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FILASH X-RAY OBSERVATION OF THE FLOW

BEHIND A DETONATION WAVE

W. C. Rivard

Douglas Venable

ABSTRACT

The flow field behind a plane detonation wave in Composition B-3

(60% RDX, 40% TNT, o

= 1.730 g/cma) is examined by radiographically

observing the motion~of 12.5-um-thick metal foils placed between

slabs of explosive 10 by 10 by 0.635 cm.

The motion of the foils

is observed along the centerline of the explosive-foil sandwich

by a sequence of radiographs over a range of 5 to 10 cm of run.

The final position of each foil as a function of its initial
position and time is sufficient to determine the density, particle
velocity, pressure, and internal energy with no a priori assumption

of the equation of state.

The data demonstrate to a very good

approximation that the flow following the detonation wave is self-

similar.

The density distribution between the detonation front

and the plane wave initiator is determined to within #0.01 g/cm3

and the pressure distribution to within £l kbar.

The Chapman-

Jouguet state is described by & pressure and detonation wave
velocity of 275 th kbar and 7.886 +.008/usec, respectively, which
correspond to a density of 2,32 +.01 g/cm® and a gamma of 2.92 +.05.
Pressure, density, and gamma decrease monotonically from Chapman-
Jouguet values to 132 32 kbar, 1.72 +.01 g/cm®, and 1.69 +.05,

respectively, at the end of the Taylor wave.

These results are

compared with calculations using various calibrated equations of

state.

I. INTRODUCTION

Virtually all our understanding of detonation
phenomena and the state parameters of the detona-
tion products of condensed high explosives has been
derived from and supported inferentially by obser-
vations of detonation wave velocity and the motion
of surfaces of objects, such as metal plates and
cylinders near, or in contact with, the explosive.
By today's standards, the motion of explosive-driv-
en objects can be measured so precisely that errors
of measurement scarcely affect Interpretation of
the observations. Interpretation of the detona-
tion processes by means of these techniques requires
an understanding of detonation wave impact and the

effects of the expanding reaction products on the

driven objects. The apparent circularity of this
argument vanishes if the shock properties of the
driven materials are well understood. This Is now
accepted as the case because of the thoroughness
with which the Hugoniot states of many materials
have been examined. However, this technique of in-
quiring into the mechanisms of detonation is by no
means unique. Other experimentalists are studying
the regions behind a detonation wave to further
understanding of the same events. Some have used
embedded conductors which, when moved in a magnetic
field by the detonation products, induce an elec-
tric signal that is proportional to the velocity of

the conductor; hence, particle velocity is measured.l




Some have employed the older method of flash radi-
ography.

Flash radiography today provides a precise
measurement of the spatial distribution of mass,
density behind strong shocks such as detonation
waves; in this work the density distribution is de-
termined to within +.01 g/cm®. ~ (All £ values quoted
in this report are standard deviations unless other-
wise noted.) A time sequence of these measurements
describes the entire flow field behind a detonation
wave and, therefore, describes directly how objects
are driven, Interpretation of detonation processes
from these observations should complement the inter-
pretations from other techniques. The experimental
variant peculiar to this work is the use of precise-
ly located, radiographically observable, metal foils
embedded as a sandwich within a high explosive
charge. The foils are placed parallel to the plane
detonation wave, The essence of the experiment is
that the foils, acting as identifying tags on "par-
ticles" in the medium, are observed first in their
initial positions and then later when the detona-
tion wave has traveled a distance X. Relative
changes in the foll positions provide a direct mea-
sure of the spatial density distribution. The tem-
poral distribution can also be determined if one
has suitably reproducible high explosive systems so
that a meaningful sequence of shots can be made.

In this case, the particle velocity distribution is
also obtainable as a function of space and time.

The attractiveness of this approach lies in the
fact that the interpretation of the measurements de-
pends only upon the completeness of the conserva-
tion equations and, of course, the ubiquitous errors
of measurements and calculations, assuming the suit-
ability of the data carrying vehicles, i.e., the
foils and the detonation front.

The experiment is described in detail and the
data are tabulated in Sec., II. The final position,
Xps of each foil as a function of the initial posi-
tion, x5 and the detonation front position, X, to-
gether with the detonation velocity as a function
of front position is sufficient to determine the
density, particle velocity, pressure, and internal
energy from the one-dimensional Euler equations
with no a priori assumption of the equation of
state. The appropriate equations are given in Sec.

IITA, To calculate any flow variable, we must

first obtain an analytic description of the data.
We begin by seeking an analytic expression for
xf(xi,x) within the context of the classical model
of detonation, i.e., an instantaneous Chapman-
Jouguets.detonation followed by a centered simple
wave (Taylor wave6). Several analytic expressions
involving only two parameters are found and the
extent of the Taylor wave region is determined.

An expression representative of the mean is select-
ed and the complete flow is calculated. This flow

is taken as a standard and calculations using vari-

" ous calibrated equations of state (the y-law cali-

brated by Deal,7 the BKW-HOM calibrated by Mader,
and the JWL calibrated by Lee, Hornig, and Kuryg)
are compared to it. This work is the topic of
Sec. IIIB.

II. EXPERIMENTAL METHOD

Illustrations of a typical experimentél assem-
bly, represented schematically in Fig. 2.la and
radiographically in Fig. 2.1b, show features ger-
mane to data collection and analysis. The high
explosive specimen, in the form of a right paral-
lelepiped, consists of a sandwich of precisely ma-
chined blocks with a 12,5-um-thick tantalum foil
between adjacent pieces. A plane wave generator
is used to initiate the charge so that the result-
ing detonation wave is parallel to the plane of
each foil,

The basic measurables of this experiIment are
the initial position, Xy of each foil; the final
position, Xe3 the detonation wave velocity, D; the
excursion of the detonation wave, X; and the time,
t. All spatial positions are referred to the ini-
tially undisturbed interface between the plane
wave generator and the specimen.

An observable region of one-dimensional flow
behind the detonation wave is shown in Fig. 2.2.
Within this region the foils remain parallel, as
yet undisturbed by incoming lateral waves at the
time of the radiograph. The position of the fronts
of the incoming lateral rarefaction waves (indi-
cated by kinks in the foils) can be mapped by this
technique.

If, instead of a simple sandwich of parallel
foils, one fabricates an experiment in which the
foil pattern appears as a grid, he could also fol-
low the intersectIons of the grid lattice as "mass
points™ in two- and three-dimensional flow. Indeed,
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Fig. 2.1a, Schematic of typical experimental

assembly.

Fig. 2.1b.

Static radiograph of Shot WW-U435. Wood
cross-piece on top of Iumcite is part of
clamping mechanism that holds high ex-
plosive assembly together.

if one simply superposes the radiographs of Fig. 2.3
he would have the analog of this arrangement for a
two-dimensional case. Development of this tech-
nique for two-dimensional flow is presently under
investigation.

The experimental arrangement employed is de-
picted in Fig. 2.4. A dimensionally small source
of x-rays, of the order of one millimeter in diam-
eter, is used to cast & sharp shadow image of the

object containing the embedded foils upon a

photographic film., Radiation pulse lengths of 0.1
usec with fluxes as low as 25 R, measured at 1 m
from the source, are adequate to produce good con-
trasting images when the source-to-object distance
is 3 m and the object-to-film distance is 0.7 m.

The flash radiographic techniques employed for
these experiments are adequately described in Ref.
i, Since then, the capabIlity of the PHERMEX fa-
cility has been expanded to markedly improve space
and time resolutions,

Fach experimental assembly uses & plane wave
generator to drive a specimen of Composition B-3
(60% RDX, LO% TNT by weight).
nominal 60% RDX component are less than 1.5%. The

Deviations from the

inner element of the plane wave driver is & nominal .
20 cm diam by 8 em long cone-shaped piece of
Baratol. This initiating system is sufficIently
larger in cross section than the specimen charges
that the problem of decay zoneslo is unimportant,
Each plane wave generator, referred to hereafter as
a P-081 driver, is selected from the same produc-
tion lot to minimize variations among units. The
specimen charges are slabs, 10 cm by 10 cm in cross
section. Charge lengths of up to 10 cm are fabri-
cated by stacking the 0.635-cm-thick slabs.

lum foils 12,5 um thick are placed between adjacent

Tanta-

slabs and serve as the "particles" to be observed.
The folls are all taken from the same roll and
their total mass in any assembly is less than 2% of
The slabs
are machined to tolerances of +0.005 cm in paral-
lelism, #0,0125 cm in.thickness, and +0.025 cm in

the total mass of the specimen charges.

other linear dimensions, Individual pieces are
selected and oriented on the basis of both dimen-
sions and parallelism so that tolerance bulld-up
is virtually nonexistent. Selection on the basis
of density (1.730 #0.001 g/em®) is also made. Each
sandwich of high explosive slabs and foils is
clamped against the surface of the plane wave gen-
erator,

Prior to firing, the position of each foil
with respect to the driver-Composition B-3 inter-
face i1s determined by a precision cathetometer,
These positions are compared with those observed on
the static radiograph to provide the value of image
magnification needed for interpreting the corre-
sponding dynemic radiograph. Films are read direct-

ly without subsequent photographic reproductions.



Fig., 2.2, Dynamic radiograph of NW-435.

Fig. 2.3a. Dynemic radiograph of another experi-
ment in which plane of foils is normal
to detonation wave front., Wave has run
almost 100 mm.

Fig. 2.3b. Dynemic radiograph of similar exper-
ment but with plane of folls parallel
to detonation wave front. Wave has run
almost 100 mm.

FILM PROTECTIVE CONE
PLANE WAVE GENERATOR
H.E.
PROTECTIVE
NOSE RADIOGRAPH
SPECIMEN
— 21
| 7
! . _ [ |
l =~ 1
! ¢ BEAM N
TARGET FILM PLANE
L T o 1
304 cm 70cm

Fig. 2.4. Radiographic setup.




Although the procedure of comparing data on
static radiographs with cathetometer measurements
inherently eliminates problems of film shrinkage,
shrinkage 1s measured and found to be about one
part in 10%, considerably less than our reading er-
rors. Because the folls are all parallel, only one
can be aligned simultaneously with the x-ray beam
axis. Although it is possible to observe radio-
graphically angular misalignments as small as 2
mrad, misalignment corrections are insignificant
except for those foils farthest from the beam axis,
The initIal and final foil positions and their
standard deviations are listed in Table 2-I for

ten shots covering a range of 5 to 10 em of run.

Detonation wave velocities are measured using
a method developed by Hayes.ll The arrival times
of the detonation wave at accurately located dis-
continuities, such as the foils, are determined to
within a few nanoseconds. The detonation wave ve-
locity for each shot is found to be constant to
within £.025 mm/usec and the velocity variation
among shots is less than +.040 mm/usec. The deto-
nation velocities and their standard deviations are
listed in Table 2-I1 for nine shots. Each value
represents the average velocity over the range in
which the foil measurements are made. The mean det-
onation velocity (excluding the velocity for shot

MW-432) is 7.886 +.008 mm/usec.

