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ABSTRA&T

The theory developed here may be used to treat the dynamics of & ball of
fire produced in & large explosion., At first this ball is a sphere of hot gases which
startg to rise through the sir. Its dynamics is considered in Part 11, Its behavior
"is very similar to the rise of an air bubble through water. It soon flattens out like
the top of a mushroom, its top remaining spﬁerical while 1ts bottom becomes flat., As
it rises the stream of cold air flowing over its surfaces eats amay the hot gases in
turbulent convection, Most of the material eaten away comes from the lewer surface.
As the ball risges it mqintains its shape but becomes smaller due to the loss of

material. Finally after a rise of 3.7 times its original radius, the ball is com-
pletely dissolved in turbulence. The figure 3.7 depends oﬁ two §onsiderations. éirst,
it is known experimentally for air bubbles in water that'the drag coefficlent, Cp, is
approximately 0.7. Secondly, the amount of air which gets sucked into the turbulent
stream can be éstimated from experimental observations of the motlon of air produced
above a long straight hot wire (thus the constant o is taken as 0.2).

The fate of the turbulent column of air is treated in Part I. The original
ball of firé is considered to be comparable to an instantaneous-point‘aource'of heat,
Knowing the total amount of heat input,vahd the rate of rlse of potential temperature
with height in the atmosphere (taken to be 5° per 1000 meters) tho dyuamics of the
turbulent column cen te estimatodo This theory predicts in agreement with observa-
tions that the column should rise to a maximun height and then mushroom out. The
height should vary as the energy of ths explosion to the one-fourth power end in-
versely as the one-fourth power of the rate of rise of potential temperature in the
air, In the case of the Port Chicago explosion involvin° 1600 ‘ons of H.E,., this

theory predicts that the maximum helsght should be 11,000 feet. Observations would in-
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dicate that this height wns actually between 8,000 end 12,000 feet, The theory 4is

edmittedly rough. An attempt is made to justify it by using the same sort of develoj
ment.for the case of turbulence produced by a hot wirs in air and cOmpéring it with
the results of Schmidt’s more accurate theory, Schmidt's theory 1s presented in the
Appendix,
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DYNAMICS OF A MASS OF HOT GAS RISING IN AIR

PART I, Approximate Theory of Convection Currents

I. LINE SOURCE IN AT#OSPUHERE WHOSY POTENTIAL TEMPERATURE VARIES WITH HEIGHT

The effect of mixture between the hot air 1m the convection current rising
with velocity u and the surrounding atmosphere will be taken as being duve to & our-
rent equal to au flowing into the convection current from each side and mdxing with it.
A volume of eir which at a certain height x, has height Gﬂo and width 2y, may after
mi:;ing have a height 6¢ and a width 2y. It is assumed that u is constant across the

conveotion current, The equation for increage in volume of the element is

D
| o (2y 82) = 2qu £ (1)
Since the motlon is steady,
6,@/5)20 = u/uo (2)
so that (1) may be written
d =
us- (yu) = au® (3) .

If 8y is the potential temperature, or rather the rise in potential temperature at

height x above that at the ground level the equation of motion is

o ax (2yw80) = B2l 42y 0t (40)
Or in view of Eq. (2)s
ugr () = € (0-00) yu (4b)

The equetion for conservation of heat 1is
3% (2ypasdl) = 2apou 6, ok
Or making uso of Eq. (2):

d . _ .
u = (yu8) = a &, u? (s)

o UNCLASSIFIED
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These equations may be reduced to

]
du _ g (0 )ezz?_
dx T u yu
2 (yu) = au > (6)
ax Y
-c_i_?____au(en-e)
dx yu ]

A. Case where 9, = O, Atmosphere has uniform potential temperature

In this spocial case the solution to the Fgs. (6) 1a:
y=x L

u = oonstant (7

u?r/(gx) | )

The total rate of heat transfer H is given by the equation

o

H = 2upydo
And from Eq. (7) this is

B = 2« u5(ch/’g) (8)

Comparison with Schmidﬁ's Calculationul)

It will be seen that so far as the dependence of u, y, and € on x is
concerned, Eq. (7) is in agreement with Schmidt's caleulationa. In considering how the
absolute magnitude may be compared, it must be remembered that Schmidt's distribution

of 6 and u with 4(z y/x) are rather like that of an error ourve. If a given

amount of heat were uniformly distributed it could be imagined to spread out over the

same %otal volume as in Schmidtts oalculations. JIn this case u would be smaller than

Sohmidt's u, and @ would be the same as Schmidt's limiting value of n. Or alterna-

