CIC-14 REPORT COLLECTION REPRODUCTION 30. СОРУ

LOS ALAMOS SCIENTIFIC LABORATORY of the University of California

Tests of Neutron Cross Sections

- LEGAL NOTICE

· - -

-

÷....

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

가란 물을 수많을

This report expresses the opinions of the author or authors and does not necessarily reflect the opinions or views of the Los Alamos Scientific Laboratory.

> Printed in the United States of America. Available from Clearinghouse for Federal Scientific and Technical Information National Bureau of Standards, U. S. Department of Commerce Springfield, Virginia 22151 Price: Printed Copy \$3.00; Microfiche \$0.65

> > > CALL THE REAL PROPERTY OF THE P

LA-4429 UC-34, PHYSICS TID-4500

LOS ALAMOS SCIENTIFIC LABORATORY of the University of California LOS ALAMOS • NEW MEXICO

Tests of Neutron Cross Sections

by

Carroll B. Mills

TESTS OF NEUTRON CROSS SECTIONS

ЪУ

Carroll B. Mills

ABSTRACT

Analyses involving the interaction of neutrons with matter over the energy range of 0 to 14 MeV require a knowledge of differential neutron cross sections as well as the results of measurements showing the kinds and magnitudes of these interactions. The study of integral experimental results on neutron multiplication in a variety of assemblies and of the effects of inserting a variety of materials into these assemblies permits examination of cross sections for improved accuracy. These improvements are qualitative and indicate areas of interest for supplementary differential measurements. Materials of interest to power breeder reactor physics and for application to high-temperature, gas-cooled reactors were tested for accuracy by perturbation theory methods. The values were generally found to be approximately correct.

I. INTRODUCTION

Neutron cross sections may be measured directly, or they may be calculated from critical measurements of material activation and reactivity value. Because the intermediate energy range of 10 to 10⁵ eV is very difficult for quantitative resonance cross-section determinations, direct energy-dependent measurements of fission, capture, and inelastic and elastic scattering are supplemented by reactivity value studies. Analyses of these data permit first- to second-order corrections to nuclear resonance integrals and total cross sections in the resolved (0 to 100 eV) and unresolved (0.1 to 100 keV) energy regions, and above. Nuclear resonance states above 10 keV become strongly overlapping, and hence are smooth. Perturbation theory is the analytical tool for reactivity measurements.

Perturbation theory has been described in detail by Weinberg and Wigner¹ and others. Recent formulations by Hansen² give a simple picture of the results of applying perturbation theory methods to experiments on fast (greater than 0.1 MeV) and resonance energy (1 to 10^5 eV) neutrons. The major portion of our results will be separated into appendixes because extensive calculations are required for a systematic approach to cross-section evaluation.

II. COMPONENTS OF INTEGRAL EVALUATIONSA. Fission Spectrum

The neutron flux, ϕ , is the integral of the prompt fission spectrum weighted by scattering, and prompt fission spectrum and the value of the delayed neutrons in terms of neutron multiplication depends upon the flux spectrum. According to Terrell,³ the prompt neutron spectrum is well represented by

$$N(E) = (4E/\pi T^3)^{1/2} \exp(-E/T),$$

where $T = 2/3 \overline{E}$ and the average energy, \overline{E} , is related to the average number, $\overline{\nu}$, of prompt neutrons by

$$\overline{E} = 0.75 + 0.65(\overline{v} + 1)^{1/2}$$
 MeV.

The production of prompt neutrons increases with the energy, E, of the neutron causing fission

 $\overline{v} = a + bE$,

and the nuclear temperature T also increases. These constants for the fissionable isotopes have been given by Terrell³ and Bernard⁴ as shown in Table I.

TABLE I CONSTANTS FOR FISSIONABLE ISOTOPES

Isotope	<u>a</u>	<u>d</u>	T(MeV)	dT/dE
233 ₀	2.47	0.149	1.36	0.02
235 _U	2.35	0.160	1.30	0.005
238 ⁰	2.313	0.154	1.29	0.01 6
239 _{Pu}	2.94	0.129	1.39	0.0135
240 Pu	2.19	0.1	1.19	0.01

The increase in \overline{E} is about 0.025/MeV of incident neutron energy.

The values of the delayed neutron fraction, as computed from the neutron flux in several critical assemblies by using the prompt fission neutron spectrum from these constants, are given in Table II.

TABLE II DELAYED NEUTRON VALUE IN TERMS OF Δk

	∆k/dollar					
Assembly	Calculated	Experimental ²				
233 _U Godiva	0.0029	0.0029				
235U Godiva	0.0060	0.0065				
²³⁹ Pu Jezebel	0.001875	0.00191				
235U238U Topsy	0.00586	0.0062				
²³⁵ U ZPR-III Assembly 12	0.00538	0.00538				
235 U ZPR-III Assembly 29	0.0060	0.00538				

B. Numerical Transport Codes

The discrete ordinate multigroup transport code for neutrons in homogeneous, one-dimensional media, as specialized by Carlson and Lathrop⁵ and Sandmeier et al.⁶ to include anisotropic scattering, was used for this study.

The possibility of introducing errors by the use of numerical matrix mesh sizes appropriate to the specific application was examined by a simple comparison of integral k_{eff} values. Table III compares the results for 6 and 24 energy groups over the range 0.1 < E < 10 MeV. In addition, the effect of neutron capture below 0.1 MeV was found by adding 12 groups including 0 < E < 0.1 MeV (see the "18 group" column).

III. NEUTRON CROSS SECTIONS

Effective multiplication constant values, k were computed by using the appropriate fission neutron-energy spectrum with multigroup-multitable cross sections from the Los Alamos Cross-Section Library file (LAZ). * Most of the evaluated data in this file were provided by the University of California at Livermore and by the Atomic Energy Research Establishment of Great Britain. Critical experiments 1 through 25 were provided by Paxton, 7 and experiments 26 through 28 were provided by Davey of the Argonne National Laboratory.⁸ Atomic densities of component isotopes and radii are given in Appendix A. The small differences in integral values of neutron production, k , in Table III were examined in terms of (n, γ) capture and total neutron production for the separate isotopes, as shown in Appendix B. It appears that a comparison of these integral values gives little insight into the causes of neutron cross-section errors. The energy-dependent magnitudes of cross sections of these isotopes from the several sources, as illustrated in Appendix C, show that the complex energy dependence cannot be resolved by this simple procedure. We are forced to use perturbation theory.

IV. PERTURBATION THEORY

Perturbation of the composition or geometry of a just-critical reactor changes the neutron multiplication factor, k, and starts a change in the

^{*} The Master Data Tape contains AWRE, LRL, and LASL evaluated data. Details on its contents are available from Louis Rosen, Leona Stewart, and Roger Lazarus, Los Alamos Scientific Laboratory.

TABLE III SUMMARY K-EFF TABLE FOR FAST ASSEMBLIES

		GROUPS				
	EXPT	6	24	18		
l	U-233	1.01063	1.01151	1.01074		
2	GODIVA	0.99484	0.99122	0.99529		
3	JEMIMA(0.375)	0.98634	0.98548	0. 98665		
4	JEZEBEL	1.00453	1.00392	1.00480		
5	U-233,0Y	1.01199	1.01232	1.01232		
6	JEMINA(0.1625)	0.99238	0.98926	0.98608		
7	OY-0.7 IN.TU	0.99394	0.99067	0.99430		
8	OY-1.8 IN.TU	0.99706	0.99423	0.99697		
9	OY-3.5 IN.TU	0.99709	0.99393	0.99520		
10	TOPSY	0.99655	0.99071	0.99001		
ш	OY, CH2 REFL	0.9792	0.9844	0.9839		
12	OY, CH2 REFL	0.9834	0.9831	0. 9846		
13	OY, BE REFL	1.0140	1 .0 168	1.0143		
14	OY, BE REFL	1.0005	1.0172	1 .00 26		
15	OY,C REFL	0.9987	0.9961	1.0151		
16	OY,C REFL	0.9962	1.0033	0.9970		
17	OY,D20 REFL	1.0053	1.0011	1.0077		
18	OY, D20 REFL	0.9824	0.9792	0.9925		
19	OY, AL REFL	0.9997	0.9955	0.99996		
20	OY,NI REFL	1.0075	1.0049	1.0083		
21	OY, FE REFL	0.9805	0.9756	0.9809		
22	OY, W REFL	1.0049	1.0027	1.0047		
23	OY, TH REFL	0.9934	0. 9905	0.9936		
24	ZPR III(12)	0.9841	0.9802	0.9711		
25	ZPR III(29)	0.9447	0.9552	0.9323		
26	ZPR III(48)	1 .0 619	1.0159	1 .0 396		

neutron population. The rate of change of neutron population is a measure of the reactivity of the material introduced, and is a function of the neutron cross section of this material. Perturbation theory deals with very small changes in neutron spectrum $\phi(\mathbf{E},\mathbf{r},\Omega)$ from that in a just-critical reactor of any size and composition. The probability of a neutron causing a fission has been shown¹ to be proportional to the adjoint flux; so that the perturbation theory consists of a calculation of the product of the probability of an event wo, and the adjoint flux ω^+ . The reactivity value $\Delta k/k$ is expressed in units of the delayed neutron fraction in the assembly (see Table II for the experimental values used). The integral form expressed in the multitable-multigroup numerical summations² consistent with the discrete-ordinates solution of the neutron transport equation is

$$\frac{\Delta k}{k} = \frac{\sum (F \cdot A - T) \Delta V}{\sum n c F \cdot A \Delta V}$$

where

$$F \cdot A = \left(\sum_{g} N_{og} \cdot v \sigma_{g}^{f} \right) \cdot \left(\sum_{g} X_{g} N_{og}^{+} \right) ,$$

and

$$\Gamma = \Sigma \Sigma (2l+1) (N_{lg} \sigma_g^t - \Sigma \sigma_{lg' \rightarrow g} N_{g'}) N_{lg'}^t$$