TABIE 2-I. FOIL POSITION DATA
(All distances in millimeters)

Shot NW-L27 Shot WW-L428

Foil No. Xy o Xp (4 Foil No. X o Xp o
1 50.8743 0.0068 58.2258  0.2004 1 50.8038  0.0095 57.4605  0.1955
2 57.2262 0.,0063 6k .3882 0.1323 2 57.1521 0.0080 63.2445 0.1160
3 63.5705 0.0055 70.1641 0.0899 3 63 .4992 0.0093 69.1885 0.0730
L 69.9226 0.0113 75.8652 0.0797 4 69.8615 0.0122 74,7300 0.1064
5 76 .2629 0.0042 81.3592 0.1240 5 76.2091 0.0079 79.9135 0.1207
6 82.6105 0.0071 86.6121 0.0491 6 82 .5682 0.0105 84,9545 0.0720
7 88.9395 0.0072 91.7140 0.0746 7 88.9146 0.0084 89.7665 0.1077
8 95.2769 0.0052 96 . 5462 0.0736 Det wave © 92,5010 0.0865

Det wave 100.8121  0.0722

Shot MW-L39 Shot NW-430

Foil No. x; 4 Xe 4 Foil No. X, o Xa o
1 31.6977 0.0061 38.5099 0.1694 1 25,3662 0.008k 31.7279 0.20%
2 38.038 0.0043 Ly 7809 0.1749 2 31.7231 0.0069 38.1425 0.1061
3 Ly 4033 0.0071 51.0221  0.1621 3 38.0736 0.0064 L4 ,2500  0.1137
L 50,7542 0.00%0 %.9119  0.1167 L L4 k341 0,0076 50,3856 0.1205
5 57.1103 0.0048 62,7889 0.1302 5 50.8163 0.0063 56.3408 0.1183
6 63.42u48 0.0076 68.2060 0.0665 6 57.1798 0.0063 61,9216 0.0923
7 69.7632 0.0034 73.5548 0.0763 7 63.5213 0.00L4 67.2602 0.0878
8 76.1141 0.0040 78.5865 0.0784 8 69.8919 0.0061 ~ 72.3068 0.0599
9 82 4673 0.00%% 83.3569 0.1081 9 76.2395 - 0.0058 77.1217 0.0540

Det wave 86.3013 0.0947 Det wave 79.8317 0.0971




TABIE 2-I.

FOIL POSITION DATA (Continued)
(All distances in millimeters)

Shot NW-L31 Shot NW-L32
Foil No. x4 o Xp o Foil No. 'Xi c Xe o
1 19.0136 0.0039 24,7990 0.2115 1 12.6797 0.00h2 17.9611 0.1383
2 25.36% 0.0055 31.0831 0.1948 2 19.0323 0.0046 24 4520 0.1364
3 31.6932 0.0055  37.4803 0.1984 3 25.3795 0,0069 30.8801 0.1548
I 38.0372 0.004L 43,5858 0.2252 n 31.7359 0.0064 37.0148 0.0646
5 Lh 3845 0.0053 49.5993 0.1485 5 38,0643 0.0053 43,0183 0.0855
6 50,7487 0.0064 sk 830 0.1087 6 L4 4ok7 0,0061 48,8425 0,0780
7 57.1269  0.0080  60.6873  0.1205 7 50.7889  0.0068  54.3893  0.0849
8 63 477l 0.0072  65.8547  0.0925 8 57.1510  0.0060 59.5665  0.0749
9 69.81& 0.0071  70.6586  0.1009 9 63.4b927  0.0077  64.4993 0.0716
Det wave 73.7193 0.0857 Det wave 66.0057 0.1545
This data set is omitted from the analysis on
statistical grounds (see Appendix F). '
Shot NW-LL2 Shot NW-L433
Foil No. Xy ] Xp [} Foil No. Xy -] xf [+
1 6.3715 0.0043 10,9653 0.2245 1 6.3613 0.0057 10,5151 0.198
2 12,7322 0.0039 17.2549 0.1874 2 12.7246 0.0041 16.8435 0.2031
3 19.0825 0.0048 23,8693 0.1716 3 19.0781 0.0062 23.4316 0.1848
I 25.4388 0.0038 30.2k19 0.1801 I 25.4287 0.0072 29,6411 0.151h
5 31,7746 0.0055  36.2763 0.0996 5 31.7807 0.0092 35.6777 0.0860
6 38,1368 0.0045 42,1866 0.1015 6 38.0982 0.0113 k1,3465 0.1599
7 Lk Lg25 0.,004k9 47.7683 0.0857 7 Lh Luhl 0.0082 46.8846 0.1022
8 50.8666 0.0058 52.9973 0.1191 8 50.8176 0.0105 51.9389 0.1226
9 57.2174 0.00L49 57.9901 0.0861 Det wave : 56.0128 0.0878
Det wave 61,0199 0.0127
Shot NW-435
Bhot M-k Foil No. X. c X o
. i f
Foil No. Xy o Xp c 1 6.3390 0.0047 10.5488 0.1740
1 31.653  0.005  35.6361  0.09h1 2 12,6702 0.0073  16.84%  0.1%b
2 37.9622  0.0072 41,2667  0.095% 3 19.03%2  0.0055  22.9796  0.0898
3 44,3197  0.0078  146.6358  0.087h 4 25.3692  0.0039  29.0733  0.1571
" 50.6708 0.0073 51.632k 0.0686 5 31,730 0,004k 34,8788 0.0411
Det wave 54,6107  0.1120 6 38.0555  0.0063  L40.330k  0.0838
7 Lk.3939 0.0055 45,4155  0.1100
Det wave 88,3455 0.0918




TABIE 2-TI. DETONATION WAVE VELOCITIES

Foil Measurement Range (mm)

shot M. “Feglnnlng X D (mm/usec)
27 50.8743 100.8121 .8
28 50.8038 92.5010 7.9093 £.0113
439 31.6977 86.3013 7.9137 £.0021
L30 25.3662 79.8317 7.8787 £.0083
431 19.0136 73.7193 7.888 £.0128
L32 12.6797 66.0057 7.8679 £.0068
Lk2 6.3715 61.0199 7.8971 £.0047
L33 6.3613 56.0128 7.8889 £.0247
L3k 31.6563 Sk 6107 7.8661 £.0102
435 6.3330 48.3455 7.8479 £.0070

Mean Velocity (excluding the velocity for shot MW.L32) = 7.8863 £.0077

"The detonation wave velocity for this shot is cmitted because of
faulty electronics.

III. DATA ANALYSIS

A. Determination of the Flow from the One-
Dimensional Euler Equations

The data listed in Table 2-I can be described
by a function Xp = xf(xi,x) in a given region of an-

alyticity and the detonation velocity can be de-
scribed by D = D(X) (for most purposes we take D as
constant at 7.886 mm/usec). Given this information,
then the density, particle velocity, pressure, and
internal energy can be determined from the one-di-
mensional Euler equations. The density, p, is de-

termined from the conservation of mass as

Bxf -1
p(xi,X) = Py 3;; s
X

where o is the density of the unreacted explosive,
Notice that the density can be calculated from the

(3.1)

data of a single shot, whereas the calculation of
any other flow variable requires data from several
shots because time derivatives along particle paths

are involved.

Bxf

u(xi,x) = 1)(33{_)x . (3.2)
i

The pressure, p, is determined from the conserva-

tion of momentum

The particle velocity, u, is given by

gﬁi - -pong; ’ (3.3)

and the internal energy, E, from the conservation

of energy
g% = pp 2 §§ . (3.1)

The initial conditions for the integration of Eqs.
(3.3) and (3.4) are obtained from the Rankine-
Hugoniot equations as
AP(X) =Py Dud ,
E(x,) = E, + &°/2 ,

(3.5)
(3.6)

where 4 = u(xi = X, X) and the pressure and particle
velocity of the unreacted explosive are taken as
zZero,

The physical interpretation of
the resolution of the data. If the

cient to resolve the reaction zone,

P depends upon
data are suffi-
P corresponds
12,13 On the
too thin to be
is assumed, P
The physi-
cal interpretation of E is similar to the interpre-

to the von Neumann “"spike'" pressure.
other hand, if the reaction zone is
resolved and instantaneous reaction

corresponds to the detonation pressure.

tation of P.

If the explosive products are in chemical equi-
librium, the isentropic sound speed, c, can be cal-
culated as

Py 1

o

o - (B, (8
T

X,
1

(3.7)

The type of detonation (strong, Chapman-Jouguet, or
weak) can, in general, be determined by comparing
(u+c) with D.

assume instantaneous reaction followed by a centered

However, if D 1s constant and we

simple wave, then a Chapman-Jouguet detonation is
automatically obtained if we attach the unsteady
rarefaction to the detonation front. Moreover, a
weak detonation is produced when a region of con-
stant state is placed between the detonation front
and the unsteady rarefaction. Strong detonations
cannot exist under these assumptions; hence, the
type of detonation (Chapman-Jouguet or weak) simply
depends upon the range of data that are fitted with
the unsteady rarefaction. Similar difficulties
arise if we assume a steady reaction zone instead
of instantaneous reaction.

To carry out the -analysis, we must determine
analytic expressions for xf(xi,x) and D(X). The

classical theory of detonation provides the simplest




reasonable forms for Xp and D and is taken as the
starting point.
B. Chapman-Jouguet/Taylor Wave Model

The classical theory of detonation consists

of an instantaneous Chapman-Jouguet detonation fol-
lowed by & centered simple wave (Taylor wave). The
theory contains the following physical assumptions:
(1) constant detonation velocity, (2) instantaneous
reaction to a sonic state relative to the detona-
tion front, and (3) self-similar flow following the
detonation wave. Each of these assumptions, exclud-
ing the Chapman-Jouguet hypothesis, is checked with
the data.

1. Test of the Physical Assumptions. As
shown in Sec. II, the measured detonation velocity
is constant within £.025 mm/usec in any one shot.

Hence, we take D as constant and use the mean value
of 7.886 mm/usec to represent all the data. This
mean value deviates less than +.040 mm/usec from
the detonation velocity of any one shot.

With regard to the second assumption, neither
the radiographs nor the plotted data show any indi-
cation of a finite reaction zone. The fact that
the plotted data show no indication is not surpris-
ing, since the closest foil to the detonation front
is about 2 mm behind it. Earlier measurements of
13 indicate that it 1Is prob-

ably an order of magnitude smaller. Hence, for pre-

reaction zone thickness

sent purposes, we assume instantaneous reaction.
With this assumption and the constancy of D, the
sonic nature of the flow cannot be checked with
only these data., Thus, we assume the Chapman-
Jouguet hypothesis which attaches the Taylor wave
to the detonation front. The possibility of a weak
detonation is discussed In Sec. IV.

To check the assumption of (geometric) self-
similarity, we plot y vs Y where

y = xf/x , (3.8)

Y=x/X , (3-9)
and X is the distance of run associated with each
shot. The y, Y values and their respective stand-
ard deviations are listed in Appendix A. The plot-
ted values are shown in Fig. 3.1. The data points
should lie along & single curve if the flow is geo-
metrically similar. This is very nearly the case
for most data points. For small values of Y, there
is some spread in the data. This is to be expected,
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Fig. 3.1. Final foil position, x,, vs initial foil
position, x,, both div{ded by the posi-
tion, X, of the detonation front at the
time of measurement of x_,. The points

are the experimental data, the curve a
fit.

however, because the flow in this region is gov-
erned primarily by the transmitted rarefaction
from the P-081 driver, which is not a geometrically
similar flow,

Since the data occupy two regions of analytic-
ity, we cannot hope to describe all the data with
a single analytic expression. The two regions are
Jjoined by & characteristic curve across which the
first derivative of the flow variables has a finite
jump. We denote this characteristic by YT and
refer to it as the terminal characteristic of the
Taylor wave, Within the Taylor wave region, the
partial differential equations, Egs. (3.1) to (3.7),
are replaced by the following set or ordinary dif-
ferential equations, Given y(Y) and D = constant

we have
s(M /o, = b, (3.10)
(N/p =¥/ ) (3.11)
W/ =y-c/p , (3.12)
p'(V)/p 0% = (¢/D)3(p/p )" (5.13)
v =c*p/p , (3.14)
E'(Y)/D® = (p/0 %) (0/p ) 2(0/p) " » (3.15)
where the constants of integration are
B/op® =4/ , (3.16)




E/D? = 1«:()/1)a + (/)32 . (3.17)

Here, (") means a quantity evaluated at Y = 1 (the
Chapman-Jouguet point).

