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ABSTRACT

IMPROVED METHODS OF MAXIMUM A POSTERIORI

IMAGE RESTORATION

Henry Joel Trussell
Department of Electrical Engineering and Computer Science

The University of New Mexico, 1976

This dissertation offers an explanation of why and how maximum a

posteriori (MAP) image restoration works. A new numerical iteration

scheme is derived on the basis of this explanation with a convergence

criterion related to the noise process. This numerical scheme is very

similar to the modified Picard’s method given in standard numerical

analysis texts. The effects of the parameters of the MAP restoration

method are predicted by the explanation and confirmed by experiment.

The MAP restoration method is further improved by using local

processing, i.e., processing small sections of the image sequentially

and piecing them together to form the restored image. It was found, as

predicted, that smaller section sizes result in better restorations.

Computing costs increase as section size decreases.

Although the improved MAP restoration scheme is over ten times

more efficient than the old scheme, the method remains costly compared

to more standard techniques. The method can be used as a refinement

technique by postprocessing the output of other restoration methods.

viii



CHAPTER 1

Introduction and Background

1.1 Introduction

The field of image processing has expanded considerably in recent

years. The most highly publicized results from this field are the digi-

tally enhanced images of the moon and Mars taken from space exploration

vehicles. This work was done by the Jet Propulsion Laboratory (JPL) of the

California Institute of Technology. While image processing has long been

a necessary tool at JPL, many other installations are beginning to use re-

sults from image processing as an important part of their standard data

analysis. These applications vary widely in complexity and sophistication.

Among the most elementary applications of image processing is the automatic

analysis of oscilloscope traces. At the other end of the image processing

spectrum is restoration of an image degraded by unknown atmospheric turbu-

lence in the presence of noise. Applications of image processing techniques

are being studied in the biomedical field and in industrial quality control.

While new applications for standard image processing techniques are

being discovered at an increasing rate, image processors have noted an in-

creasing demand for solutions to problems requirinq new techniques and models.

In response to these demands, research is currently being conducted toward

improving old algorithms, modifying existing methods to fit new conditions,

and developing new algorithms using new models. This dissertation repre-

sents research to improve an algorithm developed for use with a new image

model.

1



1.2 Description of Problem

Most restoration schemes in the field of image processing use a

linear system for the image formation model as Fig. 1 illustrates,

‘(xyy)-g(xsy) >

Fig. 1

Linear Model

where the image g(x,y) and the object f(x,y) may be considered intensity

functions of two spatial dimensions; h(x,y) is the point spread function;

n(x,y) is noise. The noise is modeled as additive and signal independent,

although this does not reflect reality in most cases. The most important

example of the failure of this model is visible light photography where

n(x,y) is film grain noise.

Because greater

tion algorithm using a

accuracy was desired, Hunt [10] developed a restora-

more nearly correct image formation model, given

by Fig. 2,

nm-
‘(x’y)T!rL-r-g(x’y)‘t

n(x,y)

Fig. 2

Nonlinear Model

where s(”) is a point

dimensional function,

function operating on values at a point of a two-

independent of the values at neighboring points. This



model still considers only signal-independent noise, but the noise is

now additive in the correct domain.

Hunt used this model in developing the maximum a posteriori (MAP)

restoration method. The attempt was made to use the maximum amount of

a priori knowledge and the most realistic image formation model that mathe-

matical tractability would allow. In [10] the restoration problem of maxi-

mizing the posterior probability density function was solved given Gaussian

distributions on the undegraded image ensemble and on the noise. While the

problem was defined and a mathematically derived estimate of the solution

was given, several problem areas remained: (1) the solution algorithm was

so slow that only small problems could feasibly be attempted on one of the

largest and fastest computers available today, (2) the method lacked physical

understanding of the effects of the parameters of importance, and (3) the

solution was not an outstanding restoration in spite of the more accurate

image formation model. These are the problems addressed by this dissertation.

1.3 Summary of Dissertation

Background on previous work using the linear model is presented in

the next section of this chapter. A description of the restoration prob-

lem and a review of the previous work on MAP restoration is discussed in

Chapter 2. The nonlinear problem and the MAP solution to it are also the

subject of Chapter 2.

The new work presented in this dissertation falls into three main

parts: (1) heuristic explanation of the MAP restoration method, (2) appli-

cation of this understanding to derive a more efficient algorithm for



computing the MAP restoration, and (3) application of local processing to

the MAP restoration method to achieve further improvements in the restored

image. The heuristic explanation enables us to predict correctly the

influence of the MAP parameters on the solution and on the behavior of the

iteration scheme. The explanation also enables us to derive a more ef-

ficient iteration scheme than the one used by Hunt [10] and to propose a

convergence criterion related to the noise process. The new solution method

converges faster and gives a more pleasing restoration than the original

method. The faster computation has made the MAP restoration method a prac-

tical tool for the image processing community. The convergence criterion

can be used to judge the quality of the restoration. Preliminary results

from current studies at the Los Alamos Scientific Laboratory indicate that

the new MAP restoration method produces images of as good as or better

visual quality for nonsingular blurs than restorations produced by more

conventional processing techniques. The MAP restorations from images de-

graded by singular blurs, such as out-of-focus lens blurs, were much superior

to conventional restorations. The new heuristic explanation of the MAP

restoration method and the derivation of the new iteration scheme are dis-

cussed in Chapter 3. Experimental results of studies of the MAP parameters

and timing data are also presented in Chapter 3.

The iteration scheme addressed in Chapter 3 was derived from the

heuristic explanation in that chapter. In Chapter 4 it is shown that this

iteration scheme is nearly the same as a standard numerical technique pre-

sented in Isaacson and Keller [12]. A further discussion is made in Chap-

ter 4 relating behavior of the iteration scheme to certain approximations

which were made in the course of the derivation.



Chapter 5 presents a short introduction to local processing in con-

trast to global processing. In this chapter it is shown why local pro-

cessing should theoretically be beneficial to the MAP restoration process.

Results are presented which demonstrate the improvements gained by local

processing. Finally, the trade-offs between computation time and restora-

tion quality as a function of the size of the local area to be processed

are discussed.

Conclusions and

Chapter 6.

1.4 The L“

topics for further research are discussed in

near Prob’em

The problem which has been addressed by previous restoration methods

is based on the model given by Fig. 1, that is, given a detected or measured

image g which was formed by the given model, find an estimate of f, the

original scene or object. As noted in the model given in Fig. 1, an image

is usually considered a function of two spatial variables. This function can

be represented in the discrete-discrete space [1] by a matrix. This matrix

can be represented

matrix, i.e., the ~

of the vector. Th

as a vector by Iexicographically ordering the column of the

,jth element of the mxn matrix is the [(j-l )m+i]th element

s ordering permits the use of the simple matrix model

~= Hf + n , (1-1)..-

where g is the recorded or measured image,

~ is the original undegraded scene,

n is additive noise,

~ is a transformation representing the blurring phenomenon;

the vectors q, f, and n are of length N and the matrixL-

H is of dimension N x N.

5



This model could also be described as a continuous model

corn

g(x,y) =
{J

H(x,y,u,v) F(u,v) dudv +n(x,y) , (l-2)

-m -m

where g, f, n, h represent the same quantities but in continuous space

and (x,y) and (u,v) represent the two independent spatial coordinates.

Equation (l-1) is the discrete version of Eq. (1-2) which is implemented

on digital computers. This is the form of the problem which will be

addressed in this dissertation.

1.5 Solutions to the Linear Problem

Solutions to the linear problem are discussed for completeness of

the dissertation. A comparison of two linear restoration techniques and

the MAP restoration method is made in Chapter 3. The standard linear solu-

tion methods use the model given by Eq. (1-1) with the additional assump-

tion that the image ~ and the blur ~ are stationary. This latter makes

h(x,y,u,v) = h(x-u,y-v), a convolution and permits the use of the Fourier

transform.

The classical method

minimize the expected value

of solving a nondeterministic problem is to

of the mean square error between the solution

(original scene) f and the estimate of the solution;. This yields the

Wiener estimate [7] which is usually described in the frequency domain as

(l-3)

where the restoring filter is



W( ~j(.3.)@f(.,.)
w .,. =

@g(m,. ) “

The script letters denote the two-dimensional discrete Fourier transforms

of the corresponding lower case quantities, the Q’S denote the power spec-

trum of the subscripted quantities and the overbar represents complex con-

jugate. Since @
-9

can be estimated from the given image g, the quantities

which must be known a priori are w and$f. Cole [3] has shown that esti-

mates of :f can be made from images of similar objects. Cannon [2] has

established methods for estimating w for certain types of blurs.

Constrained least squares estimation [9] eliminates the need for an

estimate of ~f. This estimate is found by solving the minimization problem

minimize: fTCTc f
----

(1-5)

subject to: [~-tI~]T[~-~~] =e

where ~ is a constraint matrix and e is proportional to the noise variance.

Heuristically, if! represents a differentiation process, the solution f

is the smoothest estimate such that the variance of the residual g - Hf
.-

is equal to the variance of the noise. The solution filter for the problem

(l-5) is given in the frequency domain as

j{c(.,.) = W (.,.)

l~(m,n)lz+xl~(m,n)lz ‘
(l-6)

where A is a Lagrange multiplier which is determined by iteration. The

only quantity which must be known a priori is~.

7



A method which requires even less a priori knowledge is homomorphic

filtering [3]. This method equalizes the power spectrum of the solution

estimate to that of a prototype of the original undegraded scene ~. The

homomorphic filter can be described in the frequency domain as

(l-7)

Cannon [2] extended this filter to inc’

specific point spread functions, H.

ude estimation of the phase for

The above restoration methods use the linear model Fig. 1. All have

been successfully applied to realistic digital image restoration problems.