The terms are defined as

 ΔV is the volume element;

g is the group number;

 $N_{lg} = \varphi_{lg} \Delta u_{g} \text{ is the total flux in group g;}$ $\phi_{lg} \text{ is the flux per unit lethargy in group-width}$ $\Delta u \text{ and Legendre expansion term } l;$

v is the number of neutrons produced per fission corresponding to fission cross section σ_g^f in group g;

 N_{\pm}^{\dagger} is the adjoint flux in group g;

 $\sigma_{n,g' \rightarrow g}^{\vee}$ is the scattering cross sections from group g' to g;

 σ_{π}^{t} is the total cross section;

n is the atomic density of fissionable atoms; c is the value of the delayed neutrons times a constant such that $\Delta k/k$ has units of $\not e/kg$ $(\delta k_{del} = 100 \not e)$. The product $\sum \Delta V nF = V$ $\sum_{g} \Delta V \sum_{g} N_{og}(n \ v \sigma_{g}^{f})$ is the total neutron multiplication constant of the assembly.

Two sensitive functions are clear from the form of the equation for $\Delta k/k$. First, if (as is the case for fissionable heavy isotopes) $\sigma_{g' \to g} \ll \sigma_a$, because $\sigma^t = \sigma_a + \sum_{g' \to g' \to g'}$, the value of the volume integral for $N = N^+$ determining neutron multiplication changes

$$\frac{\Delta k}{k} \sim \frac{\Delta (v\sigma_{f} - \sigma_{f} - \sigma_{c})}{v\sigma_{f}} \sim \alpha;$$

or $\Delta k \sim (\nu - 1 - \alpha)\sigma_{f} \sim \alpha$ is very sensitive to the capture to fission ratio $\alpha = \sigma_{c}/\sigma_{f}$. Second, if (as is the case for light, noncapturing elements) $\sigma_{s} \gg \sigma_{c}$, the integral $\Delta k/k$ is sensitive to the change in scattering cross section times flux from group to group, and to terms higher than firstorder in the Legendre expansion of the scattering cross section, that is, to the neutron current.

Experimental measurements have been primarily concerned with the product $\sum_{V} F$, the effective neutron multiplication constant shown in Table III, and only occasionally with the adjoint flux dependent measurements of reactivity $\Delta k/k$. Because the latter adds a strongly energy-dependent integral function, these measurements are important as integral tests of the energy dependence of the neutron cross sections of the elements.

Table IV provides a direct comparison of central reactivity values using Davey's results⁸ compared to experimental data and computed results by using the Los Alamos Cross-Section Data File (LAZ). It is clear that two different flux spectra in ZPR-III assemblies 12 and 29 give no simple indication of the error source. The large number of components in these experiments (Appendix A) also makes it extremely difficult to infer any improvements although Davey⁸ has had some success. Relatively simple Los Alamos experiments were examined in detail by using LAZ cross sections, the Los Alamos transport code (DTF-IV),⁵ and auxiliary codes,⁹ which provided weighting functions, reactivity, and fission neutron spectra.

Central reactivity values of selected isotopes (Orndoff¹⁰) are tabulated in Appendix D-1, -2, -3, in a manner such that neutron flux spectra and numerical matrix approximation effects are exhibited. These central values strongly deemphasize scattering effects because of the very small neutron flux gradients in the center of symmetric (multiplying) assemblies. Although many neutron cross sections are very accurate, there are surprising lapses. First-order corrections are attempted in Table V.

TABLE IV REACTIVITY REFERRED TO ²³⁹Pu

Assem	bly ZPR	-III		12		29		
(v	- 1 - a	;)o _f	Davey	LAZ	Davey	LAZ		
value	(mb)		3411	3081	3388	3082		
Re a cti (centr	vity al,LAZ,	¢/mol)		43.51		26.50		
Materi activi	al re- ty (mb)							
	Expt	Davey	LAZa	Expt	Davey	LAZa		
235 _U	1921	1910	2016	2012	1895	2175		
238 ₀	- 78	- 81	- 89	- 10 ¹ 4	- 93	- 78		
232 _{Th}		- 231	- 287		- 229	- 295		
10 _B	-1399	-1068	-1380	-1744	-1315	-1710		
Ta	- 344	- 298	- 372	- 386	- 323	- 415		
Nb	- 120	- 113	- 96	- 117	- 113	- 78		
Мо	- 83	- 82	- 47	- 74	- 68	- 29		

^aReferred to Davey's values above in millibarns (Ref. 8).

Scattering effects may be examined by comparing experimental data with computed spatial distributions of material reactivity. These spatial values of reactivity are sensitive to neutron flux gradients in space (currents) and energy. Appendix E shows this comparison (also for LAZ cross sections and DTF-IV transport code) and strikingly demonstrates the general excellence of the listed neutron cross sections. The most surprising errors are those found in the frequently studied isotopes 10_B, 238_U, and ²⁴⁰Pu.

It should be possible to make first-order corrections to the neutron cross sections by evaluating the effects of small and arbitrary changes in crosssection magnitude as weighted by the several neutron flux spectra in which measurements are available.

TABLE V

.

•

CONSTANT TRIAL FACTOR ON CROSS SECTIONS

		Facto	r on				JEZEBEL			GODIVA		ZJ	R-III ASS.	48
	Capt	/Fiss/	g-g'/n	,2n	Isotope	Orig	Calc	Expt	Orig	Calc	Expt	Orig	Calc	Expt
	1.	1.	0.77	1.	н	45.362	45.184	62,800	50.462	49.346	47.800	-1.350	-1.350	-0,000
					D	-5.902	-3.986	-5.300	23.024	17.392	17.800	533	408	-0.000
1				•	T	-25.591	-25.490	-0.000	3.679	3.598	-0 .000	305	305	-0,000
					HE3	-398.270	-396.703	-0.000	-74.962	-73-304	-0.000	-22.981	-22.979	-0.000
					LIG	-210.360	-209.537	-0.000	-47.135	-46.093	-0.000	-9.912	-9.911	-0,000
				_	LI7	-11.459	-11.414	-0,000	2.040	1.995	-0.000	149	149	-0.000
	1.	1.	1.292	1. ^a	BE	17.248	15.436	15,500	6.233	7.120	7.300	075	127	-0.000
	1.33	1.	1.	1.	B10	-190.740	-249.972	-251.000	-40.866	-53.979	-55 .300	-16. 478	-21,909	-30.840
	1.33	1.	1.	1.	В	-46.048	-45.867	-0.000	-1.396	-1.365	-6,900	368	-,368	-6,000
	1.	1.	•947	1.	C	-7.285	-6.871	-6,900	1,702	1.576	2.400	125	118	017
			•		O LRL	-8,778	-8.744	-9.900	2.043	1,998	-0.000	105	105	-0.000
					OUK	-9,989	-9.949	-9.900	2.014	1.970	-0,000	-,112	-,112	-0.000
					NA	-12,865	-12.815	-0.000	.119	.116	-0.000	127	127	046
	.8	1.	1.	1.	AL	-14.651	-14.072	-14,100	110	– • Օյեր	•500	149	142	-0.000
					MN	-16.097	-16.034	-0,000	4.228	4.135	-0,000	-,461	<u>-</u> 461	-0.000
	.6	1.	•97	1.	FE	-22.174	-20.638	-21,500	-1.679	-1.450	200	227	198	204
	.63	1.	1,28	1.	NI	-54-555	-47.570	-48,000	-5.626	-4.288	-4.400	419	377	325
	_				NB	-60,153	-59.917	-0.000	-4.201	-4.108	-0,000	-1.120	-1,120	-0.000
	1.	1.	. 898	1.	MO	-48,416	-43.847	-44.000	-3.326	-3.055	-0,000	610	576	-1.270
	•78	1.	1.	1.	TA LRL	-112,830	-100.067	100,500	-13.833	-10.577	-0,000	-4.695	-3.763	-0,000
	2.	1.	1.01	1.	W	-88,426	-112,493	-82.300	•566	-4.790	-4,000	-2.027	-3.508	-0,000
	.6	1.	1.	1.	TH	-85.343	-62,113	-64.700	-10.019	-4.676	-1.400	-3.836	-2.432	-0.000
					U233 LRL	1357.600	1352,261	1359.000	254.840	249.200	-0,000	41.549	41.546	-0.000
	•95	1.05	1.	1.	U233 UK	1245.200	1306.286	1359.000	236.970	243.782	-0.000	41.736	44.023	0.000
	•				U234	725.320	722.478	-0.000	120.750	118.074	-0,000	4.276	4.276	-0.000
	1.	1.023	1.	1.	U235 LRL	797.770	815.250	804,000	146.260	146.643	149.300	25.369	26.072	24.100
	•6	1.	1.	1.	ZR	-36.678	-34.128	-35.600	-2.904	-2,441	-0.000	316	279	-0.000
					TA UK	-120,280	-119.812	-100.500	-13.798	-13.492	-0.000	-4.602	-4.602	-0,000
	1.	. 987	1.	1.	U235 UK	820.610	805.793	804.000	152.880	147.440	149.300	24.646	24.272	24.100
					U236	207.180	296.011	-0,000	53.022	51.849	-0,000	•596	•596	-0.000
	.85	1.2	1.	1.	U238 UK	102.650	147.212	114.000	18,571	24,611	24.300	-1.696	-1.099	-1.800
	1.	1.	1.	1.	U238 LRL	98.037	97.653	114.000	23.653	23.129	24.300	-1.458	-1,458	-1.800
	1.	1.	1.	1.	PU239 LRL	1591,100	1584.884	1592.000	285.850	279.528	285.200	37.430	37.426	32.200
	56	1.13	1.	1.	PU240 LRL	854.870	1032.705	1038.000	132.680	163.269	170,000	-3.977	2.817	5.870
	1.	1.022	1.	1.	PU239 UK	1556.800	1585.892	1592,000	281.230	281,166	285 .200	34.075	34.882	32.200
	1.	1.07	1.	1.	PU240 UK	982.890	1054.648	1038.000	157.620	165.879	170,000	5.744	6.462	5.870
	-		-	-	PU241	1646.800	1640.351	-0.000	314.780	307.818	-0.000	60.718	60.713	-0.000
					PU241	1494.800	1488.942	-0.000	275.570	269.473	-0,000	54.922	54.917	-0,000

