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RADIATIVE TRANSFER WITH SCATTERING
by

G. C. Pomraning*

ABSTRACT

The equation of radiative transfer including the
effects of photon scattering is discussed. The
case of scattering from a Mexwellian gas of free
electrons is considered in detail. The mathemat-
ical @escription of this process in the equation
of transfer is formulated in two different ways,
one differential and the other integral in char-
acter., Both descriptions have the potential of
being incorporated into a general-purpose radi-

ative transfer code.

1. INTRODUCTION

In the calculation of energy transport by ra~
diative processes, three basic interactions of pho-
tons with matter must in principle be taken into ao-
count, These are the processes of emission, absorp-
tion, and scattering., In many applications, scat-
tering plays a small role and it has been tradition-
8l in much of radiative transfer to simply neglect
its contribution to the equation of transfer. Since
the scattering terms are by far the most complex in
the equation of transfer, this neglect leads to a
great simplification in the mathematical description
of radiative transfer., However, in certain physical
situations, scattering is an important interaction
and its neglect can introduce serious errors. Fur-
ther, the speed of current computers makes it fea~
sible, from a practical computational point of view,
to include the effects of scattering in the de~
scription of radiative transfer., For these reasons,
a present-day, general-purpose radiative transfer
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code would seem incomplete without the ability to
account for the effects of scattering.

This report discusses some of the physical
and mathematical aspects of the scattering of pho-
tons in the radiative transfer context. In par-
ticular, we consider in some detail the description
of scattering from a Maxwellian gas of free elec-
trons, In the next section we discuss the equation
of transfer as well as the scattering kernel which
is the basic description of the scattering inter-
action. The last two sections describe two dif=-
ferent simplifications of the scattering terms in
the equation of transfer., Each has its character-
istic advantages and disadvantages insofar as its
ability to retain the essential physics of the
situation and its applicability to a numerical so-
lution of the problem on a digital computer are con-
cerned. Much of this report is a review of work;
an attempt has been made to give the pertinent re-
ferences to the original papers and reports.



2, THE EQUATION OF TRANSFER WITH SCATTERING

In the polarization independent approximation,
the equation of transfer, including the effects of
scattering, for the specific intensity I(;: v, 3, t)
of photons can be written quite generally ashs2
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where, for notational simplicity, we have dropped

9)] (1)

the arguments ; and t in the specific intensity
I(r, v, 9, t) on the right-hand side of this equa~
tion, Here r, v, 9, and t are the spatial, fre-
quency, angular, and temporal coordinates, respec-
tively, ¢ is the speed of light, B(v) is the source
term due to spontaneous emission, p.;(v) is the ab~
sorption coefficient suitably modified for induced
emission, and as(v' v, 2. 3) is the double dif-
ferential scattering coefficient (cross section),
Although not explicitly shown, B, u', and o ere
in general also functions of both r and t. We as-
sume, however, tha.t B(v) and u (v) are independent
of the direction Q of tra.vel of the photon, and, as
shown, that as(v v, Q. Q) is a._)t‘uncti_.?n only
of the scattering angle rather than Q and Q' sepa~
rately, For an observer at rest with respect to
the medium,this implies isotropic matter, i.e.,
matter with no preferential direction, For an ob-
server moving with speed v with respect to the me-
dium, this also implies the neglect of terms of
order v/c.3 If local thermodynamic equilibrium
can be assumed, then B(v) is the Planck function

