k}-4 s_{i}\right) \overleftarrow{N}_{i}+2 \sigma_{k} \Delta_{k} c_{k}\left(N_{i}+N_{i+1}\right)}{\frac{2}{3}+\sigma_{k} \Delta_{k}+4 s_{i}}, \\
\vec{N}_{i+1}=\frac{\left(\frac{4}{3}-\sigma_{k} \Delta_{k}-4 s_{i}\right) \vec{N}_{i}+\left(\frac{2}{3}-\sigma_{k} \Delta_{k}+4 s_{i}\right) \bar{N}_{i}-\left(\frac{2}{3}+\sigma_{k} \Delta_{k}-4 s_{i+1}\right) \bar{N}_{i+1}+2 \sigma_{k} \Delta_{k} c_{k}\left(N_{i}+N_{i+1}\right)}{\frac{4}{3}+\sigma_{k} \Delta_{k}+4 s_{i+1}}
\end{array},\right.
$$

where $\Delta_{k}=r_{i+1}-r_{i}, s_{i}=\Delta_{k} / 3 r_{i}$. The following special formula is used to start the outward integration:
(11) $\vec{N}_{1}=\frac{4 \overleftarrow{N}_{0}+\frac{4}{3} \bar{N}_{1}-\left(\frac{8}{3}-\sigma_{1} \Delta_{1}\right) \overleftarrow{N}_{1}}{\frac{8}{3}+\sigma_{1} \Delta_{1}}$
9. The S_{4} Difference Equations: From (7) we obtain, using the same difference technique as for S_{2} :

$$
(12)\left\{\begin{array}{l}
\stackrel{\leftarrow}{N}_{i}=\frac{\left(2-\sigma_{k} \Delta_{k}\right) \stackrel{N}{i}_{i+1}+\sigma_{k} \Delta_{k} c_{k}\left(N_{i}+N_{i+1}\right)}{2+\sigma_{k} \Delta_{k}}, \\
\overleftarrow{M}_{i}=\frac{\left(\frac{4}{3}-\sigma_{k} \Delta_{k}-5 s_{i+1}\right) \overleftarrow{M}_{i+1}+\left(\frac{5}{3}-\sigma_{k} \Delta_{k}+5 s_{i+1}\right) \overleftarrow{N}_{i+1}-\left(\frac{5}{3}+\sigma_{k} \Delta_{k}-5 s_{i}\right) \overleftarrow{N}_{i}+2 \sigma_{k} \Delta_{k} c_{k}\left(N_{i}+N_{i+1}\right)}{\frac{4}{3}+\sigma_{k} \Delta_{k}+5 s_{i}}, \\
\bar{N}_{i}=\frac{\left(\frac{1}{3}-\sigma_{k} \Delta_{k}-11 s_{i+1}\right) \bar{N}_{i+1}+\left(\frac{2}{3}-\sigma_{k} \Delta_{k}+11 s_{i+1}\right) \bar{M}_{i+1}-\left(\frac{2}{3}+\sigma_{k} \Delta_{k}-11 s_{i}\right) \bar{M}_{i}+2 \sigma_{k} \Delta_{k} c_{k}\left(N_{i}+N_{i+1}\right)}{\frac{1}{3}+\sigma_{k} \Delta_{k}+11 s_{i}}, \\
\vec{M}_{i+1}=\frac{\left(\frac{2}{3}-\sigma_{k} \Delta_{k}-11 s_{i}\right) \vec{M}_{i}+\left(\frac{1}{3}-\sigma_{k} \Delta_{k}+11 s_{i}\right) \bar{N}_{i}-\left(\frac{1}{3}+\sigma_{k} \Delta_{k}-11 s_{i+1}\right) \bar{N}_{i+1}+2 \sigma_{k} \Delta_{k} c_{k}\left(N_{i}+N_{i+1}\right)}{\frac{2}{3}+\sigma_{k} \Delta_{k}+11 s_{i+1}}, \\
\vec{N}_{i+1}=\frac{\left(\frac{5}{3}-\sigma_{k} \Delta_{k}-5 s_{i}\right) \vec{N}_{i}+\left(\frac{4}{3}-\sigma_{k} \Delta_{k}+5 s_{i}\right) \vec{M}_{i}-\left(\frac{4}{3}+\sigma_{k} \Delta_{k}-5 s_{i+1}\right) \vec{M}_{i+1}+2 \sigma_{k} \Delta_{k} c_{k}\left(N_{i}+N_{i+1}\right)}{\frac{5}{3}+\sigma_{k} \Delta_{k}+5 s_{i+1}},
\end{array}\right.
$$

