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THE INTEGRATED COMPTON CROSS SECTION

AND ITS USE IN A MONTE CARLO SCHEME

by
Gary S. Fraley

ABSTRACT

The differential Compton cross section is integrated
over a relativistic Maxwellian electron distribution. The
result, the cross section per final energy and angle of
scatter, is then used in a Monte Carlo scheme that does not
involve the use of large tables.

I. INTRODUCT ION ) : In a Monte Carlo scheme that picks a rew energy
The Compton scattering of a photon off an elec- and direction after a scattering, the variables f
tron distritution may be handled by integrating the and g are found for vhich
cross section* over the distribution, and then by
using the integrated cross section alone without Jdo = < do (k, coso)>
referring again to the elementary cross section. m okocosg L e
For a Maxwellian distribution, the differential is @& constant. For example, 7
cross section will depend upon the initial photon
energy (ko), the final energy (k), the angle of cosd
scatter (0), and the temperature (T). £% =/d cosh ﬁgz_os_e' ) g = (1) ,
- -1
2 (k- 0)« fan B EE L ) e
3% 3N .
wnere n(E) is the normalized electron distribution, S
and . g* =/dk Sk ¢ T= /1), g = g*/eX(@) -
20(8) ° (2)
kX
is the cross section for an electron with velocity The variables f and g are equated to random numbers,
E. Polarization effects are ignored, and the cross . and the physical variables are obtained by invert-
section is summed over polarizations. Because the ing these functions.

cross section is independent of the azimuthal angle

of scatter, k = k(g,ko, T) , cos@ = cosQ (f‘,g,ko,’l‘) .
do  _ 2 da
okdcosg 3k

Because the inversion must be done numerically,

* " - .
Cross section is the reaction rate per unit elec- k and cos§ are found by interpolation in tables.

tron and photon and includes a factor involvirg One table is four-dimensional. Because 50,000 is

relative velocity. about the largest practical table, the average

number of entries per variable is about 15. If the



entries are equi-spaced in the variables, accuracy
If the entries
are not equi-spaced, searching for entries and using

in some regions may not be good.

the more complicated interpolation formulae will

In any
case, interpolation will not be especially fast

increase the time spent for interpolation.

because it involves 16 entries in a four-dimensional
table.
Another method is to pick k and cos directly

by random numbers, and then compare

do do
dkocosg (Biacose) max
to a third random number. If the ratio is greater
than the random number, the reaction goes; if not,
the procedure is repeated until the ratio is greater.
This i8 not efficient because the ratio is gener-
ally small.

A third method is to develop analytical approx-
imations to f and g; fA and 8y which should be
easily inverted. This method is similar to the
second, but the ratio

do // do mex
bangA aangA

is compared to the third random number.

To the
extent that the approximations are good, the ratio
should usually be close to 1, and k and § will gen-
erally come from the first try. This scheme re-
quires an analytical formula for the cross section.
The integration in Eq. (1) must be done analyti-
cally (it has been done numerically by Stone and
Nelsonl), or at least a sufficiently accurate
approximation to the integral must be developed.
What is usually the dominant term can be integrated
analytically, and the other terms can be approxi-
mated fairly easily. The integral is used by the
third method in a scheme that may be somewhat
faster than interpolation, and which does not
require the large storage space.
II. THE INTEGRATED CROSS SECTION

In Eq. (1) we use the (nondegenerate) relati-
vistic Maxwellian distribution
1 '% 2
e  y'pdydcosg, d o, - (3)

dn =

Variables include
T = temperature
7 = relativistic electron energy
ee= electron polar angle
0" electron azimuthal angle
kO- initial photon energy
k = final photon energy
a= ko- k
k2- k°+ k
0 = angle of scatter (0 for forward scattering)
C™= l-cosf
c*- 1l+cos8
kh= a8 + 2kkbc- .

The electron mass and the speed of light are taken
as unity. The polar direction of the coordinate
system is in the direction of ko (Fig. 1). The
direction of k is (g, = 0). Unprimed quantities
refer to the center-of-mass system of the distribu-
tion; primed quantities refer to the rest system of
the electron.

In Eq. (1), we write

80532 dg’ Jdo  dk’
ok XX o7 Ik

Q, ()

where Jdo’/dk’X1’ is the cross section in the rest
system of the electron; and do/dc’, etc., are the
appropriate transformation factors to the unprimed
system. The cross section in the rest system of

the electron is given by the Klein-Nishina fonmula.2

2 2 ’
3’ . Io (K <k° + X sin261>
- 7] |77 -
KXY’ 2 ko k ko
k ’
xg (k! - —20xx]. (57
Lk  (CT)’

The cross-section transformation can be deter-
mined by noting that do nenp (where n, and np are
electron and photon densities) is an invariant,
being the ratio of two invariants, the number of
reactions in an element of space-time, and the

volume of that element.