1) Schmidt's theory is pressntod in the appendix. U " C l A S Sl F ‘ E D
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tively the value of u could be taken as identical with Schmidt's u, in which case @
vould be less than the limiting value of Schmidt's W, If u is taken as identical

with Schmidt's Uy, Eq. (8) may be compared with Eq. (14) of the appendix and they will
be found to be in agreement if
s x°2/9 1°V/3 . J1/f3 ~ (9)

¥hen the oa.lc;ulatebd values éf A and I are inserted and the velue of X
which makes Schmidt®s cnl;:ulation agree with observation are inserted in (9), according
to my memory, @ = 0.2. This corresponds with a limiting wvalue of M in Schmidt's case
of about tan=l 199 = 0.32. It seems that the present theory in which the effect of
turbulent mixing is represented by an inflow of surrounding eir through the outer sur-
face of the heated zone at 'a'velocity a times the velocity of the heated gas is in
agreex:rxen{: with Schmidt's more accurate theory for the case whers the surrounding air
has a uniforp potential temperature. It is proposed therefore to apply the approximate
theory to cases wherg the analytical difficulties prevent the more accurate theory from
being applied.

B. Case where 6,= [x, Atmosphere has uniform increase in potential temperature with
height

In this oase the Eq. (6) may be redused to non-dimensional form by taking:

u

ut U whs;'é U = (Hg/2r¢pc)1/5

x®* X where X -= U(T/ﬂg)1/2 : (10) -
0= 0@ whers @ =X = u(fr/e)d/?

b

The value of X was chosen so that X = USr/(gX). The Egs. (6) then became:

dut _ 8'=xt qu!

dxs u!? y!

(v W) =aur (12)

aos _ au?{@t-x')
dx!? - ytu!
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Eqs. (11) can be solved numerically because the initial sonditions near x' = O are
ut = 1, y°® zaxt, 6* xt =1
T

The general nature of the. solution is indicated in Fig. 1
. 1,

a0
S/

j/a@'/

y'—

POINT SOURCE OF HEAT EXITTING H CALORIES PFR SECOND

III
Increase in Volume

Here the equations are:
u a%e (%t 2 u) = 2fra w2
Equation of Motion

u -2 @ 22 u) = % (6-680)T ru
Conservation of Heat

ul @ r2 ud) = 2frau 0,

Here r 4is the distance from the source. Dividing the above equations by fu;
(12)

‘ -(;—1; (r® u) = 2rau
(13)

= (2 - E (o-0,) 12 |
Ed; (¥2 u0) = 22 6o ru (14)

If 65 = O corresponding to an aitmosphere having a constant potential tempera-

(15)

ture, the solution of (1) is:
lra ud = constant = B/ (roo)

Assume as solutions to Eqs. (12) and (13)
 u= A/x1/5 (16)
(17)

Yy =[x

APPROVED FOR PUBLI.C RELEASE
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Eq. {12) is satisfied if
f = 6a/5 (18)
Eq. (13) is satisfied if '
Ad = 3—§H 2 25eH 1
4FooT ﬁ? LBTeo ag (19)
The value of © is from Eq. (15)
8 H x'5/5 (20)

- ﬁpo’ﬁ?‘A
The solution contained in Eqs. {(15) through (20) is analogous tec Schmidt's more accure

ate solution in this case. The exponents of x in the Schmidt expression for u, Yy,

and © are the same as those in Eqs. (15) through (20),

ITII. INSTANTANEOUS POINT SOURCE OF HFAT

When the point source of heat is not continuous but is generated suddenly in
a small volume, the principle embodied in Egq. (1) may still be applicable. But since
the motion is not steady the relationship (2) between the variation in verticel depth
of the heated layer and the vertioal‘velocity‘no longer holds. Som; assumption must be
made to take its place. For this purpose it will be assumed that the depth of the
heated volume is the same as the breadth. In fact it may be assumed that the heated
volume is a sphere of rradius r and that its volume increages because air enters all
over its surface at the r;te au. Thus the equation representing the spread of the

heated sphers due to turbulence is

adg(%-nr«"): L r? au or-a%-r3=3¢r2u (22)
The equation of motion is
& (P2 ) = & (e-6,) #7 (22)
The equation of heat conservation is *
i- (r38) = 3ar2u 6, (23)
-3
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Since u = dx/dt, these equations may be written;

g-g:,’aareorr=ax (24)
d 3
5 (B u) = 2 (e-0,) == g (25)
= (r38) = 3ar2 ¢, (26)