and the following special formulae for the outward integrations:

$$
\begin{align*}
& \text { 每 } \\
& \left\{\begin{array}{l}
\overrightarrow{\mathrm{M}}_{1}=\frac{\overleftarrow{2}_{o}+\frac{20}{3} \overline{\mathrm{~N}}_{1}-\left(\frac{13}{3}-\sigma_{1} \Delta_{1}\right) \overleftarrow{\mathrm{M}}_{1}}{\frac{13}{3}+\sigma_{1} \Delta_{1}}, \\
\overrightarrow{\mathrm{~N}}_{1}=\frac{\overleftarrow{\mathrm{N}}_{\mathrm{o}}-\left(\frac{10}{3}-\sigma_{1} \Delta_{1}\right) \overleftarrow{\mathrm{N}}_{1}+\left(\frac{1}{3}+\sigma_{1} \Delta_{1}\right) \overleftarrow{\mathrm{M}}_{1}+\left(\frac{1}{3}-\sigma_{1} \Delta_{1}\right) \overrightarrow{\mathrm{M}}_{1}}{\frac{10}{3}+\sigma_{1} \Delta_{1}}
\end{array}\right. \tag{13}
\end{align*}
$$

In deriving（10）through（13），Δ has been assumed to vary with k only．
10．Generalizations．
（A）Time－dependence：Insert $\frac{1}{v} D_{t}$ inside the operator bracket of（4），and $\frac{3}{v} D_{t}$ inside the operator brackets of（5），where t（shakes）is the time variable and $v(c m / s h a k e)$ is the neutron velocity．The time variable t is added to all flux functions．Cf Section 11.
（B）Many velocity groups：Attach a subscript g（for group，$g=1,2, \ldots, G$ ）to the flux functions in（4）and（5），and replace $\sigma_{k} c_{k} N(r)$ on the right hand sides by：

$$
\begin{equation*}
\sum_{\mathrm{g}^{\prime}=1}^{\mathrm{G}} \sigma_{\mathrm{kg}^{\prime}} \mathrm{c}_{\mathrm{kgg}}{ }_{\mathrm{N}_{\mathrm{g}^{\prime}}}(\mathrm{r}), \tag{14}
\end{equation*}
$$

where $\sigma_{g^{\prime}}$ is the inverse mean free path as a function of velocity group，and $c_{g^{\prime}}$ is the num－ ber of neutrons transferred to group g per collision of neutrons of velocity $\mathbf{v}_{\mathbf{g}}$ 。
（C）Anisotropic scattering：In the case of linear scattering with the scattering function $(1 / 2)\left(1+3 b_{k} \mu\right)$ attached to elastic scattering（other processes assumed to be isotropic）， $\sigma_{k} c_{k} N(r)$ in（1）is replaced by：

$$
\begin{equation*}
\sigma_{k} c_{k}\left[N(r)+3 \beta_{k} \mu \mathcal{N}(r)\right] \tag{15}
\end{equation*}
$$

where $\mathcal{N}(r)=\left(\frac{1}{2}\right) \int_{-1}^{1} \mu N(r, \mu) d \mu$ ，and $\beta_{k}=e_{k} b_{k} / c_{k} ; e_{k}$ being the probability of elastic col－ lision．In the Transport Theory the anisotropic case is approximated by an isotropic situation in which σ_{k} is replaced by $\sigma_{k}\left(1-c_{k} \beta_{k}\right)$ and c_{k} by $c_{k}\left(1-\beta_{k}\right) /\left(1-c_{k} \beta_{k}\right)$ ．
（D）Source term present：Replace $\sigma_{k} c_{k} N(r)$ in（4）and（5）by $\sigma_{k} c_{k} N(r)+S(r)$ ，where $S(r)$ is the source density（neuts $/ \mathrm{cm}^{3} \mathrm{sec}$ ）．An anisotropic source term can，of course，also be handled by going back to equation（1）．
（E）Plane geometry：Drop all terms involving $1 / r$ in the above equations，and let r be the perpendicular distance from some origin plane．