N N
dsnn = M . (6)
€P 3t S;E



Ko (810)

K(6,4:0) R
B (6,,4,)

Fig. 1. The electron solid angle.

Then
f 2P 4
n’n
dog _ e

3%’ "nn :
€ p

Because n, and np are the time-like components of

4-vectors, (n,1nv), they transform as

n= ' (l+-é'—‘;') ’
or

n’ = m (1-87) . (7)

For tne photons vl = |v’l = 1, and for the elec-
trons ¥/ = 0- Then

o

SeT = l-PcosB, =D - (8)

If a coordinate system is temporarily taken in
the direction of the electron velocity,

x’ . 8:3}" d cosok' L %)
z
X dy O COsf 721)22

D,=1-8 (cosee cosg + sing sing cos.oe) (10)

is determined by using the usual angle-transforma-
tion formula and by noting that a,ok'/a@k = 1,
because it only involves coordinates perpendicular
to the velocity of transformation.

The photon energies, as the time-like compo-

nents of h-vectors, k = (k,K), transform as

’ = ’ =
k' = 7k D and k' = kD, . (11)

The delta function requires that

k'’ k'’
k' = o - = o - . (12)
1+k'(cT)’ 1+ k’ko’(C ) /!

Because k'ko’(c')’ is an invariant ( = k’. 1_(0'), in

unprimed quantities we have

k D
o (23)
D, + —
2 7 ¢

We have bk/&ge proportional to - sins,, waich shows
that in the half section of solid angle, O < g € T,
there is at most one g (for given ee) where the
delta function has zero argument. TFigure 2 shows
lines of constant k over half of the total solid
angle.

When the delta function integration over e is
done, we have (including a factor of 2 for the two
sections of solid angle)

2

dg To - 2
= T / dydcosee e 7 B
kXS bnT Ka(-,f)

HiN

32| Dy [ > K’ 2 ,(x’ 2
| == (r* *r*‘s“‘91?7) - ()
. Y D2 o (¢} (6]

From Eq. (13),

3k -koDlB sing sinee sinp;e

dog ~ (D2 K c')2

+2
7

k2
= -B sinj sinee sm(p,e ko—Dl- .

From Eq. (12),



Fig. 2. Lines of constant final energy (k) in
the electron solid angle.

In unprimed quantities,

Jo
kX
r? - %
= 2 T dy dcosee e B
bg T K5 |B sing sing sinwe|
<1_2+;ﬁ 2 _,_2_ , 1
2 kD, ~ 7 Dkk 2 2
ko 1 2 2 o leo V4 V4 D22k2k°
2 1
- + . (15)
2 2 2 32 )
V4 DlDzkko Dl ko V4

We now write

i ..y __2
D,D -

12 kC D2 koc Dl
D ¥ 5C e Dk oLkC
Dl k 7Dl D2 ko 12 D2

We also have

dD
1 k
dcosee‘-_ﬁ—'i:EdDQ .

Then Eq. (15) is

o _ s f dye
kX b T 1(2(%) |B sing sing, sing |

The term |B sing sing sinf,e| mey, by Eg. (13), be

written as a quadratic in Dl or D2.

2
|8 sing sing sinqel =y/a;0 + lel te.

2
= \/a2D2 + oD, 4y (17)
where

2,2
K22,

k k
- + [o) [e)
bl-QC |:C~4\(l«t»--—7 )(-——k -cose)]

®
[]
'

I-c- + - 2
cl ;E[C'FC(}'*P.}(O)] ’
2
- Sy
= s
k2
o
K k
2k - |+, O k [o)
bas—koc l:c~l~----k -cose--;+--7 cose] B

and
¢, = - 9-2- [c" +C (7-k)2] .
7

The integrals over Dl(DQ) are then of the type

ay c<c 0, b>0,x=0,1, 2.

] dx
xa v a.x2+bx+c

The results usually involve inverse sines. How-
ever, when the quadratic is O, the argument of the




inverse sine is always + 1. In our case, the quad-
ratic is always O at the 1limits of integration
because it has a factor 8ing  sinp, (Fig. 2). The
result is

-
1
Q=0
/=0 v-a
dx 1
_/T'" < a=1
X -C
il Ve
= a=2 .
~2¢,/-c

Equation (16) reduces to

2
r
el = °l fdye-%{ia-}-&-
kXt hTKa(-,f)ko N
() 2 (B o)
7,2 T2 k, Voo T2 T2 °

+
[
—

k27+k°8.+kk°c

—

+ 1 [k27+ka-kx°c']} , (18)

2 - 2
k “kyC T2
o 2
where
+ - 2
Tl-c +C (7+k°) R
and

T, = ¢t reT (7 - 02

The vertical line in Fig. 3 shows schemati-
cally the range of final energies (k) for a given
electron energy (7). The horizontal line shows the
renge of energies to be integrated over for a given
k. The lower 1limit is that electron energy for
which k is the minimum or maximum final photon
energy. The extreme values of k occur at
cosp, = * 1. We replace cosp, by + 1 in Eq. (13),
differentiate with respect to 8.» and set the

derivative equal to O. The resulting equation in-
volves k_, k, C”, and y. By solving for 7, we
obtain the lower limit of integration

1
Ty = 0.5 [.. + K, (1 + 2/(kx°c'))§] . (19)

(The (+) factor has been squared out.)