3
Bv) = 2L (M (2)

c

and

uy = g (1 - VD), (3)

where Ky is the absorption coefficient appropriate

to thermodynamic equilibrium and the exponential

factor is the effective decrease in absorption due

to stimulated emission, Here T = T(?,t) is the ”~
local temperature of the medium, Stimulated scate
tering is described by the quadratic terms in the
intensity in Egq. (1). The factor v/v' in the in-
scattering term accounts for the fact that the
scattering coefficient is defined relative to a
photon density in phase space whereas the intensity
I is an energy density. One significant approxi-
mation we have made in writing Eq. (1), in addition
to the inherent approximation that photon transport
can be described by a classical equation of trans-
fer, is that polarization effects need not be taken
into account. If the scattering interaction is
between photons and free electrons, analytical
evidence suggests that, as far as energy transfer
is concerned, this epproximation introduces a very
small error, Of course, if one is specifically
interested in polarization effects, Eq. (1) is not
aepplicable. We have also assumed in writing Eq.
(1) that the index of refraction of the medium for
frequencies of interest is unity. Although dis-
persive effects and the like are easily included
in a transport description of photon interactions
with ma.ter:i.a,l,5 such a description severely com-
plicates the streaming terms, i,e., the left~hand
side of Eq. (1). Throughout this report we shall
assume that such effects are unimportant,

The physics of the scattering process is con-
tained in the scattering kernel as(v Syt ). We
shall consider the case of photon scattering from
a Maxwellian gas of electrons at temperature T,

In the case of photon scattering from free elec-
trons at rest, the scattering interaction is de-
scribed by the well-known Klein-Nishina formula®

og(v-¥',u) = N_ro <1;u ) [1 . 7(1-u)]'2
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where Ne is the electron density, 7 = hv/mc2 (h:
Planck's constant and mc2 is the rest energy of the

electron), r, = e2/mc2 is the classical electron




radius, and 8(z) is the Dirac delta function. The
case of scattering from a moving electron can be
treated by using Eq. (4) in conjunction with a
lorentz transformation of Eq. {(1). Finally, the
case of scattering from a distribution of moving
electrons can be treated by averaging the Lorentz
transformed equation for a particular velocity over
the velocity distribution of the electrons. For a
Maxwellian distribution, the resulting scattering
kernel will have three rather distinct character-
istics, as pointed out by Dirac .7 In the first
place, a photon will, upon scattering, have its
wavelength increased due to the usual Compton shift
associated with scattering from an electron at rest.
Secondly, it will undergo broadening due to the
classical Doppler effect of scattering from a dis-
tribution of moving electrons, Finally, there will
be a reduction in the wavelength upon scattering
due to the relativistic effect that the photon den-
sity will appear more intense to an electron moving
toward the photon than awey from it., This last ef-
fect, the blue shift, is needed to "balance” the
Compton red shift, for, as pointed out by Milne,
if blackbody radiation at a certain temperature
scatters from a Maxwellian gas of free electrons at

8

the same temperature, the scattered radiation must
have the same distribution in wavelength as the in-
cident radiation,

7 was the first to consider the problem
of determining the scattering kernel for photons
scattering from a Maxwellian gas of electrons., He
used the low frequency limit of Eq. (%), i.e.,

Dirac

2
a (v-w',u) = Nerg(-‘%-“—)s (v' - WEITLJ)’ (5)

to describe the scattering in the electron rest
frame because, at that time (1925), the Klein~Nishina
formula was not availeble., He obtained a result as

a series in va = (kT/mcz)‘é and found a relatively
simple expression by explicitly carrying only the
leading term, In this low-order approximation, the
Compton red shift and the relativistic blue shift
were lost, and Dirac's kernel showed only Doppler
broadening, Munch9 used this result in the
equation of transfer to investigate the problem of

line broadening due to scattering. Edmonds‘.l‘0 re

considered the problem of computing the scattering

kernel in 1953 using the Klein-Nishina formula and
carrying the calculation to second order in ‘fa.
In this order he found a rather complex result
exhibiting both the red and blue shifts as well as
Doppler broadening. Subsequently, Edmonds used his
result in various transport problems .1.1, 12 Re-
cently, Cantwe].ll3 has undertaken a numerical
calculation, using Monte Carlo methods, to obtain
the scattering kernel. These results show a rather
smooth dependence of as(v'-»v,p.) on the three vari-
ables involved.

