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PRODUCTION OF A NARROW BAND OF 0.511-MeV RADIATION
BY USE OF THE PHERMEX BREMSSTRAHLUNG SPECTRUM

by

Michael A. Stroscio

~ ABSTRACT

The pair production cross section is numerically integrated
over a typical PHERMEX bremsstrahlung spectrum to obtain the prob-

_ .ability of pair production in a target of nuclear charge 2, and

density p. The pair production cross section used herein is only
approximate in that it (1) neglects screening, (2) neglects the
Coulomb field for the emerging pair (first Born approximation),
and (3) neglects pair production by atomic electrons. In spite of
these approximations, the present work still gives an order-of-
magnitude estimate of the amount of 0.511-MeV radiation produced

by a typical pulse.

I. INTRODUCTION

Herein, the pair production cross section is
numerically integrated over the PHERMEX output
spectrum for a typical case given by Venable et al}
The pair production cross section for unpolarized

photons of energy hw 18'2,3.4,5
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and N=2mc?/hw, In Eq. (1) a is the fine structure

constant, r, is the classical radius of the electron,
and Z is the nuclear charge. F and E in Eqs. (4) and
(5) denote the complete elliptic integrals of the

first and second kind, respectively;

d
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The basic integral over the PHERMEX bremsstrah-
lung output spectrum P(hw), is,

F= S p(hw)o (hw)d (hw) , (8

where wmax is the maximum frequency contained in

Pthw) and m is the electron rest mass.

II. INTEGRATION TECHNIQUES
The actual integrations involved in Eqs. (2) -
(8) are completed by Gauss-Legendre integration

algorithms. All integrals are written in the form,
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where aj(i) and yJ(i) are the Gauss-Legendre weights
and coordinates, respectively.6

The weights aj(i) and the coordinates yj(i) are
chosen so that Eq. (9) 1s exact when f(y) is a poly-
nomial of degree 2m in y. All of the integrals
involved in this calculation are accurately calcula-
ted by Gauss-Legendre sums with small values of mj
i.e., all integrands are closely approximated by

polynomials of low order.

III. POWER SPECTRUM

A typical power spectrum for the PHERMEX brems-
strahlung output1 has been used in this work to esti-
(8).
is defined by linear interpolation between the

mate the value of Eq. This normalized spectrum

ordered pairs of energy and power spectrum intensity
in Table I.

IV. PAIR PRODUCTION CODE
A FORTRAN code was written to evaluate Eq. (8)
2) - M.

is capable of numerical integration of any function

and the integrals in Egs. This program
which is adequately approximated by a polynomial
of degree 32 or less. In addition, any set of
ordered pairs, as in Table I, is allowed in this
code. The program, which is documented with comment
cards, is listed in Table II and follows the notation
of Egs. (1) - (9). The final value calculated by

the code must be multiplied by the factor -aer; .

which is contained in Eq. (1).

TABLE I

ENFRGY SPECTRUM2

Ei(MeV) P,
0.0 .220
6.0 175

12.0 145

24.0 .105

27.0 .075

28.5 .050

29.4 .000

a(E ,P.) pairs represent the power spectrum used in
evaiua%ing Eq. (8). A typical power spectruml was
chosen for the present work.

v. PAIR PRODUCTION PROBABILITY

The probability that the normalized power spec-
trum will produce an electron-positron pair in the
first millimeter of interaction with a target of
atomic weight A, atomic number Z, and density p,
is

P=F N, p/A, (10)

where
11)

F=~ﬂxzzr§ (Computer Qutput),

and NA Equation'(lo), of

course, does not include the effects of Compton

is Avogadro's number.

scattering on the photons represented by P(w). The
magnitude of the Compton scattering cross section
is, for many elements, comparable with the pair pro-
duction cross section.5 However, it must be recalled
that Compton scattering only redistributes the
photon distribution and, thus, the only major influ-
(1) is that some photons are scattered

below the pair production threshold of 2mc2.

ence on Eq.

The Compton scattering contribution is rela-
tively small for lead in a typical PHERMEX energy
range and the pair production cross section domi-
(10) for Pb, we find,

nates. Evaluating Eq.

-13cm)2

P -(1—317—) (82)2% (2.8x10 (-14.48)

23
6.0225x10 atoms 3
( 207 gram> (11.35 g/em”)  (12)
2 0.18/mn.