11．The Time－Dependent Case．We consider again equation（1）but with the time variable t added．Equations（4）and（5）are then replaced by（17）and（18）below：

$$
\begin{align*}
& {\left[\frac{1}{v} D_{t}-D_{r}+\sigma_{k}\right] N(t, r,-1)=\sigma_{k} c_{k} N(t, r)} \tag{17}\\
& {\left[\frac{3}{v} D_{t}+a_{2} D_{r}+\frac{b}{r}+3 \sigma_{k}\right] N\left(t, r, \mu_{j}\right)+\left[\frac{3}{v} D_{t}+a_{1} D_{r}-\frac{b}{r}+3 \sigma_{k}\right] N\left(t, r, \mu_{j-1}\right)=6 \sigma_{k} c_{k} N(t, r)} \tag{18}
\end{align*}
$$

If $N\left(t, r_{i}, \mu_{j}\right), i=0,1 \ldots, I, j=0,1 \ldots, n$, and hence $N\left(t, r_{i}\right)$, are specified at time $t=t_{0}$ one can, by numerical integration of (17) and (18), obtain $N\left(t, r_{i}, \mu_{j}\right)$ at later times, say at $t=t_{m}, m=1,2 \ldots$. The following integration method may be used for the purpose. It has these main features: (A) The stability and boundary conditions of Section 7 are left unchanged, and (B) the resulting difference equations are similar to those of Sections 8 and 9.

The integration requires a two-dimensional mesh, here defined by the perpendicular line families $r=r_{i}$ and $t=t_{m}$. To integrate (17) and (18) numerically is then equivalent to finding $N\left(t, r, \mu_{j}\right)$ at A from functions known at B, C, and D. See diagram below:

In the stationary case the difference equations were obtained by averaging derivatives and functions over the line $A B$. In the time-dependent case we choose the characteristic line or "particle path" $A x$ as the reference line. The slope of $A E$ equals $-1 / v$ for equation (17) and $3 / v a_{2}$ for equation (18), where a_{2} is defined on p. 5 . The magnitude of the slope (denoted by $1 / d v$) may be greater (x on $D C$) or less (x on $B C$) than Δ / Δ_{k}. If a function F has to be evaluated at x , the following interpolation formula applies:

$$
F^{x} \equiv F(x)=\left\{\begin{array}{l}
w_{1} F(C)+\left(1-w_{1}\right) F(D), w_{1}=\frac{d v \Delta}{\Delta k}, d v \Delta \leq \Delta_{k} \tag{19}\\
w_{1} F(C)+\left(1-w_{1}\right) F(B), w_{1}=\frac{\Delta k}{d v \Delta}, d v \Delta>\Delta_{k}
\end{array}\right.
$$

12. The S_{4} Time-Dependent Difference Equations. Averaging derivatives and functions in (17) and (18) over the appropriate characteristic lines we obtain ($n=4$):

$$
\begin{aligned}
& \left\{\begin{array}{l}
\overleftarrow{N}_{i}^{m+1}=\frac{\left(2-\sigma_{k} \Delta^{\prime}\right) N_{i+1}^{x}+\sigma_{k} \Delta^{\prime} c_{k}\left(N_{i}^{m+1}+N_{i+1}^{x}\right)}{2+\sigma_{k} \Delta^{\prime}}, \\
\overleftarrow{M}_{i}^{m+1}=\frac{\left(\frac{4}{3}-\sigma_{k} \Delta^{\prime}-5 s_{i+1}\right) \overleftarrow{M}_{i+1}^{x}+\left(\frac{4}{3}-\sigma_{k} \Delta^{\prime}+5 s_{i+1}\right) \overleftarrow{N}_{i+1}^{x}-\left(\frac{4}{3}+\sigma_{k} \Delta^{\prime}-5 s_{i}\right) \mathcal{N}_{i}^{m+1}+2 \sigma_{k} \Delta^{\prime} c_{k}\left(N_{i}^{m+1}+N_{i+1}^{x}\right)+{\underset{N}{i}}_{\prime}^{\prime}}{\frac{4}{3}+\sigma_{k} \Delta^{\prime}+5 s_{i}},
\end{array}\right. \\
& \text { (20) }\left\langle\bar{N}_{i}^{m+1}=\frac{\left(\frac{1}{3}-\sigma_{k} \Delta^{\prime}-11 s_{i+1}\right) \bar{N}_{i+1}^{x}+\left(\frac{1}{3}-\sigma_{k} \Delta^{\prime}+11 s_{i+1}\right) \overleftarrow{M}_{i+1}^{x}-\left(\frac{1}{3}+\sigma_{k} \Delta^{\prime}-11 s_{i}\right) \bar{M}_{i}^{m+1}+2 \sigma_{k} \Delta^{\prime} c_{k}\left(N_{i}^{m+1}+N_{i+1}^{x}\right)+\bar{M}_{i}^{\prime}}{\frac{1}{3}+\sigma_{k} \Delta^{\prime}+11 s_{i}},\right. \\
& \vec{M}_{i+1}^{m+1}=\frac{\left(\frac{2}{3}-\sigma_{k} \Delta^{\prime}-11 t_{i}\right) \vec{M}_{i}^{x}+\left(\frac{2}{3}-\sigma_{k} \Delta^{\prime}+11 t_{i}\right) \bar{N}_{i}^{x}-\left(\frac{2}{3}+\sigma_{k} \Delta^{\prime}-11 t_{i+1}\right) \bar{N}_{i+1}^{m+1}+2 \sigma_{k} \Delta^{\prime} c_{k}\left(N_{i}^{x}+N_{i+1}^{m+1}\right)+\bar{N}_{i}^{\prime}}{\frac{2}{3}+\sigma_{k} \Delta^{\prime}+11 t_{i+1}}, \\
& \left(\vec{N}_{i+1}^{m+1}=\frac{\left(\frac{5}{3}-\sigma_{k} \Delta^{\prime}-5 t_{i}\right) \vec{N}_{i}^{x}+\left(\frac{5}{3}-\sigma_{k} \Delta^{\prime}+5 t_{i}\right) \vec{M}_{i}^{x}-\left(\frac{5}{3}+\sigma_{k} \Delta^{\prime}-5 t_{i+1}\right) \vec{M}_{i+1}^{m+1}+2 \sigma_{k} \Delta^{\prime} c_{k}\left(N_{i}^{x}+N_{i+1}^{m+1}\right)+\vec{M}_{i}^{\prime}}{\frac{5}{3}+\sigma_{k} \Delta^{\prime}+5 t_{i+1}},\right.
\end{aligned}
$$