We now consider two distinct possibilities for
meking use of these scattering kernel results in
radiative transfer calculations., The first method
extends the analytic approach of Dirac and Edmonds
and leads to a relatively simple treatment of scate
tering in the equation of transfer., This descrip~
tion is well suited for analytic investigations of
scattering in radiative transfer problems. The
second approach makes direct use of the numerical
results of Cantwell and in principle is a more ac-
curate method, although it is also more cumbersome,

3. A DIFFERENTIAL MODEL OF SCATTERING

We assume that I(;: v, 6, t) is an analytic
function of the frequency v so that I(vt, 3') in
Eq. (1) can be expanded in a Taylor series about
v' = v, For any given term in the Taylor series,
the dependence of the integrand in Eq. (1) upon v’
is then completely known, and the integrals over
frequency can in principle be performed term by
term. This procedure converts the integral oper-
ator in the frequency veriable of Eq. (1) into an
infinite order differential operator, with the
coefficients of the derivetives involving certain
frequency moments of the scattering kernel., While
and Edmondsl0 have shown that the
analytic representation of the scattering kernel

Dirac
is very complex, h-a.ser3 has shown that, correct
to order ¢ = k‘l‘/mc2 and 7 = hv/mcz, these moments
of the kernel are very simple., In most problems of
interest, @ and 7 are generally quite small since
mc® =~ 0,51 MEV, and it should introduce a small er-
ror if higher order terms in @ and 7y are neglected,
This has the effect of truncating the infinitea
order differential operator to one of second order,
It should be noted that an implicit assumption in
this truncation is that v* 3™I(v)/" is of the




same order of all n, Accordingly, if the spectrum
I(v) has very sharp peaks or dips, this truncation
procedure becomes questionable.

The above analysis is due to Fraser3 and
leads to*

-
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where B = 8mer§/3 is the Thomson scattering coef-
ficient, Pn(z) is the nth Legendre polynomial, and
the operators Sn are defined as
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Equation (16) is the photon analogue of the heavy
gas model used in neutron thermalization work.l9
For @ = O (zero temperature), the second derivative
terms in Eq. (6) vanish and it reduces to an eque~-
tion similar to the Fermi age approximation in
neutron transport theory.ao

It has recently been shown' 21

that this

x .

Several classified reports (with unclassified
titles) have also been written gn 'ghis differ-
ential approach to scattering JL4=

result, Eq. (6), can be further simplified with no
loss of the essential physics. We shall repeat
the arguments here. We project Eq. (6) onto the
basis elements of a spherical harmonic function
space., We shall follow the vectorial method in-
troduced in neutron transport theory. 8Since these
spherical harmonic equations are only an inter-
mediate result, we shall omit the details of their
derivation, referring the interested reader to the
book by Davison .22 If for simplicity we momen-
terily neglect the induced scattering (nonlinear)
terms in Eq. (6), the result is

o,
1 _ 2 .2
St W NIt ujz(Jo -~ LxB)
+ gl - 27 - §)) 3y = 0, (12)
a,
S+ T T, 3y, (M- 2r-8)] )

- -
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E'SE-+VU'erh+7[“a.+“s(l'27's3)] J3

- - o o
+ 50 « 9, - UVev, T, = 0, (%)
2n+ aJn

-
s tY% I+l
+ (2n + 1)[,1;1 + p.s(l - 27)] I
-
= 02?U'vr':rrl-l

= =
+(2n-1)U-VrJn_l =0, n>k,

(15)
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In thﬁse equations the vector U is in the

direction Q and has an arbitrary magnitude U. The
functions Jn are defined as

Un n — e
B E w0 1 @, 09
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where the I (r,v,t) are the coefficients of an
expansion of the specific intensity in surface

harmonics a.ccording to

z z A YV
h—n_“pn l(Tovst) Y (). (17)

