

UNCLASSIFIED

PUBLICLY RELEASABLE PerRpalatimusrss. 16 Date: ND. By Molar Orc. 14 Date: $\frac{N_{1 D} .24-96}{5-24}$

uncles.

CIC-14 REPORT COLLECTION
 REPRODUCTION COPY

Classification changed to UNCLASSIFIED
by authority of the U. S. Atonic ic Energy Commission,

Dy REPORT LIDRARY \qquad
VERIFIED UNCLASSIFIED

LA@334
suly 23. 1945
This dooument contains 21 pages

TRANSPORT PHENOMENA IN A MIXTURE OF BLEETRONS AND NUCLEI

FORK DONE BY:

REPORT HRTITEN BY:
Ro Landshoff
R. Sorber
J. Weinberg
R. Landshoff

At extremely high temperatures atoms are stripped of all or most of their electrons. The mean free path of the eleotrons moroever is proportional to the square of their kinetic energy. ?he electrons will therefore cause the ionized gas to conduct both eleotricity and heat quite easily. By solving the Boltamann equation for assumed gradienta of density, eleotric potential and temperatures we find the velooity distribution of the eloctrons as an expansion in Laguerre polynomialso From the first two coefficients of this expansion we find the eleatric and thermal conduotivitieso The long range of Coulomb forces leads to difficulties (divergent integrals) if one restricts the discussion to binary collisions This is avoided by considering a shielding effect due to the rearrangement of the electrons in the neighborhood of a colliding pairo

TRANSPORT PEENOMENA II A MIXMURE OR EJECTRONS AND NDCLEI

At extremely high temperatures atoms are stripped of all or most of their electronso the free electrons oause the ionized gas to conduct both eleotricity and heat quite easilyo This investigation usos the kinetia theory of gases to f'ind exprassions fic the eleotric and thermal currents carried by the free electrons due to gradients of density potential and temperature i) To do this one has to determine tre velooity distribution function of the electrone from the Boltzmann equationo ∇ shall treat the problom in tha approximation wherein the heavy particles shif no deviation from the faxwell distributiono It is not necessary to assume the electrons and the nucloi to be at the same tomperaw tureo We shalls however, not , onsider the resulting hoat ezohange and assume timesindependent distribution functionso We confine ourselves to the linear problem with all gradients and curronts in the x directiono for the electron distribution, we try the form
with

$$
\begin{align*}
& n x n(x), \quad \beta=\beta(x)=\sqrt{m / 2 k T_{0}} \tag{la}
\end{align*}
$$

n is the number of eleotrons per ain ${ }^{3}$.
For the nuolei of type i.g fie sispume a distribution

$$
\begin{aligned}
& F_{1}\left(x v_{i}\right)=N_{i} B_{i} \pi^{-3 / Z_{0} B_{i}^{2} V_{i}^{2}} \\
& N_{1}=N_{i}(x) \quad B_{i}=B_{i}(x)=\sqrt{H_{i} / 2 \lim _{1}}
\end{aligned}
$$

 in thoir book "The Matheiniticili:Thegryo of" Non-Uniform Gases" (Cambridge, 1939).

UNCLASSIFIED

The Boltzmann equation can be written as

$$
\begin{equation*}
D(\phi)=-J_{e e}(\phi, \phi)-\sum_{i} J_{e i}\left(\phi, F_{i}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& D(\phi)=\nabla_{x} \frac{\partial \phi}{\partial x}+\frac{e B}{m} \frac{\partial \phi}{\partial \sigma_{x}} \cdot\left(a=-408 \times 10^{-10} \text { osu }\right) \tag{3a}
\end{align*}
$$

$\vec{W}=\vec{W}=\vec{F}_{1}$, is the anglo between \vec{w} and \vec{W}, and $d \Omega$ is the element of solid angle in the direction of $\vec{W}^{0} \sigma_{e e}(w)$ is the cross section for eleotron-eleotron soattaringo Similarly for the sollisions with nucloi wo bave

The standard procodure to obtain an approximate solution of the Boltzmann orquation is to replace $D(\phi)$ by $D(f)$ but leave δ unohanged on the rightinand sideo If we do this the left-hand aide can be expressed in the following mannexo We note first that:
and

$$
\frac{I}{Y} \frac{\delta f}{\delta x}=\frac{1}{n} \frac{d n}{d x}-\frac{1}{T} \frac{d x_{\theta}}{d x} \quad\left(3 / 2-\beta^{2} v^{2}\right)
$$

$$
\frac{1}{f} \frac{\partial f}{\partial b_{x}}=-2 \beta^{2} v_{x}
$$

which by combination leads to
$D(f)=\left[\frac{1}{n} \frac{d n}{d x} \frac{e E_{0}}{E_{0}} \frac{1}{T_{0}} \frac{d x}{d x}\left(3 / 2-\beta^{2} \tau^{2}\right)\right] \nabla x^{x}$
On the rightrohand side of (La) we substituto δ from (1), and obtain:

$$
\begin{equation*}
J_{\theta \theta}=\iiint_{\theta \theta}\left(w_{0}\right) f(v) f\left(v_{1}\right)\left[v_{x} h(v)+v_{1 x} h\left(v_{2}\right)-v_{x}^{\prime} h\left(v^{\prime}\right)-v_{2 x} h\left(v_{2}^{\prime}\right] d_{v_{1}} d \Omega\right. \tag{L+0}
\end{equation*}
$$