CHAPTER 2

Previous Work on MAP

2.1 Introduction

In an attempt to use a more realistic image model and the maximum

amount of a priori knowledge for image restoration, Hunt [10] proposed the

maximum a posteriori (MAp) estimate. The proposed model takes into account

the nonlinear nature of most image recording devices, a factor missing from

most previous restoration work. The following is a review of work done in

[10] ’presented here for background and completeness.

2.2 The Nonlinear Model

While the model can be described in any of three spaces, continuous-

continuous, continuous-discrete, and discrete-discrete, we will use only

the discrete-discrete space because of our implementation of a digital

computer to find the MAP solution. The model in this space is given by

~= -- -s(Hf) +n

where

g is the recorded image measured in units of film

density;

f is the original scene measured in units of light

intensity;



n is film grain noise measured in units of film

density;

Y is the blurring matrix or point spread function;

s is the transformation from light intensity to film

density.

A picture is usually represented as a two-dimensional matrix. Here, it

is more convenient to

vector. Thus, if our

lexicographically order the columns to produce a

original picture were LxM points, the vectors g,

~, and n are of length LM and the matrix H is LMxLM. We assume~ (or

equivalently, the original picture) was appropriately padded with zeroes

so the product Hf represents convolution..-

The transformation of the LM vector b = Hf by s is the LM vector.-

generated by transforming each element of Hf by s, i.e.,--

C = s(b)

where

c.
1

= s(bi) i =1,2 ,...,LM s

2.3 Assumptions for MAP Restoration

Since we have noted above it is most convenient to work with ~, f,

~ as vectors, let N denote the length of these vectors.

The most basic assumption is that the noise, given by the vector

~, is an additive, zero mean, Gaussian random process with constant variance.

This is a simplification of the true behavior of film grain noise which is

more closely modeled by

10



where

k is a constant dependent on film type;

is a standard normal random variable, i.e., p = O, a = 1;
‘i

di is the film density at position i;

P = 1/2 [6] or P = 1/3 [8] .

However, the simplified model has been used successfully for some time

By using the simple model we gain mathematical tractability and recent

results [14] have shown very little

we will assume a multivariate norms’

and covariance Rn :.

loss in restoration quality. Thus,

probability density with zero mean

( N/ZIR lV2
-1

p(:) = (2’lr) -n
)(

exp _1,2nTR-1

)
--nu “

[13].

(2-1)

The vector f, the original scene, is assumed to have been drawn

from a multivariate normal population with mean ~ and covariance ~f:

(
-1

P(z) = (zIT)
N/21gfll/2

)(
exp

)
-1/2 (~-j)Tll;’(~-:) “ (2-2)

This assumption has the disadvantage that it presents the possibility of

negative values and for some images is unrealistic. However, it has the

important property of mathematical tractability and may be rendered

plausible by the following example. Consider an ensemble of driver’s

license photographs. Assuming that the faces have been registered by the

photographer to have approximately the same size and orientation, then

we would have a nonuniform mean ~. Histograms of images show that in-

tensities can sometimes be modeled by

not necessary at this stage to assume

Gaussian statistics [11]. It is

stationarity of the covariance but

11



this assumption will be of use in making certain approximations in the

numerical computation of the MAP solution.

2.4 Derivation of MAP Equation

It should be noted here that the only assumptions we have made

thus far are the model form

~=s(Hf)+n
. . “..,

and Gaussian statistics for n and f.

Given the recorded image, sampled as g, the probability density of

f conditioned on g is given by Bayes’ law

P(91f) P(f)
p(f]g) = ‘- - “ (2-3)
--

P(~)

The maximum a posteriori (MAP) estimate is derived by differen-

tiating with respect to f and equating the result to zero. As is usual in

the case of Gaussian statistics, we will first take the logarithm of both

sides and then maximize. This yields

aln[p(~{~)] aln[p(glf)] aln[p(f)] aln[p(g)l = ~--
a~ = af

+
af- - af

(2-4)

Noting that p(g) is independent oft and substituting in the quantities

P(~l~) from Eq. (2-1) and p(~) from Eq. (2-2), we have

12



We first concentrate upon the first term. Expanding and eliminating terms

independent of f we have

a
[( )S Hf ‘~~lg-l/2s(Hf )T~~ls(Hf )1w -.., - -- --j “

Writing the terms as summations

(2-6)

and

1/2 s(li~ )TF&’s(tlf ) = l/2$$s(& ‘mtft)rmps(~ ‘Pufu)

(2-7)

where r is the mpt’
mp element of the matrix ~~l. Taking derivatives we

have

a5(~~)T~;’: N

‘2X
a5(x)

afk ax
m=l p=l x=bm

N

where bm =
x

hmtft ;

abm

afk ‘mpgp ‘ (2-8)

(2-9)

13



.

.1/25 g [w ~=b ~ “.p S(bp)
m=l p=l m

IX-.(2Q+ S(bm)rmp ax 1~=b q ‘
P

where bm is as Eq. (2-9). We have from (2-9)

abm

afk = ‘mk “

We can write Eqs. (2-6) and (2-7) as vector matrix products.

Substituting (2-9) into (2-8) we have

where ~b is a diagonal matrix of derivatives

.
.

EE(2Q
as x=b

N-

and the bi are as defined in Eq. (2-9).

(2-lo)

(2-11)

(2-12)

(2-13)

Substituting Eq. (2-11) into Eq. (2-10) we have

14



a +S(~:)T~;’ s(tl~ )
as(x)

afk =1/2~ ~ ax hmkrmps(bp)

m=l p=l x=b
m

(2-14)

+ s(b )r w
m mp as

x=bphpk ‘

which we can rewrite as the vector matrix product

1

a * S(~Ii)T~ns(E~)

a: = 1/2 ~T:b~;’S(~~) + 1/2 [S(ti~ )T~;’:btjT

= 1/2 ~T:b~;s(~tl) + 1/2 tJT:][lQITs(~t Q

T -1
s(Hf) ,

= !!$b.!n _- (2-15)

since ~~ = ~b and [~~l]T = R-l .
-n

Now evaluating the second term of Eq. (2-5) we have

a [-1/2 (f-F)T~~ (~-~)]--
af

=- ~;’ (~-:) ● (2-16)

Combining (2-12), (2-15), and (2-16) in Eq. (2-5) we get the fundamental

MAP equation:

15

ljT:bFJ;’[~-s(Hf )] - ~; [~-:] = O . (2-17)--

The nonlinear nature of s in (2-17) does not allow it to be simplified



further, that is, there is no direct closed-form solution for the

restored f.

It is noteworthy that Eq. (2-17) does not contain H-l; thus ~

being singular or ill-conditioned does not impair our computation. If

s is linear, it is possible to rearrange Eq. (2-17) to yield

-( )+ ~TR-lH ‘1 T -1 -1 _l -
f . ~;l

(
H R g + ~~1 + HTR~lH.- n- --n... ---

)
~f :

which is recognized as a discrete Wiener filter with the a priori mean

included, Note that the case s(x) = x is sufficient to cover all linear

cases. Ifs(x) = ax + b, the slope a could be included in H and the bias b

could be subtracted.

2.5 Computational Aspects and Further Assumptions

Up to this point we have assumed very little about the structure

of H, ~n, and~f. To make computation of MAP estimates for reasonable

size images feasible, it is necessary to make certain assumptions which

simplify the computation.

We will assume the point spread function is space-invariant. This

is quite reasonable and is true for a wide variety of blurs. This causes

the matrix H to be block Toeplitz.

We will assume stationarity for the noise process and for the

process yielding the original scene f. The noise process is stationary

about zero. However, the scene f is from a process which is stationary

about ~. This forces the matrices R-n andl?f to be block Toeplitz. We

will further assume the noise is uncorrelated, forcing F&to be diagonal.

16



The assumptions on the

justification.

In the case of

noise are reasonable, standard and need no further

the random process yielding the original scene f,

we have assumed a Gaussian process with a nonuniform mean ~ but stationary

covariance Flf . Since we have only one member of this ensemble, we have

considerable latitude in defining the ensemble from which it came. The

assumption is clearly for computational convenience but is not unreasonable.

Because of the block Toeplitz forms of the matrices H, I?n , Flf we

can use block circulant approximations. This approximation permits the

use of the fast

products [9].

Since a

tried.

tion in

Fourier transform (FFT) for rapid computation

direct solution was impossible, two iterative

of the matrix

schemes were

Picard’s method relies upon rewriting Eq. (2-17) to yield an equa-

which the solution, ~MAp, is a fixed point, i.e.,

(2-18)

~MAP = ‘(~MAP)
(= @l(fMAp)3”””3 ‘N(tMAp))T “

Such a formulation is given by

‘ ~+~fHT~bR~l [g ‘s(HfMAP)] “~AP - - . - -.

The solution is obtained by the iteration

(- )
f(k+l) = ~ f(k) . (2-19)

Convergence of this method is guaranteed if in a neighborhood of the

solution

77



<1 fori ‘1,2,. ...N , (2-20)

and the initial supposition, to , lies in this neighborhood.

Unfortunately, Eqs.(2-20) are not of much utility for it is nec-

essary to guess the solution to get the proper neighborhood. The elements

of the summations in Eqs. (2-20) are very complex and would prove extremely

time-consuming to compute for any guess ~o. Thus, it was decided to simply

test this scheme for several cases with known solutions. Results from

these tests show divergence even when slight deviations of the known solu-

tion were used for~o.

The second scheme tried was the steepest ascent method. This itera-

tion scheme

where $ is

vergence.

by (2-17).

we have

s given by

()
(2-21)f(k+l) = f(k) +a(k)V$ f(k) ,

. .

the function to

In the MAP case

be maximized and a
(k).