Thus the probability that the unity-normalized

PHERMEX bremsstrahlung spectrum will produce a posi-
tron-electron pair is 0,18 for each mm of length

of a Pb target. The normalization factor for the
power spectrum (which should multiply Eq. (12) to
give the number of positrons produced per mm) is
given by the average number of photons per MeV in

the PHERMEX output.



VI. PRODUCTION OF A NARROW BAND OF RADIATION FROM
POSITRONS
Positrons produced by the above mechanism are
This follows from (1)

the Bethe stopping-power formula5 which indicates

stopped very quickly in Pb.

that an electron of 50 MeV has an average range of
12.5 mm in Pb,

the positrons considered herein is less than the

(2) the fact that maximum energy of

maximum bremsstrahlung energy (29.4 MeV was taken as
the maximum in Table I), and (3) the observation
that high-energy positrons behave electromagneti-
cally as high-energy electrons.

The cross section for the annihilation of an

electron-positron pair into two photons 15,7’5

a2 L [YiHyH Y _ Y3
O‘2Y Ty v} v 1n (Y-h’_YT_f) m (13)

1
where Y= Ji-B% ° B=v/c,and v is the velocity of
the positron with respect to the electron at rest.

Using the relations
/Y21 =B (14a)
and

In (v * &2_-1) =3 1In Gf—g) : (14b)

and expanding the logarithm in Eq. (14b) we have,
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Upon expanding Y in Eq. (15) in terms of B we find,
g =*£‘21-1rr2 B+mr2g+me2g+me2 (2-3)8%0 (85)
2y B o o o o\5 &

_ 2 2 3 a3 . (16)
-—B“-—m' 5 B + 0(f°)

i.e., the linear terms in B cancel. Equation (16)
indicates that the major contribution to the two-
photon annihilation of an electron-positron pair

occurs for small values of B. Thus the kinetic

energies of the annihilating particles are small
This implies that (1)
annihilatjion will result in two photons of approxi-

compared to their rest mass.

mately 0.511-MeV energy in opposite directions and
(2) the distribution of this narrow band of 0.511-MeV
radiation will be isotropic allowing for any obser-
vation angle that suits the experimenter. The one-
photon annihilation is, of course, forbidden by
conservation of angular momentum. The three-photon
cross section is smaller than the two-photon cross
section of Eq. (13) by a factor of (1/137 ).

Ref. 8 contains a review of the theoretical annihi-
lation characteristics of electron-positron pairs
for all order processes which have been observed or

are likely to be observed for some time,

VII. DISCUSSION

As shown above, most of the photons in P(w) will
produce a positron if the target is several milli-
meters thick. This means that a large fraction of
the energy in P(w) will appear as 0,511-MeV radiation
in a narrow band.

This narrow band of high-intensity radiation
has not been exploited for any useful purpose at the
PHERMEX facility. Among the various uses of this
radiation are (1) the measurement of opacities at
0.511 MeV and (2) the measurement of solid state
properties from a study of the exact annihilation
gspectrum. This last use has received considerable
attention9 and is commonly used to determine the
solid state properties of the material in which the
positrons are produced. The unique feature here is
that these measurements would be made in the pres-
ence of an intense bremsstrahlung spectrum.

It is clear that not all of the 0,511-MeV Y rays
produced in the Pb target will escape without inter-
acting with the Pb target itself. At 0.511 MeV, Y
rays interact with Pb by both Compton scattering and
by the photoelectric effect.s

0.511-MeV radiation in Pb is described by an exponen-

The attenuation of

tially decreasing intensity, I:




I= Ioe-Tx ,
where Io is the intensity at the point of production,
x is the distance through which the Y rays travel
in Pb and T= 0.17 per mm.5 Thus the intensity of
0.511-MeV Y rays is diminished by the factor e-l in
about 6 mm of Pb. In comparison, an electron with
5 MeV (50 MeV) of kinetic energy has a range5 of
3.3 mm (12.5 mm).

These data indicate that the optimum 0,511-MeV
pulse will be obtained when some dimension of the
Pb target is restricted to about 5 mm in extent:
this thickness of Pb will stop most of the positrons
produced in the PHERMEX energy range and will allow
about 50X of the 0.511-MeV radiation produced by
positron annihilation to escape unattenuated. A
particularly attractive target design consists of
an array of cylinders of Pb,each about 5 mm in
diameter and 50 to 100 mm long,with their axes
parallel to the PHERMEX beam.
provide a long interaction distance for the PHERMEX
photons and would allow most of the 0.511-MeV radia-

This target would

tion produced at 90° to the incident beam to escape
the Pb.
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TABLE II

PAIR PRODUCTION CODE?