In the region following the Taylor wave, the
flow is most probably influenced by the transmitted
rarefaction from the P-081 driver. However, there
is only a slight spread in the data and, moreover,
the data lie very nearly along a straight line.
Hence, for computational ease, we approximate this
The effect of this
approximation on the determination of Y, and hence

T
the calculated flow in the Taylor wave is discussed

region by a constant state.

below.
2. Location of the Terminal Characteristic of
the Taylor Wave. The terminal characteristic, YT’

of the Taylor wave is located by trial and error.
We guess & value of YT and fit the data in the
Taylor wave region with some form

Yy = v(¥ 5 8) (3.18)
while the data in the trailing constant state are
fitted with

Yy = 0¥ + b, (3.19)

where &, and bn are adjustable parameters, We seek
to match the density at the end of the Taylor wave,
calculated from Eq. (3.10), with the density in
the constant state, which is simply po/bl.

A preliminary investigation of fitting forms,
yU, indTcates that only two parameters are needed
to describe the data accurately (see Appendix B).
In an effort to remove fitting form blas in the
calculation of YT, nine fitting forms are used
(each fits the data equally well) and the mean den-
sity at the end of the Taylor wave is compared with
Each of the
nine fitting forms is chosen a priorl to pass
through the point Y = 1, y = 1. This is done be-

cause the unreacted explosive is stationary (uo = 0).

the density in the constant state.

A curve passing above the point 1,1 indicates for-
ward motion of the unreacted explosive whereas a

curve passing below indicates backward motion. The
results for three guesses at YT are given in Table
3-TI.
in Appendix B.

The fitting form mumbers refer to equations

The value Y, = O.hsk is selected as the termi-
nal characteristic. To obtain continuity of y and

p at Y., we select fitting form (B7a) (see Sec. 3

TABLE 3.I. COMPARISON OF THE COMPRESSION (p/p ) AT THE END
OF THE TAYLOR WAVE WITH THE COMPRESSION IN THE
TRAILING CONSTANT STATE.

The compression at the end of the Taylor wave is calculated
from EQ. (3.10) for the fitting forms given by Egs. (Bla) to
(B8a) and (B9). The compression in the constant state is
calculated from & linear fit to the remaining data.

Position of the Terminal Characteristic, Yp

U068 B.4769 [JR3:7]
Fitting Porm Compression p/po
Bla 1.0282 1.0150 0.9991
Ba 1.0095 0.9936 0.9737
B3a 1,0334 1.0185 1.0042
Bea 1.0518 1.0398 1.0281
B5& 1.0038 0.9871 0.965%9
B6a 1.0149 1.0006 0.9821
B7a (rer.) 1.0272 1.0122 0.9967
BBa 1.0356 1.0221 1.0079
B9 1.0433 1.0309 1.0179
Mean 1.0275 +,005 1.0133 £.0057 0.9973 +.0068
Linear Fit 1.0030 +.0072 0.9993 .0075 0.9983 +.0082

below) which is representative of the mean and re-
quire
(3.20)

- 4 -
yp=vgl (C-Yp +yy

Y, Y,

T T
This changes bl from 1,0017 to 1.0033 and b2 from
0.078036 to 0.074254 and increases the standard de-
viation of the fit, defined In Eq. (3.28), in the
constant state from 0.0038 to 0.0049.
son, the standard deviations of the data points in
the constant state range from 0,0015 to 0.0037 (see
Appendix A).

It is found after the fact that the location
of the terminal characteristic has very little ef-
fect upon the calculation of the flow in the Taylor

wave,

For compari-

The mean Chapman-Jouguet pressure, for ex-
ample, varies by less than 3 kbar for YT between
0.430 and 0.515.

constant state approximation to the transmitted

Consequently, the accuracy of the

rarefaction from the driver is unimportant for this

purpose,

3. Calculation of the Complete Flow. Fitting
form (B7a) has the form
-1 AY + B
Yy=1+A (’m(m) , (3.21)

where A = 0.63388 and B = 0.70890., The implied flow
calculated from Egs. (3.10) to (3.17) is




o/p, = AY + B , (3.22)

/D = Y(o,/p) (3.23)

u/D = ¥y - e/, (3.24)

p/pD® = 1 - A2 [p(1 - p B/p)% + 2(5 - 0)]/o,

+ 2BA™2 on (§/p) (3.25)

y=c%/p , (3.26)

(E - E)/D® = (G/2D)2+ (o - 8)(o /b - 2472)/p

+ (B/28)% (3® - 0®)/pp

+ A2 (1 +2Bp [p) tn (0/3) . (3.27)

The flow in the Taylor wave region (Y = 0.hsh)
is calculated from Eq. (3.21) and the flow behInd
the Taylor wave is calculated from Eq. (3.20). An
X,t plot of the calculated flow with the data super-
imposed is shown in Fig. 3.2. The detonation front,
tail characteristic of the Taylor wave, and the
piston path are shown. The calculated particle
paths are shown as solid lines in the Taylor wave
region and as dashed lines in the region of con-
stant state. In the Taylor wave region, the agree-
ment appears to be very good. The approximation of
the transmitted rarefaction from the P-081 driver
by a constant state appears to do quite well. Fig-
ures showing y(Y), ay(Y), u(Y)/p, <(Y)/D, p(Y)/po,
p(Y)/p°D2, p(Y) in megsbars, (E(Y)-Eo)/Dz, v(Y),
w(y)/D, c(¥)/D, 0(¥)/pgs p(¥)/p 0% tn (p/p D7) vs
on (o/0.)> p(p/0,)/p 0% ¥(p/o,)s end a typical
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$ 10 P! 1
1 0 b NATION
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y° B e |
1
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Lo 8 1 |’ - - —
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y Pe275 kbor 3
7 p-2.32 g/cm -
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6
[+]

40 80
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Calculated particle paths with the data
points superimposed. The calculated
curves and values come from a two-parame
eter fit to the data [(Eq. (3.21)].
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negative characteristic are contained in Appendix

D together with the tabulated values.
4, Error Analysis. An appropriate quantity

to compare with the standard deviations of the data

points listed in Appendix A is the standard devia-

tion of the fit

n 3
SDF(n,N) = [rn'lm ZlI (Ay)"’] , (3.28)

where n is the number of data points being fitted,
N is the number of adjustable parameters in the

' fitting form, and Ay is the difference between the

data and calculated values.
region, SDF(53,2) = 0.0017 when Yo = 0.45h and we
use fitting form (B7a) [Eq. (3.21)]. The standard
deviations of the data points in the Taylor wave re-
gion range from 0.0008 to 0.0031.
The standard deviations of the flow variables

are calculated from the standard deviations of the

parameters, o(A) and o(B), and the standard devia-

tion of the mean detonation velocity, o(D). The

In the Taylor wave

details of the calculation are given in Appendix E.
In estimating the total standard deviation of any
flow variable, we also include the standard devia-
tion of the mean for the 11 different fitting forms,
Eqs. (Bla to B8a), (B9), (B10), and (Bll), listed
In Table 3-II we list the campo-
nents of the total standard deviation of each flow

in Appendix B.

variable as
1. R’ standard deviation arising from o(A)
and c(B) alone,
2. %
alone,

, standard deviation arising rrom o(D)

3. Opps standard deviation of the mean for
eleven fitting forms, and
4, o, total standard deviation.
The values are listed at the detonation front and
at the end of the Taylor wave, because the errors
The total standard
deviation is obtained by combining the component

are largest at these extremes.

errors a8 independent, i.e.,
o= (opp + 0p * 5% .

We are unable to arrive at any useful estimate of

the systematic errors.

5. Comparison with Other Work. Several flow
variables calculated for various calibrated isen-

tropes (y-law, BKW-HOM, and JWL) using the classical




TABLE 3.II. FILOW VARIABLES

Calculated with the classical model using Eq. (3.21).-and
their estimated standard deviations at the detonation
front and the end of the Taylor wave.

8tandard Deviation
Flow

Variable Value %8 2y Oprp ]
s 2.32 gfen® 0,010 - 0.007 0.012
2 5.87 mm/usec 0.024  0.006 0.017 0.030
4 2.01 mm/usec 0.024  0.002 0.017 0.029
P 275 kbar 3.2 0.6 2,3 4,0
¥ 2.92 0.043 . 0,032 0.05%
oY) 1.72 g/em® 0.009 . 0.011 0.014
c(YT) 3.5 mm/psec 0.018  0.003 0,024 0.030
u(YT) 0.586 mm/usec 0.024  0.001 0,026 0.035
p(‘[,r) 132 kbar 1.8 0.3 1.8 2.5
y(yT) 1.69 0.029 . 0.035 0.046

Chapman-Jouguet detonation model with a constant
velocity driver-Composition B-3 interface as des-
cribed sabove are compared with the corresponding
variables calculated in this work. The form of
each isentrope is as follows:

y-law isentrope:7

P = ﬁ(p/ﬁ)y » b= poDZ/(Y+l) s

b= (v )/ (3.29)
BKW-HOM isentrope:8

Inp=a +a8,0nv+ ) @n v)2
+ ah(ﬂm v)2 + ag n v)* ,

v=1/p , (3.30)

JWL isentrope:9
8V a.v
p=a; Va2 + 33 e 4 + as e 6 ,
V=op/p . (3.31)

For uniformity, we adjust the Chapman-Jouguet pres-
sure, P, for each isentrope to be 0.292 Mpar when

D = 0.7886 cm/usec and po = 1.730 g/cm®. This val-
ue of Chapman-Jouguet pressure has been measured by
Deallu for Composition B having an RDX/TNT content

of 64/36 wt % and an initial density of 1.713 g/cm®.
The correction of this value to our Composition B-3
Is negligible. For the y-law isentrope, this im-
plies y = 2.6848, For the BKW-HOM and JWL isen-

tropes, we adjust two parameters in each to satisfy

the following relations which hold at the Chapman-
Jouguet point.

(7 5 8)

(3.32)

p°D2 (1- 0F-‘o) ’

(3.33)

Given = 0.292 Mpar and ¥ = (1 - ﬁ/pobz)/po, we
solve Egs. (3.32) and (3.33) for a, and a, in the
case of BKW-HOM and for 8y and 33
JWL. Equations (3.32) and (3.33) are identically
satisfied by the y-law isentrope as given by Eq.
(3.29).

The calibrated parameters for the three isen-
tropes are listed in Table 3-III.

® (o
L(V58) =-p0%.

in the case of

These parameters,
we believe, represent the most current values. For
each isentrope, the standard deviation of the fit
is also given for comparison with the value 0.0017
obtained with Eq. (3.21).

theses result from a least-squares fit to the data.

The quantities in paren-

By allowing two free parameters in the BKW-HOM

(ae, aj) and JWL (aj, au) forms, we can accurately
describe the data; thus, neither form is preferable
in this regard. In fact, in Appendix B these forms
are shown to be statistically equivalent to nine

other two-parameter forms. The third parameter (al

TABIE 3-III. PARAMETER VAIUES FOR THE vy-LAW,
BKW-HOM, AND JWL ISENTROFES.
Isentrope
Parameter y-Law BKW-HOM JWL
Y 2.6848 -- --
(2.5980)
a; - -3.4160 0.012095
(-2.4892) (0.092815)
a, - -2.3316 -1.34
(0.26037)
as -- 0.25961 5.0996
(2.0275) (43.074)
a, - 0.028355 -b.2
(-8.1024)
ag - -0,012436 0.076783
a6 - - -1l.1
SDF(53,0) 0.0039 0.0034 0.0076
SDF(53,1) (0.0036) - -
SDF(53,2) - (0.0018) (0.0018)

Parameter values correspond to p(Mbars) and v(cm3/g).
The values In parentheses correspond to a fit to
the data.
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in each case) that changes is dependent upon the

two free parameters and is determined along with
the value of ¥ by simultaneous solution of Egs.
(3.32) and (3.33). Although the single-parameter
vy-law form does remarkably well, it is clear that

a single parameter does not provide an accurate des-
cription of the data.