where $s_{i}=\frac{\Delta^{\prime}}{3 r_{i}}, s_{i+1}=\frac{\Delta^{\prime}}{3\left(r_{i}+\Delta^{\prime}\right)}, t_{i+1}=\frac{\Delta^{\prime}}{3 r_{i+1}}$, and $t_{i}=\frac{\Delta^{\prime}}{3\left(r_{i+1}-\Delta^{\prime}\right)} \quad$ If $d v \Delta \leq \Delta_{k^{\prime}}$, then $\Delta^{\prime}=\operatorname{dv} \Delta, w_{1}=\operatorname{dv} \Delta / \Delta_{k^{\prime}}, F_{i}^{\prime}=\frac{1}{3} w_{1}\left(F_{i+1}^{m}-F_{i}^{m}\right)$; and if $d v \Delta>\Delta_{k}$, then $\Delta^{\prime}=\Delta_{k}, w_{1}=\Delta_{k} / d v \Delta$, $F_{i}^{\prime}=\frac{1}{3}\left[w_{1}\left(F_{i+1}^{m}-F_{i}^{m}\right)+\left(1-w_{1}\right)\left(F_{i+1}^{m+1}-F_{i}^{m+1}\right)\right]$, where $d=1$ for $\bar{N}, \frac{2}{3}$ for $\bar{M}, \frac{1}{6}$ for $\bar{N}, \frac{1}{3}$ for \vec{M}, and $\frac{5}{6}$ for \vec{N}.

Since N_{i}^{m+1} is not known, we let $N_{i}^{m+1}=N_{i}^{m}$ for all i, solve the above equations to obtain a first approximation to N_{i}^{m+1}, and repeat the procedure with these values of N_{i}^{m+1} to obtain a final set. If the time intervals are large, the advance to $t=t_{m+1}$ may require more than one iteration.

In the case under consideration, $N(r, \mu)$ is linear in μ for small values of r. We may, therefore, let $\overrightarrow{\mathrm{M}}_{1}^{\mathrm{m}+1}=2 \overline{\mathrm{~N}}_{1}^{\mathrm{m}+1}-\stackrel{\mathrm{M}}{1}_{\mathrm{m}+1}$, and $\overrightarrow{\mathrm{N}}_{1}^{\mathrm{m}+1}=2 \overline{\mathrm{~N}}_{1}^{\mathrm{m}+1}-\stackrel{\leftarrow}{\mathrm{N}}_{1}^{\mathrm{m}+1}$. The formulae corresponding to (13), although possibly more accurate, would be very complicated.

The methods described in this report, extended to the many-group case, have been coded for the IBM Type 701 electronic calculator and successfully applied to a variety of neutron diffusion problems. The tables at the end of this report compare S_{2} and S_{4} with other methods in a series of simple critical mass problems.