- o
I(r,v,0,t) =

Here the surface harmonics are defined in the usual
weys

(@) = 2™ (cos 0)e™™@, (18)
where the P:( z) are the associated Legendre func-
tions and the constants Anm are normalization coef-

ficients

- =1 1
A = lbn [){ dﬂym(aY:m(ﬂ)] = .(E’(‘_;lli“la.)'&l)_
T
(29)

with the superscript % on Ym(g) indicating the
camplex conjugate. Due to the biorthogonality re-
lationship between the surface harmonics and their
complex conjugates, one has an explicit expression
for Im(l_':v,t) in terms of the specific intensity,
ieeay

I(Tvst) = [ avx (M1(x,v,8,t). (20)

Since Jn consists of 2n + 1 angular components (see
Eq. (16)), Eq. (15) represents in general 2n + 1
relationships between the cowponents of J -1 Jn’
and Jn+1' In special cases, symmetry considera.tions
mey reduce the number of nonzero components of Jn’
and the number of relationships in Eq. (15) is re=
duced accordingly.
problems the specific intensity is independent of
the azimuthal angle ¢ and hence Jn consists of only
one nonzero component.

Now, in Eg. (12) we replace p.s(l-2‘r-sl) by
Just Hgs since Sl+27 is of order @ and y and hence
to lowest order p.s(l-27-sl) = pge By similar
srguments, we replace us(1-27-82) in Eq. (13) by
9us/10, and in Eqs. (14) and (15) we replace
p.s(l-2‘r-s3) and p.s(l-27) in each case by p . We
note, however, that we cannot make a similar
simplification in Eq., (11) since (1-27-80) is of
order @ and 7, rather than of order unity (or
9/10) as are the similar terms in Eqs. (12)
through (15). Introducing these simplifications

For example, in plane parallel

into Egs. (12) through (15) we find that Eqs. (11)
through (15) are the spherical harmonic projections
of the equation of transfer:

iél(zé_th_'gl + 0 TEY,0 = wKY) - Hv,0)]

~n I(v,0) + 2 L[ a1 + (2'-0)2] 1(v,d")

18 2
+1§‘[' dﬁ"[avz-z—zw (y-2) vgv-v 7]I(v,ﬁ').
o Y (22)

To Eq. (21) we need add the contribution of
the nonlinear induced scattering terms in Eq.
(6). Since these terms are of order 7, they can
be neglected in all but the zeroth angular moment
of the equation of transfer, just as we neglected
all terms of order ¢ and y in the linear analysis
Just completed except in the zeroth angular moment
relationship, Eq. (11). This implies the replace-
ment in the equation of transfer:

0,1 &) [ o [1.(6 cB) (@32

Lx

-(a- ?{')3] (v,a')

- (3-5’-)3] (1-v éw) I(v,2'). (22)

Thus, the full form of Eq. (21), including the ef-
fects of induced scattering, is

8§ AZATF ) -
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26
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+ (@22 - (@ -3-)3} (1v ) 1(v,@), (23)



which is a simplified, but a priori just as accu-
rate, form of Fraser's result, Eq. (6). In par-
ticular, Eq. (23) contains far fewer scattering
terms than does Eq. (6), and the terms which ac~
count for energy transfer in the scattering inter-
action, i.e., those proportional to @ and 7, are
isotropic in Eq. (23), whereas they are angularly
dependent in Eq. (6). Both of these facts should
make Eq. (23) much easier to solve, either ana~
lytically or numerically, than Eq. (6). A signif-
icant property of Eq. (23) is that it gives the
proper equilibrium solution, namely, a Planck dis-
tribution at temperature T as given by Eq. (2).
This can be verified by direct substitution. There
ere also indications that Eq. (23) is more accurate
than Eq. (6), at least in the low temperature
limit, Several a.m',}1or523"27 have used the dif-
fusion, or Eddington, approximation to Eq. (6) to
describe photon transport through cold (@ = 0)
electrons, All found a physically incorrect be-
havior, namely, a slight increase in frequency for
some photons due to scattering. On the other hand,
Eq. (23), or its diffusion approximation, gives
the proper behavior of only "downscattering" from
cold elec‘brons.zl’z8
Let us form the first two angular moments of
Eq. {23). Integration of Eq. (23) over all solid

angle yields

2 [N
L Bt 4 Gor,v,t) = wylbeB(v) - E(¥)]