The upper left-hand frame of Fig. 3.3 shows
four curves which represent differences in y rela-
tive to the values calculated with Eq. (3.21). The
sawtooth curve represents differences with the ac-
tual data points. The three dotted curves repre-
sent differences between the calibrated isentropes
and Eq. (3.21). Toward the end of the Taylor wave,
all the calibrated isentropes yield values of y
considersbly below the data points. In the remain-
ing five frames we show comparisIons of p(y), o(¥),
p(v), p(u), and y(p) calculated from the calibrated
isentropes and Eq. (3-21).

IV. DISCUSSION OF RESULTS
The results obtained from the analysis of the

embedded foil data are summarized In Table L-TI.

The Chapman-Jouguet pressure of 275 iU kbar has
been compared with other values obtained by differ-
ent measurement techniques (see Ref. 16). Values
ranging from < 268 16 to 312 15 kbar are cited.

The lowest value is obtained with a new x-ray tech-
niq}le,16 and the higher values (292 and 312) are
inferred from measurements of the free surface ve-
locity of driven inert plates., No satisfactory ex-
planation for the large range of values is present-
ed and there appears to be no reason to choose one

"correct” in preference to the others.

value as
The  results presented in Teble 4-I have been
obtained within the context of the classical model
of detonation. It is important to realize, however,
that other models which involve different physical

assumptions exist and describe the data equally

well. Morevver, the results obtalned are generally

different than those reported for the classical
model, although, in the two alternate models we
consider below, the differences are not statisti-
cally significant,

Observations of gas detonations showl7’18
that the flow immediately behind the front, while
not one-dimensional in the small, is on the average
supersonic with Mach number 1.10 to 1.15. Further-

more, mechanisms for steady reaction zone solutions

which terminate in a weak state have been de-
scribed.lg’20
taneous reaction and a trailing self-similar flow

Hence, a weak detonation with instan-

is investigated as an alternate model for the data.
A week detonation is produced if we separate the
rarefaction wave from the detonation front by a
small region of constant state. The detonation
Mach number, M, is related to the size of the con-
stant state region, &y, by

M= 1+ Dsyfé . (4.1)
Here, & is the acoustic velocity in the constant
state. Mach numbers ranging from 1.0 (Chapmen-
Jouguet detonation) to 1.15 are investigated. The
results are given in Table 4-II. For Mach number
1.03, the density at the front is decreased by 1%
and the pressure by 3% of the Chapman-Jouguet val-
ues and the SDF (52,2) increases by 0.03%. The
constant state region which has 6y = 0.02 contains
no foils., For Mach number 1.15, the density and
pressure are decreased by 44 and 12%, respectively,
and the SDF (52,2) is increased by 13%. In this
case, the constant state region has §y = 0.10 and
contains 13 foils, We conclude that the data are
also well described by a weak detonation with Mach
number a few percent greater than unity. However,
It is unlikely that we have a Mach number as large
as 1l.15.

We turn our attention now to the possibIlity
of a slightly time-dependent detonation as another
possible model for the data. .Slight time dependence
would not be detectable in the plot of y vs Y (Fig.
3.1), because the data sets are not distinguished.
To investigate this question, we make use of the
fact that the density can be calculated from the
data of a single shot using only conservation of
mass, Eq. (3.1). Also, the pressure at the front
can be calculated from the density using the Rankine-
Hugoniot equations if we assume Instantaneous reac-
tion.,

For each shot we fit the data points that 1lie
in the range O.454 < xi/x < 1 with the form

-1 (Axi/x + B)

Xp = X+ XA " on —X B

This fitting form, although equivalent to Eq. (3.21),

does not invoke the assumption of self-similar flow

(4.2)

because the values of A and B are free to change

from one shot to the next. The values of A, B, b,

D



TABIE 4-I. SUMMARY OF RESULTS OBTAINED FOR COMPOSITION B-3
(60% RDX, LO% INT, p_ = 1.730 g/en®).

Fit: y:xf/x s Yxxi/x , X=Dt ,

-1 A
y=1+A %(W

) , A=0.63388 £,020 , B = 0.70890 +.,015

D = 7.886 +£.008 mn/usec .

Calculated Flow:

o/p,=AY+B , c/D=Yp [o , up=y-c/D

p/o D = 1 - A2((p/p ) (1-p B/p)® + 2(P-p) /0 ] + 2BA™2 tn (B/p)

y = c®p/p
Chapman-Jouguet State: p=2.32 +,01 gfem® , &= 5.87 +.03 mm/usec ,

4 = 2.01 £.03 mnfusec , B = 275 +4 kbar, vy = 2.92 .05
Constant State: p=1.72 £.01 gfem® , ¢ = 3.59 .03 mm/usec

u = 0,586 +.04 mmfusec , p = 132 #5 kbar , vy = 1.69 +.05

TABIE 4-II. DENSITY, PRESSURE, AND PERCENTAGE IN-
CREASE IN THE STANDARD DEVIATION OF
THE FIT FOR INCREASING VALUES OF THE
MACH NUMEER.,

The data in the rarefaction wave, 0.554 £ y s 1 -
8y, are fitted with y = (YB - 1)/AB + 1. The data
in the constant state, 1 - 6y £ y £ 1 are fitted
by & linear extension through the point 1,1,

% Increase

M 8y f(g/cm®) P(kbar) in SDF(52,2)
1.00 0.00 2.308 269.4 -
1.01 0.01 2.296 265.3 0.005
1.03 0.0 2,285 261.5 0.034
1.15 0.10 2.219 237.1 13.148

and p obtained for each shot are listed in Table
Y_III. In Fig. 4.1, p and P are plotted as func-
tions of the distance of run. The constant values
obtained with the classical model, Eg. (3.21), are
shown for reference. A linear fit to A(X) and
P(X) reveals a slight upward trend. The density
increases from 2.306 to 2.340 g/cm? and the pres-
sure increases from 267.4 to 281.9 kbar.

In view of this, a slightly time-dependent
detonation model is considered. This model which
assumes only instantaneous reaction (the Chapman-
Jouguet hypothesis and self-similar flow are not
assumed) is also found to provide an accurate de-
scription of the data. The data are fitted with

1k

xf(xi,x) given by
X B X
f—.ll_(.ﬁ[A(xi_) +(1-A-B)(x£):| , (4.3)

aX+a, , (&.1)

al
|

>
]

B=aX+a, . (k.5)

This fitting form, which has two independent vari-
ables (xi,X) and four parameters (al through ah),

is analytically equivalent to Eq. (B3a) when A and
B are constants. The standard deviation of the fit,
SDF(53,4), is actually 1.4% larger than SDF(53,2)
obtained with Eq. (B3a). (The reduction of 2 in
the degrees of freedom has offset the slight reduc-
tion in the sum of the squares of the deviations.)

The parameter values obtained from the least-squares

fit are
a, = 0.20393 x 1072 £.189 x 1072 , (4.68)
8, = 0.24378 £.016 , (4.6b)
8y = 0.43413 x 1072 z.302 x 1072 , (4.6¢)
g, = 1.1917 £.2% . (k.64)

The flow is calculated from Egs. (3.1) to
(3.6) using Egs. (4.3) to (4.6) with D = 7.886 mm/
usec (strictly speaking, D must be increasing very
slightly, sbout 0.1%, but this would have a negli-
gible effect on the calculation). The results show




TABLE U~III. PARAMETERS A AND B, DENSITY, AND PRESSURE AT THE
DETONATION FRONT OBTAINED BY FITTING EACH DATA SET
INDIVIDUALLY WITH EQ. (4.2) OVER THE RANGE
0.5k < xi/x < 1.

Shot Data Points

. Fit X A B p(g/en®)  B(kvar)
et 8 100.8121  0.6W62  0.69l@3  2.319 273.2
428 7 92.5010  0.72794  0.63131 2,3%R  286.0
L3g 7 86,3013  0.67309  0.68397 2.348  285.1
L30 7 79.8317 0.70617 0.66111 2.365 288.5
431 6 73.7193  0.55019  0.7723%2  2.288 262.6
W2 5 61.0199  0.53676  0.77974 2.278 2%9.4
433 5 56.0128 0.54198 0.77151 2.272 256.8
L3y Y sk.6107  0.64109  0.70812  2.334  277.1
435 L 48,3455  0.6%80  0.70025 2.341  278.0
Classical Model: 0.63388  0.70890 2.323  T4L.7
T T T T T T
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Fig. 4.1. Density and pressure at the detonation

front calculated by fitting the foil

data for individual shots with Eq. (4.2).
that the detonation pressure increases by sbout 12
kbar over the 52 mm of run. The average pressure
is the same as the Chapman-Jouguet pressure (278.5
kbar) calculated from Eq. (B3a) with A and B con-
stant.

Statistically, this slight increase is not
significantly different than zero. Recall that the
Chapman-Jouguet pressure varied from 267 to 291
kbar for the classical model when different fitting

forms were used (see Appendix B). Furthermore, in

the neighborhood of the Chapman-Jouguet point on any
reasonable Hugoniot curve this pressure rise of 12
kbar could result from a very slight, about 0.1%,
increase in D, which is well within its measurement

error,
If we pursue this model further, to the point

of calculating the detonation Mach number, we find
a Mach number 1.03 at 48 cm of run which increases
to 1.05 at 100 mm,.

dicates that the detonation is getting weaker as it

This increasing Mach number in-

propagates, whereas the increasing front pressure
indicates the opposite. This contradiction may in-

dicate a failure of our assumption of instantaneous - -
reaction, However, it may be possible to remove
the contradiction (i.e., obtain a decreasing Mach
number) through a constrained least-squares fit.
The Mach number will decrease if we require the pa-

rameters to satisfy the inequality

w m-Ym (&.7)
where
. Bxf
WX) = D g (4.8)
-1
. P 32xf 32xf
&(x) = N [; D? - 2p? = X%,
1
3®x, \t 2
~ dD
- 34 ﬁ (rai‘> . (’4.9)
i

The partial derivatives are evaluated at Xy = X.

This constralned fit has not been attempted.

Mader15

a different model,

has performed a calculation with still
Mader considered a system of

10.2 cm of Baratol (pCJ = 137 kbar, D = 4.87 mm/usec,
P, = 2.60 g/cm®) and 10.2 cm of Composition B-3

(pCJ = 300 kbar, D = 7.98 mm/usec, Py = 1.73 g/em®).
In his time-dependent calculation with the BKW-HOM
equation of state, the Baratol-Composition B-3 inter-
face decelerates from an initial velocity of about
0.90 mm/usec down to about 0.0l mm/usec while the
The result of this
interface motIon is to place the end of the Taylor

detonation wave travels 10 cm.

wave at about Y = 0.62 with non-self-similar flow
for Y < 0.62.
Y < 0.62 should occupy an area in the Y,y plane

This Inmplies that the data points for

15




(recall Fig. 3.1).

case.

This does not appear to be the
However, the calculation indicates that the
The meximum half-width

would be about 0.004 measured normal to the curve

area would be very narrow.

shown in Fig. 3.1 and would occur at about Y = 0.25.
Most probably, such a narrow region could not be
statistically distinguished from a curve because
the standard deviations in the data are nearly this
size for many points.

In the course of the experimental work des-
ecribed herein, an x,t measurement of the P-081/
Composition B-3 interface was made, The measure-
ment indicates that the interface velocity is near-
ly constant at 0.52 mm/usec over the range from 2
Without

reference to this result, we obtained from the foil

to 8 cm of run of the detonation front.

data analysis a constant state with velocity of

0.59 mu/usec and pressure of 132 kbar adjacent to
the interface.
sure from the P-081 driver is about 103 kbar, which

is about 35 kbar lower than the detonation pressure

This state implies the impact pres-

for a slab of Baratol. The impact pressure for the
P-081 may very well be less than its detonation
pressure because of the inherent multidimensional
effects known to be present in the P-081. A quan-
titative study of the P-081 is planned using the
embedded foil technique.