1s determined to speed con-

y is given by (2-3) and (2-4), and~v is given

Substituting the left-hand side of (2-17) for~~ into (2-21)

Convergence is reached if

ll~$(f(k))!l< E , (2-23)
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where c is a tolerance on the error in the final gradient. This method

proved to be computationally feasible and test results showed convergence

over a wide range of initial guesses.

2.6

used to

step k.

(k),~Estimating the Parameters a _n , Ilf, and ~

The optimum choice ofa
(k)

can be determined theoretically and

take the maximum step in the maximum gradient direction at each

However, computation of this optimum is often impossible and

with functions as complex as (2-22) is extremely difficult numerically.

It was decided to use a fixed value, u (k) = ~. The value of u was de-

termined by trial and error, i.e., if the method diverged after a few

iterations, a smaller a was chosen.

Since the noise was assumed to be an additive, white, Gaussian,

zero mean process, it is necessary only to determine a variance. This

was done by determining the sample variance on a small, relatively flat

portion of the image.

Statistically, one way to estimate the mean of an

a single sample is $ = s‘1(~), However, let us consider

ensemble given

again the

ensemble of drivers’ license photographs. All faces are clearly not

alike; but if properly registered, the eyes, ears, noses, mouths, and hair

should appear in the same areas. One would presume that the mean image of

this ensemble would be

mouth, nose, and hair;

~is, then, a slightly

the measured image g.

approximately oval with suitable shadings for eyes,

in other words, a blurry face. Another reasonable

blurred version of the intensity image derived from

Both methods of generating ~ were tried with little

effect on the final result.

J9



\/hen~was estimated by a slightly blurred version of S-l(S),

!f
was estimated by computing the auto-covariance of the difference

S-1(9) - ~. This estimate requires stationarity which was already

assumed. This same Ilf was used when ~ was estimated by s-l (g_).

2.7 Computation

This method was tested on a 128 x 128 element picture. Conver-

gence was reached in approximately 60 iterations using about 16 minutes

of computation time on a CDC-7600 computer. The restoration compared

favorably with other more standard techniques.
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CHAPTER 3

Application of Heuristics to Get Improved Iteration Scheme

3.1 % Introduction

We have seen n Chapter 2 that Hunt [10] has laid the foundaton

for maximum a posteriori estimation in nonlinear image restoration.

Several problem areas remained and several new ones can be brought up

now. An interesting anomaly is that while the MAP method was developed

on the basis of a maximum amount of a priori knowledge, very little extra

knowledge was actually used in the restoration. Of the parameters required

for the restoration, ~, f?n, ~f ~, only ~f and ~, the parameters for
Y-

the probability density p(~), are not determined by the physics of the

image formation system. En and H can be derived from the sampled image,

~ [2]. Hunt calculated both ~ and~f from this same image. So in actual

practice, less information was required for MAP restoration than for Wiener

restoration.

As part of the question of a priori knowledge we would ask about

the significance of; and ~f. Since in practice ~and ~f were estimated

by a reasonable heuristic rather than by hard knowledge, it is only natural

to seek other methods of generating the parameters. It is also natural to

inquire about the criticality of these quantities on the solution and

about the effects of perturbing their values. The parameters ~ and Flf

define the distribution of the original unblurred image f since this dis-

tribution is assumed Gaussian as in Chapter 2. By perturbing their values

we imply we are using different estimates of these quantities. To make
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the point clear to the reader that in the following discussion we are
A

using estimates and not true values, we shall use the notation ~ and &.

Even though Hunt [10] proved that the MAP restoration worked, the

results as they stood were not outstanding and hardly justified the ex-

orbitant amount of computing time. Sixteen minutes on one of the world’s

largest and fastest computers to process a small, 128 x 128, image is

enough to curtail the interest of all but the few possessed of comparable

computing capacity. It is desirable not only to speed the present com-

putation but to find an algorithm which converges more rapidly.

While a convergence criterion was proposed by Hunt in the initial

work on MAP restoration, Eq. (2-23), no method was indicated to

choose an appropriate a, the step size parameter. In practice the eye-

ball served as the convergence criterion, i.e., when further computing

failed to produce a better picture, the iterations were stopped. This is

unsatisfactory from a mathematical as well as an aesthetic viewpoint.

3.2 Heuristic Explanation of MAP

This section is intended to give the reader insight into the

reasons why the MAP restoration method works and what the solution

method is trying to accomplish. The assumptions are made that the quanti-

ties g, H, andlln and the function s are given. This might be the case in
.-

a real restoration problem. The quantities ~ and if must always be esti-

mated in a real problem; because of this it is useful to consider different

possible estimates.

It is noted that the fundamental MAP equation derived in

Chapter 2 and repeated below consists of two terms.
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(3-1)

The

this

like

irst term is derived from the probability distribution, p(glf). If--

distribution were the only one considered, we would have the maximum

ihood estimate as the solution. We will refer to this term as the

maximum likelihood term.

The second term, or MAP term, is derived from the a priori density,

p(f). This term distinguishes the MAP estimate from the maximum likeli-

hood estimate.

of information.

It would
A

This is also the term about which we have the least amount

be ideal if both terms were zero. We could force this

choosing ~ to be the maximum likelihood estimate, but this would serve
A

purpose. Obviously, any other choice for f results in a solution of

eqUEltiOtl (3-1) where neither of the terms is zero. Thus, what a so”

must do is to strike a balance between the maximum likelihood solut”

and ~. In essence, what we will have for a solution is a nonlinear

weighted average of the solutions to each of the two terms.

Let us consider the iteration scheme given in Eq. (2-22) and

repeated here

by

no

ution

on

f(k+l)= f(k) +a LliT:bR@-S(:t@k))] -@,f(k) - ;]-[ . (3-2)

(0) = ~. The methodIt is reasonable to start the iteration scheme at f

moves successive f‘k)’
C

s away from ~ and toward the maximum likelihood so-

‘-1 -1
lution, which is ~ s (~). It would be beneficial to know the path the

iterations take from ~ to H-is-l (~); but because of the nonlinearity of s,
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this is extremely difficult to predict. The magnitude or norm of& and

& gives us an indication of our confidence in the two solutions H--’s-’(g)
A

and ~, respectively.

in the maximum likel”

ing of the two terms

H-is-i(g).

If fl~nll<< ll~fll, then we would have more confidence

hood solution than the a priori mean, ~. The weight-.

by l?~l and &l reflects this confidence since

our solution to Eq. (3-1) would lie closer to

3.3 Relation of MAP to Constra” ned Least Squares Estmation

In the preceding section it was noted how little actual knowledge

we had about the probability density, p(f), from which the MAP term of

Eq, (3-1) was derived. If the inclusion of this term were merely an arti-

fact of clever mathematics, we would not expect the good quality restora-

tions that resulted. The restored images shown by Hunt [10] are certainly

better than we could have expected from the maximum likelihood term alone,

i.e., H-’S-’Q). Since one is hardly likely to say that the $and ~f used

by Hunt were lucky guesses to the actual values, we are left with the

question, “Why did those guesses work?”

Let us consider the maximum likelihood estimate, ~-is-l (~). The

outstanding undesirable characteristic of this solution in image restoration

is its magnification

function matrix~ is

measured image where

of noise. In most applied cases the point spread

singular or near singular. In the range of the

the noise power is much greater than the signal power,

(usually in the higher frequencies) the inverse filter, ~-’, causes the

entire restoration to be dominated by the enhanced noise. It would appear
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that the MAP term acts as a noise control. This is seen by considering

the MAP solution as a weighted average. The solution cannot go too far

toward the maximum likelihood solution and “blow up” because of the averag-

ing in of the a priori mean. The MAP term is acting as a constraint.

Let us consider the problem of constrained least squares estimation.

This was developed by Hunt [9] for the linear problem:

-rl-

minimize f’ C’ C f. . . -

subject to (c$@(@f) =5 ,

where g = Hf+n is the measured image,—-

f is the original image,

H is the point spread function matrix,

n
2

is additive noise with variance cs ,

c is an arbitrary weighting matrix,

< is usually Nu2 where N is the dimension of the

vectors g, f, n ..-.

The method of Langrange multipliers yields the equations

c’cf- AH1 (g-Hf) = O-.. .—

.
(g-Hf)l (g-Hf) -c= O
-— -—

where A is the Lagrange multiplier.

If we restate the constrained least squares problem above to suit our non-

linear case, including the a priori mean, we have the problem:

(3-3)
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subject to: [g-s(~~)]T~l [~-s(Hf)] = 1 ,
..

(3-4)

where f, ~, g, H, &, Ilf, and s are as defined in Chapter 2. Followingw---

the same mathematics as in the linear case, we have the following

‘1 (f-~) - XHTS R-l [g - s(Hf)] = O
!!f . . --b-n . —

(3-5)

[y- s(fiiilT Q [~- S(yfyl -1 ‘ o

where Sb is defined by Eq. (2-13).

Thus, if ~ = 1, Eq.(3-5) is exactly the fundamental MAP Eq. (3-1). Since

the user of the MAP method has some latitude in estimating Rf, he could

choose ficto force ~ = 1. This would mean the two problems would yield
-1

the same solution; however, it also

ing the weighting of the (f-~) term
--

changes in if have little effect on

changes the problem slightly by chang-

of Eq. (3-l). It is later shown that

the visual quality of the solution.

In any case, the forms of the equations for the two problems are nearly

identical,

To summarize the new heuristic findings, the MAP solution is

related to the constrained least squares defined by Eqs. (3-3) and (3-4).