$J_{e 1}$ can be greatily simplityod obyothoe observation that the heavy paritales

are much slower than the electrons so that w_{i} can be replaced by V_{0} In addition, the only important collisions are those for which $2-\cos \theta \ll 1$ so that $\nabla_{i}{ }^{0} \approx \nabla_{i}$ and $\nabla^{0} \approx \nabla_{0}$ Five may therefore write:

$$
J_{\theta i}=\nabla f(v) h(v) \iint \sigma_{e i}(v \theta) F_{i}\left(v_{i}\right)\left(v_{x}-v_{x}{ }^{2}\right) d \vec{v}_{i} d \Omega
$$

The integration with respect to τ_{i} can be oarried out at once and leads to:

$$
J_{\theta i}=N_{i} v i(v) h(v) \int \sigma_{\theta i}(v \theta)\left(r_{x}-v_{x}{ }^{p}\right) d \Omega
$$

We note again that $\nabla^{9} \approx T$ and exprese $\nabla_{x}{ }^{2}$ thus: $\nabla_{x}{ }^{8}=\nabla(\cos \alpha \cos \theta+\sin \alpha \sin \theta \cos \phi)$
Integration with respeot to ϕ leads then to:

$$
J_{\theta i}=2 \pi_{i} \nabla f(v) h(\nabla) \int \sigma_{\theta i}(v \theta)(1-\cos \theta) d(\cos \theta)
$$

The oross section for collisions between electrons and nuclei with charge Z_{i} (Rutherford scattering) is:

$$
\sigma_{\theta i}=\left(\frac{z_{i} e^{2}}{m v^{2}}\right)^{2}(1-\cos \theta)^{-2}
$$

We can thus reduce $J_{\text {ei }}$ further to:

$$
\begin{equation*}
J_{e i}=4 \pi \lambda s_{i} \frac{\nabla_{x}}{\nabla^{3}} f(v) h(\nabla) \tag{50}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\frac{1}{2} \int(1-\cos \theta)^{-2^{\prime}} d(\cos \theta) \tag{6}
\end{equation*}
$$

This last integration is carried out in Appoadix I. After we onter (36). (Lib). and (50) into the Boltrmana oquation (2) we are loft with the problem to find $h(v)$ from ito This oan be done by expanking $h(v)$ in terms of Laguerre polynomials ${ }^{2}$) In particular we shall use the polynomials of orier $3 / 2$ and write for brevitys

$$
I_{r}(\varepsilon)=I_{r}^{(3 / 2)}(\varepsilon)
$$

2) For a disoussion of tho propontig if inese polynomials the reader is referred

UNCLASSIFIED

The L_{r} form a complete set and can be derived from their orthogonality relation :

$$
\begin{equation*}
\int_{0}^{\infty} \varepsilon^{3 / 2} e^{-\varepsilon_{L_{r}}(\varepsilon) L_{s}(\varepsilon) d \varepsilon=\frac{\Gamma(r+5 / 2)}{\Gamma(r+2)} \delta_{r s}, ~} \tag{7}
\end{equation*}
$$

and $L_{0}(\varepsilon)=I_{0}$ We note also that $L_{i}(c)=5 / 2-50$
We express (3b) in the form:

$$
\begin{equation*}
D(f)=\left[\left(\frac{1}{n} \frac{d n}{d x}-\frac{0 W_{0}}{E T_{\theta}}+\frac{1}{T_{\theta}} \frac{d T_{\theta}}{d x}\right) L_{0}\left(\beta^{2} v^{2}\right)-\frac{1}{T_{\theta}} \frac{d P_{Q}}{d x} L_{1}\left(\beta^{2} v^{2}\right)\right] \nabla_{x} f \tag{30}
\end{equation*}
$$

and substitute:

$$
\begin{equation*}
h(\nabla)=\sum_{s=0}^{\infty} e_{s} L_{s}\left(\beta^{2} v^{2}\right) \tag{8}
\end{equation*}
$$

into (46) and (50)
We now multiply both sides of the Boltamam oquation by $\mathrm{T}_{\mathrm{x}} \mathrm{L}_{\mathrm{r}}\left(\beta^{2} v^{2}\right)$ and integrate over d守o on the ieftohand side wo obtain, using (7):

$$
\begin{equation*}
{ }^{a A} \delta_{n_{0}}-{ }^{\mathrm{B}} \delta_{1 r} \tag{9}
\end{equation*}
$$

where we have set:

$$
\begin{align*}
& A=\left(\frac{e E}{X T_{\theta}}-\frac{1}{n} \frac{d n}{d x}-\frac{1}{F_{\theta}} \frac{d T_{\theta}}{d \pi}\right) \frac{n}{2 \beta^{2}} \tag{10a}\\
& B=\frac{1}{T_{\theta}} \frac{d T_{\theta}}{d x} \frac{5 n}{4 \beta^{2}} \tag{10b}
\end{align*}
$$