A. Caso where 8§, = 0, Atmosphero has uniform potential temperature

In this case we can intograte Eq. (26) to get:
r3 @ = constant = 3H/(Lrpc)
And Eq. {25) becomes:

rd u -a-x- (r? u) = -—. (lwpd)

This integrates to give:

(PP e _?E_)J,; o o 38H (rl*)

2 Ta hu'pc " Lpor 2 \L
Thus:
seul/2 1 [ zem JU/2 1
= | 8@poTa T 81790T 87p0T a x
o= (—-———W = 1)
r=ax

Eq. (27) is a solution to this problem,

B. Case where 0, = fix, Atmosphere has . unifom rate of increase of potential tempere-~
ture with height

In this case, Eq. (26) becomes
= d (r3 @) =3 3 pfa

Which integrates to give:

rd o= -érl"-t

La ln‘rpd
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or

0=2R oK 2
La re hﬂpa r> (28)

And Eq. {(25) becomss

raui(rau)=—§-r6{é~,'}r§( H)-l—-.ér]
dr T La IR r? a

Which integrates to give

u r6 = :Ef {- (hﬁ) -?- *(h?’H ,-h] + constant
a 4

But this constant of in'begra’cion must equal to zero so that:

),u —& 5] (29)

we =

[ éloc
Thus there is a height at which u is equal to zero, i.e.,
= 0 when ( )(a./ﬁ)
. 1/
]

Suppose a mess, M, of explosive lesaves a fraction y of the total chemical

or X =

(20)

energy which is reoleased per gram, E, in the form of heat energy at the site of the

explosion. Then

H = yME
And the smoke rises to & height of
Toof &5

EXAMPLE 1: Explosion of ton of TAT

= 106. E = 1000 calories per gram, o = .0013 grams/cm5,
¢ = .25, 5= 5° per 1000 meters = 5 x 105 deg/em
This value of [3 corresponds to a rige of potential temperature of 5° per 1000 meters.

Since the adiabatic gredient gives rise to a fall of 10° per 1000 meters, a rise of 50

APPRO\M RELEASE
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per 1000 meters in potential temperature corrosponds te a lapse rate in actual tempera-
ture of 15° per 1000 meters. If we suppose that

Y=0°5 and « = 0,2
It follows from Eq. (31) that

x=5.2x 104 ems = 1700 feet

EXAMPLE 23 Tha Port Chicago Explosion
' M = 1600 tons = 1.6 x 107 grams
Using the same values of the cother quantitiea as in Exemple 1, it follows that
x = 3.3 x 107 cms = 10,900 feet
These results are iikely to require modification when a m&re correct value

of & is found using'the result of Schmidt's paper and, in Example 2, when the change

of density of air with height ia allowed for.
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PART II. Early Stages of the Rise of a Sphere of Hot Gas

When air is released in water the resulting bubbles are nearly spherical if
their diameters are of the order of one millimoter. TVhen they attain a radius of
around one centimeter the variation in pressure distribution around their surface due
to hydrodynamical flow éauaes them to flatten. Thoy usually oscillate violently and
- frequently break up. If however e large amount of air is suddenly released in water,
very large bubbles are formed, They are‘umbrélln shaped and appear to bo smooth on the
upper surface and highly disturbed on the lower éurface. Photographs of bubbles up to
six inches in diameter show that the rim of the umbrella subtends at the center an
angle of about LO® from the vertical axis. The pressure distributions have been
measured over the surfaces of the segments of spheres set in a wind tunnel with the
pole or axis of the segmént in ;ino with the wind. Such measurements show that the
pressure pver the greater paft of the apherical aegmeht differs little from that which
would bs calgulated by c}assical hydrodypamica. There is reason to believe therefore
that the pressure in'the.water near the spherical surface of a volume of gas which is
rising in an umbrella or mushroom shaped form will be close to that which would be cal-
culated by classical hydrodynami;s for a sphere. This is

P= % e ud(l - 9 sin® o) (1)
Here O 1is the angle of the point of the sphere fram the summit and u is the verti-
cel velocity of rise. If © is amall, Eq. (1) may be written:
P=&pud(l-902/H)
The above pressure is ﬁhe excess due to hydrodynamical causes over the pressure in the
fluid at infinity. Since ther» is a gravitational field, the actual pressure in the

water at ths surface is

P=é9h9+%9u2(1~99%> (2)
|

v
«
-~
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Here hQ iz the depth of any point on the surface of the bubble below the surface of the
wveter. If © is small
hg=hy+ 3 a 0® | (3)
Here a is the radius of the bubble. The true pressure at the surface of the bubble
is therefore _
P=DPo*+ &0 hot §pu?+gon®< gpu?e (L)
Here p, is the atmospheric pressure.
It seems from Eq. (4) that the pressure in the water at the surface of the
bubble can be constant and thersfere in equilibrium with the rising gas if

w?=zhgafo or u s (2/5)(55)% , (%)