APPROVED FOR PUBLIC RELEASE

TABLE 1
UNTAMPED SPHERES
Critical radius (a) in mean free path units

c	EEM 1	SWM 2		$\mathrm{~S}_{4}$ Approx.		S_{2}
	a	a	\% error 3	a	$\%$ error 3	a
1.1	4.873	4.722	-3.1	4.852	-.4	4.796
1.2	3.172	3.057	-3.6	3.156	-.5	3.095
1.3	2.425	2.331	-3.9	2.411	-.6	2.354
1.4	1.985	1.906	-4.0	1.971	-.7	1.920
1.5	1.690	1.621	-4.1	1.675	-.9	1.630
1.6	1.476	1.415	-4.1	1.463	-.9	1.420
1.7	1.312	1.258	-4.1	1.300	-.9	1.260
1.8	1.183	1.134	-4.1	1.171	-1.0	1.134
1.9	1.078	1.033	-4.2	1.066	-1.1	1.032
2.0	.990	.949	-4.1	.980	-1.0	.947
2.5	.707	.678	-4.1	.699	-1.1	.674
3.0	.551	.529	-4.0	.545	-1.1	.524

1. Extrapolated Endpoint Method, known to be in error by about -0.1\% (LA-258).
2. Serber-Wilson Method (LA-234, 247, 756).
3. Compared to EEM.

TABLE 2

TAMPED SPHERES

Equal mean free path in core and tamper
Critical core radius (a) in m.f.p. units

c core	tamper	Tamper thickness m.f.p.	EEM	SWM		MDM^{1}		S_{4} Approx.		S_{2}
			a	a	$\underset{\text { error }}{ }{ }^{\%}$	a	$\underset{\text { error }}{ }{ }^{2}$	a	$\stackrel{\%}{\text { error }} 2$	a
1.3	1.00	1.5	1.896	1.855	-2.2	1.868	-1.5	1.878	-. 9	1.816
1.3	. 95	1.5	1.973	1.931	-2.1	1.938	-1.8	1.959	-. 7	1.894
1.3	. 80	1.5	2.132	2.086	-2.2	2.076	-2.6	2.119	-. 6	2.056
1.7	1.00	1.5	1.044	1.027	-1.6	1.001	-4.1	1.031	-1.2	. 988
1.7	. 95	1.5	1.075	1.058	-1.6	1.028	-4.4	1.063	-1.1	1.018
1.7	. 80	1.5	1.148	1.127	-1.8	1.085	-5.5	1.136	-1.0	1.092
1.3	1.00	3.0	1.752	1.718	-1.9	1.722	-1.7	1.736	-. 9	1.675
1.3	. 95	3.0	1.886	1.849	-2.0	1.849	-2.0	1.869	-. 9	1.808
1.3	. 80	3.0	2.108	2.062	-2.2	2.049	-2.8	2.093	-. 7	2.033
1.7	1.00	3.0	. 992	. 977	-1.5	. 947	-4.5	. 982	-1.0	. 940
1.7	. 95	3.0	1.043	1.026	-1.6	. 993	-4.8	1.032	-1.1	. 989
1.7	. 80	3.0	1.137	1.117	-1.8	1.073	-5.6	1.125	-1.1	1.083

1. Modified Diffusion Method, similar to EEM but with interface correction only at the outside boundary.
2. Compared to EEM, known to be in error by about -0.1%.

TABLE 3
TAMPED SPHERES
Core m.f.p. equal to $3 / 2$ of tamper m.f.p.
Critical core radius (a) in m.f.p. units

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
C \\
core
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
c \\
tamper
\end{tabular}} \& \multirow[t]{2}{*}{Tamper thickness m.f.p.} \& \multirow[t]{2}{*}{\begin{tabular}{l}
\[
\text { "Exact" }{ }^{1}
\] \\
a
\end{tabular}} \& \multicolumn{2}{|r|}{SWM} \& \multicolumn{2}{|r|}{MDM} \& \multicolumn{2}{|l|}{\(\mathrm{S}_{4}\) Approx.} \& \multirow[t]{2}{*}{\(S_{2}\)

a}

\hline \& \& \& \& a \& $$
\underset{\text { error }}{ }{ }^{\%}
$$ \& a \& \[

\underset{error}{ }{ }^{\%}

\] \& a \& \[

\underset{error}{ }{ }^{\%}
\] \&

\hline 1.3 \& 1.00 \& 1.5 \& 1.999 \& 1.960 \& -2.0 \& 2.027 \& 1.4 \& 1.981 \& -. 9 \& 1.910

