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TtKIMAS-FEIWiICALCULATIONOF POTENTIAL BETWEEN ATOMS

by

C. E. Lee, C. L. Longmire, and M. N. Rosenbluth

— ABSTiUiCT

A Thomas-Fermimdel calculationof the potential
energy for the collision of two neutral, identicalatoms
is developed. l%e classical scatteringdistribution
for this potential is compareclto Rutherford scattering.

“

I. INTRODUCTION

In a collisionbetween two atoms in which the

atomic velocities are somewhat lower than the atomic

eleCtrOn velocities,one may expect the Thomas-Fermi

model to give a fairly reasonable estimate of the

interatomic force. Non-adiabaticeffects such as

the excitation of excited states and ionizationwill,

of course, not come out of the calculation. Mo1ecu-

lar binding effects will also not show up, for as we

shall see, the Thomas-Fermi method can only give

rise to a potential which is everywhere repulsive.

The range of validity of such a calculation is

therefore for atomic kinetic energies somewhat

greater than, say, 10 eV and for atomic velocities

somewhat less than, say 108 cm/sec.

In Sec. II, some general theorems concerning

the Thomas-Fermimodel are discussed, In Sec..111,

a calculationof the potential energy for the

collisionof two neutral, identical atoms is de-

scribed, and in Sec. IV, the classical scattering

distribution for this potential is given.

II. GENERAL THEOREMS CONCERNINGTHE THOMAS-FERMI
MODEL

We imagine that the ion (nuclear)charge

distributionp+ is held fixed by suitable cxtemal

forces. The distributionp+ is a series of 6-func-

tions, but we need not specify it in detail at

present, nor do we need to restrictour consideration

to any specific number of nuclei. The Thomas-Fermi

method then consists of solving the Poisson equation

for the electrostaticpotential$,

V2$= - 4Tp+ - 471p- (1)

where P-, the electron charge density, is given by

p-= -A~3/2 . (2)

The constant A is given by

A=

Ilerethe symbols

taken positive.

energy T- of the

T=

2e
~(2me)3/2 .

(2Tii)3
(3)

have their usual meanings, and ~ is

According to the model, the kinetic

electrons is

(4)

We shall discuss three simple but interesting

theorems that apply to the problem posed here. The

first of these is the virial theorem, which is

rather well known.* The virial V is defined as usual
+

as the integral of;.~ (; = position, F = force) over

the electron distribution,

u=- Jp- %V@d3x , (s)

‘See P. Combas, Die StatistischeTheorie des Atoms
und ihre Anwendungen,Wien, Springer-Verlag,1949.
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If the Thomas-Fermiexpression (2) is used for P- the electrons. In fact, using Eq. (10),

here, one finds, after integrationby parts, that

(6)

in Eq. (5) by

V=-; A
J

~5/2 d3x. -- 2T

according to Eq. (4), and the theorem is proven.
On the other hand, if one replaces V+

The third theorem relates the electric forces

on the ions to the electrun pressure. According to

the Maxwell stress theory, the electric force on the

charges in a volume V is related to the electric

stresses on the surface S of the volume,

-VI). I (; - 3)
I;-;I13

P(:’) d3x;

one finds that

(7)

Jp Eid3x =
J

njTijd2x .

v s

(12)
ions

Here V is the total electrostaticpotential energy

of electrons and ions, and ~ is the electric field

at position of the ion (excludingits self-field).

The sum is extended over all ions. Comparison of

Eqs. (6) and (7) yields the viral theorem

V=-2T+
-x

*Z.Ze r. (8)

ions

The second theorem says that in any displace-

ment of the ions, the work done against the electric

fields which they see goes into increasingT- + V --

that is to say, T- + V is the potential energy for

the motion of the ions. This theorem therefore

anmunts to the conservationof energy for the system

of ions and electrons. To prove the theorem, we make

a variation 6P+ in the ion charge density. Through

Here E: is the i’th componentof the electric field,.
the vector nj is the inward normal to

and Tij is the electric stress tensor

the surface,

T
= iii6ijE2

1 E.E.
ij ‘~1]

(13)

p into p+ andin Cartesian coordinates. Separating

p-, we find that the force on the ions in any volume

‘s~P/id3x.~p_Eid3x+ ~njTijd2x (14)

v v s
NOW the electric force on the electrons is, according

to Eq. (2)

-rpnid2xI p-Eid3x = A
~

~3/2 a~@d3x=
i

v v SJ (1s)

pressure

(16)

of the kinetic

liqs.(1)

and 6p ,

and (2), this will induce variations 6$

which will satisfy
where we have introducedthe electrun

V26$ = - 4116p - 4T6p+
(9)

and
(Note that the pressure is two-thirds

6p-= - +A$ 1’2641 . (lo)
energy density, appropriate for an ideal gas.) Thus

we may rewrite the electric force on the ions as

MultiplyingEq. (1) by 6$, Eq. (9) by $, subtracting

and integratingover space yields (p = p+ + p-) [
p+Eid3x =

[[
(17)Pni + njTij]d2x . .

VJ SJ

This is the general form of the theorem. The utility

of the theorem can be seen by applying it to a simple

case where there are only two nuclei, which are

identical. If we choose the surface S to be the

plane which is the perpendicularbisector of the line

joining the two nuclei, we find that the force on one

nucleus is in a direction away from the other nucleus,

and has magnitude

I

Now
f

@p+ is the work doneby the ions against the

electric fields which they see, and
J

p6@ is the

change in the electrostaticpotential ener~ of ions

and electrons. Furthermore,-
J

@6p- is the work

done by the electric field on the electruns, and

this ought to equal the change in kinetic energy of
I
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.