^a1.0774

· ·

That was attempted in Table V. Columns 1 through 4 show the first-order correction factor used on absorption $(n, \gamma \text{ capture } + n, f \text{ fission})$, fission, down scattering (total), and the (n,2n) reaction. The effects upon central reactivity are shown in this table. Improvements were made by the simple procedure of changing neutron cross sections by a single factor, but the correction factors made are nonphysical, and are generally unacceptably large. Supplementary information is given in Appendix F, which shows first the effects of a simple increase of 10% in each of several cross sections for each of several multiplying assemblies. The central reactivity distribution in energy op* is also shown graphically for these experiments. Note that the energy distribution of the weighting function is $\alpha p^*/\Delta u$, where ϕ is flux, ϕ^* is adjoint flux, and Au is the lethargy width of the group. Neutron group-averaged cross sections used in this study may be found in part in Ref. 9, and all are available in LAZ.

V. SUMMARY

Perturbation theory increases the sensitivity of energy dependence of integrals involving neutron cross sections in multiplying assemblies. The systematic, comparative evaluation of large blocks of data permits some insight into the magnitude of errors and the energy region where differential crosssection studies should be concentrated. Remarkably good values are now available for neutron cross sections in the energy region above 0.017 MeV, but many errors remain for magnitudes within our ability to improve. A few examples may be found in Table V, where the original reactivity calculations must be redone with sometimes large and nonphysical factors on one or more of the different kinds of neutron interaction so that the experimental values might be approached. Current associated work using the simple change in multiplication constant^{8,11} suggests that the perturbation theory approaches are less successful once a particular area of interest has been determined. However, extension of this work into the very important resonance region will require that the relatively efficient perturbation theory approach be used.

REFERENCES

- A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors, (University of Chicago Press, 1958), pp. 537-567.
- Gordon E. Hansen and Clifford Maier, "Perturbation Theory of Reactivity Coefficients for Fast-Neutron Critical Systems," Nucl. Sci. Eng. <u>8</u>, 532-542 (1960).
- J. Terrell, "Prompt Neutrons from Fission," The Physics and Chemistry of Fission, Vol. II, IAFA 1965; and "Fission," The Encyclopedia of Physics (Reinhold Company, New York, 1966), pp. 264-269.
- 4. E. Bernard, A. T. G. Ferguson, W. R. McMurray, and I. J. Van Hurden, "Time of Flight Measurements of Neutron Spectra from the Fission of 235U, ²³⁸U, and ²³⁹Pu," Nucl. Phys. <u>71</u>, 228-280 (1965).
- B. G. Carlson and K. D. Lathrop, "Transport Theory - the Method of Discrete Ordinates," LA-3251-MS (Revised), Los Alamos Scientific Laboratory (February 19, 1965).
- 6. H. A. Sandmeier, G. E. Hansen, R. B. Lazarus, and R. J. Howerton, "Computation of Fast Neutron Penetration in Air by the 'S_n-Method' with Special Emphasis on the Use of 'Multitable-Multigroup Cross-Section Sets," LA-3415, Los Alamos Scientific Laboratory (August 1965).
- H. C. Paxton, "Fast-Neutron Critical Assemblies and Related Topics," Nucl. Sci. Eng. <u>8</u>, 523-719 (1960).
- W. G. Davey, Argonne National Laboratory, personal communication, (1967).
- C. B. Mills, "Fast Reactor Design Calculations," IA-3724, Los Alamos Scientific Laboratory (September 1967).
- J. D. Orndoff, Los Alamos Scientific Laboratory, personal communication, (1967).
- 11. B. R. Sehgal, J. M. Kallfelz, and B. A. Zolotar, "Fast Reactor Integral Studies of Modifications to ENDF/B ²³⁰U Inelastic Scattering," Trans. Am. Nucl. Soc. <u>12</u>, (No. 6) p. 743 (1969).

APPENDIX A REACTOR CRITICAL EXPERIMENT DESCRIPTION

•

ı.

•

•

EXPT.	CORE(ISOTOPE:NXE-24) / REFL.	RADIUS	5(CM)	REF.
U-233	233(.04678), 234(.00059), 235(.00001), 238(.000)29)	5.9647	LA-3067
GODIVA	234(.00048), 235(.04508), 238(.00245)	8.710		HANSEN
JEMIMA(.37	5) 234(.00018), 235(.01814), 238(.02934)	14.57		HANSEN
JEZEBEL	239(.03752), 240(.001924)	6.285		NSE8 , 525
JEMIMA(.16	2) 234(.00007), 235(.00777), 238(.0397) 235(.00034), 238(.04721)	20.32 27.94		HANSEN
0Y-TU(.7 [N) 234(.00045), 235(.04511), 238(.00245) 235(.000346), 238(.047694)	7.725 9.49		HANSEN
0Y-TU(1.7	<pre>IN) 234(.00045), 235(.04511), 238(.00245) 235(.000346), 238(.047694)</pre>	6.962 11.432	2	IIANSEN
0Y-TU(3.5	IN) 234(.00045), 235(.04511), 238(.00245) 235(.000346), 238(.047694)	6.391 15.344	÷	HANSEN
TOPSY	234(.00045), 235(.04511), 238(.00245) 235(.000346), 238(.047694)	6.045 28.905	5	HANSEN
ØY-CH2	235(.0430),238(.0031) H(.0790),C(.0395)	7.477 10.017	7	HANSEN
ØY-CH2	235(.0450),238(.0031) H(.0790),C(.0395)	8.016 9.286		HANSEN
0Y-D20	235(.04448), 238(.00285) C(.0667), 0(.0333)	6.841 15.172	2	LA-3067
0Y-D20	235(.04443),238(.00285) D(.0667),0(.0333)	6.171 23.54		LA-3067
0 7-8 E	235(.04448),238(.00285) BE(.1229)	5.648 17.43		
OY-BE	235(.04448),238(.00285) BE(.1229)	6.697 11.40		LA-3067
GY-C	235(.04496),238(.00289) C(.0837)	7.382 12.46		LA-3(67
0Y-C	235(.04496),238(.00289) C(.0837)	6•424 26•74		LA-3667
ØY-AL	235(.0439), 238(.00286) AL(.0583)	7.846 14.48		LA-3067
UY-FE	235(.04472),238(.00287) FE(.0772)	7.39 12.47		LA-3C67
ØY-NI	235(.04424),238(.00284) NI(.0856)	7.251 12.33	L	LA-3067
QX-M	235(.04508),238(.00289) W(.05126),NI(.01248)	6.89 11.97		LA-3067
OY-TH	235(.04472),238(.00287) 232(.02980)	7.80 12.40		LA-3067

ZPRIII-12	C(.0257), FE(.00780), 235(.00451), 238(.0170) FE(.00620), 235(.0000911, 238(.03998)	28.5 58.5	NSE19,259
ZPR I I I - 29	G(.01373), AL(.01451), FE(.02044), 235(.002246)	44.87	ANL

•

.