As the final topic we consider the following
question. What systematic displacement of the
final foil positions would be sufficient to produce
8 Chapman-Jouguet pressure of 312 kbar (the largest
experimental value reported in Ref. 16)? To inves-
tigate this question we take the fitting form given
by Eq. (B3a), i.e.,

8
u/D = a,Y 2 s

and fix al 50 as to yield the desired pressure of
312 kbar at Y = 1. The data are then fitted with
parameter a8, adjustable. The differences between
the present data points and the calculated curve

which represents the required systematic displace-
ments are shown in Fig. 4.2. In general, the foils
at the beginning of the Taylor wave would have to

be moved forward and the foils near the end of the
Taylor wave would have to be moved backwards. This
would imply a density higher than we calculate with
the classical model in the front and lower in the

rear. For a detonation wave that has traveled

16
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Fig. 4.2, Systematic displacement of final foil

positions which is sufficient to produce
a Chapman-Jouguet pressure of 312 kbar.

100 mm, the largest forward displacement would be
about 0.3 mm and the largest backward displacement
about 0.35 mm. These displacements are two to three
times as large as the standard deviation of the

reasurements.

V. CONCLUSIONS

The initial and final foil positions recorded
at nine discrete positions of the detonation front
ranging from 48 to 101 mm are shown to scale with
the detonation front position for a considerable
distance (about 50% of the distance of run) behind
the front . The detonation wave velocity is found
to be 7.886 +£.008 mm/usec over the range of inter-
est and the "reaction zone" appears to be very thin.
The data are accurately described within the con-
text of the classical Chapman-Jouguet/Taylor wave
model. The results of analyses show that the
Chapman-Jouguet state for Composition B-3 (60% RDX,
40o% TNT, initIal density 1.730 g/cm®) is described
by: P =275 4 kbar, p = 2.32 £.01 g/em®, 4 = 2.01
+.03 mm/usec, and Q = 2,92 £,05. The flow follow-
ing the Taylor wave is found to be very nearly a
p = 132 £3 kbar,
1.72 +.01 g/em®,u = 0.586 +.04 mm/usec, and
1.69 +.05.
The data can also be described, equally well,

constant state described by:

p
Y

]

]

by a weak detonation with Mach number a few percent
greater than unity. For a Mach number 1.03, the
detonation pressure is about 97% of the Chapman-




Jouguet value. A slightly time-dependent detona-
tion can also be used to describe the data. With
this model, the detonation pressure is found to in-
crease by 12 kbar over the range from 48 to 101 mm.
The mean pressure is the Chapman-Jouguet value,
Neither of these models yields results that are
statistically different than those obtained with
the classical model.

When the flow is calculated from various cali-
7 wa.nom,8 and JWL?) using
the classIcal model with a constant velocity driver-

brated isentropes (y-law,

Composition B-3 Interface, none of the isentropes
accurately describes the initial and final position
data.
range from 0.0008 to 0.0031, whereas the standard
deviation of the fit with the calibrated isentropes
is 0.0039, 0.0034, and 0.0076, respectively. For
comparison, the two-parameter least-squares fit
with Eq. (3.21) gives 0.0017.
are adjusted in either the BKW-HOM or the JWL form,

The standard deviations of the data points

If two parameters

then they describe the data as well as does Eq.
(3.21). Thus, neither form is preferable for fit-
ting the data.

In assessing any of these results, we must
bear in mind that the effects of the foils are not
fully known at present. Measurement of the detona-
tion velocity on a system identical to that used
here but without foils gives a velocity of 7.915 mm/
usec, which is 0.49 higher than the velocity of
7.886 mm/usec measured with foils. Reference 16
describes experiments which compare the free surface
velocities of driven plates for explosive systems
with and without foils. The free surface velocity
is found to be 3.60 mm/usec with foils and 3.66 mm/
wsec without foils. The inferred Chapman-Jouguet
pressures are 312 %5 and 317 %8 kbar, respectively.
It 1s concluded that the folls do not seriously
affect the velocity of a driven pla'ce.l6 Further
experiments are planned to compare both the density
distribution and the detonation state with and with-
out foils.
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APPENDIX A.

CALCULATED VAIUES OF Y, y, AND

ASSOCTATED STANDARD DEVIATIONS

The values of Y and y are calculated from Egs.
(3.8) and (3.9).

y are calculated as

The standard deviations in Y and

oj—

]

o(9) = X [o(x)? + ¥2 o7 (A1)

i

o) = X [olx? + v 007, (12)

respectively, where c(xi), c(xf), and o(X) are the
standard deviations in Xy Xpy and X, respectively,
as listed in Table 2-I. Equations (Al) and (A2)
assume that xi, X and Xps X, respectively, are
stochastically independent variables so that the
associated covariances vanish. The values of Y,
¥, and the associated standard deviations are des-
ignated as YI, YF, and STD. DEV., respectively, in
the following listings.
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YI1,YF VALUES AND STANDARD DEVIATIONS

Yl

¢50464478
56765210

063058403
069359333

0 75648558

.81945024
.88223041

,94509389

DETONATION FRONT

YIsYF VALUES AND

Yl

54922433
.61785386
,68647042
. 75525129
,82387326
,89261954
,96122853

DETONATION FRONT

STDe DEV.

«00036766
+00041132
+00045490
«00050923
+00054338
«00059109
.00063586

000067882

YF

«ST756757
¢63869516

+69598887
«752564062
80703804
85914389
«90975190
«95768464

1400000000

FOR DATA SET NW=427

STDe DEVe

000203044
,00138978

000102161
«00095681
+00135904
.00078474
«00098595
+00100171
000101284

STANDARD DEVIATIONS FOR DATA SET NW=428

STDe DEV.

«00052376
+00058421
«00064976
.00071846
«00077514
.00084239
000090344

YF

062118788
68371693
e 74797570
«80788316
+86392039
091841710
097043816

100000000

STDe DEVe

400219187
000140762
«00105453
+00137617
000153470
400115908
.00147619
000132247



YI,YF VALUES AND STANDARD DEVIATIONS FOR DATA SET NW=439

Yl

36729111
«44076045S
51451485
«58810470
«6617548]
. 713492288
.80836789
88195775

«95557425

DETONATION FRONT

YI,YF VALUES AND

Y1

031774596
«39737473
047692333
.55659719
.63654288
.71625432
.79569018
.87549056
+95500284

DETONATION FRONT

STD. DEV.

¢00040919
00048621
¢00057055
¢00064793
«00072828

«00081124

°00088791

00096890

¢00105058

YF

046622619
«51889021
¢5912089¢
«65945588
«72755451
¢79032413
«85230234
¢91060621
«96588232

100000000

STDe. DEV.

«00202304
«00210509
«00198718
+00153369
«00170688
+00116011
«00128699
«00135045
000164083

000155184

STANDARD DEVIATIONS FOR DATA SET NWe=430

STD. DEV.

©00040054
000049100
00058560
000068365
00077824
e00087475
00096937
«00106760
000116385

YF

039743485
047778639
55429109
063114778
¢ 70574471
¢ 77565178
084252496
090574045
096605359

100000000

STDe DEV.

+00262039
«00145055
«00157576
000169342
000171254
000149225
«00150324
«00133291
«00135581

000172012
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YI,YF VALUES AND STANDARD DEVIATIONS

Yl

025791889
34411884
42991727
e51597343
«60207436
068840453
0 7749246])
+86106895

«94708170

DETONATION FRONT

YI,.YF VALUES AND

YI

+19210008
28834328
,38450467
+48080545
,57668201
«67304339
,76946233
,86584946

096192753

DETONATION FRONT

STD. DEVe

000030447
¢00040694
«00050532
«00060279
«00070360
«00080498
«00090738
«00100576

000110520

FOR DATA SET NW=é3]

YF

033639766
42164128
50841910
¢59124001
067281295
074367228
¢82322133
089331695
095848170

1400000000

STDe DEV.,

+00289552
+00268753
000275543
«00313120
«00216092
000170927
«00189413
000162877
000176491

000164405

STANDARD DEVIATIONS FOR DATA SET MW=432

STDe. DEV.

000045413
«00067852

000090606
000112959
«00135223
000157811
«00180403
000202874
000225461

YF

027211438
«37045285
«46783990
«56078187
065173614
¢ 73997397
«82400914
¢90244479
097717773

1.00000000

STDe DEVe

«00218995
000224104
«00258832
000163733
.00200128
«00209678
.00231831
«00239786
000253148

,00331026




YI+YF VALUES AND STANDARD DEVIATIONS

Y1

«10441676
20865652
031272585
+4168935]1
52072521
62498955
. 72914738
«83360674

93768426

DETONATION FRONT

YIeYF VALUES AND

STDe DEV.

¢00007374
«00007727
«00010210
«00010680
000014096
«00014953
+00017169
+00019783

«00021103

STANDARD DEVIATIONS

FOR DATA SET NW=442

YF

017970039
028277496
¢39117239
049560717
¢59449950
«69135807
«78283150
«86852486

095034735

1400000000

STDe. DEV.

000367932
000307169
+00281338
«00295330
«00163694
000166960
000141388
+00196018
000142481

000029434

FOR DATA SET AnW=433

Y1 STDe DEV. YF
.11356868 +00020505 018772673
.22717307 +00036354 «30075805
034060251 .00054525 +4183258]
45398016 000072313 052918440
.,5673828) 000090441 063695620
.68016953 «00108508 +73816163
,79346864 «00125235 «83703368
,90724977 000143441 092726841

DETONATION FRONT 1,00000000

STDe DEVe

+00355069
000365647
+00336378
+00282737
s00183145
+00308028
«00224735
000262744

000221678
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YI{YF VALUES AND STANDARD DEVIATIONS FOR DATA SET NW=434

1@

57967212
069514216
81155708

.9278548¢

DETONATION FRONT

YI+YF VALUES AND

Y1

013111872
26207610
. 39373261
e5247479]
,65632168
.78715289
91826333

DETONATION FRONT

STDe DEVe

000119374
000143174
000167052

000190761

YF

065254794
« 75565228
«85396818
094546307

100000000

STDe DEVe

$00218177
,00234211
.00237249
.00231037

000290038

STANDARD DEVIATIONS ForR DATA SET nW=435

STD« DEVe

«00026728
000052004
«00075624
«00100385
000124956
«00150034

00174707

YF

+21819611
«346843367
«47532035
«60136517
72144874
.83421208
¢93939457

1.00000000

STDe DEVe

000362286
+00322099
«00206513
+00305711
000161226
+00234812
.00289114

,00268535




APPENDIX B. INVESTIGATION OF VARIOUS FITTING FORMS

The flow variables calculated by Eqs. (3.10) to
(3.15) depend upon the analytic form of y(Y). In
general, different analytic forms can be expected to
produce slightly different results particularly
because derivatives of the fitting form are involved.
Since there 1s no physical basis, other than very
general smoothness requirements, upon which to select
a fitting form, it is the purpose of this appendix
to estimate the amount of variation in the flow var-
iables that can arise due to the choice of the fit-
ting form. The approach is straightforward; we sim-
ply try a variety of fitting forms and hope that we
obtain a representetive sample. Of course, we re-
tain only those fitting forms that provide a "good"
fit to the data, i.e., those forms that have essen-
tially the same value for the standard deviation of
the fit [Eq. (3.28)].

We first seek to determine the minimum number
of parameters required to describe the data adequate-
ly. We consider eight two-parameter forms and eight
three-parameter forms and look at the reduction in
the sum of the squares of the deviations (SSD) that
is achieved by introducing the additional parameter.
To simplify the specification of such & wide variety
of fitting forms, we utilize the fact that the spec-
ification of the form of any flow varlable is equiv-
alent to the specification of y(Y). The equations
that relate the form of the specified flow variable
to the form of y(Y) or ¥(y) are given in Appendix C.
The following fitting forms are investigated:

Two-Parameter :

)
u/D = al y b (Bl&)
u/D = a,y+a, (B28)
)
u/D=a Y (B3a)
aeY
u/D = 8, e , . (Bha)
/o, = 8 v2 (B5a)
oo, =8, ¥+a, (B6a)

Ay
p/o, =8, Y+a, , pfp =h e » (B7a)

LY, (B8a)

p/p° =a e

Three-Parameter:

u/D = 8, ¥ 2, 85 (B1b)
u/b = a, ¥+ &y + 85 (B2Y)
2
u/D = a, Y" +85 (B3b)
Y
u/D = a) eae +ag s (Blb)
)
oloy=a, v 2y (35%)
p/po =8 y2 + By + 85 > (B6Db)
a8y
9/90 = al e + 8'3 ’ (B'rb)
Y
/oy = &) ea2 +ag . (B8b)

The two forms given in Eq. (B7a) are equivalent
analytically. The second form is given simply to
show that Eq. (B7b) is a natural three-parameter
extension.