On the rightohand aide we obtaina $-\Sigma \mathcal{C}_{\mathrm{m}} \mathrm{H}_{8}$
whore $\quad H_{r s}=H_{r s}^{e}+\sum_{i} H_{r s}^{i}$
and where the $H_{r s}{ }^{e}$ and $H_{P B}{ }^{1}$ are defined as follows :

$$
\begin{align*}
& \Delta g=g\left(\vec{v}^{\prime}\right)+g\left(\vec{T}_{1}\right)-g\left(\vec{v}^{2}\right)-g\left(\overrightarrow{3}_{1}\right) \tag{11}
\end{align*}
$$

and

$$
\begin{equation*}
H_{r s}^{1}=N_{i} z_{i}^{2} \quad \frac{L^{\pi}}{3} \lambda\left(\frac{e^{2}}{m}\right)^{2} \int \frac{L_{r} I_{s} f}{v} d \vec{v} \tag{13}
\end{equation*}
$$

The problem now consists in solving the set of equations

$$
\begin{equation*}
\mathrm{A} \delta_{o r}+\mathrm{B} \delta_{l r}=\sum \mathrm{C}_{\mathrm{s}} \mathrm{H}_{\mathrm{rs}} \tag{14}
\end{equation*}
$$

for the coefficients C_{s} o Actually we will need only the first two coefficientso We can write the current:

$$
\begin{equation*}
j=\int r_{x} d d \vec{v}=\int r_{x}^{2} f \& c_{k} L_{m} d \vec{v}=\frac{n}{2 \beta^{2}} \Im_{0} \tag{15}
\end{equation*}
$$

and the hoat ourrent

$$
\begin{gather*}
q=\int \frac{m Y^{2}}{2} \nabla_{x} d d \vec{\psi}=k T_{0} \int\left(5 / 2 L_{0}-L_{1}\right) \nabla_{x}^{2} f \Sigma c_{B} L_{s} d \vec{v} \tag{16}\\
q=\frac{5 n}{4 \beta^{2}}\left(c_{0}-C_{1}\right) k T_{0}
\end{gather*}
$$

It is convenient to take a factor:

$$
\begin{equation*}
\mu=\frac{8 \sqrt{\pi}}{3}\left(\frac{n \theta^{2}}{m}\right)^{2} \lambda \beta \tag{17}
\end{equation*}
$$

out of the matrix elemente and to writes

$$
\begin{equation*}
H_{r g}=\mu h_{r s} \tag{18}
\end{equation*}
$$

c_{0} and c_{1} can bo writton formally in torms of the dimansionlean matrix elemente $h_{r a}$ as followaz

05.6.

However, these determinants are infinite and the following limiting proaess is usod to get convergent results. We out both numerator and demominator determinants off beyond the row and colum carrying the index n_{a} take the ratio, and repeat with larger no To oarry this through we write:

$$
D^{(n)}=\left|\begin{array}{ccc}
h_{00} h_{01} & 00000 \cdot h_{0 n} \tag{20}\\
h_{n 0} h_{n 1} & \cdots \cdots \cdots h_{n n} \\
(n) & \ldots
\end{array}\right|
$$

we also use thominors $D_{\text {ik }}(n)$ winich are obtained by deleting the ith row and the kth ooluma.

Then we Porm

$$
\begin{equation*}
R_{i k}=\frac{D_{i k}}{D}=\lim _{n \rightarrow \infty} \frac{D_{i k}^{(n)}}{D^{(n)}} \tag{21}
\end{equation*}
$$

By substitution into (19) we obtain:

$$
\begin{equation*}
c_{0}=\left(A R_{00}-B R_{10}\right) \mu^{\infty l}, \quad c_{1}=\left(-A R_{01}+B R_{11}\right) \mu^{-1} \tag{22}
\end{equation*}
$$

Tha limiting procesa (21) can be carried through by means of a theorem on determinants by Sylvester ${ }^{3)}$. From this theorem we obtain the relation:

$$
\left|\begin{array}{ll}
D^{(n)} & D_{n+1, k}^{(n+1)} \\
D_{i, n+1}^{(n+1)} & D_{i k}^{(n+1)}
\end{array}\right|=D^{(n+1)} \quad D_{i k}^{(n)}
$$

so that

$$
\frac{D_{i k}^{(n+1)}}{D^{(n+1)}}=\frac{D_{i k}^{(n)}}{D^{(n)}}+\frac{D_{i e^{(n+1}}^{(n+1)} D_{n+1, k}^{(n+1)}}{D_{D^{(n)}}^{D^{(n+1)}}}
$$

and furthor:

$$
\begin{equation*}
R_{i k}=\frac{D_{i k}^{(1)}}{D^{(1)}}+\frac{D_{i 2}^{(2)} D_{2 k}^{(2)}}{D^{(1)} D_{k}^{(2)}}+\frac{D_{13}^{(3)} D_{3 k}^{(3)}}{D^{(2)} D^{(3)}}+\ldots 00 \tag{23}
\end{equation*}
$$

It is interesting to note a simplification which is introduced if one imposes the condition $j=0$ or its equivalont $C_{0}=0_{0}$ In this oase we can eliminate A from (22) axd obtain:

$$
\begin{equation*}
c_{1}=\mu^{-1} \cdot \frac{D_{11} D_{00}-D_{10} D_{01}}{D D_{00}} B=\mu^{-1} \frac{D_{21} 01}{D_{00}} \mathrm{~B} \tag{24}
\end{equation*}
$$

by another applioation of Sylvesteres theoreno Fo therefore do not need the $z e r o$ row and columa of our matrix if wo only want the heet conduotivityo Ifs howover. wo also mant to know the value of A, that is the eleotris field in the oase $j=0$ or if we want the oosfficionts in the more goneral case whon $j \neq 0$ Wo have to use the oomplete matrix.