+ug av2—§%E-+(7-2a) V%"' 7E]

31, 2
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whereas multiplication of Eq. (23) by 9 prior to
integration over all solid angle gives

e
= A
%ng I‘E‘Vttz + 9P r,V,t) + (u; + ps)i‘()v) = Q, (25)

Here we have defined the first four angular moments
of the specific intensity as

E(;':V’t) = ‘r df_f[(;),v,ﬁ),t), (26)

g

Rrv,t) = [ aR(F,v,8,t), (21)
hx

AEv,t) = [ aBRL(T,v,8,0), (28)
hx

5(;),1',1") = ‘r dSMI(?,V,?{,t). (29)
ll-y( -

Physically, E is the product of the speed of light
and the energy density, IT‘) is the radiative flux,
andi’\ is the pressure tensor. Q has no simple
physical interpretation,

The Eddington epproximation follows immedi-
ately from Eqs, (24) and (25). We assume that the
specific intensity is almost isotropic and hence
can be represented by the first two terms in a
surface harmonic expansion, i,.e.,

UDv,0t) = 3= B(T,v,t) + £ R vt (30)

A ~
Equation (30) allows one to express P and Q in
terms of E and F» Equations (24%) and (25) then

reduce to: 21

-

%@Sﬁ."ﬁl + VoF(Tyv,t) = ue(4xB(v) = B(v)]
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2 Hwat) o+ 2 7(r,v,8) + (uy + JRY) = O, -
32

which are the Eddington equations including scate
tering and temporal effects., Since the intensity
representation, Eq. (30), is only strictly correct
when |i‘1 << E, the quadratic terms in F in Eq. (31)
can consistently be neglected.

Of course, one can envision less direct meth-
ods of relating P and § to E and F than through
the use of Eq. (30). Two such schemes have re-
cently been suggestedeg':ﬂ which lead to



modifications of the diffusion equations, (30) and
(31). Radiative transfer codes based on the trans-
port equation (23), the Eddington equations, (24)
and (25), or the modified Eddington equations just
mentioned, are presently available at the Air Force
Weapons Laboratory; Gulf General Atomic Incorpo-
rated; Los Alamos Scientifie Laboratory; and Sys-
tems, Science, and Software. In all cases the
frequency variable is handled by the usual group
method., For the scattering terms one must cast the
derivative terms in the frequency variable into
finite difference form in terms of the group in-
tensities, While there is no unique way to do this,
several different schemes seem to give satisfactory
results.ag’ 32

We now summarize the advantages and disadvan-
tages of the differential model of Compton and in-
verse Compton scattering. The major advantage of
this model possesses is its simplicity. All of the
information contained in the three variable func-
tion as(v' - v,pu) has been transformed into s few
very simple coefficients in a differential oper-
ator. Further, the energy exchange terms in the
equation of transfer resulting from this model are
isotropic. The disadvantages are two. In the
first place, the occurrence of derivatives with
respect to frequence in the equation of trans-
fer can lead to stability problems in a numerical
solution. Accordingly, more care is required in
devising an iterative scheme to hendle the fre-
quency group index. Secondly, the differential
model of scattering is known to be inaccurate for
high frequencies, i.e., for those values of v
such that hv/mc2 cannot be considered to be
much less than one. In practice, the cutoff in
frequency above which accurate results cannot be
expected is probably around hv = 50 kev (7 = 0.1).
Further, if the spectrum is not & smooth function
of frequency, inaccuracies will occur for even
lower frequencies.