We are looking for the image which falls on the noise level boundary, i.e.,

the sphere defined by Eq. (3-4), of the maximum likelihood estimate and

minimizes the weighted distance from the mean, Eq. (3-3). The noise

level boundary is determined by the variance of the additive noise. While

the constraint Eq. (3-4) specifies the boundary of the sphere by the

equality, heuristically and computationally it is reasonable to include

the interior as well by using the inequality:

[~ - s(Hf)]T ~~1 [~ - s(fl~)]~ 1 .--
26



3,4 New Iteration Scheme

When choosing an iterative method to solve nonlinear equations,

one looks first for the simplest one that works. We have a simple work-

able scheme given by Hunt, Eq. (3-2). This scheme, however, is slow and

furthermore, requires user interaction to choose a proper step size param-

eter a. It is desirable to find a faster method which can

user assistance.

While there are methods to choose the optimum a,

run without

these methods

all require two or more additional computations of the function to be mini-

mized. The savings by such a method must be extraordinary to justify the

additional computations of a very complex function. After preliminary

studies, it was decided to abandon this approach since the additional

computation outweighed the advantages of optimization of a.

Another scheme which computes its own step size is Newton’s

method. In one dimension this scheme is given by

X(k+l) =x(k) -@(X(k))

~l(x(k))

where the solution is a zero of O. For a vector valued function, Y(f),
&-

the zero is found by

f(k+l)= f(k) _ J-l (f(k))+(f(k)) (3-6)
.?., --

()avi(fw
where J(fk) = ~f . The function for which we want to find the zero

i
is the fundamental flAP Eq. (3-l). To use this method would involve taking

the derivative of Eq. (3-l). This results in a much more complex function

to evaluate; since the goal was to speed the computation, this direct
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approach offers no further hope of reducing computing times.

As we have seen, the MAP solution is a “weighted average” of the

solutions to each of the two terms of Eq. (3-l), It is natural to try

solving the two terms separately using Newton’s method, then doing a single

weighted average. This, however, is dangerous since we know the “weighted

average” concept was for physical understanding and did not imply a

true relation. Since H may be singular, we may not have a unique solution

for the first term but a set of solutions determined by the null space of

H. Further, we are given no clue as to how to choose the weights for

averaging the two solutions.

By applying Newton’s method on each of the two terms and doing

a weighted average at each iteration, some of the above-mentioned problems

can be avoided. This permits the iteration to move successively closer to

the solution while at each step controlling the ill-conditioning of the

maximum likelihood solution. This method will avoid having to choose a

single set of weights for the average of the two solutions and will yield

a method of selecting and adjusting the weights at each iteration. Basi-

cally, we are calculating a step to solve the MAP (or mean solution) term

and a step to solve the maximum likelihood term and doing a weighted

average to calculate a step to solve the MAP Eq. (3-l).

Consider the first term of Eq. (3-l). We are essentially solving

lJ(f)=2 - S(l-11-1)= o. (3-7)

Letting b=Hf and applying the formula given by Eq. (3-6) we get---

#+1) = f(k) +-(Hsb)-l[9-s(@k))] ,.- (3-8)
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where~b is the same as defined by Eq. (2-13) and J(f(k)) = HSb. Un-
-. . .

fortunately, ~,if H is ill-conditioned or singular, SO is ~ib. AS mentioned

above, singularity of H results in a set of solutions to Eq. (3-7) determined

by the null space, There is no way to eliminate this problem mathematically.

However, in practice by starting the iteration scheme at reasonable values

~ and by controlling the solution of Eq. (3-7) by the mean ~, there is no

detectable problem.

Let us consider a way of lessening the effect of this ill-

conditioned matrix. If we solve Eq. (3-7) only for b = Hf, we get--

[ Ib(k+l) = b(k)+:;l g+(k)) .
-- (3-9)

This alone would lead to the solution b=s‘l(s); however, we want a solution
.

for f. Multiplying this solution by !-I-lwould put us back where we started.

The alternative is to modify the iteration.

(k)= b(k)whereConsider the calculation ofHf--
N

bi =
x

hijf:k) .

j=l

‘k) will result in changes to allFrom this it is seen that any change in f+

bi for which hij#O. If

be changed, it would be

be distributed over all

which hij+o. A natural

it is usual to consider

J

[.

(k)) that bi mUStit is determined from $1 ~-S(~
I

foolish to change only fi; but the change should

the points which affect bi3 that is, all fj for

weighting for this distribution is the hij’s since

only energy-conserving systems where

N

z hlij =
j=l

for i = 1>....9N.
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This means that the total energy (intensity) is unchanged during the blur-

ring phenomena. This leads to the iteration

~(k-

This scheme is wel

but in a more

function matr-

The

) = f(k) +HT S-l
[

S( f(k)) .
A ‘- - 1 (3-lo)

-conditioned and leads to the maximum likelihood solution

restrained manner because of the smoothing by the point spread

x HT.

Newton’s method formulation for the solution of the zero for

the MAP term is

i.e., set

variances

f(k+l)= f(k)+w] , (3-11)

the k+l iteration equal to the mean.

We noted before that the values Rn and Rf’ taken as simPle

here, represent the confidence in the solutions to the maximum

likelihood and MAP terms, respectively. We combine the two iterations Eqs.

‘f
Rn

(3-10) and (3-11) and weight each using the natural ratios — —
‘f+Rn

and Rf+Rn ‘

respectively. This yields the iteration scheme

‘f T -1
Rn

~(k+l) = f(k) +
[ ‘k))] Rf+Rn‘~~b ~-s~~ ‘—

‘f+Rn

. .

-1f(k)_; . (3-12)

In using any iteration scheme it is important to know when the

scheme has converged. We saw that the convergence criterion proposed

by Hunt for the original numerical method was not well-defined. Because

of the relation of MAP estimation with constrained least squares estima-

tion, we can now propose a well-defined convergence criterion. Convergence

is reached when
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[-

~(Hf(k)) ‘R-l g --!l- ] ~[ -s(Hf(k))j~l , (3-13)
a-.

When the iteration gets within the noise level boundary, we take that

iteration as the solution.

It has not been proved that this solution satisfies either the

fundamental MAP equation or the constrained least squares problem. It is
A

conjectured that by starting the iteration scheme at ~ and moving away from

~ in a restrained way, the solution is very close to those of the MAP and

constrained least squares problems. Results from applied problems have

indicated

3.5

that the solution described by Eqs. (3-12) and (3-13) is quite good.

Comparison of New and Old NAP Algorithms

A previous restoration, presented in [10], is shown here for com-

parison of the old and new MAP solution schemes. The original unblurred

image is shown in Fig. 3-a. This image was blurred using a uniform 3 x 3

point spread function matrix; the image was transformed to the density domain

by a standard D log E curve and zero mean Gaussian noise with standard

deviation, o = 0.02 was added. This image is shown in Fig. 3-b. The restora-

tion of Fig. 3-b by Hunt’s algorithm after 60 iterations is shown in Fig. 3-c.

The restoration of Fig. 3-b by the new algorithm which converged in six

iterations is shown in Fig. 3-d. Notice the bands on the child’s

cap and the separation of his eyes. Notice also the overall reduction

of noise.
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Fig. 3-a Original unblurred image Fig. 3-b Blurred image plus noise

Fig. 3-c MAP restoration by Hunt’s
method

Fig. 3-d MAP restoration by new
method
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3.6 Comparison of New MAP Solution With Other Restoration Methods

Since it is clear from the results shown in Fig. 3 that the new

MAP algorithm produces a better restoration, it is worthwhile to compare

the MAP restoration with other standard methods as was done previously by

Hunt [10]. A standard test chart was blurred by defocusing the camera lens

before exposing the film. The radius of the blur, as determined by Cannon’s

algorithm [2], was r = 4.0 pixels. The result is shown in Fig. 4-a.

Figure 4-b is the Wiener restoration. Figure 4-c is restoration by

spectrum

after 64

equalization (P.S.E. ) [2]. Figure 4-d

iterations.

The Wiener and P.S.E. restorations used

s the MAP restorat

the power spectrum

power

on

from

an unblurred picture of the same chart, hence the restorations are the best

one could expect from these methods. The MAP restoration used only informa-

tion from the blurred picture in Fig. 4-a. Notice the noise control and the

absence of artifacts in the MAP restoration as compared to the other two

methods. The Wiener and P.S.E. restoration methods have produced small

disks (actually images of the point spread function) because of imperfections

in the film (dust, etc.). One is easily seen below the h in the second line

This is a type of artifact avoided in the MAP restoration.

3.7 Use of the Convergence Criterion

As mentioned previously, the new iteration scheme has a natural

convergence criterion given by Eq. (3-13). The algorithm is stopped when

the variance of g - s(Hf) < Rn, i.e., the residual, is less than or equal

to the variance of the noise. We could go further with our convergence

criterion and require that the residuals be uncorrelated.

to a rather complex set of tests to be carried out at each

This would lead

iteration.
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Fig. 4-a Original blurred image

Fig. 4-c Restoration by power
spectrum equalization

Fig. 4-b Restoration by Wiener fi1ter

Fig. 4-d Restoration by MAP
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Such tests would be costly and in the light of other results from local

processing are unwarranted.

We can, however, make good use of the residual, q-s(Hf). Since
4----

we would like to have an uncorrelated residual image, we can easi”

for correlations with the eye. Ifwe display the residual image,

would hope to see white noise. If we see patterns in this image,

y check

we

we

know further processing with MAP would be beneficial. We also know ex-

actly where in the image we can make a better restoration. This allows

us to extract only that part of the image that can benefit from further

processing and use the

putation time.

The residual

algorithm on a smaller image, thus saving com-

mages associated with the MAP restorations in

Fig. 3-d and Fig. 4-d are shown in Fig, 5-a and Fig. 5-b, respectively.

While both restorations have converged and the variances of the residual

images are less than the variances of the respective noise processes,

one can easily see patterns in Fig. 5-a around the child’s cap and at

the edge of the mother’s jacket, whereas patterns are much less discern-

ible in Fig. 5-b.