The first term in Eq. (18) involves y only in
the exponentieal and can be done explicitly. The
other terms probably cannot be done explicitly.
They are of the type

®
I= % /dye' '5 £(7) . (20)

"m

For temperatures small compared to 500 keV, I can

be approximeted by pulling f(y) from the integral.

A better approximation is to change to the variable

8= e'(')v - 7m)/T and then do Gaussian quadratures.
Second-order quadratures give

-’

I~0.5e T [f (7, + 04237 T)

+ £ (7m + 1.554 T)] . (21)

This gives an accuracy of 1% or better to tempera-
tures up to 200 keV and ¥ to temperatures up to
500 keV.

I+K C™

o

0o |

B

Fig. 3. Range of final energies as function of
electron velocity.



The Klein-Nishina formula has a factor An approximation intermediate in accuracy
to the two cases above is to approximate

1 T
g [ e ) vy £(r) .
koK 2
= 2+(—k—r+-ﬁ-?—-2)-sine’ . T
o
It is exact in the limit of low temperature.

Figure 2 shows that the integration over solid
angle degnerates to integration over a point at

k’
k'’ 2
<r§’“"§"me’> [‘”_z

The exact term (that integrated explicitly) comes
from the 2.

Because A A This approximation then amounts to re-

placing

’

o rremye K1 D ke (oTyY
=1tk (C), kT 1-k(c), ((C7)’) by the (C7)’ of that point (denoted by C ).

{(Cc7)’) comes from the terms

and
1 1 - = 1 1 -
P O CR M ke (S - —3) o Ee (18
° =
T2’5 T,2
then We have
R k' k, V¢
K+ 2= (C!) (k. - Kk') I M [
kTR o n - =T 1)
(¢} ¢ k'ko T2 T2
2 1
= k’k ’ (C7)’ SR S Tl (c7y’ (22) )
o X7 ig’ o : where
- 1 - 2 1
(Kkoc is invariant.) T2= [2+C ((7m +k°) - 1) 2,
The cross section is then
2 and
r -"n
% . __° 2%, 5 1 1
1) K 2 _ - EERY-IEAY -
Xt kb Kz(-,r L T, [2 +C ((7m x) 1)] .
[l + 0.5 kk ¢ ({CT)’") - 0.5 (sinae’)] , (23) The formule is complicated by square roots inside

of square roots, due to A These may be elimi-

where { ) indicates the appropriate average over nated by the algebraic identity

the electron distribution. For fairly small T and
T? (7)Y = c”, and

2 -7m ai‘/gi 71"-
do ¥ 2k T : 2

0
\/a+ V(aa-b i\/a-Vaa-b (25)

~ I\ k¢
gt Ke(i) L
[1 + 0.5 (kko (c)2 - sinae)] . (24) 2
if (a° - b) is a perfect square. It is nearly

This gives better than 10% accuracy for always a perfect square for the functions associ-

T < 25 keV and Ty < 1.3. ated with Compton scattering. We obtain



1
7.3 = 0.5/C (ka\/l_;—a_/;—k?:_+ kh) ,

and

1
1,3 = 0.5/¢ (k2 J1+ 2/ c - kh) .

(a2 + 2Kk c')
c =2

2 k% 2 cct
2 [¢]

. (26)

Two things are noted: cm(c' = 2) is 2 for all
cases; if terms of 0(kk°) are ignored, C is linear
in ¢". The cross-section approximation is

2 b/

r m
9 X o T

o
-
XS bk 1(2@ Ky

[1 - € (1 - 0.5 Kk CT) + 0.5 cma] . (27)

The dominant factor in tne cross section is

usually Yo
function of cosg. Unless k = ko, 7m goes to infin-

Figure I shows 7m.for fixed k, as a

ity for forward scattering. For all k # k, tne
cross section for forward scattering is O,but it

is infinite for k = ko. Y nas a minimum at

For k > ko/(l -2 ) or k< ko/(l + 2k ), this min-
imum is at an unphysical angle, and the real mini-

mun is at ¢ = 2. Figure 5 shows the cross sections

{a) K'Ko
b) 2 <K <K
) T2, <K %o
Ko
s >K Ko
14 K< o
1+2 Ko
K> d
1-2K
s ‘\—”
C”=0 C-s2
¢ =0 [ AT 4
Fig. 4. Minimum electron energy as function of

scattering angle (for constant k).