By combining (10 a), (10 b), (17) and (22) we are led to the oquations:

$$
\begin{align*}
& j=\frac{3 \lambda^{-1}}{4 \sqrt{2 \pi}}\left(\frac{m}{e^{2}}\right)^{2} \cdot\left(\frac{k T_{\theta}}{m}\right)^{5 / 2}\left[\left(\frac{e E}{E T_{e}}-\frac{1}{n} \frac{d n}{d \pi}-\frac{1}{T_{e}} \frac{d T_{\theta}}{d \pi}\right) R_{00}-\frac{5}{2} \frac{1}{T_{e}} \frac{d T_{e}}{d \pi} R_{01}\right] \tag{25}\\
& q=\frac{75 \lambda^{-1}}{16 \sqrt{2 n}}\left(\frac{\mathrm{~m}}{02}\right)^{2}\left(\frac{k T_{0}}{m_{0}}\right)^{5 / 2} k T_{e}\left[-\frac{1}{T_{0}} \frac{d T_{\theta}}{d x}\left(R_{01}+R_{11}\right)+\frac{2}{5}\left(\frac{e E}{k T_{0}}-\frac{1}{n} \frac{d n}{d x}-\frac{1}{T_{0}} \frac{d T_{0}}{d x}\right)\right. \\
& \left.\left(R_{00}+R_{01}\right)\right] \tag{26}
\end{align*}
$$

we are particularly interested in the case $j=0$ where we find:

$$
\begin{align*}
& \frac{e E}{E T_{0}}=\frac{1}{n} \frac{d n}{d x}+\frac{1}{T_{0}} \cdot \frac{d T_{0}}{d x}\left(1+\frac{5}{2} \frac{R_{01}}{R_{0 O}}\right) \tag{27}\\
& q=-\frac{75 \lambda^{-1}}{16 \sqrt{2^{\pi}}}\left(\frac{m}{0^{2}}\right)^{2}\left(\frac{k T_{\theta}}{m^{2}}\right)^{5 / 2} k\left(\frac{R_{00^{R}} 11-R_{01}}{R_{00}}\right) \frac{d T_{\theta}}{d x} \tag{28}
\end{align*}
$$

That is we get for the heat conductivity:

$$
\begin{equation*}
x=\frac{75 \lambda^{-1}}{26 \sqrt{2 \pi}}\left(\frac{R_{00^{R} 11}-R_{01}^{2}}{R_{00}}\right) k c\left(\frac{a^{2}}{m 0^{2}}\right)^{-2}\left(\frac{k T_{0}}{m c^{2}}\right)^{5 / 2} \tag{29}
\end{equation*}
$$

In this formula a was introduced to put the dimensions of k into evidence。 For the walue of λ see equation (46) o

The integrations (11) and (13) are carried out in Appendix IIs The matrix $h_{r s}$ is seen to depend on an offective nuolear charge:

$$
\begin{equation*}
z=\frac{2 N_{i} z_{i}^{2}}{n} \tag{30}
\end{equation*}
$$

The computations wore oarried through for 2 value of $2,2,205,3$ and 00 o The 0ase $2=\infty$ means that the torm $h_{r s}{ }^{e}$ resulting from olectronmeloctron soattering hus negleotedo This oase if very importand booause the Boltamann equation oan

Q.lso be solved in a closed form, so that we are able to cheok our theoryo The table below shows the first 4 terms and their totals of the series for $R_{00}{ }^{R_{01}}$ and R_{11}. Obviousiy we have $R_{10}=R_{01}$ on account of the symmetryo It also ahows the important oombinations, $1+\frac{5}{2} \frac{R_{01}}{R_{00}}$ and $\frac{75}{16 \sqrt{2 \pi}} \frac{R_{00 R_{12}}-R_{01}^{2}}{R_{00}}$ visich oocur in (27) and (29)。

$2 \rightarrow$	1	2	2.5	3	∞
Terms of R_{00}					
1st	1.9320	1.1590	.9748	. 8430	$3.2500 \mathrm{z}^{-1}$
2nd	. 0179	90095	. 0002	. 0000	$01406 \mathrm{z}^{-1}$
3 rd	. 0117	. 0023	. 0011	. 0005	. $0039 \mathrm{z}^{-1}$
4 th	.0041	.0006	. 0002	. 0002	,00005 z^{-1}
total	1.9657	1.1634	$\bigcirc 9763$		$303950 \mathrm{z}^{-1}$
Terine of R_{OI}					
$28 t$. 6213	0.4393	-3832	-3398	1.5000 2^{-1}
2nd	- . 0668	-. 0192	-0063	.0027	$05625 \mathrm{z}^{-1}$
3 ra	.0053	.0011	.0006	.0004	-00234 2^{-1}
4 4th	-. 0015	-00005	. 0.0003	-00001	$000014 \mathrm{z}^{-1}$
total	- 5583	04207			$2.0377 \mathrm{z}^{-1}$
Terms of R_{12}					
1st	04142	. 2929	. 2555	-2265	$1.0000 \mathrm{z}^{-1}$
2 ad	. 2494	. 2504	-2440	-2360	$2.2500 \mathrm{z}^{-1}$
3 ra	-0024	-0006	.0004	-0003	$01406 z^{-2}$
4 th	-0005	-0004	-0003	-0002	. $0039 \mathrm{z}^{-1}$
total	. 6665	- 54.43	- 5002	04630	$3.3945 \mathrm{z}^{-1}$
$1+\frac{5}{2} \frac{\mathrm{R}_{01}}{\mathrm{E}_{00}}$	1.710	1.904	1.966	2.016	2.5005
$\frac{75}{26 \sqrt{2 \pi}}\left(\frac{R_{00 R_{31}-R_{01}}{ }^{2}}{}\right.$	3-400\%	70108	-10047	-9\%	- x^{-1}
$26 \sqrt{2 \pi}{ }^{2}$	-9498	. 7334	. 6629	.6053	4.0607