3.8 Properties of the New Algorithm

Of the properties of the new algorithm, the most critical, be-

sides producing a good restoration, is the sensitivity of the solution

to the values of the parameters. The user of the MAP method must select

2 (“),~f, Rn,~, ands.values for f, f There are standard methods for-.

determing ~ for certain types of blurs and for determining the noise

variance ~n. The non-linear function s should be known by studies of
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Fig. 5-a Residual of restoration in Fig. 3-d

Fig. 5-b Residual of restoration in Fig. 4-d
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2 ;(0), and ifthe output medium. The parameters ~, _ are more arbitrary

and require the user to make a decision. It is of interest to know the

criticality of this decision.

.

3.8.1 Properties of ~

If we consider the MAP term of Eq. (3-12) as acting as noise
A

control, we would not expect f to be particularly sensitive. To act as

noise control, ~ should act to control the large noise induced oscilla-

tions which are characteristic of~-ls-l (~). Other than these rather

loose restrictions, it would appear the solution should not be sensi-
6

tive to perturbations of ~. This was verified by experiments where ~’s

were generated by s-l(g), slight blur of s‘1(2), and the global average
N-_l 2

Of S-l(g), i.e.,+~ s (gj)=fj3.j=l 3.. . . 3N. No noticeable dif-
i=l

ference was detected in the solution and the speeds of convergence were

identical. Since these three estimates for ~ spanned the field from good

to bad and had no effect on the solution, no other estimates were tried.

3.8.2 Properties of if

In the initial work on MAP, Hunt [10] used an elaborate scheme

described in Chapter 2, to generate the covariance matrix if . One of the

first methods used to speed up the MAP computation was to eliminate the

convolution required by this matrix by letting ~f be diagonal representing

a single variance. This succeeded in reducing the computation time with

no detectable effect on the solution. Later, after the new algorithm

. th
was adopted, ~f was made diagonal with the variance of the 1 element

A
equal to ~i as a Poisson distribution. Again, no effect was noticed on
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the solution. It is noticed from examining Eq. (3-12) that the fraction

‘f~m is close to 1.0 if Rf>>Rn which is almost always the case if s
nf

represents a photographic process. The variance of a typical pictorial

snapshot is about 0.05 while the variance of typical film grain noise

is about 0.0004 giving a typical signal-to-noise ratio of 21 decibels.

These variances are measured in the density range of the film. However,

If is measured in the intensity domain. This implies a transformation

from the density domain to the intensity domain by the function S-l. For

films, a simplified s can be defined by s(x)=yloglo(x/Io); hence

S-l(X)=IOIOX’Y, wherey is determined by the film and 10 is a base intensity

level equivalent to an aperture. Clearly Rf is proportional to I: and must

be estimated according to the function s used in the model. Assuming

10=1 and Y=l, then S-l(X)=IOX; assuming further that the mean density is

around 1.0, then the mean intensity is around 10.0 and llf=5.0. This value

is typical of the author’s experience when using such a function.

In the above discussion, I?fwas estimated from the variance of the

image in the intensity domain; this image would normally be f(o)=s-~(g).

Another estimate could be obtained from the variance of f‘k)~~, kso, for

‘o)=;. If this is not the case, the vari-it is standard practice to set f

ante of f(o)-~can be used. The if estimated in this manner is in the

same range as the previous estimation. This estimation method has the

advantage of successively updating ~f each iteration and it is easily ob-

tained in the computation of the MAP iteration.

Experiments were run using various fixed estimates ofllf. Typical re-

sults showed that the iteration scheme Eq. (3-12) failed to converge for

Ilf<().()()lbut converged with the same speed for all llf~ 0.01. NOdifference
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was apparent to the eye in any of the converged so”

that the main criterion for ~ is that it be large
~-f

solution to move away from f; after that condition

only be small enough to control gross errors, and

utions. This indicates

enough to allow the

is satisfied it need

here appears to be con-

siderable latitude in this condition. Upon examining the iteration scheme,

Eq. (3-12), it is apparent it should make little difference if R~l.O or

100.0 if RnM.OO1. The numerical scheme introduced in Chapter 4 requires

Rf~l.O for convergence because of an additional term.

3,8.3 Properties of f(o)

In any iterative numerical method, one would assume that the

starting value would be critical. Indeed, most convergence theorems in

numerical analysis start with an initial estimate of the solution in a

neighborhood of the true solution with certain properties. The MAP

ation method is no different. A really terrible first estimate wil-

the algorithm to diverge. However, most reasonable first estimates

ter-

cause

have resulted in convergence. The speed of convergence was affected as

well as the goodness of the solution. Figure 3-d shows the solution

reached in six iterations with f&=s-l (~). Figure 6-a shows the solution

reached in nine iterations with to equal to the global average. The fact

that both converged demonstrates the latitude of the solution. A com-

parison of the residual images shown in Fig. 6-b and Fig. 5-a demonstrates

the varying

in Fig. 3*d

restoration

child’s cap

quality of the solution. It is readily seen that the restoration

is better overall. Its residual shows fewer patterns. The

shown in Fig. 6-a gives better definition of the stripes on the

but much poorer restoration of the mother’s hair.
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Fig. 6-a MAP restoration using f(o) equal to global average

Fig. 6-b Residual of restoration in Fig. 6-a
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3.9 Rate of Convergence

As with any numerical iteration scheme, there are many factors

which influence the rate of convergence including, of course, the data
A

itself. hlehave mentioned how the parameters ~, ~, and if affect this

rate of convergence. It is now appropriate to ask what are the effects

of those parameters over which we have no control, H and iln. These

parameters are fixed when we are given the data image ~.

It is clear that as the variance of the noise increases the degrada-

tion of g increases also. This increase of noise power makes restoration

by any method more difficult and in general reduces the restorability.

Thus, the worse the noise, the worse the restoration. In terms of the

heuristic explanation presented earlier in this chapter, the larger

noise variance results in a larger solution space. It is reasonable to

guess then, that increases in the noise variance actually increases the

rate of convergence. This guess has been verified by experimentation.

For example, on a standard sequence of computer runs the noise variance

was set at 0.0004, 0.0016, 0.0064, and 0.0256, with all other variables

held constant; the numbers of iterations required for convergence were 21,

9, 4, and 2, respectively.

It is also clear that as the blur gets worse (usually measured

by its second moment) the degradation of g increases. Since the

size of the solution space is determined mainly by the noise variance, the

size of the point spread function has little effect on the size of the

solution space. Increasing the size of the point spread function means

that each point is affected by more

affects more of its neighbors. Our

neighboring points and that each point

numerical iteration algorithm averages



the needed change of a point over those points which affect that point.

Increased size in the point spread function means more points over which

to average the needed change. When all other changes from other points

in the image are then added to the change required by the single point,

the sum is a much worse estimate of the needed change. Thus, it would

seem that larger point spread functions would converge more slowly than

smaller ones. This has been verified by experimentation. A sequence of

computer runs was done with the image blurred by square apertures, i.e.,

equal weights, of sizes 3 x 3, 5 x 5, and 7 x 7 with all other variables

held constant. The numbers of iterations required for convergence were 6,

21, and 43 respectively. This point will again be examined in Chapter 4

in the light of results from numerical analysis.

3.10 Timing

In computing a single iteration of the MAP algorithm given by Eq.

(3-12), it is obvious that the most expensive operations are the con-

volutions required by the matrix multiplication of H and HT. The Toeplitz

forms discussed in Chapter 2 allowed this computation to be speeded up

by the use of the FFT, but it is still the limiting computation factor.
.

Other computations, as multiplications for the weights and $~’, and

-1computations of-sb , also add to this basic time. There is also significant

time required for input/output of the several large arrays which must be

stored on disk.

The time of an iteration is almost singly a function of the size

of the required convolution. These convolutions were done in a size to

avoid as much as possible the periodic effects of the FFT. If the image is
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M x M and the point spread function is N x N, the FFT multiplication is

k-1
carried out on matrices 2k x 2k where 2k> M+N-l > 2 . The timing values

given in Tablel are functions of the matrix size required for the

convolution. The times represent computation done on a CDC-7600

computer,

TABLE 1

Timing for M,4PRestoration

Matrix Size Time per Map Iteration

128 8.1 seconds

256 12.8 seconds

512 88.5 seconds
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CHAPTER 4

Numerical Analysis

4.1 Introduction

We have seen that the iteration scheme described in Chapter 3

works and produces good results. However reasonable the heuristic behind

the scheme, it lacks a satisfying mathematical foundation. This chapter

will attempt to give that necessary

4.2 Modified Picard’s Method

foundation.

The following method is described in Isaacson and Keller [12].

Picard’s method of solving non-linear equations is derived by writing the

equations in the form

x = $(x) , (4-1)

then using the iteration

X(k+l )=$(x(k)) , (4-2)

Unfortunately, this scheme is rarely used in actual practice because of the

limitations discussed in Chapter 2. However, this scheme can be modified

to yield a scheme with an improved convergence rate, as well as one which

will converge when the original diverges. The new iteration is given by

(4-3)
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where ~ is a diagonal matrix given by

Y det[e] = e102. ..eN #O

‘N

*

Clearly, if e = I, the identity matrix, the resulting scheme is the unmodi-.-

fied Picard’s Eq, (4-2). The scalar form of Eq. (4-3) is

X(k+l) (k))+ (1 -ei) X[k) ,
i = 13i$(xi i=l,2,. ..N, (4-4)

so computation is easily implemented.

It is stated in [12] that the new method will converge if in a

neighborhood of the solution the vector function $ has continuous first
a@i (X)

partial derivatives, o.. = ax- , which satisfy the conditions
lJ

j

I 1 - l)ii(~) I > xl”ij(~)~ i=l,2,...,N
j+i

for some choice of~. The optimum e is derived as follows:

Consider the error at the kth iteration

e(k) =x(k)-a ,
,.,

where ~ is the solution

a = (j(a) .
--

Substituting Eq. (4-3) into Eq. (4-6) we get

e(k+l) (k)= e $(W) + (J+) ~ -g .
+ . ..-.?..