In Table B-1 we list the parameter values and
their standard deviations together with the reduc-
tion in the sum of the squares of the deviations
that is achieved. The average reduction in SSD is
2.6%. For the three-parameter forms, the standard
deviations of the parameters are generally as large
as the parameters themselves. Furthermore, the
off-diagonal elements of the correlation matrix are
generally very close to £1., All of this suggests
that two parameters are adequate to describe the
dataj hence, no further consideration is given to
the three-parameter forms.

The differences in the calculated flow vari-
ables for the two-parameter forms are shown in
Figs. B.l. The differences are relative to the
values obtained with fitting form (BT7a), p/p° = AY
+ B, which is representative of the mean. The &ab-
solute values obtained with each fitting form are
listed at the detonation front in Table B-II and at
the end of the Taylor wave in Table B-III. Three
other forms are added:

Yy = alY(l-Y) + a2(l-Y) +Y , (B9)
a,v/v
p= al(v/vo)'l'j)4 + age 4
-l.lv/v°
+ 0.076783 e , (B10)
orp = 8, + afnv + aj((’/n'v )2 + 0.028355(@”/)3
- 0.012436 (mV)L’ . (B11)
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Form (B9) is added because ¥y is linear in a. and TABLE B.II. FLOW VARIABLES AT THE DETONATION FRONT (Y = 1) FOR THE

1 11 PITTING FORMS GIVEN BY EQS. (Bla to B8a), (B9), (B10),
a, and, hence, their standard deviations can be AND (B11). DATA ARE FITTED FOR O.454% < Y < 1. MEAN
VALUES AND STANDARD DEVIATIONS, Opp, ARE ALSO LISTED.
calculated exactly for the analysis of variance de-
scribed in Appendix E. The parameter values for i o, &/p i/p (xvar) ¥
this fitting form are listed at the beginning of Bla 1.3658 0.74305 0.25695 276 .47 2.8518
Appendix E. Forms (B1O) and (Bll) are the JWIL and Ba 1.3335 0.74989 0.25011 269.10 2.9983
BKW-HOM forms, respectively. The constants in Ba 1.542 °'7"115b °'2588"n 278.50 2‘8651‘b
R Bla 1.3701* 0.72987 0.27013 290.65% 2.7019
each form are calibration values (see Sec. IIIBS) B5a. 1.3308 0.75165 0.24835 267.21 3.0067
and al is a function of the two free parameters Ba 1.3365 0.7483 0.25177 270.90 2.9718
througn the Rankine-Hugoniot equations and the B7a(ref.) 1.3k28 0.7Hh73 0.25%7 274.66 2.9174
‘e B8a 1.3504 0.74050 0.2%950 279.21 2.8535
Chapman-Jouguet condition [see Egs. (3.32) and B 1.3586 0.73602 0.26398 28%.03 2 788
(3.33)]. The values of a, and the two free param- B10 1.3319 0.75082 0.24918 268.10 3.0132
a b b a
eters in each case are given in Table 3.ITI. BL1 1.3299 0.75191 0.24809 266.94 3.0308
Mean 1.3L436 0.74435 0.25565 275.07 2.9143
Tpp 0.0039 0.00214 0.00214 2.30 0.0%2

TABLE B-I. PARAMETERS AND STANDARD DEVIATIONS FOR TWO. AND THREE.
PARAMETER FITTING FORMS TOGETHER WITH THE REDUCTION IN (a) Maximum, (b) Minimm
THE SUM OF THE SQUARES OF THE DEVIATIONS ACHIEVED BY
ADDING THE THIRD PARAMETER.

The data are fitted over the range O.LSL £ Y £ 1
(53 data points).

Fitting ¢ Reduction
Form nlto azgo ajto in 8SD
TABIE B-IIX. PFLOW VARIABLES AT THE END OF THE TAYLOR WAVE (Y = 0.U5h)
Bl 0.25695 £0.003  1.9253 10.068 FOR THE 11 FITTING FORMS GIVEN BY EQS. (Bln?‘ to (BBa), (99),
0.24986 10.047  2.0222 10.688 0.00777 +0.0%2 0.0 (B10), AND (B11). DATA ARE FITTED FOR 0.isk < ¥ < 1.
7] 0.39888 $0.013  -0.14877 10.011 MEAN VALUES AND STANDARD DEVIATIONS ARE ALSO LISTED.
0.26104 £0.167 -0.9153L4 £0.266 0.01205 £0.104  L.51
B3 0.2588L +0.003 1.5176 £0.054 Fitting
0.26380 £0.056  1.1677 #0.547 -0.00547 20.062  0.02 Form o/p, e/p u/D p(kbar) v
Bl 0.03604 £0.002  2.0144 10.072
0.3u0le $0.602  0.6208k 20.547 .0.37479 20.65  6.40 Bla 0.9991 0.45372 0.07546 132.15 1.6748
BS 1-330k 20.00k  0.50309 0.016 ®a 0.9737 0.46688 0.06231 124.99 1.8e71
0.50590 +0.120 1.7750 0.684 0.84057 £0.128 6.99 B3a 1.00lke 0.45e07 0.07808 133.61 1.6%7
-3 0.7R77 £0.023  0.58373 £0.019 Blia 1.0281° 0.44156° 0.08993% 140.18%  1.5387°
0.37186 $0.317 0.15949 $0.507 0.81537 £0.199 2.62 b 59, 8995b b > 7,
- 0.63388 £0.020 0.70890 £0.015 BSa 0.9659 0.l47101 0.05817 122 .77 1.8780
0.35748 $0.572  0.9685 £0.869 0.MOR7 0.698  ©0.30 B6a 0.9821 0.46218 0.06671 127.38 1.7743
B8 0.79023 $0.011  0.53587 %0.002 B7a(ref.) 0.9967 0.45550 0.07k5 131.50 1.6919
1.4406 £3.96 0.34069 0.746 .0.67TT3 £4.07 0.14 B8a 1.0079 0.450LkL 0.07987 134,57 1.6350
):) 1.0179 0.4k602 0.084& 137.30 1.5868
B10O 0.9666 0.46969 0.05870 123.14 1.8632
)38 0.9733 0.4664L 0.06226 125.02 1.8224
Mean 0.9923 0.L5780 0.07187 130.24 1.7223
Opp 0.0064 0.00302 0.00328 1.79 0.0351

(a) Maximum, (b) Minimum
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APPENDIX C. TECHNIQUE FOR INDIRECT SPECIFICATION
OF THE LEAST-SQUARES FITTING FORM

A general ieast-squares algorithm capable of
treating both linear and nonlinear fitting forms is
used to fit the data. The algorithm involves a
calculation of the partial derivatives of the fit-
ting form, y(Y; an) or Y(y; an), with respect to
each parameter,

The equations that define the fitting form
and its partial derivatives are listed for the
cases when a form is specified for p(y)/p, p(Y)/po,
u(y)/p, u(¥)/p, B(p_/0)/p D%, or v(p/p ). We also
list the additional equations, in each case, neces-
sary to completely describe the flow., The x, t
coordinates of the negative characteristics are

calculated in all case as

Py

t=%Y23D , (c1)
21

x=XyY? , (c2)

where ¥ is the value of x at the intersection of
the negative characteristic with the Chapman-Jouguet
detonation front. The boundary conditions listed
below correspond to an instantaneous Chapman-Jouguet
detonation,ii.e., the Taylor wave is attached to the

detonation front. The initial conditions are

u =0 , (c3)

P 20 . (ck)

In the remainder of this appendix we use the follow-
ing reduced variables § = 1/¥ = p/po, i = u/p,
8=c¢c/D, P = p/poDa, E= (E- Eo)/DZ, and drop the
tilde.

1. Specification of p(y ; an).

The fitting form, Y(y), and the partial deriv-
atives, BY/B&L, are given by

Y = P > (CS)

) €)
Yy

with boundary conditions

¥=1, (c7)
Y
B.q_o . (c8)

The prime denotes partial differentiation with re-
spect to the independent variable (y, Y, p, or v)
of the specified flow variable (p, u, ¥, or p).
The parameters are held constant during the

26

differentiation. The (") denotes a quantity eval-
uated at the Chapman-Jouguet point.
The additional equations are

p' = (Y/p)* o' (c9)
E'=pp 2o’ , (c10)
c =Y , (c11)
u =y-c , (c12)
vy =c®pfp , (c13)
with boundary conditions
G=(p-1/6 > (c1k)
p=d+p, , (c15)
E= P, A+ 34 . (c16)

2., Specification of p(Y ; an).

The fitting form, y(Y), and the partial deriv-
atives, By/aaz, are given by

y'=1p , (c17)
(%—y—) - (%——) : (25)
£ £
Y
with boundary conditions
§ =1, (c19)
g{? -0 . (c20)

The additional equations and boundary conditions
are the same as in the previous case.

3. Specification of u(y ; an).

The fitting form, Y(y), and the partial deriv-
atives, ay/aaz, are given by

cC =y=-u , ((21)
p’ = (p/cy u' , (c22)
Y= P ((23)

3¢ 3u
—= , c2l
5, Sq) (c2)

N
d ‘ du’ ' d
&) -l E) s
N

- %%:7] , (c25)




I
N ) 3%
3a, 3, ’

with boundary conditions

p=1/(1-1) ,
Y-1,
3 _ -2 [3u
'aa—l—(l-u) (-&a—z) >
y
Y
%=, " °

The additional equations are

P! - c2pl ,

E'=p 9-291 ’

Y =029/P ’
with boundary conditions
P =‘i+P° ’
_ a 1 a2
-p°u+§

L. Specification of u(Y ; an).

(c26)

(c7)
(c28)

(c29)

(c30)

(c31)
(C32)
(c33)

(c3k)
(c35)

The fitting form, y(Y), and the partial deriv-

atives, By/aal, are given by

c ZY/p, ’
p'=pu’fe ,
y’:l/p )

0101
mlo
o
N’
1
1

-2 [3p
(&) -

ol

)3 (&
Ay I: 02 3p
SEZ 53; ’

with boundary conditions

5 = l/(l - ﬁ) ’
5’ =1,
35 _ -2 [3u
Sa—z. = (l - u) (Sa;) ’
Y
Ay _
3, " °

The additional equations and boundary conditions are

the same as for u(y).

5. Specification of v(p ; an).

s

_ 3u + 3p pu

= [p (ss-) U oS- e
v A

(C36)
(c37)
(c38)

(c39)

(cko)

(ch1)

(cle)
(ch3)

(cul)

(cks)

The fitting form, y(Y), and the partial deriv-

atives, ay/aaz, are given by

C=Y/p ’

(ck6)

Fp) =v(L+v) +pv'
dp 2y
F-F o
dy 1
a¥y " p

_<d zy_)
dY\oa
zY

The value of § is given by

I
1
°
1
N
oo
&WI'D
a5

Pt
oY XeY)
2
,_<v ,_<\-./
]
oo
ml<
= ~
O
+
<
=z
01 o/
&m O
<

i
o
<5
<
~~
(=]
4+
o
<
N
4+
©
P

N ~ ay=1
Y(sa)-(-1+p )7 =0

The other boundary conditions are

}.'zl ’

(ELB; ) = - (__gz )[{(’ + 9 1+ po):l-l )
£ Y £
p

) _
(&)
Y
The additional equations are
du cd
W ra

dp _ 2 dp
CTY’

dE -2 4
aY=Ppga% s

with boundary conditions

dy
Ja,

I

£

)

(ck7)

(ck8)

(ckg)

(€50)

(cs51)

(cs2)

(cs53)

(csk)

(cs5)

(c56)

(cs7)

(cs8)

(c59)

(c60)

(cé1)

(c62)

a7




f=t3
0l

(- l)/ﬁ ’ (C63)
u+ Do, (c6k)
p, U+ B E® . (055)
|'6. Specification of p(v;an).