4, AN INTEGRAL MODEL OF SCATTERTING

In this section we consider an alternative to
the differential model of scattering which does not
have the disadvantages of that model. This alter-
native uses directly the scattering kernel
as(v -v',u) as computed by cantwe1l, 3 That

is, with this scattering kernel available, all of
the data needed in Eq, (1) ere known and in prin-
ciple one needs only to cast Eq. (1) into group
form and numerically solve the resulting equa~
tions, However, it is desirable and possible to
simplify Eq. (1) before forming the group equa~
tions, We now consider such a simplification.

As in the differential model of scattering,
it is easily argued that a small error is intro-
duced if the energy exchange terms are retained
only in the zeroth angular moment of Eq. (1).
Thus all of the energy exchange terms in Eq. (1)
can be replaced with their angular averages. This
leads to the equation of transfer, suppressing
the algebra,

d g 529 5 - -
L Mrwebl) o g1(r,v,0,8) = wy(MIBY) - 1(v,8)]

- as(v)I(v,B') + 11;—“‘[' dv? I d.(_'l)'cso(v' ->v)
o e

v -
X o (V',Q')

"
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o by n
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x I(v*,q') 5 I(v,0"). (33)
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Here aso(v' —-v) is defined by the Legendre poly-
nomial expansion of the scattering kernel

5V Sva) = gz I (20)ag (v SR, (3)

and hence

1
aso(v' Sv) = 2n -‘l:l d,uas(v' - v,u). (35)

The other new symbol appearing in Eq. (33) is
as(v). It is given by



us(v) = ‘[' dv'uso(v > yt)
)
» 1
=2x [ avt [ d,uus(v Svtp). (36)
0o -1

If for the moment we neglect the induced scattering
terms, i.e., those quadratic in the intensity, a
great simplification has been effected in going
from Eq. (1) to Eq. (33) from the computational
point of view, A function of three variables,
os(v' - v,u), occurring in Eq. (1) has been re-
placed in Eq., (33) with a function of two variables
g so(v' - v). Unfortunately, however, the function
of three variables still occurs in the induced
scattering terms of Eq. (33).

There are at least two ways to rectify this
situation, both of which are less than satis-
factory. In the first method, we expand
cs(v' - v,u) in the induced scattering terms in
Eq. (33) according to Eq. (34), retaining the n = 0
term, but replacing all of the higher terms
with the corresponding terms from the differential
model. result, Eq. (23). This leads to the replace-
ment of Eq. (33) by

3 - =
1 (v, ®b) 4 FI(E,v,8,0)

k(VB(Y) = I(v,8)]

0

n

+

gs(v):[(v,(_{) + i‘—xg dv ‘1[,‘ d.(_'l)'aso (vt 5v)

x Lo 1(vt,0Y)

+ % {K QR [3(8-84)2 - 111(v, @)
1 ®ra

* 161> £ ! 2hy' [;—2. uso(v' )

h.n !h(

02 _)l _=l _)u 1 _)| _)u
+——2h—v§7‘[' an'I(v,a") {ndn [§+(n ")
- (@ean? 4+ (0 -6’")3](1 - %;)I(v,?f"). (37)

Equation (37) has the desired property that the
three-variable function as(v' - v,u) does not ap-
pear, but this was achieved at the expense of in-
troducing the disadvantages of the differential
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model, as discussed in the last section, into the
induced scattering terms.