•

.

FE(.00620), 235(.000091), 238(.03998) 74.87 C(.020765), NA(.00623), AL(.00011), FE(.01256), NI(.001308), MG(.000206), 235(.000016), 238(.007406), 239(.001644), 240(.000106), 241(.00001) 47.42 FE(.005649), NI(.000588), 235(.000084), 238(.03998) 77.42 ZPRIII-48 LABAUVE

APPENDIX B

ABSORPTION AND FISSION NEUTRONS IN FAST SPECTRUM CRITICAL ASSEMBLIES

ISC	DT OP E	ABS 1	F155 1	A85 2	F1 SS 2	A85 3	FISS 3	ETC		A85+F155
1	6 G	0.3933	1.0027	0.0029	0.0071	0.0004	0.0008			U-233
1	12 G	0.3944	1.0031	0.0028	8.0074	0.00.04	8006.0			8-235
1	24 G	0.3947	1.0037	0.0028	0.0070	ມ. ປ0.J4	0.000s			U-233
ī	18 G	0.3934	1.0028	0.0029	J•JJ71	0.0004	0.0008			U-233
2	6 G	0.0035	0.0083	0.4228	99 78 و. ل	0.0069	0.0086			U-235
z	1 2 G	0.0035	0.0082	0.4234	0.9736	0.0047	0.0083			U-235
2	24 G	0.0034	0.0081	0.4253	J. 9749	0.0046	0.0082			U-235
2	18 G	0.0035	0.0083	0.4234	J. 7983	0.0047	0.0086			U-235
3	6 G	0.0022	0.0048	0.3927	U.8467	⊔ •0997	0.1349			JEMIMA
3	12 G	0.0022	0.0046	0.3945	ປ.8474	0.0991	0.1306			JE MI MA
3	24 G	0.0021	0.0046	0.3990	0.8521	92 ون 🕠	0.1228			JE MI MA
3	18 G	0.0022	0.0078	0.3937	บ. 84 7ป	0.1004	0.1349			JE MI MA
4	6 G	0.3349	0.9736	0.0120	0.0307	0.0001	0.0002			JE ZE BE L
4	12 G	0.3353	0.9728	0.0120	0.0305	0.0001	0.0002			JE ZE BE L
4	24 G	0.3355	0.9732	0.0121	0.0305	0.0001	0.0002			JE ZE BE L
4	18 G	0.3352	0.9739	0.0121	0.03J7	0.0001	0.0002			JE ZE BE L
10	5 G	0.0022	0.0050	0.3359	0.7464	U.0033	ü.0053			TOPSY
10	12 G	n.0022	0.0049	0.3381	J. 74 79	0.0033	0.0052			TOPSY
10	24 G	0.0022	0.0048	0.3400	U • 74 86	0.0033	0.0051			TOPSY
10	18 G	0.0022	0.0050	0.3338	0.7414	U.0033	0.0053			TOPSY
10	6 G	0.0305	0.0589	0.4497	0.1809					TOPSY
10	12 G	0.0306	0.0590	0.4516	0.1746					TOPSY
10	24 G	0.0316	0.0600	0.4592	0.1721					TOPSY
10	18 G	0.0300	0.0574	0.4713	U.1809					TOPSY
26	6 G	0.0	0.0	0.0020	٥.٥	0.3771	0.7506	0.1648 0	1056	ZPRIII12
26	12 G	0.0	0.0	0.0020	0.0	0.3857	0.7594	0.1675 0.	1002	ZPRI II 12
26	24 G	0.0	0.0	0.0019	u.0	0.3914	0.7624	0.1693 0	0983	ZPRI II 12
26	185	0.0	0.0	0.0019	u.0	0.3741	0.7390	0.1690 0	1057	ZPRIII12
26	6 G	0.0016	0.0	0.0089	0.0168	U•3879	0.0685			ZPRIII12
26	12 G	0.0016	0.0	0.0087	0.0163	0.3830	0.0640			ZPRI II 12
26	24 G	0.0015	0.0	0.0087	0.0161	u.3819	0.0624			ZPRIII12
26	18G	0.0015	0.0	0.0084	0.0157	0.3994	0.0681			ZPRIII12
27	6 G	0.0013	0.0	0.0035	0.0	0.0106	0.0	0.3860 0	.7706	ZPRI II 29
27	12 G	0.0015	0.0	0.0039	0.0	0.0106	0.0	0.4070 0	.7978	ZP RI 11 29
27	24 G	0.0011	0.0	0.0038	0.0	0.0102	0.0	0.4132 0	• 79 94	ZPRI II 29
27	18 G	0.0013	0.0	0.0033	0.0	0.0105	0.0	0.3849 0	.7600	ZPRIII29
27	6 G	0.1009	0.0703							ZPRI II 29
27	12 G	0.1057	0.0653							ZPRI II 29
27	24 G	0.1080	0.0634							ZPRIII29
27	18 G	0.1047	0.0705							76KI 1158
27	6 G	0.0018	0.0	0.0098	0.0185	0.4294	0.0853			ZPRI II 29
27	12 G	0.0017	0. 0	0.0093	0.0174	0.4121	0.0773			ZPRI II 29
27	24 G	0.0016	0.0	0.0092	0.0170	0.4111	0.075			ZPRI II 29
27	18 G	0.0017	0.0	0.0092	0.0171	0.4391	0.0848			ZPRI II 29

APPENDIX C A COMPARISON OF NEUTRON CROSS SECTIONS

Master Data Tape group averaged neutron cross sections from Livermore (LRL), AWRE (Aldermaston), and Davey* are compared.

9

APPENDIX D-1 CENTRAL REACTIVITY VALUES (¢/MOLE)

ISOTCPE	NC.	GROUPS	EXPT	- REACT	IVITY (CEN	TS/MOLE)			
			U233	U235	JEZBL	TOPSY	ZPR12	ZPR29	Z PR 48
н	11	6G	100.58	35.10	12.41	48.30	3.33	2.92	.43
н	11	12G	142.43	46.05	39.24	65.98	4.71	3.14	.87
н	11	24G	155.46	50.46	45.36	72.47	3.67	.29	88
н	11	18G	123.95	37.72	34.07	55.18	3.20	2.89	19
н		EXPT.		47.8	62.8	67.6			
D	12	6G	53.00	15.47	-11.01	20.69	1.27	1.19	•08
D	12	12G	63.65	21.05	-7.22	28.70	1.81	1.26	•21
D	12	24G	67.25	23.02	-5.90	31.58	1.69	•55	16
D	12	18G	55.03	15.64	-9.61	21.60	1.21	1.16	.17
0		EXPT.	70.	17.8	-5.3	24.0			
т	13	6G	10.97	1.69	-25.12	1.67	•09	•21	10
т	13	12G	13.57	3.29	-24.84	4.07	•34	•34	-•04
т	13	24G	14.54	3.68	-25.59	4.73	• 34	.16	14
т	13	18G	11.33	1.73	-24.67	1.83	•06	•20	•13
т		EXPT.							
HE3	21	6G	-270.49	-74.66	-389.17	-116.91	-21.92	-14.23	-17.86
HE3	21	12G	-273.78	-75.17	-394.51	-117.73	-23.54	-16.83	-21.64
H E 3	21	24G	-274.66	-74.96	-398.27	-116.98	-24.37	-16.83	-22.82
HE3	21	18G	-270.98	-75.71	-394.85	-119.30	-23.45	-15.66	-24.76
HE3		EXPT.							
L [6	22	14 6G	-163.19	-50.42	-212.36	-77.92	-13.98	-9.81	-11.00
L [6	22	14 12G	-153.68	-47.30	-209.24	-72.87	-13.12	-8.71	-10.48
L16	22	14 24G	-154.71	-47.14	-210.36	-72.75	-13.32	-7.90	-10.54
L [6	22	14 18G	-163.22	-50.52	-213.14	-78.94	-14.40	-10.14	-13.57
L [6		EXPT.				-130.4			
L 17	22	15 6G	1.55	28	-10.83	67	06	•01	06
L17	22	15 12G	4.40	2.05	-11.15	2.79	•30	•21	01
L 17	22	15 24G	4.23	2.04	-11.46	2.97	• 32	.14	05
L [7	22	15 18G	1.66	27	-10.65	65	07	•01	•11
L 17		EXPT.							
8 E9	200	08 6G	27.68	4.81	17.14	6.17	•22	•19	•05
8 E9	200	08 12G	30.72	5.94	17.33	8.12	• 50	•39	•11
8 E9	200	08 24G	31.64	6.23	17.25	8.91	•63	•28	.04
8 E9	200	08 18G	28.25	4.87	17.64	6.43	•21	.19	•24
8 E		EXPT.		7.3	15.5	9.2			