(4-5)

(4-6)
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Rewriting cxas ci= 13$(a) + (1-O)a we have+.. -- -*-

e(k+l) =8 $(x
[

(k) . (4-7)(k)) -~(~)] + Q@s
w -.

Using Taylor’s theorem

f, (~
(k)

for vector valued functions we can write

- $ (a) =J (c] (x(k) -CY) (4-8).+ .- -g

where~ is,some point in the neighborhood satisfying Eq. (4-5) and~$ (~)

is the matrix defined by

Substituting Eq. (4-8) into Eq. (4-7) we have

e(k+l) (k) + (I=eJ@(C)e --~)~ (k)
----

=
[
I-

1
e + e Jo(g) e(k) =~k e(k) .

--- ---

The method defined by Eq. (4-3) will converge if

If we use the maximum norm

I]xI[ = maximum
l<i<N

and the induced matrix norm,
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11A l]= maximum
l~i~

convergence is guaranteed if

n

L 1a .,

I
2

j=l lJ

This condition holds because of the assumption of Eq. (4-5). Consider

inequalities of the form

R(e) =ll-etil+lelb<l , b>o .

If Ial > b and e is in the interval

o<e<~
a+b

or
& <e<o

then R(e) < 1. For case 1

o<e<&

O<ea- 1 +eb < 1

if a>b

if -a>b

(case 1)

(case 2)

implies

. (4-11)

Now consider es-l; if es-l? O we have 11-eal = es-l and we are done. If

ea-1<0 we must have O<ea-eb<l since eb>O and a>b. Multiplying by -1 and

adding 1 we have 0<1-ea + eb<l. Since l-es = I l-es /, we have proved

R(e)<l for case 1. Case 2 follows in the same manner.
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Further, since /al>b the minimum value of R is attained at e* = ~

and R(e*) = ~ .

It is also clear that R(e*-c) < R(e*+c) which implies it is better to

underestimate than overestimate e.

Although we know R attains its minimum at ei = -
1

11-$ ii(s) 1’
we do not know g. It is suggested by [12] that

(4-11)

(k) th
can be used, where x is the solution estimate at the k iteration.

4.3 Application to the NAP Equation

Rewriting Eq.(2-17) we get the form needed in the above method.

T -1
[ 1- s(Hf) = $(f).

~=~+!f!!~b!n ~ --- -

The modified Picard’s method yields the iteration

S Hf (k))]- e[f(k) - :].:[(f(k+l)= fk+e RfHT:b R;l g-
--- -- --

To make Eq. (4-13) compatible with Eq. (3-12), we set

(4-12)

(4-13)

(4-14)

and we have for & and llf scalars
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The only difference between Eq. (4-14) and Eq. (3-12) is the S~2 in the

second term of the right hand side. Ne shall examine this discrepancy

later,

In essence, we have heuristically derived a e, given by Eq. (4-14).

Let us now see how this compares with the optimum e of Isaacson and Keller.

From Eq. (4-12) we have

N
‘f

‘f ~hkis’(bk)s(bk) ,@i(f) = ii +~~hkis’(bk)gk ‘~ (4-16)
n ,=1 n k=l

where

(4-17)

and the ‘ denotes differentiation.

N
a~i (x)

_ ‘f.—
af. = ‘ij Rn x
J ,=1 ‘ki “’(bk) ~;~ ‘k

- ) ~ hki [S’’(bk) ~ s’(bk)2]# .
n K=l j

abk
Noting that ~=

‘kj
and rearranging the summations we have

i
d

N
‘f

N
$.”=~ x [

hkihkjs’’(bk) gk -

‘(b,)] - ~ hkihkjs’(bk)2lJ (4-18)
n k=l k=l
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and

N
‘f

+“” ‘~ x
(4-19)h~i s“(bk)[gk = s(bk)] -~ h~i s’(bk)z .11

n k=l k=l

While this quantity is computable, it would be quite costly; and it

fails to shed much light on why our heuristic e worked so well.

Let us now make some simplifying assumptions. If we assume the

point spread function to be small compared to the size of the image, then

hij $ 0 only over a small region. Since H is a blur, it is also reason-

able to assume that the image b is smooth, and we may approximate b by a

constant over the small region over which hij # O. BY RplaCing S’(bk)

and s“(bk) by single values s’(be) and s“(bo), respectively, and

gk-s(bk) N go-s(bo) we have

[

N

0
‘fx—

ii R 1s“(bo) [g. - s(bo)] - s’(bo)z ~ h2. .
n k=l ‘1

(4-20)

If lgo-s(bo)l<<l and s“(bo)l=l s’(bo)zl or if ls’’(bo)lccls’(bo)zl

and Igo-s(bo)Jxs ’(bo)z we can eliminate the first term in the first brackets.

To show that this is reasonable, let s represent an H and D curve for

film, i.e.,

s(x) = Ylog(x) .

s’(x)=:;Then we have

s“(x) = -J
)?

with typical Y’s ranging from 0.8 to 3.0. The term g - s(bo) is in the

density domain. A typical density range for.film is 0.3 to 2.0; hence it

is not unreasonable tG expect the difference Igo - s(bo)l<O.l. The quantity

50



90 - s(bo) is related to the noise which in most cases is small. Typical

values of the standard deviation of film grain noise are a x 0.02 - 0.005.

Using this assumption and letting

we have

‘f
$“”x-&s’(bo)2 .11

n

Substituting Eq, (4-21) into Eq. (4-11)

1
Rn

Eli= =

1+ ‘f~C s’(bo)z
Rn+RfC s’(bo)z “

n

(4-21)

(4-22)

We mentioned in Chapter 3 that Rf was a parameter to be determined,

thus including C in this estimate is no problem. In the case of film, Rn

is the noise variance in the density domain while Rf is a signal variance

in the intensity domain and we have naturally Rn<<Rf. This last assumption

gives

Rn Rn s’(be)-z
Eli%

Rf S’(bo)2
x (Rn + Rf) “ (4-23)

It was noticed earlier that the heuristic “e” lacked the s’(be)-z

multiplying (f(k) -;). One reason this did not hurt our solution was

that this term acts as a noise restraint; thus we are letting the

solution be less restrained. A second reason leaving the s(bo)-z off
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did little is seen by examining the magnitudes of the terms. If

s(x) = log (x) then

s’ (X)-2 = X2.

If our image has densities around 1.0, XX.1O.O and

with standard film have shown Rn ~ 0.0002. Typica”

about 100.0. Thus, the e of Eq. (4-22) gives

where in the heuristic case

In either case, experiments

omitting the second term of

~~ 10-4

8 =10-6 .

X* X1OO.O.Experiments

values for R are
f

have shown little is lost by complete’Y

the iteration. It does, however, guard against

singular behavior or gross errors of the type permitted by the maximum

likelihood estimate of noisy data.

4.4 Effects on Rate of Convergence

It is shown in Chapter 3 that larger point spread functions re-

sulted in slower convergence rates. A reason mentioned then was that

more averaging of the needed changes was being done.

can be inferred from our calculation in this chapter

As the point spread function gets larger, more hij’s

This means that

A second reason

for the optimum ei.

are non-zero.

~ h~i\ S“(bk) [9k - S(bk)l - s’(bk)2~
k=l
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can no longer be approximated very well by

N
~2

x( )
s“(bo)[go - s(bo)] - s’(bo)z o

K=, ‘i

The estimate for @i given by Eq. (4-14) is no longer close to the

optimal 0.

4.5 Modification of Heuristic Method

As a result of the numerical studies presented in this chapter,

altering the heuristic method was found to be beneficial. It was noted

that the methods differed not only in the multiplication of the MAP term

but also in the order of the matrix multiplications in the first term.

Tests showed that the order of multiplication of the modified Picard’s

method gave faster convergence (6 iterations versus 8 iterations for the

picture in Fig. 3-b) than the heuristic method. This order of multipli-

cation was used in all further restorations.

In one-dimensional simulations using the MAP restoration method the

above findings were confirmed. It was also discovered that the rate of

convergence was increased by using the approximation of the optimal e

given in Eq. (4-20). The summation in this equation is much easier to

compute in the one dimensional case.
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CHAPTER 5

Local Processing and MAP Restoration

5.1 Introduction to Local Processing

In the analysis of an image, prior to processing, one takes par-

ticular note of the varying characteristics of different regions of the

entire image. If a power spectrum is to be calculated, for example, one

would note the frequency characteristics of the different regions and

expect to see these characteristics in the spectrum of the image. Of

course, these characteristics would be diluted by averaging over the entire

image. In any type of processing, there are certain properties which

may define a region, even though such properties themselves may not be

well defined, i.e., not mathematically defined. The mere fact that regions

can be defined tells us that the defining properties may be lost when con-

sidering the image as a whole, that is, computing the defining quantities

using the entire image.

Consider a simple picture of a building, trees, grass, and

sky. Assumewe are interested in generating a Wiener filter. This re-

quires an estimate of the power spectrum. If we compute an estimate by

using the entire image or by estimating the spectrum for smaller sections

and then averaging, we will have diluted the characteristics of each

area. We would expect, for example, the spectrum of the building to have

most of its power concentrated in orthogonal directions; it might even

have a periodic nature depending upon its structure. The sky is basically

flat, and thus would have most of its power in the lower frequencies.
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The grass and trees would have more power in the higher frequencies than

the sky and none of the directional properties of the building. Using

an averaged power

taken as a whole,

different areas.