For large Z we obtain by combining (3b) and (50):

$$
\begin{equation*}
\frac{1}{n} \frac{d n}{d x}-\frac{d F}{E F_{0}}+\left(\beta^{2} v^{2}-\frac{3}{2}\right) \frac{1}{T_{0}} \frac{d T_{0}}{d x}=-4 \pi \lambda n z\left(\frac{e^{2}}{m}\right)^{2} \frac{h(v)}{v^{3}} \tag{31}
\end{equation*}
$$

For the electron and heat currents we have:

$$
\begin{align*}
& j=\int v_{x} \phi d \vec{v}=\int \nabla_{x}^{2} h f d \vec{v}=\frac{1}{3} \int \nabla^{2} h f^{2} d \vec{v} \tag{32}\\
& q=\int \frac{m}{2} v^{2} \nabla_{x} d \vec{v}=\frac{1}{3} \frac{m}{2} \int \nabla_{h f d \vec{v}}^{4} \tag{33}
\end{align*}
$$

To carry these integrations through we need :

$$
\begin{equation*}
\int \nabla^{5} x d \nabla=2 n \pi^{-1 / 2} \beta^{-5} \int e^{3} \theta^{-\varepsilon} d \varepsilon=2 n \pi^{-1 / 2} \beta^{-5} \cdot 31 \tag{34}
\end{equation*}
$$

and similarly

$$
\begin{align*}
& \int \nabla_{\mathrm{f} d \vec{v}}=2 n n^{-1 / 2} \beta^{-7} 4 d \tag{35}\\
& \int \nabla_{\mathrm{f} d \vec{v}}=2 n r^{-1 / 2} \beta^{-9} 5:
\end{align*}
$$

We substitute $h(v)$ from (31) into (32) and (33) and use the integrals (34), (35), and (36) to obtain:

$$
\begin{align*}
& J=\frac{8}{\pi \sqrt{2 \pi}} \lambda^{-1} z^{-1}\left(\frac{e^{2}}{m}\right)^{-2}\left(\frac{k T_{\theta}}{m}\right)^{5 / 2}\left(\frac{e E}{k T_{\theta}}-\frac{1}{n} \frac{d n}{d x}-\frac{5}{2} \frac{1}{T_{e}} \frac{d T_{e}}{d x}\right) \tag{37}\\
& q=\frac{32}{\pi \sqrt{2 \pi}} \lambda^{-1} z^{-1}\left(\frac{e^{2}}{m}\right)^{-2}\left(\frac{k T_{0}}{m}\right)^{5 / 2} x_{0}\left(\frac{e E}{k T}-\frac{1}{n} \frac{d n}{d x}-\frac{7}{2} \frac{1}{T_{e}} \frac{d T_{\theta}}{d x}\right) \tag{38}
\end{align*}
$$

Comparing these equations with (25) and (26) we see that the following equalities should exist:

$$
\begin{aligned}
& \frac{3}{4} R_{00}=\frac{8}{\pi} z^{-1}, \frac{3}{4}\left(R_{00}+\frac{5}{2} R_{01}\right)=\frac{20}{\pi} z^{-1} \\
& \frac{15}{8}\left(R_{00}+R_{01}\right)=\frac{32}{\pi} z^{-1} ; \quad \frac{75}{16}\left(R_{01}+R_{11}+\frac{2}{5} R_{00}+\frac{2_{5}}{5} R_{01}\right)=\frac{112}{\pi} 2^{-1}
\end{aligned}
$$

That is we should have:

$$
\begin{aligned}
& \mathbf{R}_{00}=\mathbf{R}_{11}=\frac{32}{3 \pi} z^{-1}=30395.305 z^{-1}, \mathbf{R}_{02}=\frac{32}{5 \pi} z^{-1}=2.03718 \mathrm{z}^{-1}
\end{aligned}
$$

and for the derived quantitien:

$$
x+\frac{5}{2} \frac{\mathbb{R}_{01}}{R_{00}}=205: \frac{75}{16 \sqrt{2 \pi}} \cdot \frac{R_{00 R_{11}}-R_{01}^{2}}{R_{00}}=\frac{32}{\pi \sqrt{2 \pi}} z^{-1}=6.0635 \mathrm{z}^{-1}
$$

These values agree very well with those listed in the proceding tables so that we can be quite confident of the validity of our general mathodo