910	8051 60	-135.64	-39.74	-182.38	-66.06	-15.65	-10.22	-12.89
810	0051 120		-40 51	-100 51	-47 39	-17 16	-12.34	-15 90
010	0051 120	-142 -10		-100.74		-17 40	-12 0 34	-14 73
810	0051 240	-143+31		-190+14	-07+11	-17.60	-12.20	-10+/3
810	8051 18G	-135.85	-40.42	-186.20	-01+29	-10.02	-11+14	-1/ ./2
810	EXPT.		-55.3	-251.		-18.6	-13.0	-30.84
B LRL	61 6G	5.70	-1.59	-43.13	-3.28	25	01	19
B LRL	61 12G	6.16	-1.07	-43.96	-2.61	13	.13	- 16
A IRI	61 24G	6.63	-1.40	-46 05	-2 00	- 11	07	- 21
	61 10C	5 93	-1 64	-42.45	-2 26	- 20	- 07	- • 2 1
O LNL	01 100	2.02	-1+24	-42.03	-3+24	-•29	02	•00
0	EXPI		-0.9		-12.2	-3.1	-2.0	-6.0
C12UK	2006 6G	3 • 86	•69	-6.48	•77	•03	•06	03
C12UK	2006 12G	5.23	1.46	-6.81	2.04	•21	•17	00
C12UK	2006 24G	5.75	1.70	-7.28	2.60	.30	.13	04
C12UK	2006 18G	4.25	.73	-6-18	.89	- 02	-06	-06
r -	FYPT.	3	2.4	-6.9	2.4	0 41	0 245	-0 01
014101	8091 4C	J. 4 35	1 34	-0.47	1 4 7	0.41	0.275	-0.01
OTOLKL		0.25	1+34	-0.02	1.02	.04	•00	00
UIGERE	8081 126	5.91	2.08	-7.97	2.80	•24	•12	01
016LRL	8081 24G	4.69	2.04	-8.78	2.88	•28	•09	-•04
0 16 LRL	8081 18G	6.50	1.37	-8.46	1.73	•03	•06	•01
0	EXPT.			-9.9	1.4		0.217	
016UK	2037 6G	5-80	1.19	-10-65	1-40	-03	-06	07
DIAUK	2037 120	5.53	2.01	-9.56	2.68	22	.12	- 02
014114	2037 240	6 20	2.01	- 7.00	2.00	•23	•12	02
UTOUK	2037 246	4.28	2.01	-4.99	2.83	•29	•09	04
016UK	2037 18G	6.06	1.22	-10.48	1.51	•02	•06	•00
0	EXPT.			-9.9	1.4		0.217	
NA23	2182 6G	2.27	05	-10.41	34	05	•01	06
NA23	2182 12G	2.74	.28	-11.96	-23	-04	-10	05
NA23	2182 246	2.56	.12	-12.87	. 14	.07	.08	07
NADD	2102 100	2.0	- 01	12.001	• 1 4	• • • •	•00	- •01
NAZ 5	2102 100	2.49	01	-9.98	24	00	•01	•06
NA	EXPT.						0.20	-0.046
_								
AL27	2035 6G	74	78	-12.99	-1.36	11	02	08
AL27	2035 12G	52	32	-14.27	65	02	•04	08
AL27	2035 24G	30	11	-14.65	25	-04	-04	0 9
4127	2035 186	- 69	77	-12.86	-1.36	12	02	.10
	2037 100 EVOT	•07	_•!'	-16 1	~ 7	-0.074		•10
AL	EAFI		0.5	-14+1	0.1	-0.076	0.014	
MALEE	261 40	0.00	2 21	- 20 22	2 24			- 1
MNSS	251 00	9.09	2.31	-20.32	2.24	00	•09	21
MNSS	251 126	15+35	4.00	-15.51	4.59	00	•06	23
MN55	251 24G	17.80	4.23	-16.10	5.02	08	11	36
MN55	251 18G	25.83	5.43	6.07	7.39	44	04	41
MN	EXPT.				-1.0			
FE	2036 6G	-2.18	-1.79	-19.84	-2.93	23	07	1 4
FF	2036 120	-2.66	-1.71	-21.59	-2.81	- 20	05	15
66	2030 120	-2.00			-2.01	20		
F E	2030 240	-2.54	-1.00	-22.11	-2.11	20	07	10
FE .	2036 18G	-2.10	-1.77	-19.60	-2.94	24	08	•13
FE	EXPT.		-0.2	-21.5	-2.2			-0.204
NT	2046 66	-23.98	-6-37	- 54-07	-9.25	49	21	29
NI T	2046 120	-23 49	-5 09	-54 70	-9 69	- 44	- 17	- 20
	2040 120	23.40	- 5 - 70	- 54 - 10	0.00			•50
NI	2040 246	-22.69	-2.02	-24.20	-8.10	38	18	52
NI	2046 18G	-22.91	-6.28	-53.24	-9.16	52	23	06
NI	EXPT.		-4.4	-48.0	-7.3	-0.63	-0• 86	-0.325
N893	411 6G	62	-4.51	-57.27	-8.16	-1.22	61	89
N 89 3	411 12G	.13	-4.00	-58.44	-7.52	-1.23	59	98
N893	411 24G	. 92	-4-20	-60-15	-7.66	-1.21	56	-1.00
N893	411 186	47	-4.50	-56-88	-8.22	-1.30	66	66
NA	FYDT	• • •		20000	-7.5	-0.90	-0, 90	100
	LAFI					-0070	-0.70	
MD	420 40	-2 77	_2 00	- 46 14	-6 64	- 40	- 30	4 9
MC	420 120	-2-24	-2 23	- 40 . 4	-0.04 -E 01	- 44		- 40
11U MO	+20 126	-3.20	-2.22	- 4/ + 20	-2.91		-•22	
MU	420 246	-2.88	-3.33	-48.42	-2.80	60	21	49
MO	420 18G	-3.65	-3.86	-45.70	-6.66	71	30	- •0 5
MO	EXPT.			-44.0	-3.5	-0.62	-0-54	-1.27

.