\hline 1.3 \& . 95 \& 1.5 \& 2.057 \& 2.017 \& -1.9 \& 2.083 \& 1.3 \& 2.040 \& -. 8 \& 1.971

\hline 1.3 \& . 80 \& 1.5 \& 2.184 \& 2.135 \& -2.2 \& 2.193 \& . 4 \& 2.167 \& -. 8 \& 2.099

\hline 1.7 \& 1.00 \& 1.5 \& 1.103 \& 1.088 \& -1.4 \& 1.116 \& 1.2 \& 1.091 \& -1.1 \& 1.044

\hline 1.7 \& . 95 \& 1.5 \& 1.125 \& 1.110 \& -1.3 \& 1.137 \& 1.1 \& 1.114 \& -1.0 \& 1.068

\hline 1.7 \& . 80 \& 1.5 \& 1.180 \& 1.160 \& -1.7 \& 1.183 \& . 3 \& 1.169 \& -. 9 \& 1.124

\hline 1.3 \& 1.00 \& 3.0 \& 1.893 \& 1.860 \& -1.7 \& 1.921 \& 1.5 \& 1.876 \& -. 9 \& 1.808

\hline 1.3 \& . 95 \& 3.0 \& 1.996 \& 1.957 \& -2.0 \& 2.020 \& 1.2 \& 1.979 \& -. 9 \& 1.909

\hline 1.3 \& . 80 \& 3.0 \& 2.165 \& 2.117 \& -2.2 \& 2.176 \& . 5 \& 2.149 \& -. 7 \& 2.084

\hline 1.7 \& 1.00 \& 3.0 \& 1.068 \& 1.053 \& -1.4 \& 1.076 \& . 7 \& 1.057 \& -1.0 \& 1.012

\hline 1.7 \& . 95 \& 3.0 \& 1.104 \& 1.088 \& -1.4 \& 1.113 \& . 8 \& 1.093 \& -1.0 \& 1.048

\hline 1.7 \& . 80 \& 3.0 \& 1.174 \& 1.153 \& -1.8 \& 1.176 \& . 2 \& 1.163 \& -. 9 \& 1.119

\hline
\end{tabular}

1. Obtained by extrapolation from S_{2} and S_{4} using Table 2 as a guide.
2. Compared to "Exact."

APPROVED FOR PUBLIC RELEASE

TABLE 4
TAMPED SPHERES
Core m.f.p. equal to $3 / 4$ of tamper m.f.p.
Critical core radius (a) in m.f.p. units

c core	c tamper	Tamper thickness m.f.p.	"Exact" a	SWM		MDM		S_{4} Approx.		S_{2}
				a	${ }_{\mathrm{error}} \mathbf{1}$	a	${ }_{\mathrm{error}}{ }^{\%}$	a	$\underset{\text { error }}{\%}$	a
1.3	1.00	1.5	1.825	1.780	-2.5	1.774	-2.8	1.811	-. 8	1.754
1.3	. 95	1.5	1.917	1.871	-2.4	1.851	-3.4	1.902	-. 8	1.840
1.3	. 80	1.5	2.103	2.052	-2.4	2.004	-4.7	2.088	-. 7	2.026
1.7	1.00	1.5	. 997	. 981	-1.6	. 928	-6.9	. 987	-1.0	. 946
1.7	. 95	1.5	1.035	1.018	-1.6	. 957	-7.5	1.025	-1.0	. 983
1.7	. 80	1.5	1.122	1.102	-1.8	1.021	-9.0	1.112	-. 9	1.070
1.3	1.00	3.0	1.651	1.615	-2.2	1.593	-3.5	1.638	-. 8	1.586
1.3	. 95	3.0	1.811	1.772	-2.2	1.736	-4.1	1.796	-. 8	1.737
1.3	. 80	3.0	2.074	2.024	-2.4	1.968	-5.1	2.059	-. 7	1.998
1.7	1.00	3.0	. 934	. 918	-1.7	. 862	-7.7	. 924	-1.1	. 886
1.7	. 95	3.0	. 995	. 979	-1.6	. 914	-8.1	. 985	-1.0	. 945
1.7	. 80	3.0	1.109	1.089	-1.8	1.005	-9.4	1.099	-. 9	1.058

1. Compared to "Exact."

APPROVED FOR PUBLIC RELEASE