0 1 e 1 1 ] 1 P
0.8 o4 [0} -0.4 -0.8
cos §
Fig. 5. Differential cross sections.

for some typical cases in units of millibarns per
keV per steradian.
III. THE MONTE CARLO SCATTERING SCHEME

The approximations to the indefinite integrals
(discussed in Sec. I) should be chosen to minimize
the amount of calculation. This will depend upon
the complexity of the formulae and the number of
times the process must be repeated to get a scatter-
ing. The integration of the exact term found in
Sec. II fits these conditions fairly well. The

third random number is compared to

[1 - 0.5 (sinfg’) + 0.5 Kk € ((c')')]

“(26)
[1 - 0.5 (sin%g’y + 0.5 ki €T ((C')’>]max

For energies small compared to 500 keV, this is

about

1 - 0.5 (sin%g’y .

Because the average value of (sinzo') P %, the num-
ber of times the process must be repeated is

1+32+24 . .15 .

39



The maximum is unbounded because k may be arbitrar-
ily large. However, the maximum may be replaced by

[1+2kak°] » k, =k +oT. (29)
Then

7m(k>ka)>1+a'1‘ .

The replacement underestimates the cross section
for k > ka for backward scattering, but because the
cross section is small by some exponential factor,
it is not important.

Where the exact term is denoted by 95

801 kk - %
[¢)
SK3cosq K, € . (30)

A constant factor in front, as well as the sub-
script on " has been dropped. The inversion of
Eq. (19) gives

c = (72 +ya - 1+a, )/kko ’ (31)

where

o=y /(7+a)2 -1 .

The * refers to two different branches. The range

of the branches over k and y is shown in Fig. 6.

The minus branch exists above the curve (1) in the

figure. The curve is defined by putting C =2

into Eq. (19). Both branches exist between the

curve and the straight line y = 1 and y = 1 - k°+ k.
The plus branch exists only for

1+2k°f(1-2x), k<
[+ [+ (o]

lgrs -

i DI

The values of k on curve (1) in Fig. 6 are

Fig. 6. Range of the independent variahbles y and k.

2
K =k (2 +27k°-1-2(7+k°)a2)

2
1+ hyko + hko
and

2
ky =X (2 +27k°-l+2(7+k°)a2)

1+ bk  + hkoa . (z2)

With the use of identity (25)

1 %t

i:' a(2y + a)

and

ac” 2y + g' 2, @ - 1)
3~ _(_%o_a)_ (li ag, > : (33)

Then, when the independent variable is changed from
¢ toy,

801
§k§7 =

A
T et . (34)

A value of y is found by picking a random number Pl,
and solving

14 )
Jdo do

37£ dy = Py 37£ dy , (35)

where 801/87 is the integral of Eq. (34) over all

relevant k. The branches are summed over {Table 1).



AR T
PROPERTIXS OF THE INTRGRAL OVER K
grop Brasoh _ kimts 0 0 % _ntsgelover Orop
1 - K ekck, 1 1 fie\hﬁ5
1 - R ckey-1+k, -1 -1 -_¥(7-1)/‘12
[l°: ke n’] [.“a l,l,/“z]
fodd + hp.l:7-10h.° by -1 n_‘%éiﬂ
o]
Quantitiss i{n drecksts are for 7 > e

When y is known, k is picked by equating a
random number P2 to the indefinite integral over k
of 8ol/bk87. This is

30y dK = k7 , '%
Ky ‘(ala'g aa"‘l)e ’
la)l = Tay} = 1. (36)

The range of k may be divided into three groups.
For each group, Table I gives al, a,, and other
properties.

The value of 801/87 is

2 2 Y
801 hko (2y° + 2k - 1) - T

= e . (37)
ey 1. bk, + hkoa

This cannot be integrated explicitly, but if some
of the factors are expanded about y = 1, the
approximation can be integrated in terms of the

error function.

301 802 B
3 ¥y T
7 2 ' 2
-2 w? [1+r G-+ R0 .
(1+2k°)J2_ J7 - 1
where

_ 2 2
F, = (3.75 + 5k, +3k )/(1 + 2k°) ,

and

S ERpes Sy B

f\;q
[]
\K‘)Il—‘
[}
—
[
+
n
-~
[o]
~

2 2
-W -X
had
pIQCF3=F3/e v - F) e R (39)
o]
where
X = (y-1)/T ,
T, 3 2
F3=1+Fl§+EF2T s

and

- © 3 x
Fh—F212§—+EF2T2x+FlT2 .
The integral is the error function, which mey be
tabulated. The following gives x better than oue
part in 105
keV. Where

for temperatures less than about 100

G,= F, 1/2,

2
Xy = X [1 + Gl/(l + G (1+ Gl) %) H,

where

The value of X, may be obtained from a tabulation
of the inverse of the error function. Then x is
obtained from X, by one application of Newton's
method.