Resistance of the Bubble

Though the radius of curvature of the top of the bubble is related to the
velocity of rise by Eq. (5), further informatien is required before the rate of rise
can be determined. Experim@ts on the rate of rise of large bubbles of known volume
give rather variable results but it was found by measuring the horizontal diameter of
the bubble that the resistance coeff'icient, Cps i; of the order of2)

CD 2 0,5 to 1,0

If the bubble wore flat at the bottom, the volume of & segment subtending an angle 290

at the center is

Vs & ?ad 2%1 - cos 00)] -1 T ad §in® 9, cos 9§,
3 Ly 3 °
1

= 3 Y [2(1- cos 60)_ - 31132 Oo.eps eq]

(6)

For such a bubble to rise with the velocity u, the drag coefficient, Cp, must be

given by the relation:

2) This figure is from memory and may need correcting.
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Vpgs= CD(%-p ua)(a2 8in® 9g) (7)
Comparing Lgs. (5), (6), and (7), it seeme that the relationship between the angle 9,

which defines the shape of a flat-bottomsd bubble in the form of a sphorical segment

and Cp is : . . .
3 12(1=cos 8,)
o= < Q% = cos 9§ 8
D™ 2 [ sin? 9, ° @)
The values of Cp for a fow angles is shown below;
06 ’ Cp ,
L0° ~0.343
ks 0.697
50 00856
55 1.042

Thus the observed range of values of Cp for a solid segment would lead one to expect
that if the bubble were flat-bottomed it would cover an angle © from the vertical

axis which lies ﬁith the range of from hO to 55 degrees. This is in agreement with

u(,c,\n 5

observation,

Mixture at the Spherical Surface of a Volume of Het Gas

Suppeose that a het gas bubble

is penetrating upwards 1nto colder air.

If the density of the hot gas is p*, :
Boundary

Eq. (5) must be modified to read: layer of
1/2 nixed gao
= (2/3){€'-‘[1° (9'/9)]} (9 a.x;d cold

' ' air.

The relationship between mixing and

volocity of the cold air flowing radie-

ally outwards from above the vortex of
the bubble is the same as that assumed /-

in the simple theory given in Part I. Fig. 1

——
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Then the rate at which hot air i{s removed at the spherical surface of the hot gas
bubble is a times the velecity of cold air over hot gas = a((,’;/a) v 8in 9) on’ per
|

« Thus the total rate of removel of volume from the whole Surfacé is

cm®
%0 z
E.Y..; a I 2u sin 9(2fa sin &) ade
t o 2
- L3 '
= 2 a2[0g - § sin 2 0]

If 9, = L5°, this equation becomes:
av/dt = 1.35 ¢ a? u
And from EQ. (6), V = 0.2 a®, Therefore while the bubble rises a height x, the

volume changes by .
6V = 1.35 @ a2 bx

So that .
av _ 1.35 a a? bx

v 002)4 a5

Also since dAV/V = 3 6@/& it appears that
dx/de = 3(0.24)/1.35 @ = 0.534

If & = 0,2, this gives
x:asé?

Therefare in this case, the unmixed porﬁién of the bubble might be expected to rise to
a height of 2.6 a, i.6., (2.6/sin 9,) times the horizontal radius, which is
3.7 times the horizontal radius

bafore being completely mixed in the turbulent mass which might be expected to riss in

the manner oontemplateﬁ in the case analyzed in Part I.
Fig. 2 shows the successive positions of the residus of hot gas according to

the above theory. It will be notioced that in this theory the mixed geses are supposed

to bo removed in the boundary layer which enters the turbulent air behind the spherical

APPROVED FOR PUBLI C RELEASE
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segment of unmixed hot gas and forms the turbulent sphore which is the subject of
Part I, This process is indicated in Fig. 1.

2,6 a
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APPENDIX

SCHMIDT!'S THEORY OF THE VERTICAL CONVECTION CURRENTS
ABOVE A LINE SOURCE OF HEAT

Take x vertical, y horizontal,

n= y(k. - (1)
Assume for stress %y = 1,
vepft 2l (2)
! d}'

and £, the mixture length, may be assumed as proportional to the scale of the eddies
which may be taken as proportional to the width of the heated current, In the present
caso it turns ocut that all the equations are satisfied if vertical veldcity u is a
function of 9 . only so that the width of the heated cur;-ent is proportional to x,.