T
]
(o33

=1>
LU}

The fitting form, y(Y), and the partial deriv-
atives, By/aaz, are given by

c=Y , (c66)
Y= - %P' > ] (c67)
y':-%p”-g—l+v(§—l) , (c68)
§%= -y, (c69)
F)=v L+ V) + o gl (c70)
§§=%% , (c71)
- % , (c72)

-1
(), &) - &) @) &) o
Ve v v v v

The followling definitions are used in the above and
all following equations.
& = the dependent parameter. This parameter
depends upon all the other parameters.

az = any parameter except am.

a = all parameters except & and 8.
Partial differentiation with respect to a parameter
implies that all the other parameters are held

fixed unless otherwise noted.

s 1 -l
3p’ S (e} _f3e’) (28 ) [k , (CTh
() (‘éa—z)v (aam) (Sa:)v (aam)v (e

AEL v
” u” s 5 Y1

(#),, - () - &) (&) @) -«
vya, v v v v

&), ey -, e
V8 V8 Vs

(g_;(_t ) i} (g%)e%) . ('BZ—;) , (c77)
Y,a, Y,a, Vol

28

Y = -Zp"- '25 e g ' o'+ 2;(%I(P’)‘?,(WS)

b3
ﬂ:%y”+2v3y', (c79)
dp2
3y’ LA 0 DR i o
() 3E) -ZE)
v,ak v,ak v,ak
1 fap’ p’ fap +f3p
-3 (s;) * 7 (sq)v"ai—g”pa (‘aa—)v N
’ak b4 ’
2v(p’)® fap
03 (Sq (c8o)
v,ak
3 dy dy’
Ty as) =- (Tz) g (c8)
Ve L
R
a
al P Y’ak dp2 J Y,ak
3 _ [y
+ -aa—z (dp) V,ak ) (082)
oF d 3 fa
Sg) = B_Z_ (L+2y) +p Sg(a%)
2By Ys8y pELN
+ g% (.gg_z) , (c83)
’ak
3¢ -2 [3
(-38.—!’) = -Yp2 (‘ag—z) ’ (c8l)
28y ¥s8y
d_(.ap_) _ ef(_av_) _2y (91*_)
Y \da [ oa 3
2ty o zY,ak cF? %Y’ak
-2y {3 , 85
C2F (a&z)Y ak ( )

wE) ) e
’ak Y’&K




The values of v and 8, are obtained by simultanecus
solution of

PV, a)=-1, (c87)
(¥ ; 2, am) =1-v+ P, (c88)
The other boundary conditions are
5 = l/V ’
v=-23 , (c90)
P
5’ =1 ’ (Cgl)
3p av &, -
33; = 33; LY (1+ Poﬂ » (C92)
say viay
(g;L) =0 (c93)
4 Y

23y

The additional equations and boundary conditions

are the same as for v(p).

APFENDIX D.

The results of the Chapman-Jouguet/Taylor wave
calculation are presented in this appendix for the
fitting form given by Eq. (3.21), i.e.,

_ -1, fAY + B

y=1+ A "in ( s B)
The results are displayed in 17 curves (Fig. D.1)
followed by the tabulated values.

The detonation
velocity used here is 7.8863 mm/usec and the density
of the unreacted explosive is 1.730 g/cm®. The

data points that deviate from the least-squares
curve, Eq. (3.21), by more than the standard devia-
tions given in Appendix A are listed in Table D..I.

TABLE D-I.

CAICUIATED FLOW FOR THE CHAPMAN-JOUGUET/TAYLOR WAVE MODEL

DATA POINTS THAT DEVIATE FROM THE LEAST-
SQUARES FIT, EQ. (3.21), BY MORE THAN
THE STANDARD DEVIATIONS GIVEN IN
APPENDIX A. DATA POINTS THAT LIE BELOW
THE CAICULATED CURVE HAVE A MINUS SIGN.

Data Point No. Data Set i X Dev/o
31 Nw-La7 100.8121 -1.02
38 ! " -1.67
2 ) " -1.09
26 NW-428 92 .5010 1.1k
Lo " " -1.73
20 NW-L39 86.3013 1.47
a7 " " 1.05
35 " " 1.17
a9 NW-130 79.8317 1.69
37 " " 1.57
53 " " 1.06
32 MW-L431 73.7193 -3.11

7 NW-llo 61.0199 -1.80
16 v v -1.23
34 MW-433 56.0128 -1.18
L5 n " -1.5

29
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119

A(I /7D
1.00000
+96123
«95557
+95500
«94708
«94509
«93768
+92785
«91826
+90725
«89262
.88223
+88196
+87549
«86107
«83361
.82387
+81945
+81156
«80837
« 79569
« 79347
+78715
« 77492
« 75649

« 75525

FLOW FIELD FOR A SELF=SIMILAR FLOW

u/p
«25527
241066
«23968
23948
«23670
«23601
«23341
«22997
«22662
«22278
«21768
21406
«21397
21172
20672
19721
«19386
«19233
«18962
«18852
18417
«18341
«18125
«17708
«17080
«17038

¢/

74473
72920
«72689
« 72665
«72339
72257
«71948
+71536
+71130
70659
«70025
«69570
69558
69272
.68627
67373
66920
+66713
66340
66189
«65582
65475
+65169
64571
+63655
63593

RHO/RHO0
1.34277
1.31820
1431461
1.31425
1.30923
1.30797
1.30327
129704
1.290%6
1.28398
1.27471
1.26812
1.26795
1.26385
1.25471
1.23730
1.23113
1.22833
1,22332
1,22130
1.21327
1.21186
1.20786
1.20010
1.18842
1.18763

ALL DATA SETS EXCEPT Nw=432

X/TD

1.00000
«97086
« 96656
96613
96009
«95A57
«95290
«94534
«93792
«92937
«91793
«90976
«90955
+90444
«89299
«87094
«86306
«85946
«85302
«85041
«84000
«83817
«83295
«82279
«30735

«8063]

P/ (DD)RHOO0

25527
.26192
024002
.23983
.23719
~23653
<23409
23089
.22779
.22428
.21969
.21649
.21640
.21443
«21008
.20203
.19925
.19800
.19578
+19490
.19141
+19080
.18909
18583
.18103
«18071

P(MEGABARS)

+27466
+26030
+25825
+25805
*25521
«25450
«25187
*24842
024509
«24732
+23638
23293
023284
23971
«22604
«21738
°21438
«21304
«21065
+20970
«20594
*20529
«20346
*19995
*19478

019444

GAMMA
2491738
2.89732
248938¢
2489359
2488849
2.88708
2.88198
2.87481
2.86737
2.85824
2.84514
2.83513
2,83486
2.82832
2.81285
2477991
2.76707
2.76104
2.74993
2.74533
2.72631
2.72286
2.7128s5
2.69265
266005
2.65777

(E«E0) /DD
«03258
«02913
«02863
«02858
«02789
002771
«02706
«0262]
«02537
002442
«02317
.02228
.02225
«02170
«02048
«01817
«01736
«01699
«01633
01607
«01502
001484
«01432
«01332
«0118)
01171




he

« 73492
« 72915
«71625
«69514
«69359
«68840
«68647
«68017
66175
65632
«63654
+63058
62499
«61785
«60207
«58810
+«57967
56765
+56738
«55660
54922
«52475
52073
51597
«51451
«50464
47692

« 45398

«16350
«16155
15722
«15015
14963
«14791
«14726
«14517
«13908
«13730
«13082
«12868
«12706
«12475
«11967
«11520
11252
10872
«10863
«10525
«10295
«09538
«09415

«09270

«09225
«08926
«08097

«07425

«62560
62262
«61591
«60472
«60389
«60109
«60004
«59662
«58647
«58344
«57223
«56881
«56557
«56141
«55209
«54369
«53856
«53115
«53098
«52425
«51959
«50383
«50119
49806

«49710
+49053
«47164

«45550

1.17475
1.17109
1.16291
114953
1.14855
1.14526
1014404
1.14004
1.12837
1.12492
1411239
1.10861
1.10506
1.10054
1409054
1.08168
1.07634
1.06872
1.06855
1.06171
1.05704
1.04152
1.03897

1.,03596

1.03504
1.02878
1.01121

«99667

«7891¢0
+ 78418
«77313
«15487
« 75352
« 74900
o 74731
« 74179
« 72555
«72073
«70305
«69768
069263
«68616
«67176
«65889
«65108
«63987
«63962
«62949
«62253
»59921
«59534
«59076
«58935
«57979
«55261

«52975

.17558
.17416
«17102
©16604
.16568
<16449
.16604
.16261
.15853
.15735
.15316
.15193
.15079
.14936
.14626
.14360
.14203
.13985
.13980
.13790
.13663
.13256
.13192
.13117
«13094
.12941
«12535
,12222

«18892
«18738
*18401
17865
«17826
*17698
«17650
+17496
«17557
*16930
+16480
016347
016225
016070
*15736
«15450
»15282
15047
015042
«14838
«14701
014263
014794

14713

01‘689
13924
e13487

«13750

2.61852
2.60676
2.57944
253174
2.52809
2.51568
2451100
2.49550
2.44814
2.43357
2.37818
2.36076
2.34410
2.32242
2.27272
2.22670
2.19800
2.15590
2.15494
2.11595
2.08866
1.99436
1.97833
1.95920
1.95329
1.9127a
1479451

1.69193

«01007
«00960
«00857
+00688
«00676
«00634
«00619
+00569
.00423
.00389
«00225
«00178
«00134
«00079
=.00045
=.00153
=.00219
=.00312
=.00314
=+00398
=.00455
*,00645
*,00676
=.00713

00724
*«00801
*.01016

*.01194




FInNaL RESULTS CUNTINUED ALL DATA SETS EXCEPT NW=432

CROSS CHARACTERISTIC

X/XTILDE fO/XTILDR X/XTILDE TD/XTILDE X/XTILDE TD/XTILOE
1.90000 1,00000 °94169 1.12106 «B6574 1.28877
«99024 1,01997 74995 1,12263 «85919 130399
.98378 1.02295 «73883 1.12712 «85515 1.31344
- 78863 1.02329 «93467 1.13593 «34928 1.32727
« 38655 1,02750 «92324 1,14974 «84915 1.3275k
«98602 1.02864 «22781 1,15068 «84376 1.34038
« 78405 1,03269 92047 1,16648 «840(2 1,3493%
«38140 1.n03815 «91835 1.17110 .82718 1.380646
«37878 1.0435» «91352 1.18159 «8250) 1.3R576
«97372 1,06937 «90539 1,19940 «82243 1.39215
«97158 1,05844 «90478 1.20074 «82163 1.39412
«96858 1,06466 «90273 1.2952% 81616 1.40769
«96850 1,06482 +90196 1.20695 «80019 1.44802
«36661 1,0687S «89944 1,21253 « 78624 1.48616
«76233 1.07766 «39191 1.22928

«75392 1.09527 +88964 1.23436

«95085 1.10172 -88120 1.25339

«94943 1.10469 «87859 1.25930

«34689 1.11004 «AT612 1.26492

«94580 1.11223 «87294 1.27221
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10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
a3
34

36

WEIGHT

140000000E+00
1.0000000E+0¢
1.0000000E+00
10000000E«0GQ
1.U000000E+00
1.4000000E+0Q
1.U000000E«00
1.0000000E+00
1+0000000E+00