A distribution of y corresponding to 801/87

may be obtained by comparing a random number Ph to

2
(29" + 27k° -1) Ve

2
1+ ok + bk y+1
(1+2k)

(1er G0 rE, - 1)7)

. (10)



Ir Ph is greater than the ratio, a new value of Pl
is picked. The ratio must alweys be less than 1.
This will be true if ko < 0.111. For ko > 0.111,
it is true if Fé is replaced by 0. TFor y < 2, the
ratio is always greater than

1/ [1 + 0.035 (7-1)] ; k<0111

1/ [1 + 0.13 (7-1) ] » k >0.111 .

If P, is less than this simpler expression (and it
almost always is), the calculation of the more com-
plicated term may be avoided.

When y is known, one picks a random number P2

and calculates
A= 2k (Pa (kg + k) - km) , (41)

which is essentially equivalent to

k
801
m; dk .
K,

There are three possibilities for A. After some
algebra, which is not included here, one has

(1) A> 7y - 1. Then k is on the positive branch.

Let
Al = -A + 2k°kp )

and

A2 = Al +7 .

2

Y

Then k = y + ko - 7A2 + a2

and

¢ =(y - 1+Al)/kk° .

A will not be greater than (y - 1) if the positive
branch does not exist at that value of y.

(2) osAsy-1 .
k=ky- Ay +0y [A(A+2) ,

10

and

C = Afkk .

(3) A<°)

k=k +A7-a,/A2-2A ,
o 2

C™ = -A/kk .

Then a random number P, is compared to

3

' [1 - 0.5 (sin® g’y + 0.5Kkk C” ((C')’>]/

[} + 2kak°] . (42)

The calculation of the ratio in Eq. (42) may be
rather lengthy, therefore it is avoided if possible.
If P 1s less then 0.5/[1 + 2kak°], it is less than
the ratio in Eq. (42), and no further calculation

is required. Otherwise, we calculate
2 -\2
A=11-0.5sin" 8 + 0.5kk(C) 1+2kk |-

It was empirically found that expression (42)
is greater than

9

.02
Axwanmn [ 2ERR R 1350397, ()

and less than

-

0.51 + 0.53y] .  (44)

-

A x Maximum []1._;-%-5—%- ,
Ir Py is less than Eq. (43), the reaction goes. If
it is greater than Eq. (4}4), the entire procedure
must be started over. If Py is between Eqs. (43)
and (4l4), it must be compared to an acceptably
accurate approximation to Eq. (42), for example,
from Eq. (21).

If care is tasken to predefine all factors
occurring more than once, somewhat more than 100
operations (additions, division, etc.) are required
each time through the procedure. An exponential
and two square roots are also required. Also, one
usually must go through the procedure about 1-1/2
times to get a scattering.



IV THE TOTAL CROSS SECTION AND EXPECTATION ENERGY
LOSS

The total cross section is needed to determine
At the
point of scattering one mey deposit in the material

the position where the photon scatters.

energy proportional to (k.o - k). Depending upon
the temperature and initial energy, this method may
require a large number of scatterings for the ener-
gy deposition to settle down to its expectation
value. One scheme, which has been used to reduce
the fluctuation in energy deposition, is to deposit
the expectation energy loss, (ko - k), at each
scattering.
tically.
The total cross section is

Energy is then conserved only statis-

® 1
- 2 , ,
o=———l—[d7e7ay ax (1-Bx) o' (k *) .
Al A r
(45)

The cross section should include a factor (1+ nk),
where nk(k,n) is the number of photons per final
state, but this is neglected.

The expectation energy loss is

7
(k. -K) =k - —2=> fdre'7aya
° ° Op 2T KQ(%) )
b
[dx (1-8x) /oo' & (x5 o'k (46)
1

The cross section in the rest system of the elec-

tron depends upon the photon energy in that system,
’8 -
k'= k7 (1-px) .

It is obtained by integrating Eq. (5) over the so-
lid angle.

2

’ ’ - ’
Oip (k° Y= T glog (L+2 ko )

1 2 __2\ ,_4 , 1
USRS S M-I S
o o o

o

1
+(l—+2—k-°’—)2- é . (h‘?)

For any oT’(ko’), Eq. (45) may be reduced to a one-
dimensional integral by changing the variable of
integration from x to ko’ and then by inverting the
order of integration.*

® 7 k(1 +B)
1 i3
Ip = . 2 /‘”e /
2“‘2(5)1‘0
1
7 k(1 - B)
ak 'k ‘on/(k /) - (u8)

After the order of integration is inverted,

®

O = 1 dk 'k ‘o' (k _*)
T 2 1 Kk oo T ‘o

K2 T/ o I

k'’ k'

e} [e]
e <1—(— + E——) T

[¢] [¢]

N 4
T

N - 2,/d_r_ (717 o1
2K2("f) -1 Vy-a

]
LM

or [5 (P2 VA1) (49)
Let

2
A= 1/(1+hk°7+hk° Yy

Ap=tog 1k, (r+V 72-1)] ,
and

A2 = log [l + 2k° (7 -V 2 -1 )].