As a second method of eliminating
as(v' - v,u) from Eg. (33), we argue as follows:
In going from Eq. (1) to Eq. (33), the net effect
on the scattering terms linear in the intensity
was as if we had used a scattering kernel

a (vt > v,u) = %—K g (v -v)

+ 2 (321)8(y - v), (38)

where, as before, By represents the Thomson scat-
tering coefficient, and 8(z) is the Dirac delta
function., Let us, as an approximation, also use
Eq. (38) as the scattering kernel in the induced
scattering terms in Eq. (33). Actually, we can
meke a weaker assumption and use

as(v' - V,u) = i’—“ UO(V' -v) + £(u)d(v - v'), (39)

where f(u) is an arbitrary angular function, as the
kernel in Eq. (33). The term containing the Dirac
delta function contributes nothing when Eq. (39)

is used in Eq. (33), and we find

- o
%%ﬁ&vl_ﬂlﬁl + 3'?1(?""3’*') = IJ;(V)[B(V) - I(V’BS]

- cs(v)I(v,g) + i’—ng dv* !{“ d.(_'l)'uso(v' -v)

-
x-:T 1(vt,qt)

- - = .2

Hg 5
+ IGEI ant'{3(n.*) - 111(v,0")
hx

. ‘['m dav? °2 1 a_ (vt -ov)
167° 5 2oyt |v2 B°
- -17 o (v -v)| [ A r(ve,a) [ a@'1(v,a"),
v! bx bn
(k0)

as the equation of transfer. In going from Eq.
(33) to Egq. (40), we have made a significant ap-
proximation in the induced scattering terms and
it is reasonable to inquire under what circumstan-
ces this might introduce a nonnegligible error.
For high energy photons (say hv > 3KT), it is welle




known that the induced scattering texms in the
equation of transfer contribute very little and
hence their treatment is relatively unimportant.
For dilute radiation (I << B), the quadratic nature
of the induced terms also makes their contribution
to the equation of transfer small. Finally, for
almost isotropic radiation, only the zeroth angular
moment of the scattering kernel, which we have
treated rigorously in Eq, (40), is significant.
Hence a nonnegligible error mey have been in-
troduced into Eq. (40) in the case of low energy
photons belonging to an intense, highly anisotropic,
specific intensity. Equation (40) also follows
fram Eq. (37) by neglecting those terms with a
coefficient ¥, This suggests that the terms we
are discussing are small in any event. Egquation
(37) is an improvement over Eq. (%0), and Eq. (33)
is a further improvement over Eq, (37). The
"rigorous" description, Eg. (1), is of course the
most accurate. My feeling is that Eq. (L40)

should be adequate in the majority of prac-

tical problems dealing with radiant energy trans-
fer, but there may be instances for which one of
the more precise equations (1), (33), or (37), is
required, In the remainder of this discussion, we
shall use Eq. (40) as the equation of transfer,
Making use of E(l_",v,t) as defined by Eq. (26), we
can rewrite Eq. (40) in the less imposing form:

- o
% x rSEV 2,%) + 3'31(?’1"6’13)
= ui(MB(Y) = oMU,
+ T];.—n [ dv'cso(v' -v) -z—,- E(v')
°
B - -

+ = [ @ (3(@8)? - 1,3
Ly

1 > R
- o— E(v) Avt {22 o (v? - v)
16n2 £ 2hy! [v2 so

1
- a0ty v, ()
where we have defined
a(v) = o (v) +ui(v). (12)
It should be noted that Eq. (40) or (41) gives the

proper equilibrium distribution, namely, a Planck
distribution at temperature T as given by Eg. (2).

These equations also give the correct Thomson
scattering limit. As both ¢ and 7 approach zero,
we have

gV 2 V) sud(v - vt), (43)
T.olv) = s a(v) o+ ui(v), (k)

Then Eq. (40) or (41) reduces to
5 o
1 Al Bt) 4 BFE 0,50 = w(WIEY) - Kv,D)
- 3“8 - >3 5 -
- v I(v,Q) + m{ an*{l + (:2')°11(v,0'), (b5)
T

which is the rigorous, in the sense of Eq. (1),
equation of transfer for Thomson scattering.