Thus we may take

L]

23
oy j

£=Ex anda 1 0 G x‘?(-gl-‘-)
dy. |

i.e., virtual coefficient of wviscosity K2 Xal-a—-u-|o Sinee u is a funotion of n only

dy
T=p x2(33) .E‘.‘i' (3)
dn dq
Since the total heat flow per second, H, over any section is constant
H = J;pd@dy = Qd'Iuexdy L)

when & 1is rise in temperature over the atmospheric temperature T; p density; o

specific heat. Thus 6x is a function of 9 only.
It is assumed that the variations in density are small, i.e., © is small

compared with T and that u and v are to this order of approximation related by
the incompressible relationship -;:— + %-‘-‘- = 0. This onables u and v (which are both

funotions of 1 only) to be expressed in the form

us=ft(n), v=nf'(n) - £(n)
;o 3 nd & 1.4 ) . (5)
(smce —zo '

& xag oy xay T
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for funoctions of 1

1 a
( = * V‘f;) A ORE OV £(9)] e --f('\) -

’ og
T

x2 xa e )
ox Ay py

(6)

(7N
du
Consider only y positive, -5; ‘E;‘ iz negative throughout region where y 1s poai-
tive so that (7) is
a du
Uz~ % Vv =

s g2 22 b bu)a og
yx dy dy.
or .-

o

T
- = f(n) £ )-»f-.(af" £m) & £
x oW ==

and since 6x is a function of v only this is an equation independent of x.
2K2F £" - £ £" = (8x) g/T = (g/f) F(n)

(8)
Equation of heat conductivity in horizontal direction (Schmidt neglects vertical con-
duction, I think) is

L ) : 59 | )

Where ¢ is the heat conductivity and c¢ 1is related to the initial coefficient of

gonvection process as vertical momentum.

viscosity by the assumption that heat is transferred by exactly the same lateral eddy
Thus

1242 ga |2

K2 puxt” .
writing @ = F(v)/x, (9) becomes

— (f" FPY) = = £FU ofF 10

AR DERE (10)

(8) and (10) can be put into a nondimensional form by using
= 23

’ll =9 / '

as the independent variable and substituting Fy

(1)

=g /3 F/T thus 8) becomes
26" PV o £ M 2Py

(12)
APPROVED For PUEL R .
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in future dashes refer to n3. (10) becomes
»

1
The conditions at n= O are

£" PN+ By £7 4 £ F'i&:?‘,{iso ' (23)

£ =0, " =20, F‘i =0
We may take F) = 1 without loss of generality.

Near v} = O the solution developed in the form

A']]_"h/lsﬂ/ +Cwyy *’D'!is

P = 1-:360:\‘3/2%!5:\15

There is only one arbitrary conatant in this eoiution, namely A. i.e., C, D etec.
are determined in terms of A. Schmidt determined the numerical value of A which
makes F and £* vanish simultaneously, and he determined the (finite) value of LY at |
which this happened. (I think from memory that A was somevwhere in the neighborhood *'1
. of 0.9 and the limiting value of y was about 2. If k 1is known this glves the limit-
ing value of l}o'nnd u was determined by comparing the observed distribution of @
as 1 varies with that calculated by the theory. The limiting value of n was, I
think, about 19° for the line souroe,)

From (12) and (13) it seems that F; can be multiplied by any number N pro-

vided f 4s multiplied by /N. To find the appropriate value of N from (L)

) :
H limit Y df( ) J‘ \
oo =2 L’ uO:qu N qu dr\ .W_. f Fl dql

here j‘f' F) dqy is a pure fumber and is obteined from Schmidt's solution. Writing this

ber I _ oo -
number Fa - ~fig Kb/5)2/3 -
N 2p0T1 /
o & The maximum velooity at the center is égual L_jo
. g af .
T A = gu ‘°2/3
- T [dvh]qlzo (d h Ax

where A is a pure numbier and is the value determined by Schmidt. Thus
aR(=2/3L/9)  pg )1/5 AR-2/91°1/3 (ng )1/5 o
U= 175 pe = o173 0T (L)

SR =
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APPROVED FOR PUBLI C RELEASE

UNCLASSIFIED

-

REC. b0
gt
T REC-

= URCLASSIFIED

APPROVED FOR PUBLI C RELEASE