*
The idea for the change of variable and inversion

came from a memorandum by the Mathematical Appli-
cations Group, Inc., White Plains, N.Y. However,
the formule in the memorandum is incorrect due to
an error in the Doppler shift and the cross-
section transformation.

11



Then

2 ®
T, dy e [l
Op = =T / —— |3 (8 +4)
1(2(3.‘) 1 72 -1

>+% T -1 (A - A)

1 2 Iy 2 2
<-1-(-;-+-k-3.> +k_é.+A2(7-l)+2A7(7+k°)]-
[e] [e]

(50)

The integral in Eq. (46) (denoted by I) can be
treated in the same way in a slightly more compli-
cated manner. The differential cross section de-
pends upon both ko’ and the angle of scatter. Also,

k = yk’ [l + B (cosg’ cos oe’ + sinee’ sing’
cos (o’ - (oe')] ’ (51)

where

’ x-B
cosee 'l-ﬁx

by the usual angle transformation formula.
Integration over ds’ multiplies the first two
terms of k by 2r and cancels the last one.

® ‘1
1=2n [are B [ax{(1-p0) £ (k)
1 -1
+B(x-B) B} (52)

where

Jdo’
b (ko’) = [d cosg’ k' W

'I-

and

do’
g (ko’) = /d 0086’ k'’ COBe’ WZ;W .

After the change of variable from x to ko’ and the
inversion of order of integration,

- 5[5 K
dk ‘e i—*ioﬂ T
[+ [+

4

o
8

’

{[f (k') - & (ko’)] k—°-- (r+7T) +8g (ko’)}
° .

=

2.2
eT

{ e e 7]
e (e T oo m (2 )

+ax, (72 \/;2——1)]} : (53)

For Compton scattering,

2
r
a9 |k 1 L2
)+ 3+ i T
[+
log |1 + 2k’

o



and

r 2

0 6 4 L
g (k') = -~ 'ko\,‘E*S'3(1+akof

) 1 . 1

‘ 3 (1+21<°')2 3(1+21<°')3

> 3 1
+ log (1 + 2k°r) [—1_1(0’.’3 + _T‘éko'" - -k—,-] .

Then
[ ]

- X
dyeT 6
-1

2
I="r° / - 22
) /2 Ko

W&

2
A(7+2k°)-%-A2(7+1l-k°+1&k°7)

\Nlbu

[7 + 6K, + 12 k°27 +8 k°3(272 - 1)]

+%(A1+A2){—33(272-1)+3—75-i—]
k k [¢]
[e] [e]
1 2 6 3
+5 (A, - a) 7-1[—L+-—]
2 -4y k> k@
[e] [e]
+(7+T){-§1+-—6-§+%A(272-l+2k°7)
[¢] k
[e]
2

AS (52 2y 2,3 ,,2_
+3(27-1+1&k°7+1&k°)--3A(27 1

' 2 3 1
+6k°7+12k° +8k° 7)+-2-(A1+A2)

2o+ . (55)
(&%)

Table II
gives results up to about 200 keV. The upper entry

These have been integrated numerically.

gs Op ;n terms of the Thomson cross section,

3 5, and the lower entry is (k - k)/ko.
For small values of k_, o', f(ko’), and

g(ko’) can be expanded in a power series. The

first few terms are

on’ N%n !‘02 (1-27°),
!.02 16 . 42
S(ko') :s—a""s"' ko ’
!'02 8 ‘
£(k ’) ~ 5= (3 k-8 ko'?) . (56)

With these approximations,
8n . 2 1 +
I (-3._ T 2’I.'K2(-,f)k° 1+ 16T + 4Tx

-k°(56'r+50h'1‘3+x(3+1291‘2))} ’

oTz(-g-n roa){l-ako (x+11-’1‘)} R (57
where

x = Kl(%) / Ka(%) y

Higher-order terms have much larger coefficients,
s0 the series 1s of little use except for low ener-
gies. Better approximations may be obtained by
expanding the integrand (with respect to y) about
7 = 1. For low energies and temperature,

(kg - k)/ko ~ - T+ k. (58)

Deposition of the expectation energy loss at
the point of scattering may be expanded to deposi-
tion of the expectation loss along the path of the
particle (up to a certain optical depth). Each
Monte Carlo particle which represents & large num-
ber of physical particles, does two things; (1) it
produces a secondary distribution of particles, and
(2) it deposits energy along the line of flight.
Although these are physically connected, they may
be formally dissociated. Because each additional
photon necessitates extra work, the secondary dis-
tribution is represented by (usually) one photon