One can very easily derive the diffusion, or
Eddington, spproximation corresponding to Eq. (l4l).
Forming the first two angular moments of this
equation, we find

-

aEgrEv,tg + VT V,t) = bu!B(v) ~ o(v)E(v)

® d 2
' ' Yy, ' Eé.!). L
+£ o (v oV) E(v') + S £ V'

ol

x [-1.2- 0oV = V) = L5 0 (v w)]m-), (46)
v vt

%ér%xzt_) + VBT, v,t) + o(v)Fv) = 0, (47)

where E, I_-‘: and P are defined by Eqs. (26) through
(28), Use of Eg. (30) as the specific intensity
repregentation in Eqs. (46) and (47) leads ime
mediately to the diffusion approximation. Eque~
tion (46) is unaffected, and Eq. (47) becomes

-3 >
- - p
% aFgrEv,tz . % VE(r,v,t) + o{v)F(v) = O, (48)

which is just the Eddington relationship between
the radiative flux and the energy density. As dis-~
cussed in the previous section, other methods for
elimina.ting/l;(;),v,t) from Eq. (47) have been sug-
ges‘t;e<1.29"3l



In any group treatment of the frequency vari-
eble, the integrals over frequency in the scattering
terms become sums, and the scattering kernels be-
come scattering matrices. Since the determination
of these scattering matrices is at the heart of any
numerical treatment of the integral formulation of
scattering, let us develop the group equation cor-
responding to Eq. (41). The scattering matrices
will fall out as by-products of the derivation of
these group equations. Similar considerations ap-
ply to the moment equations, (46) and (47). While
the derivation of group equa.tions33 is somewhat
arbitrary, we follow here the usual practice of
simply integrating Eq. (41) over the frequencies
defining the ith group, That is, we consider ell
photons with frequencies between Vol and Y to be=~
long to the nth group. If there are N total groups,
then v_ = 0 and vy = ®, We define the ntb group
specific intensity In as

\ 4
L(EGE) = [ wiFv,at). (%9)
v
n-l

Integration of Eq. (k1) over the n®! group yields

4
1 bIn(r, 2,t)
c

4

59 S99 -
+ n-vxn(r,n,t) =5 - cnIn(Q)

-

E +P~S t _)_)l 2 _)l
AFn m;{ aa*(3(a-a")" -111, (')
n

N

1
+—=%E E B E,

1<n<ZN, (50)
16x m=1

where we have defined

v
s =] awi(WBW, (52)
Vn-l
v, .
I dvo(v)I{v,Q)

v
-1
g, = l’vl ) (52)

n n -
I avi{v,9)
Vn-l

dv'uso(v' - v) -5—,- E(v?*)

v v
n-l m-1
Am = v ,  (53)
m
I dvE(v)
Vel

Y

Y 2
"ot £ o [t =+ Byt o
B w Yn-1 Y1 Y M

(s%)

om Vn V.
J' ave(y) I av'&(vy*)
Va1 Ya-1

Equation (50) is exact in the sense that if the ex~
act specific intensity is used to compute the group
constants defined by Egs. (51) through (S4), Eq.
(50) will give exact results for the group in-
tengities, It should be noted that all of the
group constants are functions of space and time,
and, in additionm, o, is a function of 5). In prac-
tice, of course, the exact specific intensity can-
not be used to calculate the group constants since
it is unknown. An approximation to I(v,0) and

E(v) is used, and generally this approximation, for
example, a Planck function at the local tempera-
ture, is independent oi 3. In practice, then, S,
is a function only of r and t, as are the scate
tering mgtrices of A and B,

The advantage of this integral formulation of
scattering over the differential model is accuracy.
The integral formulation treats high energy photons
with an accuracy which the differential model can-
not achieve, Its only disadvantage is complexity.
One is forced to deal with at least a two.dimen-~
sional array, uso(v' - v), and perhaps one of three
dimensions, o_(v' - v,u). However, the fact that
Card:wejl.ll3 has computed these arreys makes this
method attractive., To my knowledge, there are

no existing computer codes which use this in-
tegral formulation of Compton and inverse Compton

scattering.
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