SJ
~2

ZeE = (p+ W)d2x .“ (18)

Since the integrandhere is always positive, the force

between the two nuclei is always repulsive. Reduc-

tion to the simple form (18) depended on the fact

that ~ has no componentnormal to the plane S, which

is a result of symmetry in this case, In the general

case, with several non-identicalnuclei, a similar

simple form with positive total pressure holds for

the surfaces which nowhere have any normal component

of E. It is therefore intuitivelyevident that no

system of nuclei can be bound in this model.

III. CALCULATIONOF THE POTENTIAL FOR TWO IDENTICAL
NEUTRAL ATOMS

For two identical atoms, Eqs. (1) and (2) can

be reduced to a universal set of equations independ-

ent of the nuclear charge Z by using the unit of

length

A = (4TA)-2/3e-1/3 Z-1/3 = 0.88Sao/Z’/3 (19)

where a is the Bohr radius,
o

and the unit of energy

C = Z2e2/A. (20)

V2”$= (xl + X2 + $)
3}2 3/2

3f2 -xl - X2 . (25)

This transformationremoves the singularities from

V at the positions of the nuclei, and probably

improves the accuracy of the calculationwhen the

nuclei are far apart. Instead of using Cartesian

coordinates,we used the coordinates

211= l;-;J-l;-;21 “

In the diffcrencing,equal intervals of?’1were used,

and equal intervals of E, the latter to reduce

the number of points at large distances from the

nuclei where x is small. For distances ~ larger

than about 12 times the separation of the nuclei,

the solution was joined on to the Thomas-Fermi

solution for an atom with nuclear charge 2Z.

The second-orderRichardson relaxation scheme

was used to arrive at the solution of Eq. (25). The

kinetic and potential energy integrals T_+ V were

then calculated, and the energies of the separated

atoms 2U0 subtracted, fiivin~the potential U for

the collision of the two atoms,

The potential function $ is replaced by

U=T+V-2U0. (26)

With these units, Eqs. (1) and (2) become

with the boundary condition that

(21)

(22)

(23)

near the position of each nucleus ~n.

Equation (22) has been solved numerically on the

IBt.1-704for various distances between the two nuclei.

Usc was made of the solutions xl and X2 for the two

atoms separately;we let

X=X,+X2+$ (24)

The virial theorem was used as a check on the accu=

CY. The third theorem of Sec. 11, unfortunately,

was not used as a check. The virial check was such

that wc estimate that the calculated potential U is

accurate to about five percent. The results are

given in Table I.

The asymptotic form of ITfor close distances

can be calculated. This asymptotic form is the po-

tential energy of the two interactingnuclei, 22e2/d,

plus the difference in the bindin~ energies of an

atom with nuclear charge 2Z and two atoms with nu-

clear charge Z. The “rhomas-Fermibinding energy is*
7/3

-0.681E, which is proportional to Z . The asym-

ptotic form of 11is therefore, in our units

u+l/r - 0.681(27/3-2)
-+1/r - 2.07

(27)

so that *P. Combas, 10C tit, p. 60

3



TABLE I

POI’ENTIALENERGY AS A FUNCTIONOF THE DISTANCE BE-
TWEEN NUCLEI, IN UNITS GIVEN BY EQS. (19) AND (20).

Distance =
1/16 14.4

1/8 6,54

1/4 2.77

1/2 1.04

1 0.318

2 0.089

4 0.0103

At a separation of 1/16, this would give U . 13.97,

which disagreeswith the entry in Table I by three

percent.

We were unable to determine the asymptotic form

for large nuclear separation,but estimate from the

pressure theorem ofSec. II that U - r-7 in this

limit, using the known asymptotic form of the single

atom function. The numerical integrationsobviously

do not go this far out.

where w is the center-of-massenergy, and rl iS the

value of r at which the radical vanishes. Since

only dimensionlessratios occur in Eq. (29),we may

regard the units of length and energy to be the

Thomas-Fermiunits A end E. The differentialscat-

tering cress section (per unit solid angle) in the

center-of-messsystem is

U(e) = A2S/sin 8 ~ cm2 per steradian. (30)

Equations (29) and (30) may be used to obtain I?(6)

for various values of the energy parameter W. The

result is naturally valid for all Z provided the

length and energy units A end C are employed. Fig-

ure (1) shows U(0)/A2 for various energies. It is

seen that for small energies, where the potential

looks “hard,” the scattering is more isotropic than

at high energies,where it tends towards the Ruther-

ford shape. It should be noted that”if the incident

and struck particles are not distinguished,the

effective scattering cross section is the sum of

u(O) and u(i’r- El).

Iv. CLASSICAL SCATTERING OF TWQ IDENTICALNEUTRAL
ATOMS

The classical scatteringtheory becomes valid

in general when the product of the wave number k of

the particle with the radius of the scattering po-

tential -- the unit of length A in our case -- is

very large compared to unity. Making the approxima-

tion that the mass number of an atom is twice its Z,

we find that the conditionfor the validity of

classical scattering is

kA x
0

2 x 105 Z213 :>> 1 (28)

where v is the relative velocity of the atoms and c

is the velocity of light. For oxygen atoms, for

example, kA is equal to thirty at an energy of about

ten electron-volts,and the classicalapproximation

should be quite gmd.

According to classical mechanics, for scattering

in a central potential U(r), a particle with impact

parameter S is scattered through an angle e, in the

center-of-masssystem, given by

e(s) =lr-2

‘f 7?= ‘2’)
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