•

TA181LRL8731 6G	-36.23	-14.59	-107.84	-24.03	-4.37	-2.66	-3.51
TA181LRL8731 12G	-35.85	-13.37	-110.33	-22.44	-4.56	-3.03	-4.25
TA181LRL8731 24G	-35.24	-13.83	-112.82	-22.91	-4.75	-2.99	-4.54
TA181LRL8731 18G	-36.28	-14.92	-109.07	-24.81	-5.02	-3.28	-5.33
TA EXPT.		-	100.5	-17.2	-4.6	-2.87	
W 8740 6G	15.64	-1.98	-86.57	-5.71	-1.69	77	-1.51
W 8740 12G	19.82	.05	-87.11	-3.26	-1.78	86	-1.72
W 8740 24G	21.94	.57	-88.43	-2.41	-1.77	89	-1.81
W 8740 18G	15.92	-2.05	-86.33	-5.86	-4.20	-1.91	-3.59
W EXPT.		-4.0	-82.3	-10.8			
TU222 2022 40	-10 13	-10 41	-92 24	-19 25	-2 65	-2.12	-2.87
TH232 2022 00	-10.15	-10.41	-03.54	-10.25	-3.80	-2.43	-3.42
TH232 2022 120 TH232 2022 24C	-9.14	-10-02	-85.34	-17.46	-3-91	-2.47	-3.64
TH232 2022 18G	-9-81	-10.54	-83.47	-18.56	-3.97	-2.38	-3.37
TH EXPT.		-1.4	-64.7	-7.6		-1.69	
11222101 0021 40	076 76	254 14	1254 82	362 80	45.55	27.36	37 . 4 1
U233LKL0921 00	910.20	254014	1257 17	361 71	42.93	26.63	38.63
UZ33LKL8921 126	911.01	252.71	1257.56	364.05	45.05	26.07	39.72
112331 PL 8921 18G	976.28	253.86	1355-31	367.25	46.86	27.96	34.24
U233 EXPT	, , , , , , , , , , , , , , , , , , , 	275.00	1359.	358.7	48.5	27.8	
						24 4 2	3/ 75
U233UK 2202 66	890.86	232.02	1240.17	337.038	44.50	20.40	30 • 1 3
UZ33UK 2202 126	807.56	234.96	1247.20	339.72	44.18	25.53	39,94
U233UK 2202 246	891.21	235.39	1241.35	341.76	45.67	27.14	33.81
U233 EXPT	955	237637	1359.	358.7	48.5	27.8	<i></i>
U234 922 6G	552.48	123.17	733.24	163.73	6.59	4.21	3.75
U234 922 12G	548.10	121.48	727.45	161.47	5.53	3.57	2.61
U234 922 24G	548.41	120.75	725.32	160.93	5.28	3.31	2.37
U234 922 18G	552.65	123.04	732.93	166.37	6.78	4.27	3.19
U234 EXPT.							
U235LRL923 6G	593.20	147.71	798.23	209.01	25.72	15.14	21.76
U235LRL923 12G	592.82	145.78	798.55	206.65	25.32	14.83	22.84
U235LRL923 24G	593.80	146.26	797.77	207.25	25.52	14.97	23.91
U235LRL923 18G	594.11	147.54	798.93	211.50	26.40	15.41	19.30
U235 EXPT.		149.3	804.	208.4	25.52	14.97	24.1
78 2009 66	-3.77	-3.08	-35-11	-5-02	39	13	24
ZR 2009 12G	-4.08	-2.85	-36-02	-4.69	34	- 08	- 23
ZR 2009 24G	-4.04	-2.90	-36.68	-4.69	32	08	24
ZR 2009 18G	-3.63	-3.07	-34.78	-5.07	43	15	•08
ZR EXPT.			-35.6	-2.4		-0.05	
TA 118 2220 40	-27 12	-14 22	-117 47	-26-00	-6 34	-2.60	-3-43
TA UK 2328 120	-27.00	-13.47	-117.87	-23.04	-4.63	-2.98	-4.15
TA UK 2328 24G	-26-83	-13.80	-120-28	-23-26	-4.76	-2.96	-4.44
TA UK 2328 18G	-27.00	-14.55	-118.45	-24.75	-5.02	-3.20	-5.04
TA EXPT.			-100.5	-17.2	-4.6	-2.87	
1123511K 2030 AG	602-46	152-68	819-29	216-17	26-00	15-53	21 -60
U235UK 2030 12G	602-98	151 87	820-69	215.42	25.68	15.12	22 .43
U235UK 2030 24G	603.42	152.88	820.61	216.76	25.79	14.96	23.29
U235UK 2030 18G	602.65	152.58	819.99	218.98	26.88	16.01	19.88
U235 EXPT.		149.3	804.	208.4	25.52	14.97	24.1
11236 924 40	279.22	52.71	300-43	68.07	. 02	1.00	- ^ 7
11236 924 126	279-01	52.45	298-11	68-15	.72	_91	- 11
U236 974 74G	280-97	53-02	297.1A	68-67	.70	-81	- 15
U236 924 18G	278.61	52.54	300-28	69.03	•55	.62	-1.69
U236 EXPT.		1					
1122 BUK 2005 40	122 10	10 03	104 40	21.72	-1.40	70	-1.45
12381K 2005 126	132-40	10-00	104-97	21.92	-1.71	92	-1-79
U238UK 2005 24G	133-00	18-57	102-64	21.54	-1-75	- 95	-1.87
U238UK 2005 18G	133.65	18.95	107.20	22.31	-1.75	78	-1.43
U238 EXPT.	135.	24.3	114.	26.7	-1.04	-0.77	-1.80

U238LRL892	26 6G	141.91	22.60	100.48	27.21	90	18	-1.15
U238LRL892	26 12G	143.76	23.26	98.65	27.92	-1.10	45	-1.43
U238LRL892	26 24G	145.86	23.65	98.04	28.71	-1.13	57	-1.56
U238LRL892	26 18G	142.44	22.58	100.85	27.84	-1.06	28	-1.12
U238	EXPT.	135.	24.3	114.	26.7	-1.04	-0.77	-1.80
PU239LRL94	2 6G	1139.50	287.57	1592.54	405.14	43.51	26.50	34.72
PU239LRL94	2 12G	1136.10	285.46	1592.34	402.76	42.31	25.21	34.69
PU239LRL94	2 24G	1135.70	285.85	1591.10	403.35	42.07	24.28	34.98
PU239LRL94	2 18G	1140.60	287.27	1592.83	410.34	44.54	26.92	31.94
PU239	EXPT.		285.2	1592.	402.6	45.2	25.3	32.2
PU240LRL94	3 6G	643.29	136.96	868.57	173.75	-1.65	-1.19	-3.48
PU240LRL94	3 12G	633.42	134.53	858.92	170.21	-3.77	-3.07	-6.35
PU240LRL94	3 24G	632.82	132.68	854.87	168.38	-4.47	-3.12	-7.00
PU240LRL94	3 18G	643.12	136.44	866.02	176.52	-1.83	-1.51	-6.51
PU240	EXPT.		170.	1038.	386.			5.87
PU239UK 23	329 6G	1119.90	282.14	1558.76	397.13	41.70	25.67	32.87
PU239UK232	9 12G	1117.80	280.59	1557.68	395.69	40.44	24.27	32.06
PU239UK 23	29 24G	1118.00	281.22	1556.84	396.44	39.86	23.02	31.87
PU239UK 23	329 18G	1119.90	281.44	1557.19	401.52	42.34	25.72	29.79
PU239	EXPT.		285.2	1592.	402.6	45.2	25.3	32.2
PU240UK 22	201 66	730-05	161.10	991-10	214.19	7.98	5.34	4.61
PU240UK 22	201 126	724.61	158.82	985.42	211.40	6.81	4.62	3.26
PU240UK 22	201 24G	724.63	157.62	982.85	210.43	6.48	4.27	2.94
PU240UK 22	201 18G	730.44	160.99	990.90	217.79	8.27	5.49	3.97
PU240	EXPT.		170.	1038.	386.			5.87
PU241UK 20)40 6G	1193.10	311.00	1631.70	448.76	61.22	36.82	51.32
PU241UK 20	040 12G	1205.00	312.03	1643.35	451.07	62.00	38.02	55 •98
PU241UK 20)40 24G	1209.30	314.78	1646.86	454.58	62.90	37.96	58 .23
PU241UK 20	040 18G	1195.00	310.76	1633.66	453.74	62.49	37.32	47.69
PU241	EXPT.							
PU241LRL94	44 6G	1069.50	275.87	1487.97	397.78	54.60	32.44	46.30
PU241LRL94	44 12G	1074.50	273.98	1493.85	396.04	55.07	33.42	50.24
PU241LRL94	4 24G	1076.50	275.57	1494.80	397.93	55.89	33.67	52.52
PU241LRL94	4 18G	1069.50	275.60	1489.05	402.06	55.88	32.97	42.19
PU241	EXPT.		_			_		. –

•

•

.

•

APPENDIX D-2

ISOTOPE	NC.	GROUPS	EXPT	- REACT	IVITYCE	NTS/MOLE)		
н н	11	6G EXPT.	130.38	0235 26.98 47.8	JEZ8 -1.85 62.8	L TOPS 35.66 67.6	7 ZPR12 •78	ZPR29 1.73	ZPR48 -1.88
D D	12	6G EXPT.	71.95 70.	13.33 17.8	-14.27 -5.3	16.95 24.0	•26	•70	87
T T	13	6G Expt.	21.52	2.22	-23.82	2.11	19	•11	34
HE3 HE3	21	6G EXPT.	-273.71	-77.92	-396.53	-117.28	-18.90	-12.59	-14.73
L I 6 L I 6	221	L4 6G EXPT.	-161.32	-49.89	-219.18	-79.15 -130.4	-14.93	-10.36	-11.05
L [7 L [7	221	EXPT.	5.53	•23	-8.94	07	10	00	09
8 E9 B E	200	08 6G EXPT.	34.30	5.16 7.3	18.67 15.5	6.38 9.2	•15	•14	03
B10 810	805	51 6G EXPT.	-138.02	-42.00 -55.3	-189.01 -251.	-65.84	-12.77 -18.6	-8.90 -13.0	-10.15 -30.84
B LRL 8	61	6G Expt	18.37	77 -6.9	-43.94	-2.33 -12.2	50 -3.7	06 -2.6	35 -6.0