It would

spectrum might give an optimal filter

but such a filter would be suboptimal

be an advantage to consider the local

for the picture

for each of the

properties of the

image when processing the image. Local or adaptive techniques have been

proposed in coding theory and bandwidth compression [4], [5]. It is

natural, then, to investigate whether similar

to image processing in general and to the MAP

Local processing might be defined as

to use the characteristics or properties of a

techniques could be applied

problem in particular.

any processing which attempts

smaller part of an image to

process that particular part. Global processing would be defined as

processing that uses properties of the entire image to process the entire

image. Several processing techniques have been implemented where only a

part of the image was being processed at a time, usually because of com-

puting time or space limitations. These techniques could not be classified

as local processing unless the processing of each part of the image changed

in some way to reflect the peculiar properties of that part.

The advantages of local processing are fairly obvious. The

properties of which we wish to take advantage have not been averaged out

over the entire image. Local techniques lend themselves to piecemeal

computations. Local techniques can be changed drastically from one part

of the image to the next.

The disadvantages

be extra cost in computing

of local processing are not absent. There may

time because local processing requires some

redundancy; for example, overlapping sections to minimize section
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boundary effects, More care must be taken in noisy environments because

noise cannot be averaged out as in global processing, With less data the

statistics on a random signal will be poorer,

A standard technique which lends itself to local processing

is density stretching. Here image densities are linearly transformed to

cover the range of the display medium. Since the transformation is a

function of the maximum and minimum densities, greater stretching can be

obtained over smaller sections, giving greater contrast. In applying

local techniques to density stretching, one must consider the dis-

advantages mentioned before.

Section boundaries are a problem in local processing since adjacent

sections are being transformed by different linear functions. Points

near the boundaries, even though originally very close in value, may be

mapped onto values quite far apart depending upon the other values in

their respective sections. Overlapping the sections is one way to minimize

boundary effects. Overlapping is done by using the statistics of a larger

section to compute the stretching parameters but actually doing the trans-

formation on a smaller subsection. The relative sizes of the sections

are dependent upon the nature of the picture and the desired effect.

Noise affects local stretching in a unique way. Where the varia-

tion of the signal is greater than the variation of the noise, the method

yields the desired contrast enhancement. However, in sections where

the variation of the noise is greater than that of the signal, for example,

in flat regions of the picture, the noise will be expanded to the full

range of the recording medium. This is

one where the noise dominates the signa-

in reading such a processed image.

not necessarily bad, for it tells

; but one must certainly take care
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5.2 Local Processing Applied to MAP Restoration

While local processing appears to be advantageous:

any processing which is done globally, MAP estimation has

which make it particularly adaptable to local processing.

of the iteration scheme can easily be carried out on smal”

convergence criterion defined by Eq. (3-13) suggests that

tions can be achieved using local methods.

It is noted that the convergence criterion

is an average

entire image,

e(f(k)) = II~ - s(}~(k))llz ~ Rn

value. In the global case, this average is

i.e.,

for almost

properties

The computation

sections. The

better restora-

(5-1)

taken over the

N

Ilg- E(‘k))t12=; gj - s(bj))2 ,S(tif
j=l

where b = Hf(k). This means that over a large area it is possible to-.

average out very large values with very small values. If the area over

which this average is taken is small, then there is less chance of large

errors being offset by small ones and, thus, a more homogeneous error

pattern is obtained. This implies that the smaller area or section results
I

in better restoration. Experiments were made using varying section sizes
~

with the result that the smaller section size produced a more pleasing

reconstruction; and the residual image, defined in Chapter 3, showed sig-

nificant improvement. It is only computation time limitations which will I
prevent us from practically applying local MAP estimation to each individual

point.
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It would seem that one would

in the convergence function rather

to zero, the solution would be the

be more concerned with large errors

than small ones, If Rn is set equal

maximum likelihood estimate. This

solution was unsatisfactory because of the domination of the restoration

by the noise. If e(~(k)) is too small in the presence of noise, then the

solution is likely to be excessively noisy. By stopping the iteration as

soon

cess

up.

as Eq. (5-1) is satisfied, we avoid this noise problem. Local pro-

ng, by producing a more homogeneous error, prevents this noise build-

This effect has been noted in experiments.

Certain assumptions were made in Chapter 3 to facilitate computation.

One such assumption was the Toeplitz form of the matrix ~, (the matrices

Ilnand Ilf were also Toeplitz but were later reduced to scalars). This

form permitted the use of the fast Fourier transform (FFT) to speed the

computation. The advantage of the FFT is diminished when the size of the

matrices is decreased. Local processing requires smaller sections and

permits direct computation of the convolution. For small point spread

functions, this results in faster computation times. The number of mul-

tiplications required for the convolution using the FFT for images of size

Nx N is N2[16(310g2(N) +z)I. The number of multiplications required by

direct convolution for the N x N image using NSECXNSEC sections and an

NPSF x NPSF point spread function is

Nz

[

N2
(PSF ‘SEC

+ 2(NPSF - 1))2 ,
—— 1NSEC

Since direct computation can be used, the Toeplitz restriction can be

dropped. Since the FFT is not used, the Fourier wrap-around effect is

avoided.
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Local processing may save computation in another way. Since all

sections of the image do not have the same content, some sections are

more or less degraded than others. For example, a blurred sky is hardly

noticeable whereas a blurred picket fence is quite objectionable. The

convergence rate of the MAP iteration scheme is clearly affected by the

content of the image. Local processing gives the scheme the opportunity

to spend its time where it is most needed. It will converge rapidly on

“flat” sections; it can spend many iterations on sections with more detail.

5.3 Computation of Local MAP Estimates

The quantities which are to be calculated are, of course, the same

for the local and global cases. The difference is in the methods of com-

putation. The global method relied heavily on the FFT. The local method

uses direct matrix convolution in

also handle the computations in a

effects.

the space domain. The local method must

manner designed to minimize boundary

The only cause of boundary discontinuities in the MAP computation

is the edge effect of the convolutions. This effect can be avoided by

overlapping the sections by the area affected. Since Eq. (3-12)

contains two convolutions and assuming the point spread function matrix is

m x m, the amount of overlap required is 2(m-1) x 2(m-1). If the Section

(we use the capital S for clarity) over which we wish to compute the MAP

estimate is n x n, then we must use a working section of [n+2(m-1)] x

[n + 2(m-1 )]. The necessary overlap area constitutes the major overhead

in the local processing. It is clear that smaller Sections have a larger

percentage of overhead computation. It is also clear that the computation
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will be more inefficient for larger point spread functions.

Local processing requires less storage than global processing since

it is operating on small areas. To compute the iteration given by Eq. (3-12)

one matrix, mxm, is required for the point spread function; and one matrix,

[n + 2(m-1 )] x (n + 2(m-1 )], is required for the image and results of

convolution. The computation may be speeded by having additional core

storage available, but it is possible to store the intermediate results on

auxiliary devices.

5.4 Results of Local Processing

It is clear that local processing is a matter of degree. A large

image may be sectioned into several smaller ones and processed using the

same computer code that could be used to process single large images. When

Section sizes get very small, it is impractical to do this and a single

code which operates on a single image in a sectioned manner is used. The

following results were generated using such a code. Figure 7-a is the

restoration of the degraded image shown in Fig. 3-b, using 32 x 32 Sections.

Figure 7-b is the residual image, g - s(Hf) associated with this restora-

tion. Figure 8-a is the restoration of the same degraded image using

8 x 8 Sections, and Fig, 8-b is the associated residual image.

Comparison of the residuals shown in Figs. 7-b and 8-b and Fig. 5-a

shows a definite benefit from processing with 8 x 8 Sections, while

processing with 32 x 32 Sections shows little difference from the global

restoration. It is interesting to note here that the mean square error

between the three restorations and the known solution (Fig. 3-a) were

all within 10-4 of each other in the density domain. This demonstrates
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Fig. 7-a MAP restoration using 32 x 32 Sections

Fig. 7-b Residual of restoration in Fig. 7-a
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Fig.

Fig.

8-a MAP restoration using 8 x 8 Sections

8-b Residual of restoration in Fig. 8-a
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again what is connnon knowledge in the image processing field, namely that

mean square error is not a good criterion for judging quality.

5.5

sma”

how

the

Properties of Local Processing

From the results shown in Figs. 7 and 8, it is

ler Section size results in better restorations.

much better quality restoration does the smaller

scope of this dissertation. Indeed, the quality

highly subjective. We can say the restoration shown

c ear that

The question of

Section give is beyond

of restorations is

in Fig. 7-a is

better than that shown in Fig. 3-d only because the majority who have

looked at them agree that it is. Residual image, g - s(Hf), gives a some-

what quantitative measure of goodness of restoration. We cou-

measure the correlation of the residual image and use this as

tive measure, but there is little reason to assume this would

better results than mean square error. The residual image is

as a qualitative guide.

d actually

a quantita-

yield much

proposed only

While the quality of the restorations for various Section sizes is

subjective, the cost of the restorations for various Section sizes is

definitely quantitative. It will obviously take longer to compute a single

MAP iteration for a larger Section, but there are fewer Sections and the

overhead (i.e., proportion of

smaller. It is also the true

an average, will allow larger

overlap necessary to avoid edge effects) is

case that the convergence criterion, being

Sections to converge faster for the same

image data. It is not surprising to find that the restoration using 8 x 8

Sections took 128 seconds while the restoration using 32 x 32 Sections took

54 seconds. As noted in Chapter 3, the major time-consuming operation in
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the MAP computation is the convolution. The time required for the convolu-

tion computation is a function of two variables, the Section size and the

point spread function size, There are certain other computations which

must be done; but as the Section size gets larger, these computations com-

prise a smaller percentage of the total time, and the time Per iteration is

nearly proportional to the number of multiplications in the convolution

calculation. For larger Sections, it would be advantageous to again make

the Toeplitz assumptions used in the global case and speed the computation

by use of the FFT. A rough estimate of this crossover point could be ob-

tained by plotting the number of multiplications required for each method

as given in Section 5.2.