chosen in an entirely stochastic mesnner. For each

13



TABLE II

COMPTON CROSS SECTION AND AVERAGE ENERGY 1088
T
X 0.0 0.04 0.08 0. 2 0.16 0.20 0.2 0.28 0.32 0.%6 0.40
)
o 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0 -0.1765 -0.3875 -0.6355 -0.9223 -1.2u49 -1.618 -2.030 -2.485 -2.985 -3.530
0.04 0.927% 0.9211 0.9146 0.9080 0.9013 0.8947 0.8881 0.8812 0.8745 0.8677 0.8608
0.36781 -0.1132 -0.2867 -0.4836 -0.7037 -0.9466 -1.212 -1.498 -1.806 -2.134 -2.481
0.08 0.8676_ 0.85Th 0.8471 0.8370 0.8270 0.8171 0.8076 0.797T9 0.788% 0.7793 0.7702
0.68131 -0.62351 -0.2099 -0.3Thl -0.5542 -0.7495 -0.9594 -1.183 -1.k20 -1.670 -1.932
0.12 0.8171 0.8046 0.7923 0.7802 0.7684 0.7570 0.7458 0.7351 0.72L414 0.7141 0.7041
0.95271 -0.20241 -0.1490 -0.2903 -0.4435 -0.6080 -0.7832 -0.9686 -1.163 -1.367 -1.580
0.6 O0.77#l  0.7602_ 0.T466_ 0.7335 0.7208 0.7085 0.6966  0.6853  0.6742  0.663F  0.6530
0.1191 0.15571 -0.98971 -0.2234 -0.3572 -0.5000 -0.6512 -0.8102 -0.9767 -1.1%0 -1.330
0.20 0.7369 0.7221 0.7079 0.6942 0.6810 0.6683 0.6562 0.6445 0.6330 0.6223 0.6118
0.1402 0.4604T -0.5%6961 -0.1683 -0.28T% -0.4139 -0.5473 -0.6871 -0.8327 -0.9852 -1l.142
0.24  0.70kk  0.6892_ 0.6746_ 0.6606  0.6471  0.6343  0.6221  0.6103 0.5991  0.5882  0.5777
0.1591  0.72841 -0.20951 -0.1219 -0.2294 -0.3432 -0.4627 -0.5878 -0.7179 -0.8528 -0.9928
0.28 0.6758 0.6603_ 0.6455_  0.631h4 0.6179 0.6051 0.5928 0.5811 0.5699 0.5592 0.%5487
0.1761 0.96571 -0.10401 -0.81951 -0.1801 -0.2836 -0.3921 -0.5053 -0.6229 -0.Thk6 -0.8702
0.32 0.6%503 0.6347 0.6199 0.6057 0.5923 0.5795 0.5673 0.5557 0.5446 0.5340 0.5237
0.1917 0.1178  0.3807T -0.4713T -0.137F -0.232k -0.3319 -0.4354 -0.5428 -0.6535 -0.7681
0.36  0.627%  0.6118  0.5970_ 0.5830_ 0.5696  0.55%9  0.54%9  0.5334  o0.5224  0.5119  0.5018
0.2059 0.1370 0.62751 -0.16371 -0.1000 -0.1879 -0.2797 -0.3752 -0.474l -0.5T61 -0.6811
0.40 0.6067  0.5912 0.5765  0.5626 0.5493 0.5368 0.5249 0.5134 0.%026 0.4923 0.482L
0.2191  0.154%  0.8498T 0.1111T -0.66871 -0.1486 -0.2339 -0.322% -0.4142 -0.%086 -0.6058

(0.36781 = 0.3678 x

1074

existing photon, the extra work of calculating the
energy loss in each zone is small.

Up to an optical depth, 81y the expectation
loss is deposited in each zonej beyond 59 the ex-
pectation loss for a particle of reduced weight

e s'lj.s deposited at a point chosen stochastically.

We calculate the variance in energy deposition,
find the minimum variance, and compare tnis to the
1" 0.

Consider a zone of optical depth As (As«<cl)

more conventional case, 8

centered at the origin in homogeneous material.

The number of particles originating at s in the di-

rection of the zone is

dn = n_ds (59)
For 0 g s ¢ Sqs the number of particles
depositing energy is
dn, = dn , (60)

b3

and the deposition per particle is E e'SAs, where
E is the expectation loss (for a full weight parti-
cle).

For

s,s5s®,

_ (s - sl)

dn_ = dn e as (1)

s
-1
and the energy deposited is E e
Let the variance per particle AEp, be the
energy deposited times a factor a. The total vari-

ance is taken as




2 2
(4€)” = pagi:cles (aEp)

)

_—“/‘nods oPE? 28 (As)2

0

)
(s - s))
+/n°ds e 17 as P2 7281

5

-2s -2s
=a2E2n°As[§-§(1-e 1y +e l]. (62)

E is proportional to the weight of the particle:

E= A/no. The stochastic deposition is usually
one optical depth beyond 8:- The work required

(computer time' is W = Bn_ (1 + sl).