С 12 UK С	2006	5 6G EXPT.	6.89 3.	•97 2•4	-5.04 -6.9	1.08 2.4	01 0.41	•04 0°•245	08 -0.017
0 16 LRL 0	808)	L 6G EXPT.	9.23	1.68	-7.07 -9.9	2.06 1.4	•06	04 0.217	- •0 8
0 16 UK 0	2037	6G EXPT.	8.99	1.53	-9.23 -9.9	1.84 1.4	•04	•04 0•217	09
NA23 NA	2182	2 6G EXPT.	5.85	• 40	-8.80	•21	07	•00 0•20	09 -0.046
AL27 Al	2035	5 6G EXPT.	3.34	18 0.5	-10.83 -14.1	-•66 0•7	15 -0.076	02 0.014	11
MN55 MN	251	6G Expt.	19.52	2.02	-19.84	1.63 -1.0	34	•00	-•41
FE FE	2036	6G EXPT.	4.21	83 -0.2	-16.72 -21.5	-1.82 -2.2	30	08	-•18 -0•204
N I N I	2046	6G Expt.	-17.21	-5.26 -4.4	-50.31 -48.0	-7.84 -7.3	63 -0.63	21 -0.86	37 -0.325
NB93 N8	411	6G EXPT.	17.16	-2.54	-54.46	-6.02 -7.5	-1•38 -0•90	60 -0.90	93
MO	420	6G	9.83	-2.14	-42.01	-4.62	86	31	56
TA181LRI	8731	6G	-18.73	-12.74	-104.06	-21.64	-4.19	-2.51	-1.27
ΤA		EXPT.			-100.5	-17.2	-4.6	-2.87	
W W	8740	6G EXPT.	44.19	•06 -4•0	-84.74 -82.3	-3.85 -10.8	-1.98	85	-1.70
ТН232 ТН	2022	2 6G EXPT.	12.77	-8.38 -1.4	-80.69 -64.7	-16.04 -7.6	-3.62	-1.99 -1.69	-2.64
U233LRL U233	8921	6G Expt	999.06	250.73	1356.68 1359.	361.55 358.7	49•77 48•5	28.51 27.8	37 .66
U233UK U233	2202	6G Expt	909 . 83 955.	231.70	1243.19 1359.	335.73 358.7	47•87 48•5	27•44 27•8	36 • 5 7
U234 U234	922	6G EXPT.	586.71	123.94	720.86	164.10	9.84	4.51	5.55
U235LRL U235	.923	6G EXPT.	616.98	147.23 149.3	799.97 804.	209•50 208•4	27.82 25.52	15.71 14.97	21.63 24.1
ZR ZR	2009	6G Expt.	6.35	-1.68	-31.46 -35.6	-3.43 -2.4	53	15 -0.05	31
TA UK Ta	2328	6G EXPT.	-3.60	-12.10	-115.36 -100.5	-21•46 -17•2	-4.25 -4.6	-2.44 -2.87	-3.13
U235UK U235	2030	6G EXPT.	624.14	151.62 149.3	821.36 804.	216.39 208.4	28.66 25.52	16.27 14.97	21.87 24.1
U236 U236	924	6G EXPT.	316.68	56.15	297.96	70.18	1.79	•95	•57
U238UK U238	2005	6G EXPT.	163.91 135.	21.87 24.3	106.52 114.	24.05 26.7	-1.16 -1.04	64 -0.77	-1.02 -1.80
U238LRL U238	8926	6G EXPT.	175.17 135.	24.82 24.3	99.12 114.	28.31 26.7	85 -1.04	-•32 -0•77	-1.10 -1.80
PU239LRL PU239	942	6G Expt.	1169.80	284.70 285.2	1587.66 1592.	404.14 402.6	49.07 45.2	27.72 25.3	36 •0 5 32• 2

PU240LRL943 PU240	6G EXPT•	684.27	137 .1 6 170.	846.10 1038.	174.41 386.	4.03	26	•34 5•87
PU239UK 2329 PU239	9 6G EXPT.	1151.70	279.69 285.2	1553.60 1592.	396.50 402.6	47.43 45.2	26•92 25•3	34 • 48 3 2 • 2
PU240UK 2201 PU240	L 6G EXPT•	773.92	163.77 170.	976.44 1038.	216•41 386•	12.60	5.79	7 •28 5• 87
PU241UK 2040 PU241) 6G EXPT.	1228.70	309.03	1637.73	446.32	62.78	36.80	48 .66
PU241LRL944 PU241	6G EXPT.	1095.10	275.11	1494.99	397.73	56.70	32.75	44 •4 5

APPENDIX D-3

CENTRAL PERTURBATION CROSS SECTIONS IN ASSEMBLY 48

 $\sigma_{p} = \text{Total P}_{2} \text{ Reactivity per Atom} / \sum_{i} \phi_{i} \phi_{i}^{+}$

	$\sigma_{\rm p}^{\rm (LAZ)}$	$\sigma_{p}(Expt^{a})$	σ _p (LAZ)	σ _p (Expt ^a)
н	-0.0888		Ta(LRL) - 0.460	-0.976
D	-0.0161		Ta(UK) - 0.450	-0.976
т	-0.0140		W - 0.1834	
6 _{Li}	-1.068		²³² Th - 0.369	
7_{Li}	-0.0047		²³³ U(LRL) ⁴ .03	
10 _B	-1.696	-2.94	²³³ u(uk) 4.05	
С	-0. 0040	-0.0018	²³⁴ U 0.2401	
0(LRL)	-0.0040	-0.003 6	²³⁵ U(LRL) 2.423	2,62
0(UK)	-0.00 ⁴⁴		²³⁵ u(uk) 2.360	2.62
Na	-0. 0076	-0. 0048	²³⁸ u(uk) -0. 1897	-0.194
Al	-0.0089		²³⁸ u(lrl)-0.1578	-0.194
Mn	-0.0 364	-0.0387	²³⁹ Pu(LRL)3.55	3.50
Fe	-0.0184	-0,022	$239_{Pu}(UK)$ 3.23	3.50
Ni	-0.0321	-0.0161	²⁴⁰ Pu(LRL) 0,709	0.640
Nb	-0.1015		240 Pu(UK) 0.298	0.640
Мо	-0.0494	-0.137		
Zr	-0.0240			

a Davey, ANL-7320, p. 57. Proceedings of the International Conference on Fast Critical Experiments and Their Analysis, October 10-13, 1966.

APPENDIX D-4 SUMMARY K-EFF TABLE FOR FAST ASSEMBLIES

	EXPT GROUPS	6	24	18
1	U=233	1.01063	1.01151	1.01074
2	GODIVA	0.99484	0.99122	0.99529
3	JEMIMA(0.375)	0.98634	0. 98548	0. 98665
4	JEZEBEL	1.00453	1.00392	1.00480
5	U-233,0Y	1.01199	1.01232	1.01232
6	JEMIMA(0.1625)	0.99238	0.98926	0.98608
7	OY-0.7 IN.TU	0.99394	0.99067	0.99430

8	OY-1.8 IN.TU	0.99706	0.99423	0.99697
9	OY-3.5 IN.TU	0.99709	0.99393	0.99520
10	TOPSY	0.99655	0.99071	0.99001
11	OY, CH2 REFL	0.9792	0.9844	0.9839
12	OY, CH2 REFL	0.9834	0.9831	0.9846
13	OY, BE REFL	1.0140	1.0168	1.0143
14	OY, BE REFL	1.0005	1.0172	1.0026
15	OY,C REFL	0.9987	0.9961	1.0151
16	OY,C REFL	0.9962	1.0033	0.9970
17	OY, D20 REFL ·	1.0053	1.0011	1.0077
18	OY, D20 REFL	0.9824	0.9792	0.9925
19	OY,AL REFL	0.9997	0.9955	0,9996
20	OY, NI REFL	1.0075	1.0049	1.0083
21	OY, FE REFL	0.9805	0.9756	0.9809
22	OY, W REFL	1.0049	1.0027	1.0047
23	OY, TH REFL	0.9934	0.9905	0.9936
24	ZPR III(12)	0.9841	0.9802	0.9711
25	ZPR III(29)	0.9447	0.9552	0.9323
26	ZPR III(48)	1 .0 619	1.0159	1.0396

APPENDIX E

REACTIVITY VALUES AS A FUNCTION OF RADIUS

Coordinates of all figures are

Abscissa: Radius (cm). Ordinate: Reactivity (β/mol).

APPENDIX F

GODIVA o's x l.l, ALL GROUPS

Act	No Pert	σ _a	₩ _f	٥ _{gg} ،	Expt
H	50.462	50.458	50.462	55.514	47.800
D	23.024	23.049	23.024	25.301	17.800
T	3.679	3.679	3.679	4.047	-0.000
HE3	-74.962	-82.953	-74.962	-74 . 468	-0.000
L16	-47.135	-52,197	-47-135	-46.787	-0.000
LI7	2.040	2.040	2.040	2.744	-0.000
HE	6.233	6.648	6.233	6.441	7.300
810	-40.866	-45.171	-40.866	-40.649	-55.300
С	-1.396	-1.396	-1.396	-1-535	2.400
с	1.702	1.701	1.702	1.872	2.400
0	2.043	5.003	2.043	2.285	-0.000
0	2.015	1.961	2.015	5.520	-0.000
NA	.119	.107	•119	•141	-0.000
AL	110	142	-+110	090	•500
MN	4.228	4.185	4.778	4.692	-0.000
FE	-1.679	-1.719	-1.679	-1+809	-•200
NI	-5.627	-6.061	-5.627	-5.757	-4.400
NB	-4.201	-4.440	-4.201	-4.384	-0.000
MO	-3.326	-3.463	-3-326	-3.524	-0.000
ŤΔ	-13.833	-15.201	-13+833	-13-851	-0.000
w	•566	• 029	•566	1+156	-4.000
тн	-10.019	-11.622	-9.244	-10.194	-1.400
U233	254.838	237.747	297.295	254.953	-0.000
U233	236,966	219.727	277.632	27.233	-0.000
U234	120.746	112.196	141.128	120.985	-0.00
0235	146.259	134.624	172.670	146.106	149.300
ZR	-2.904	-3.005	-2.904	-3.095	-0.000
TA	-13,798	-15,073	-13.798	-13.944	-0.000
U235	152.877	141.620	179.289	153.009	149.300
0236	53.022	49.473	61.187	53.705	-0.000
0238	18.571	16.219	55• <u>75</u> 6	18.623	24.300
U238	23.653	21.343	27.6R3	24.293	24.300
PU239	285,852	269,001	330.356	285.792	285.200
PU240	132.681	155.002	156-113	133.102	170.000
PU239	281.227	266,897	323.620	291.283	285.200
PU240	157.624	148.212	182.653	157.767	170.000
PU241	314.782	299,442	360.418	715,963	-0.000
PU241	275.569	259.336	319.444	275.482	-0.000

.