In pointing out that the cost of the convolution computation is a

function of Section size and point spread function size, it is necessary

to remind the reader of a distinction made earlier in this chapter. The

Section we define as those points which are stored at the end of the com-

putation; the working section includes these points together with the

points over which computation must be done to avoid edge effects in the

convolution. Thus, if we wish to use an 8 x 8 Section with a 7 x 7 point

spread function, the computation requires a 20 x 20 working section. The

convolution over such a section requires 19,600 multiplications (19,600 =

20”20”7”7). For larger point spread functions, the time per iteration is

nearly proportional to the number of multiplications required for the

convolution. Smaller point spread functions require less overhead and

hence the auxiliary computations make up a larger proportion of the time.

Table 2 shows the relationship between point spread function size and

computation time for a given Section size. Table 3 is a rearrangement

of the same data showing the relationship between Section size and
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computation time for a given point spread function size.

TABLE 2

Relation of Point Spread Function Size and Computation Size

Section
Size

32 X 32

32 X 32

32 X 32

32 X 32

32 X 32

16x 16

16 X 16

16x 16

16x 16

16X16

8X8

8x8

8X8

8x8

8x8

Point Spread
Function Size

3x3

5x5

7x7

9x9

11 x 11

3x3

5x5

7x7

9x9

11 x 11

3X3

5x5

7x7

9x9

11 x 11

Number of
Multiplications
Per Convolution

11,664

40,000

94,864

186,624

327,184

3,600

14,400

38,416

82,944

156,816

1,296

6,400

19,600

46,656

94,864

Time Per
Iteration
(Seconds)

.72

.91

1.25

1.71

3.09

.25

.33

.53

.88

1.70

.13

.15

.27

.47

1.00
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TABLE 3

Relation of Section Size and Computation Time

Section
Size

32 X 32

16x 16

8x8

32 X 32

16x 16

8x8

32 X 32

16x 16

8X8

32 X 32

16x 16

8x8

32 X 32

16x 16

8x8

Point Spread
Function Size

3x3

3x3

3x3

5x5

5x5

5x5

7x7

7x7

7x7

9x9

9x9

9x9

11 x 11

11 x 11

11 x 11

Number of
Multiplications
Per Convolution

11,664

3,600

1,296

40,000

14,400

6,400

94,864

38,416

19,600

186,624

82,944

46,656

327,184

156,816

94,864

Time Per
Iteration
@Q!l!!Q

.72

.25

.13

.91

.33

.15

1.25

.53

.27

1.71

.88

.47

3.09

1.70

1.00
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5.6 Implementation of Local Processing on Small Computers

An obvious question is: “Since local processing requires less

storage than global processing, could it be effectively implemented using

smaller computers?” The author has not attempted such a task. However,

he can make recommendations as to what should be considered in such an

undertaking.

While storage is not a large problem with local processing it does

impose certain constraints

general purpose computer, “

processed by first reading

when using small computers. When using a large

ike the CDC-7600, N x N working sections are

in N scan lines of the image then processing

each of the required working sections in the strip of the image. If the

image is large, this technique cannot be used on small machines. A simple

solution would be to prelection the image before starting the MAP restora-

tion, then only the working section is required in memory at time of

processing.

Computation time will remain the largest obstacle in the MAP restora-

tion calculation, as it was on the large machine. Computations will re-

quire at least 6 to 7 significant digits or a minimum of 32 bits in floating

point representation. It will be most important to have a machine which

performs floating point arithmetic with hardware.

Since any image processing computation requires a large amount of

input/output, the small machine used for such a task should have a good

file handling system. This segment of the processing may be able to mini-

mize some of the disadvantages in computation speed. It is standard

practice to overlap input/output with computation as much as possible.

Since computation time on the smaller computer is quite long, it may be
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possible to “h de” most of the input/output, so that little time is spent

waiting for new data.

The MAP restoration method can be implemented on small computers

but the price will be high. However, the results from local processing

indicate that it is most beneficial to process only that part of the image

which is of interest. This reduces the size of the computation and makes

the use of the small machines feasible.
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CHAPTER 6

Conclusions

6.1 Summary

The purpose of this dissertation is to relate the mathematically

based MAP

in the or

restoration method to physical processes, which was not done

ginal work [10], and to use this relation to derive an improved

solution method. The MAP method was related to another image restoration

method, constrained least squares estimation. A heuristic explanation

was given for the behavior of the MAP solution and experimental results

conformed to the predictions which were made on the basis of this explana-

tion. From this heuristic explanation a faster solution algorithm was de-

rived. A natural convergence criterion was proposed which was related to

the noise, and the residual image derived from this criterion was found

helpful in evaluating the quality of the restoration. The solution method

derived from the heuristic explanation was shown to be comparable to the

modified Picard’s method in numerical analysis. Lastly, the solution qual-

ity was improved by using results from local processing.

6.2 Conclusions

The new MAP solution method makes MAP restoration computationally

feasible but the cost is still many times the cost of more standard tech-

niques such as Wiener filtering and power spectrum equalization. This

cost, together with the results from local processing, suggests that a
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reasonable approach to the restoration of an image would be first to apply

one of the faster techniques. Analysis of the output from the less costly

method would show if further processing were needed by the analyst. If

further processing is desired, only that portion of the image which re-

quires further processing is extracted and MAP restoration applied to that

part. Analysis of the residual image will aid the analyst in determining

if further processing with the MAP algorithm will be helpful. If time is

very important the MAP iteration can be started with the output of another

method and thus used as a refinement technique.

At present, studies are being done comparing the quality of the

MAP restorations with restorations generated by other methods. Prelimi-

nary results from this study, as well as results shown in Chapter 3, in-

dicate the MAP restorations are as good as or better than other standard

methods. The noise control displayed by the MAP restorations gives it a

particular advantage in cases of low signal-to-noise ratios. Further, as

was mentioned in Chapter 3, since larger noise variances result in larger

solution spaces, the MAP restoration algorithm requires fewer iterations

for high noise cases and becomes less costly.

Local processing applied to MAP restoration proved to be beneficial

in producing better image quality and in the case of small point spread

functions was faster. Since only a small portion of the image is needed

for computation at a single time, the method can be used on small compu-

ters with much less central memory than a CDC-7600. Computation time

would be a problem on the slower minicomputers but the growing use of

array processors could alleviate this problem in the near future.

While local processing can be viewed as small scale global pro-

cessing, there are cases where the accuracy of local processing is needed
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and it is necessary to keep a large picture intact. Such a case might arise

in medical imagery where larger landmarks are needed to aid in the analysis

of smaller detail. Of course, very small section sizes make extracting

each section and processing it separately computationally unfeasible.

6.3 Areas for Further Research

MAP restoration has three parameters, ~, to , and llf , which present

the possibility of being used to apply additional a priori knowledge to

finding a solution. It was pointed out in Chapter 3 that f and ;= had

little effect on the solution, hence they are

manipulation. However, results from the same

estimate ~oto have a definite effect on both

and the quality of the solution. Suppose the

-1

not good candidates for

chapter showed the starting

the speed of convergence

image to be processed is

text and certain letters are still illegible after the initial processing.

It may be profitable to construct prototypes of the various possible let-

ters and insert these into the -fOand restart the MAP algorithm. The al-

gorithm must still converge to a feasible solution, i.e., satisfy the con-

vergence criterion; however, since the solution is dependent upon the

initial estimate, by looking at the solution it should be possible to de-

termine if the initial estimate was feasible.

While the MAP equations and derivations presented in this disserta-

tion were done with the assumption of Gaussian statistics for both g and f,

there are other cases of interest. The MAP equation has been derived by

the author using Poisson statistics for use in the case of electronic

photon counting sensors. There are probably other applications unknown to

the author where other statistical distributions are appropriate. Since
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the fundamental MAP equation is derived in a straightforward manner from

Bayes’ law, there should be no problem in deriving new equations. Simple

convergence criteria as well-defined as that for the Gaussian distribution

are much less likely to be found for other distributions. It is likely

that residual images can be found which will possess much the same proper-

ties of the residual image given for

Although the current research

up of more than a factor of ten, the

It is the author’s opinion that litt’

the Gaussian case.

has resulted in a computation speed-

MAP algorithm is still very slow.

e can be achieved in speed increases

from new or modified iterative numerical methods. Investigation of better

initial estimates and how to attain them would appear to be a more fruitful

area. Since one of the advantages of MAP restoration is the absence of

artifacts, using the output of a method which has produced such artifacts

seems self-defeating. However, an artifact-producing restoration method

might be modified to produce relatively artifact-free input for the MAP

restoration. For example, a Wiener filter might be altered to do a less

aggressive restoration in order to minimize artifacts. Of course, the out-

put of such a modified method would be suboptimal for that method, but it

might be much better as input-to the MAP algorithm. Preprocessing of the

input or postprocessing of the output of other restoration methods could

achieve the same result.

Local processing has proven its worth in MAP restoration. It has

not been applied to other restoration methods. Investigating which methods

can benefit from local processing would yield useful information, both

about the possible improvement of the methods and about the characteristics

of the methods. Because of its similarity to MAP restoration, constrained

least squares estimation would be a prime candidate to benefit from local
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processing. The power spectrum equalization method could probably benefit

by using different prototype spectra on different parts of the image.

Wiener filtering presents a problem in that a noise estimate is required,

and as sections get smaller this estimate becomes less accurate; this might

be overcome by using prototypes similar to the case for power spectrum

equalization.

In conclusion, the areas opened by MAP restorat

cessing appear to be fertile. The quality of restorat

vanced by the use of these two methods.

on and local pro-

ons has been ad-
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