APPENDIX I. GALCULATION OF λ

The integral λ given by (6)

$$
\lambda=\frac{1}{2} \int_{\theta_{1}}^{\theta_{2}}(1-\cos \theta)^{-1} \mathrm{~d} \cos \theta=\left.\frac{1}{2} \ln (1-\cos \theta)\right|_{\theta_{2}}
$$

diverges if one use $\theta_{1}=0$ for the lower limito The reason is that the kinetio theory, as it is used, restricts itself to the consideration of encounters betweon only two particles at a timep The Coulomb forse law is, howeverp of such a nature that the possibility of interactions between more than two particles must not bo excludedo Another, less aatastrophic, difficulty arises out of the uncertainty principle which excludes the possibility of head-on collisions ${ }_{0}$ because one has to consider an oleatron as being spread out orer a region of the orier of magaitude of its de Broglise wave lengtho To remedy the situation we, first of allo expross λ in terms of the collision parameter po

$$
\begin{equation*}
\lambda=\left.\frac{1}{2} \cdot \ln \left[1+\left(\frac{m^{2}}{2 \theta^{2}}\right)^{2} p^{2}\right]\right|_{p_{2}} ^{p_{2}} \tag{39}
\end{equation*}
$$

The lower limit is, according to the uncertainty prinoiple the do Brogiie wave longth. That is we have:

$$
\begin{equation*}
p_{1} \approx \frac{\hbar}{m v} \tag{40}
\end{equation*}
$$

The expression:

$$
\left(\frac{\frac{\pi y^{2}}{2 \theta^{2}}}{)} p_{1}=\frac{137}{2} \cdot \frac{\pi}{\theta}\right.
$$

is in our case considerably largor than ono so that we can leave the one in front outo The same is obviously true at the upper limit so that we can write:

UNCLASSIFIED

We chose the upper limit by excluding collisions winch last longer than the time during whioh the electron gas would be able to rearrange ite density distribution so as to give a shielding effect. The rate at which this will take plece is determinec by the frequenoy of the plasma vibrations 4 .

$$
\begin{equation*}
u=\sqrt{\frac{4 \pi \theta^{2}}{m}} \tag{42}
\end{equation*}
$$

The collision parameter will thus be given to the right order magnitude by the relation

$$
\begin{equation*}
p_{2} \approx \underset{\sim}{w} \tag{43}
\end{equation*}
$$

Thus we obtain:

$$
\begin{equation*}
\lambda=\ln \frac{m v^{2}}{\hbar \omega}=\ln \frac{3 k T}{\hbar \omega} \tag{44}
\end{equation*}
$$

or, after introducing (42) and rearranging to put dimensions into evidenoe:

$$
\begin{equation*}
\lambda=\frac{1}{2} \operatorname{m}\left[\frac{9}{4 n}\left(\frac{\hbar 0}{e^{2}}\right)\left(\frac{k T}{100}\right)^{2} n^{-1}\left(\frac{\hbar}{m 0}\right)^{-3}\right] \tag{45}
\end{equation*}
$$

For convonience we introcuoe Arogadro's number N and obtain:

$$
\begin{equation*}
\lambda=10.881+\ln \left(\frac{k T^{2} \theta}{n e^{2}}\right)-\ln \left(\frac{n}{N}\right) \tag{46}
\end{equation*}
$$

Boosuse of the slow variation with Te it will usually be suffiolent to use an average To in this expressiono
4) See Cobine, Gassous Conduotors (1941) po 132.

APPENDIX II。 GALCULANION OF THE MATRIX ELOMENTS

In carrying through the integration (11) one can replace $\nabla_{x} \Delta\left(\nabla_{x} L_{8}\right)$ by $\frac{l}{3} \vec{V} \Delta\left(\vec{V} L_{8}\right)$ because the rest of the integrand is spherically symmetrioal in the velooitieso Let us furthermore express the velocities in tarms of the velocity \vec{u} of the center of mass and the relative velocities \vec{W} and $\overrightarrow{\boldsymbol{F}^{\prime}}$ of the two particles before and after collision:
$\vec{v}=\vec{u}+\frac{1}{2} \vec{w}_{2}, \vec{v}_{1}=\vec{u}-\frac{1}{2} \vec{w}_{,} \quad \vec{v} v=\vec{u}+\frac{1}{2} \overrightarrow{w_{i}} \quad \vec{v}_{1}:=\vec{u}-\frac{1}{2} \quad \overrightarrow{w^{2}}$

We shall collect these four oquations symbalically in one and write:

$$
\begin{equation*}
\vec{v}_{i}=\vec{u}+\frac{1}{2} \vec{w}_{i} \quad\left(i=20.0 u_{1}\right) \tag{48}
\end{equation*}
$$

Wo further introduce the angle θ_{i} by

$$
\begin{equation*}
\vec{w} \cdot \vec{w}_{i}=w^{2} \cos \theta_{i} \tag{49}
\end{equation*}
$$

That masis that θ_{i} assumes the walues $0, \pi, \theta, \pi=\theta$.
The Jacobian of the transformation (47) has the absolute value one so that

$$
\begin{equation*}
u_{1}=\int f(v) f\left(v_{1}\right)\left(\frac{\psi}{v} \cdot \vec{v}_{1}\right) e^{-\beta^{2}\left(x v^{2}+y v_{1}^{2}\right) d u} \tag{50}
\end{equation*}
$$

where

$$
\begin{equation*}
x=\frac{\xi}{2-\xi}, \quad y=\frac{\eta}{1-\eta} \tag{51}
\end{equation*}
$$

Then, oonsiderring the gonerating function of the Laguerre polynomials:

$$
\begin{equation*}
(\lambda-\xi)^{-5 / 2} e^{-x \varepsilon}=\sum_{F} \xi^{r} I_{r}(\varepsilon) \tag{52}
\end{equation*}
$$