.

.

t

•

JEZEBEL

Act	No Pert	σ _a	νσf	σ _{gg} ,	Expt
H	45.362	45.343	45.362	49.931	62.800
D	-5.902	-5.664	-5.902	-6.728	-5.300
T	-25.591	-25.544	-25.591	-28.152	-0.000
HE3	-398.266	-436.135	-398.266	-400.223	-0.000
LI6	-210.363	-230.207	-210.363	-211-555	-0.000
L17	-11.459	-11.459	-11+459	-15.602	-0.000
HE	17.248	20.820	17.248	15.398	15.500
B10	-190.739	-208-825	-190.739	-191.732	-251.000
С	-46.048	-46.048	-46.048	-50.652	-6.910
с	-7.285	-7.299	-7.285	-8.013	-6.900
a	-8.778	-9.129	-8•778	-9.313	-9.900
0	-9.989	-10.495	-9.989	-10-489	-9.900
NA	-12.865	-12.962	-12+865	-14-062	-0.000
AL	-14.651	-14,913	-14.651	-15.863	-14-100
MN	-16.097	-16.279	-16.097	-17.544	-0.000
FE	-22,174	-22,397	-22.174	-24.188	-21.500
NI	-54.555	-57.957	-54-555	-56+622	-48.000
NA	-60,153	-61.024	-60.153	-65-314	-0.000
MO	-48.416	-48,965	-48.416	-52.726	-44.000
ĬΔ	-112.826	-118.407	-112-826	-118-542	100-500
W	-88.476	-90.641	-88.426	-95.070	-82.300
тн	-85.343	-93.162	-79.337	-92.083	-64.700

U233	1357.589	1270.959	1583.732	1353-824	1359.000
U233	1245.243	1158.412	1459.587	1242.239	1359.000
U234	725.324	674.086	852.947	721.457	-0.00
U235	797.768	738.791	941.827	792.446	804+000
ZR	-36,678	-37.292	-36.678	-39.763	-35.600
TΔ	-120.284	-125.202	-120.284	-127.408	-100.500
U235	820,612	763.463	963.661	816.758	804.000
U236	297.178	273.497	355.818	291.930	-0.000
U238	102.648	87.993	133.965	96,243	114.000
U238	98.037	83.772	128.252	91.916	114.000
PU239	1591,129	1507.344	1837.537	1587.602	1592.000
PU240	854.868	795.341	1004+129	850.607	1038.000
PU239	1556.809	1480.580	1742.054	1553.458	1592.000
PU240	982.895	926.101	1141.697	979.069	1038.000
PU241	1646.815	1569.221	1891.538	1644.353	-0.000
PU241	1494.808	1412.923	1730-223	1490.745	-0.000

٠

.

.

ı.

GODIVA d's x l.l g l-12

.

t

н	50.462	50.460	50.462	50.627	47.800
ū	23.024	23.049	23.024	22.959	17.800
T	3.679	3.679	3.679	3.386	-0.000
HË3	-74.962	-77.748	-74.962	-75.200	-0.000
L16	-47.135	-41.899	-47.135	-47.301	-0.000
LI7	2.040	2.040	2.040	1.889	-0.000
BE	6.233	6.648	6.233	5.991	7.300
810	-40.866	-41.708	-40.866	-41.003	-55.300
C	-1.396	-1.396	-1+396	-1.808	2.400
C	1.702	1.701	1.702	1.594	2.400
0	2.043	2.003	2.043	1.980	-0.000
0	2.015	1.960	2.015	1.957	-0.000
NA	•119	•109	•119	021	-0.000
AL	110	136	110	241	•500
MN	4.228	4.221	4.228	4.037	-0.000
FE	-1.679	-1.696	-1.679	-1.865	200
NI	-5.627	-6.026	-5.627	-5.827	-4.400
NB	-4.201	-4.212	-4.201	-4.459	-0.000
MO	-3.3?6	-3.348	-3.326	-3.711	-0.000
TA	-13.833	-14.077	-13.833	-14-378	-0.000
W	•566	.449	•566	•635	-4.000
TH -	-10.019	-10.660	-9.244	-10-441	-1.400
U233	254.838	247.557	274 • 439	254.804	-0.000
U233	236.966	229.734	255.202	236.812	-0.000
U234	120.746	115.130	135.622	120.753	-0.000
U235	146.259	141.312	159•182	145.877	149.300
2R	-2.904	-2.954	-2.904	-3.151	-0.000
TA	- 13.798	-14.001	-13•798	-14+195	-0.000
U235	152.877	148.023	165.727	152.688	149.300
U236	53.022	50.027	61.013	53.113	-0.000
U238	18.571	16.905	22.715	18.415	24.300
U238	23.653	22.027	27.617	23.712	24.300
PU239	285.852	278.205	309.290	285.578	285.200
PU240	132.681	126.583	150.831	132.731	170.000
PU239	281.227	274.121	303.857	281.149	285.200
PU240	157.624	151.136	177.168	157.590	170.000
PU241	314.782	308.241	336.236	314.820	-0.000
PU241	275.569	268.740	296.111	275.307	-0.000

JEZEBEL o's x 1.1 g 1-12

н	45.362	45.350	45.362	41.758	62.800
D	-5.902	-5.604	-5.902	-9.678	-5+300
T	-25-591	-25.589	-25.591	-28.793	-0.000
HE3	-398.266	-417.136	-398.266	-400.937	-0.000
LI6	-210.363	-215.451	-210.363	-211.883	-0.000
L17	-11.459	-11.459	-11.459	-12.786	-0.000
BE	17.248	20.820	17.248	15.021	15.500
B10	-190.739	-196-559	-190.739	-192.021	-251.000
С	-46.048	-46.048	-46.048	-50.788	-6.900
C	-7.285	-7.289	-7.285	-8.237	-6.900

•

0	-8.776	-9.129	-8.778	-9.567	-9.900
0	-9.989	-10-495	-9.989	-10.755	-9.900
NA	-12.865	-12.954	-12.865	-14.134	-0.000
AL	-14.651	-14.891	-14.651	-15.960	-14-100
MN	-16.097	-16.147	-16.097	-18.932	-0.000
FE	-22.174	-22.304	-22.174	-24.231	-21.500
NI	-54.555	-57.828	-54.555	-56.698	-48.000
NB	-60.153	-60.213	-60.153	-65.384	-0.000
MO	-48.416	-48.553	-48.416	-52.845	-44.000
TA	-112.826	-114.336	-112.826	-118.911	-100.500
W	-88.426	-89.134	-88.426	-95.689	-82.300
TH	-85.343	-89+592	-79.337	-92.343	-64.700
U233	1357.589	1306.724	1493.318	1353.665	1359.000
U233	1245.243	1194.889	1370.745	1241.744	1359.000
U234	125.324	685.560	829.868	721.205	-0.000
U235	79 7.7 68	763.127	888.127	792.155	804.000
ZR	-36.678	-37.092	-36.678	-39.797	-35.600
TA	-120.284	-121.481	-120.284	-127.591	-100.500
U235	420.612	786.757	909.83H	816.439	804.000
U236	297.178	275.556	354.970	291.204	-0.000
U238	102.648	90.523	133.914	96.076	114.000
U238	98.037	86.271	127.957	91.109	114.000
PU239	1591.129	1537.493	1753.821	1587.303	1592.000
PU240	854.868	811.875	981.758	850+186	1038.000
PU239	1556.809	150/.125	1713.618	1553.346	1592.000
PU240	982.895	937.652	1118.470	978.895	1038.000
PU241	1646.815	1601-225	1795.157	1642.663	-0.000
PU241	1494.808	144/.154	1637.286	1490.609	-0.000

Fig. F-1. Reactivity weighing function $\phi \phi^{\dagger}(r = 0)$ in JEZEBEL.

Fig. F-2. Reactivity weighing function $\phi \phi^+(r = 0)$ in GODIVA.

·.

Fig. F-3. Reactivity weighing function $\phi \phi^+(r = 0)$ in ASSEMBLY 48.

Fig. F-4.

Fig. F-5.