Tnen
2 22 Bl+s) As -2sy
(AE)® = oA — ASE?-(I -e )
-2s
+ e 1] . (63)

The minimum value depends upon As. For a fairly
thin zone, As = 0.01, the minimum value occurs at

sy = 3-7, where

-2s -2s
(1+s)[§(1-e 1y + e 1]:0.026
1’ L2
as compared to 1 for sy < 0. For the seme variance

about 1/40 as much work is required.
V. THE CROSS SECTION INTEGRATED OVER SOLID ANGLE

Other cross sections of interest are

da”

S =/d cosp P (cosp) Fkgz_os_e' . (64)

These can be reduced to one-dimensional integrals
by inverting the order of integration in Eq. (18).
The integration over cosg is elementary. Here it

is done for n = 0.

The upper limit for cosg is given by

c = (72 tra-1l-a) Cta)/kko . (65)

The integral over y can then be divided into two
regions, A and B, depending upon the lower limit
of cosg (Fig. 4). In A the lower limit is given
by

- 2

= (O +ya-1l+a o))k - (66)
The range of A is

7 = [1- min (0,a)] < 7= 7o
where

7= 0.5 (~a+ky V1+ 1/Kk) . (67)

A exists only for cases (a), (b), and (c) of Fig.
L. B covers T,S 7 <0, and the lower limit of

cos § is -1.

The indefinite integral of the brackets,{} ,
in Eq. (18) with respect to d cosf is

1 T11/2 kk C” 2
e -2k, + 2+ =

gl [¢]

i [“‘oc +_£_] ] g:[“e“koa__e_]
cc L & Kk, T Kk, €
N/ {k27+ka+_2_]
Tz Kk &




where

2
gl'(7+k°) -1

and
= - 2 -
& = (7 - k) 1.
ifg, <O —2-—[...]isreplacedby
2 ’ 8,
- el g, -
&
Where

- 2
¢ = (y +7a-liala2)/kk° R

the identity of Eq. (25) may be used to give

Tl -
T (ko ctl + kae)/a,
T

V= (ko Fra)a .

and

For the lower sign, the right-hand side of Eq. (69)

is multiplied by -1 for negative a.
Let

o = min (a, a25 ,
k_ = min (k, ko) ,
o, = max (@, @) ,
k> = max (k, ko) ’
and

+k°>k

-k°<k -

(69)

(70)

Then
2 7
Tr -5
gﬁ- ° fdyeTf ,
2k, TE\T
where ( )
y +k
2 1 [o)
f =20c -+ (14 [k<
A { kko Kko Sl
&2
1l + kk b +7a-l+a10!2
+|:2+ = °i|._£-_|::bog<
1 Ve, ]

g, a+ kQ -ka2
+ log < 1 o 1
Ve a@ (ko + kap)

2
1l + kK y + 78 -1+ Q@
-[2+ °] 2 log< 12>

b2 Ve lal

/g2 a + kal - k°a2

+ log ’

‘/é a@(kal + kooza)

and

2
fB-;k-;(a>-a <)

+

(l+'k_i~) {7g'k (keas>-k>ac)
[¢] 2

7+k°

(k> > -k a<)}
€

+

-k
2k +2(1+kk)i—7——--
2 o'l & 31

1l + kk 1 2kk°
2+e il lng<2 >
1 \/—g—l ) +ra-1- o0,

+2bg<‘/g_la+a(7+k°) )]

7+k°E

+

‘/_gza.@(koal + k"‘a)
: 1+kk | 2kk
e m e
&2 ‘/g 7 +ya-1-a0




/g2 +a(y - x!
ay/ 82@(kal + k°a2

When g, < 0, in f, the quantity 2 ..

replaced by

2
(» -l-7k)], k<k ,

[...]goesto

g
-1 2 2 _
{sin [1 + ———; (7 -1+ ya < 0’10‘2]
- sin™d (1+2 82) } .

For an idea of the approximate size of g—%, the
first term in the brackets of Eq. (18) may be in-
tegrated alone.

(1 + 0.5k (C7(CT)") - 0-5 (atne’)],

where the averaging is now over botn the electron
distribution and the angle of scatter.

For k = k ,
o
7.
2
801 nr°2 -%
X TTT L 2oye " dy
k Tx—)
[¢] 2\T 1
® b4
T
+/k26 dr}- (74)
72
2
- - /
For T<< 7, - 1, ancikosxma.ll(:~:o72 1=k 2),

801 o r°2 2
5=~ —k—T . (75)
[+

This is just that part of the Klein-Nishina formula
from which this term is taken.

For T >> k°2/2, the first integral is negli-
gible and '

- 72
801 " r°2 e T 2 kg 2 roa,/&v (76)
X~ T /1 ~ 7z ¢ 1
X, Ke(T) kT

The temperature T =s k°2/2 is a transition point be-
tween what may be called a zero-temperature regicn
and a finite-temperature region. In the first re-
gion, the Klein-Nishina formula is & good approxi-
mation and there is a strong correlation between
final energy and scattering angle- The quantity
(k - kolys koa. In the finite-temperature region
there is little correlation between final energy

and scattering angle, and (|k - kol) o ko’l‘l/2

. For
ko = 1 keV, the transition temperature, k°2/2 is,

for exemple, about 1 eV.
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