140000000E40¢

1+0000000E+0p
1+U000000E+00
1.0000000E+00
1.0000000E+00
1u000000E+00
1,9000000E+00
1.0000000E+ug
120000000E+0¢
1.0000000E+00
10000000E+00
140000000E+00
1+v000000E400
1+0000000E+00
1.0000000E+00

1.0000000E400

—

«U000N000E«O0Q

1.0000000E400

—

«0000000E+00
1.0000000E400

«0000000E4+00

-

+0000000E+00

-

1+0000000E+00
1+0000000E+00

1+0000000E+00

INDEPENDENT
VARIABLE

1.0000000E+00

9,6122850F=01 "
‘ 9,5557420E-01

9,5500280E=01
9,4708170F=01
9,4509390E=01
9,3768430F=01
9,2785480E-01
9,1826330E-01

9,0724980F =01

8,9261950E«01
8,8223040E-01
8,8195770k=01
A.7549060E=01
8.61U6890E=0]
8,3360670E-01
8,2387330F-01
8.1945020E=01
8,1155710E=01
8,0836790E=01
7.9569020E=01
7.9346860F=01
7.8715290€-01
7.76492460E=01
7,5648560E=01
7.5525130,=01
7,3492290E01
7.29146740E<01
7.1625430€-01
6,9514220E<-01
6,9359330E~01
6,8840450F«0]
6.8647040E-01
6,8016950E=01

DEPENDENT
VARTARLE

1,0000000E+00
9,7043820E=01
9,658823¢9E=01
9,6605360E=01
9,5848170E=01
9,5768460E=01
9.,503473¢0E=01
9,4546310E-01
9,393946pE=01

9,2726840E=01

9,1841719E=01
9,0975190E=01
9.106062¢0E=0n1
9.,05740S0E=01
8.93371693E=q]
8,6852490E<01
8,6392040E=01
8.,5914393E=q]
8,5396820E=01
8,5230230E-01
8,42525009E~-01
B,370337¢E=01
8,3421210E=01
8,232213¢9E=01
8,0703800E=01
8,0788370E=01
7,9032410E<-01
7.828315¢E=01
7.,7565180E=q1
7.5565230E=01
7.5254060E=01
7.436723¢gE=01
7.4797573E=01

7.3816169E=¢1

CALCULATEC
FUNCTION

1,0000000F+00
9,7085R31F=01
9,6656305€-01
9,6612834E=01
9,6008971F=01
9,5857n68F=01
9,5289553F-01
9,4533528F<01
9,3792299F=01

9,2936861F=01

9,1793279€-01
9,0976148F=01
9,0954642F=01
9,0443772F=01
8.92985%533F=01
R,7094477F<01
Be6305846F=(]
R+5946165F=01
8,5302263F=01
8.5041748F=01
843999871F=01
8,3816656E=01
8,3294635¢.01
8,2278975F=01
A,0734094F<01
8,0631099F=01
7.8910072F=01
7.841766TF=01
7.7312856F.01
7.5486882F=01
7.5352083F=01
7.4899665€-01]
T7+4730696F=01

7.4178572F=01

DEVIATION

0.
«4,2010810F<04
«6,8074817E.04
«T+4735770F.05
«1,6080111F.03
«8,8608317F.04
«2,5482266F .03

1,2782244F 04

1.,4716074F 03

«2,1002130F .03

4,8431237F_ 04
-9.5914573:-66
1,0597755F _03
1.,3027772F.03
3.3156922F <04
«2.,4198717F 03
8461946469F 04
«3.,1774672F (%
9,4556683F 04
1.8888176F<03
2.5262907F_03
«1.1328565¢€.03
1.,2657522r .03
4,3155412F o064
«3,1193673F_04
1.5722167F 203
1,2233753F 03
«1.3451745F .03
2,5232359F 03
7.8347665F_04
«9.8022967F.04
«5,3243531F.03
6.,6873660F.04

«3,6281165F.03




3s
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
S4

1+0000000E+00
1+0000000E+00
1+0000000Ee00
1+0000000Es00
1.0000000E4+00
Te0000000E+00
Te0000000E400
1.0000000E+00
1+00001000E+00
140000000E+00
1+U000000E«U0
1,U000000E400
14U00V000E0O
120000000E+0Q
1.0000000E«UQ
1.u000000E+00
7+0000000E+00
1.0000000E+00
10000000E+00

1.U000000E+00

66175480E=01
6,5632170€=01
6,3654290F=01
6+3058400E=~01
6,2498960E~01
6+1785390E<01
6,0207440E-01
5,8810470F=01
5.7967210F=01
5,6765210E=01
5,6738280E=01
5,5659720F=01
5,4922430E=01
5,2474790E=01
5.2072520E=01
5¢1597340E=01
5.1451490F=01
5,0604480F=01
4,7692330p=01
4,5398020g~-01

7.2755450E=01
7.2144873E=01
7.0574477E=0]
6+9598893E=q]
6,9135813E=01
6.8371690E=01
6,7281300E=01
6+5945590E=-01
6+525479gE=qn1
6,386952¢9E=01
6.3695627E=01
6,311478¢E<p1
6+211879nE=01
600136520E=01
5.9449950E=01
Se9124009E=01
5.9120899E=9g1
5,7756763E=g1
5,5429110E=01

5e291844nE=01

7.2555379F=01
7.2073143€=01
7.0305n038F=01
6.,9768441F=01
6,9263n00F=01
6.,8615948F=01
6,7175597F=01
6+58A9377E-01
6¢5107864F=01
6,3987143F=01
6.3961943F<=01
6,2949331F.01
6.2253362F=01
5.9920636F=01
5.9533930F=01
5.9075S911€=01
5.8935961F=01
5.7978568F=01
5,5260692F=01
5.2975239F+01

2.0007067F<03
7.1727458F <04
2.6943200F.03
«1+6955074F<(3
«1,2719005F_03
«?,4425759F 03
1,0570271E.03
5.,6212672F .04
1.4692627F203
«1,1762313F_03
«2.6632273F_03
1,6544946F_ 03
«1,3657243F203
2.1588371F.03
«8,3980345F 04
4.8089220F<04
1.8582919F .03
-2.,2180812F.03
1,6841815¢r.03
«5,6898887F.04
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APPENDIX E. ANALYSIS OF VARTANCE

In this appendix we calculate the variances in
ps €, u, P, &nd ¥y that arise from the variances in
the fit parameters and the variance in the detona-

tion velocity. To this end we use fitting form (B9)
y=AY(1-Y)+B1lL-¥)+Y , (E1)

where A = 0.22567 and B = 0.038308. The statisti-
cal analysis of the least-squares fit applies exact-
ly for this form since it is linear in A and B.

The correlation coefficient and standard deviations

of the parameters are

Ty = -0.98328 ()
o(A) = 7.3275 x 1073 (E3)
o(B) = L.W7h6 x 1073 . (E4)

The standard deviation of the mean detonation veloc-
ity is

o(D) = 7.7338 x 1072 mm/usec . (E5)

The variances V(A), V(B), V(D), and the covariance
v(A,B) are given by

v(a) = o(8)® , (E6)
v(B) = o(B)® , (ET)
v(D) = o(D)® , (88)
V(A,B) = r,, o(A)o(B) . (£9)

The variances in the flow variables are calculated
as follows.
1. Varlance in Density.

The density, given by Eqs. (El) and (3.10), 1s
p = po[A(l -2Y) + 1 - B]'l, and its variance is

V(p 5 Y) = pf V(A) + o} V(B)

+ 2p,05 V(A,B) (E10)

where
py = (@Y - 1)o%/p 5 oy = 0°/p, - (E11)
In Eqs. (E10-E23), subscripts indicate partial dif-

ferentiation.

2. Variance in Acoustic Velocity.

The acoustic velocity, given by Eq. (3.11), is

38
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c=D¥pp " (E12)
and its variance is
V(e ; Y) = ci v(D) + c§ v(p) (E13)
where
ey = Ypop-l » cp= -c/p , V(D,p) =0 . (E14)

3. Variance in Particle Velocity.

The particle velocity, given by Eags. (El) and

" (3.12), is

u = D(AY® + B) , (E15)
and its variance is
viu ; Y) = u% v(D) + ui v(A) + u% v(B)

+ 2uuy v(A,B) , (E16)
where

up = u/D , u, = DY2

1§
o

v(D,A) = V(D,B) (E1T)

4. variance in Pressure.
The pressure, given by Eqs. (El) and (3.13),

is
p = p°D2(2AY3/3 + Af3 + B) (E18)
and its variance is
v(p 5 ¥) = pf V(D) + B} V(A) + pf V(B)
+ 2p,0p V(A,B), (E19)
where
pp = B/D , p, = p DF(RY+ 1)/5
py = p D% . (E20)
5. Variance in Gamma.
Gamma, given by Eq. (3.1L4), is
=1
Y = ¥*/(59) (E21)

where § = p/p, and B = p/p D®. The variance in

garma is

V(y 5 Y) = YaV(A) + v§ V(B) + 2v,v, V(a,B) , (E22)

where

-y [y - 1) 5+ (2¥® + 1)/38] ,

]

Ya

I

Yg = =Y (7 + ¥ . (23)




In Table 3.TT we list o.. and o_ which are defined,
say for p, as

op(® 3 ) = V(25 DT wnen VD) =0 , (W)

and

op(p 5 ¥) = V(p 3 Y)% when V(A) = V(B) = 0. (ER5)

The total standard deviation is simply

o(p 5 V) - (B + B2, (£26)

for a given fitting form. At the detonation front
the total standard deviation is o(p ; 1) and at
the end of the Taylor wave it is o(p ; YT).

APPENDIX F.

The question of whether each data set comes
from the same population is investIgated using a
statistical F test.El The procedure is to fit all
the data sets coliectIvely with a given fitting
form denoting the sum of the squares of the devia-
tions by Qo + Ql. This Is referred to as the
"restricted" model. Next, we select & particular
data set and refit the remaining data sets collec-
tively and the selected data set separately. The
combined sum of the squares of the deviations from
these last two fits we denote by Qo and refer to
this model as "unrestricted." We now form the
quantity U given by

U='(—n—;—N—)-Z:l ’
(o]
where n and N are the number of data points and pa-

(F1)

rameters respectively in the unrestricted model.

TABLE F-I.

STATISTICAL F TEST

The quantity (n - N) is the number of degrees of
freedom. The difference between the number of de-
grees of freedom in the restricted and unrestricted
models is denoted by r. The quantity U is distrib-
uted approximately as F(r, n - N).

Only the data points in the region (Y = 0.515)
are considered, since this test was performed at an
early state of the investigation when the terminal
characteristic was thought to be Y = 0.515. There
are 55 data points. The point 1,1 is not considered
a data point, since the fitting form is chosen a
priori to pass through this point. The fitting

form
y= (Y- 1)/aB + 1 (¥2)

is used throughout the test. The results are listed
in Table F-I and indicate that data set NW-U32 is
not a representative set.

RESULTS OF THE STATISTICAL F TEST

Restricted Model

Unrestricted Model

Degrees of Data F at
Freedon Q * Q Set n-N Q r U 99%a
53 27.34 x 1075 432 51 17.34 x 1075 2 .71 5.05
L8 15.05 x 1075 Lo L6 13.74 x 107° 2 2.19 5.10
L8 15.05 x 1075 L3g ke 13.74 x 1075 2 2.19 5.10
48 15.05 x 107° L35 L6 14.25 x 1075 2 1.29 5.10
48 15.05 x 1075 L3y 46 14,72 x 1073 2 0.52 5.10
48 15.05 x 107° 433 Lg 12.41 x 107S 2 4 .89 5.10
48 15.05 x 107° L31 ke 14.30 x 107° 2 1.21 5.10
48 15.05 x 10°° L30 46 12.41 x 107 2 L .89 5.10
48 15.05 x 1075 428 L6 14,13 x 107° 2 1.50 5.10
48 15.05 x 1075 ko7 46 1L .34 x 1075 2 1.15 5.10

(a) F values from Ref. 22.
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