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED
we can write:

$$
\begin{equation*}
\sum_{T} \sum_{s} \xi^{5} \eta^{s} H_{r 8}^{\theta}=\frac{1}{3}(1-\xi)^{-5 / 2}(1-\eta)^{-5 / 2} \iint_{\theta \sigma}\left(w_{\theta}\right)\left(M_{1}+M_{2}-M_{3}-M_{4}\right) d{ }^{2} d \Omega \tag{53}
\end{equation*}
$$

$H_{r s}{ }^{\theta}$ appears thus as coefficient in expanding tho expression (53) in powers of ξ and η o Our next step is therefor o to determine the integrals Mo Introducing (ia) we obtain:

$$
\begin{equation*}
m_{i}=n^{2}\left(\frac{\beta^{2}}{n}\right)^{3} \int e^{-\beta^{2}\left[(1+x) v^{2}+v_{1}^{2}+y v_{i}^{2}\right]}\left(\frac{v}{v} \cdot \vec{v}_{i}\right) d \vec{u} \tag{54}
\end{equation*}
$$

Introducing the substitution (47) we rewrite:

$$
\begin{align*}
(1+x) v^{2}+v_{1}^{2}+y v_{i}^{2} & =\left(u^{2}+\frac{1}{4} w^{2}\right)(2+x+y)+\vec{u} \cdot\left(x \vec{w}+y \vec{w}_{i}\right) \\
& =(2+x+y) g^{2}+j w^{2} \tag{55}
\end{align*}
$$

where:

$$
\begin{align*}
& \vec{G}=u+\frac{x \vec{w}+y \vec{w}}{2(2+x+y)} \tag{56}\\
& j=\frac{2(1+x+y)+x y(1-\cos \Theta}{2(2+x+y)} \tag{57}
\end{align*}
$$

(56) is simply a change of origin 80 that we have d ut $=$ dg. We express \vec{F}_{i} in terms of \vec{g} as

$$
\begin{equation*}
\overrightarrow{\boldsymbol{v}}_{i}=\vec{g}^{\mathbf{g}}+\overrightarrow{\mathrm{E}}_{1} \tag{58}
\end{equation*}
$$

with:

$$
\begin{equation*}
\vec{B}_{1}=\frac{(2+x) \overrightarrow{w i}_{i}-x \overrightarrow{7}}{2(a+x+y)} \tag{59}
\end{equation*}
$$

Similarly wo have:

$$
\begin{equation*}
v=\vec{g}+\vec{B}_{0} \tag{60}
\end{equation*}
$$

with:

Entering (55), (58) and (60) into (54), we can carry out the intogration and obtain:

$$
\begin{equation*}
M_{1}=n^{-3 / 2} n^{2} \beta(2+x+y)^{-5 / 2} e^{-j \beta^{2} w^{2}}\left(\frac{3}{2}+\beta^{2}(2+x+y) \vec{g}_{0} \cdot \vec{g}_{1}\right) \tag{62}
\end{equation*}
$$

where $\vec{E}_{0} \cdot \vec{E}_{i}$ can be obtained from (59) and (61)

$$
\begin{equation*}
\vec{g}_{0} \cdot \vec{E}_{i}=\frac{-(x+y+x y)+(2+x+y+x y) \cos \Theta_{i}}{.2(2+x+y)^{2}} w^{2} \tag{63}
\end{equation*}
$$

In order to carry through the integration (53) we set:

$$
\begin{align*}
& A=\frac{3}{2} n_{n}^{-3 / 2} \beta(2+x+y)^{-5 / 2} \\
& B=\frac{x+y+x y}{3(2+x+y)} \beta^{2} \\
& C=\frac{2+x+y+x y}{3(2+x+y)} \beta^{2} \tag{64}\\
& D=\frac{2+2 x+2 y+x y}{2(2+x+y)} \beta^{2} \\
& E=\frac{x y}{2(2+x+y)} \beta^{2}
\end{align*}
$$

Thus we can write:

$$
\begin{equation*}
M_{i}=A\left(1-B w^{2}+C \cos \theta_{i} w^{2}\right) e^{-\left(D-E \cos \theta \theta_{i}\right) w^{2}} \tag{65}
\end{equation*}
$$

Now we form $\Delta M_{i}=M_{1}+H_{2}-M_{3}-M_{4}$ and expand in powers of $y=\cos \theta-1$. Aotually, we will need only the linear term of the expansion beoause the aoattering oross-section is proportional to v^{-2} se that tho quadratic and higker terms give small contribution to the integral as compared with the linear termo

Rntering the proper θ_{i} values we obtain:

$$
\begin{align*}
& H_{1}=A\left(1-B w^{2}+C w^{2}\right) e^{-(D-E) w^{2}} \tag{66}
\end{align*}
$$

UNCLAJJIIILU
and by subtracting

$$
\begin{align*}
u_{1}-y_{3} & =A 0^{-(D-E) w^{2}}\left[\left(1-B w^{2}\right)\left(1-e^{E v w^{2}}\right)+C w^{2}\left(1-(v+1) e^{E v w^{2}}\right)\right] \\
& =A e^{-(D-E) w^{2}}\left[\left(1-B w^{2}\right) E w^{2}+C w^{2}\left(1+B w^{2}\right)\right] y+O\left(v^{2}\right) \tag{67}
\end{align*}
$$

$M_{2}-M_{4}$ is obtained by simply ohanging the signs of C and E_{0} The cross. section of e-e scattering is:

$$
\begin{equation*}
\sigma_{e 0}=\left(\frac{2 e^{2}}{\pi+2}\right)^{2} v^{-2} \tag{68}
\end{equation*}
$$

We now determine the integral:

$$
\begin{align*}
& \int \text { wos }_{e \theta}(w \theta)\left(\mu_{1}-M_{3}\right) d d^{3} \Omega \\
&=(4 \pi)^{2} \lambda\left(\frac{2 e^{2}}{m}\right)^{2} A \int e^{-(D-E) w^{2}}\left[(E+C)-E(B-C)_{w}^{2}\right] w d w \tag{69}\\
&=32 \pi^{2} \lambda\left(\frac{\theta^{2}}{m}\left[\frac{E+C}{D-E}-\frac{E(B-C)}{(D-E)^{2}}\right]\right.
\end{align*}
$$

and

$$
\begin{equation*}
\int w \sigma_{e \theta}\left(M_{2}-M_{4}\right) d w^{2} \lambda \Omega=32 n^{2} \lambda\left(\theta^{2} A \cdot\left[-\frac{E+C}{D+E}+\frac{E(B+C)}{(D+E)^{2}}\right]\right. \tag{70}
\end{equation*}
$$

so that:

$$
\begin{equation*}
\int w \sigma_{0 e} \Delta M_{i} d w d \Omega=64 n^{2} \lambda\left(\frac{e^{2}}{m}\right)^{2} \quad \operatorname{AB} \frac{D^{2} E+2 D^{2} C-E^{3}-2 B D E}{\left(D^{2}-E^{2}\right)^{2}} \tag{72}
\end{equation*}
$$

How we have to express (72) as a funation of ξ and η. If wo set

$$
\begin{align*}
& a=(1-\xi)^{-1}(1, \eta)^{-1} \text { we find: } \\
& 2+x+y=(2-\xi-\eta) a \\
& x+y+x y=(\xi+\eta-\xi \eta) a \tag{72}\\
& 2+x+y+x y=(2-\xi-\eta+\xi \eta) a \\
& \ell+2 x+2 y+x y=(2-\xi \eta) a
\end{align*}
$$

and entering this into (64) :

$$
\begin{aligned}
& A=\frac{3}{2} \pi^{-3 / 2} n^{2} \beta(2-\xi-\eta)^{-5 / 2} \alpha 5 / 2 \\
& \mathrm{~B}=\frac{1}{3} \frac{\xi+\eta-\xi \eta}{2-\xi-\eta} \beta^{2} \\
& \mathrm{C}=\frac{1}{3} \frac{2-\xi-\eta+\xi \eta}{2-\xi-\eta} \beta^{2} \\
& \mathrm{D}=\frac{1}{2} \frac{2-\xi \eta}{2-\xi-\eta} \beta^{2} \\
& \mathrm{E}=\frac{1}{2} \frac{\xi \eta}{2-\xi-\eta} \beta^{2}
\end{aligned}
$$

We enter these expressions into (71) and multiply according to (53) by

$$
\begin{align*}
& \frac{1}{3}(1-\xi)^{-5 / 2}(1-\eta)^{-5 / 2}=\frac{1}{3} \alpha^{5 / 2} \text { and get: } \\
& \sum_{r} \sum_{s} \xi^{r} \eta^{8} H_{r=}^{0}=\mu \sqrt{2} \frac{\xi\left(2-\frac{1}{2}(\xi+\eta)-\frac{1}{8}(\xi \eta)+\frac{1}{h}(\xi \eta)(\xi+\eta)-\frac{3}{8}(\xi \eta)^{2}\right)}{\left(1-\frac{1}{2}(\xi+\eta)\right)^{5 / 2}(1-\xi \eta)^{2}} \tag{74}
\end{align*}
$$

where μ is defined by (17)。 We can see immediately that all elements in the zero row and zero column are zero By expanding the expression (74) in powers of ξ and η, we obtain the symmetrical matrix:

$$
\left\{\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
& 1 & 3 / 2^{2} & 15 / 2^{5} & 35 / 2^{9} & \cdots \\
& & 45 / 2^{4} & 309 / 2^{7} & 885 / 2^{9} & \infty \\
& & & 5657 / 2^{10} & 20349 / 2^{12} & -\infty \\
& & & & 149749 / 2^{14} & -\infty
\end{array}\right\} \text { (75) }
$$

The integration (13) requires considerably less labors The angular integration gives a factor 4π and if we further set $\beta^{2} \nabla^{2}=e$ and use ($1 \dot{a}$) we have:
as before, wa se use of the generating function, and write:

$$
\begin{align*}
\sum \sum \xi^{r} \eta^{s} h_{r s}^{i} & =\frac{N_{i} Z_{i}^{2}}{n}(1-\xi)^{-5 / 2}(1-\eta)^{-5 / 2} \int_{0}^{\infty} e^{-(x+y+1) \varepsilon} d \varepsilon \\
& =\frac{N_{i} Z_{i}^{2}}{n}(1-\xi)^{-3 / 2}(1-\eta)^{-3 / 2}(1-\xi \eta)^{-1} \tag{77}
\end{align*}
$$

By expanding this in powers of ξ and η, we obtain the symmetrical matrix :

UNCLASSIFIED
 -romes