(LASL Identification: LP-0640)

PRAGRAM PURLIS(TNP+FSFTS=INP +sOUT s FSFT6=0UT)
NIMFNSTON Y(11516)9A011916)sIM(11)
CAMMOM Y4 A

NARN=11
C HERF WFE RFAD THE PARAMETERS FOR THE GAUSS-LEGENORE
C INTFGRATION POUTINF

NO 1 MM=1,sNORD

RFAD(B4100) N
100 FORMATITIIO)

INN=N/>

IMI{MMy=TNDP

REAN(B4101) (Y(MM 3T)4A(MM 4T),1=1,IND}
10T FORMAT(RFINGRY

1 CONTINMHF
M=4
cimzn N
TNR=TM (MY
C HFRF WF INTFGRATE THE PAIP PROD, CROSS SECTION OVER THE
C POWER SPECTRUM OF THF INITIAL PHOTON DISTRIBUTION

NO A 1=1,1ND
SUM=SIIMEA(MG TR (FIY(MeI)) + F(=Y(MsT)))
2 CONTINNF
NONINT=TM(™M) %>
WRITF(6+102) NPNINT,sSUM
110D FARMAT(1XeT1442XsF154R)
<STND
A

FUNCTION F(Y)
OFMAX 1S THF MAXIMUM FRFQUFNCY OF THF PHOTON DISTRIBUTION
FM TS THF FLFCTRON RFRT MASS TN MFY
A¥Y+B IS THF FREQUENCY OF THE PHOTON DISTRIBUTION
P REPRESENTS THE POWER DISTRIBUTION OF INITIAL PHPTONS
SIAMA <€ THF TOTAL CROSS SFCTION FOR PAIR PRODUCTION

NFMAX=79,44

FM=,811N02

A= (NFMAX=D 4 #FM) /2,

R= (AEMAXED J#FMY 22 0

FeA%P(ARY+R)I%SICMA(2,#FM/ (ARY 4R ) )

WOTTF (A il F

46 FOARMAT(IXs#Fx#,C18,8)
PETIIRN
NN

[a¥aXalalal

FIINFTINAN QTCMA(FTA)
c FTA 1S 2M/OMFGA AND TS ALWAYS SMALLFR THAN 1 FOR PATR PRON,
SIGMA==O R (FTARED )R (D #CO(FTAY=-ND(TTAY)
1 =(2e7/2Te)#( (1N +64L H(FTA)RR2)VR(FA(FTA)-FA(FTA))
2 ~(ATa+6 o R (FTA)HRD IR (]1,-FTARRD ) RFA(FTAY)
OMFGAI=1,ND/FTA
WRITF(6+492) SIGMASFTAJOMFEGA]
492 FORMAT(1Xs#SIGMA=#4F15,833X ¥ FTA=#4F15¢893Xs#OMFGA=#,F15,8)
RETIHIPM
END

3FORTRAN code for integrating the power spectrum over the pair production cross section.



[aNalalal

&N

59

1
?

FUNCTINN O (CFRFN)
NITMENGTAN F(T7)eCST(7)
THFE INITIAL PHOTON PNOWER SPFCTRUM IS RFAD IN AS SFVFN
PATRS OF NUMARFRS AND THF RFLOW ROUTINF DOFS A LINFAR FIT
TO THESE SFVFN ORDERED PAIRS THE ENERGIFES E(1) THRU
E(7) ARE ORDFREND WITH THE SEVEN INTENSITIES SI(1) THRU SI(7)
Fll1)=ngN
Fl2)=heD
F(1)=1?.n
Fl4)=24e"
FIR)=2T74,0
FlA)=2R 48
F(7)=2044
S1(1)=422"
QT (2)=4175
ST(2)=4145
S1(4)=41058
SI(R)=4N75
ST(6)=eN50
ST(T7)Y=NNN

1F (CFRFQeGToF(1)) K=1

TF (CFRFN4FTeF(2)) K=2

IF (CFRFNGGTF(2)) K=3

IF (CFRFN.GT«Fl4)) K=4

IF (CFRFN.GT.F(R)) K=5

TE (CERFNGTFIR)) K=6
P=ST(K)+((ST(K$1)=STI(K))/(F(K+1)=F(K)))*(CFRFA-F(K))
RFETURM

FMD

FUNCTION CO(FTAY

DIMFNSION Y(11516)9A(11416)
COMMON Y, A

COMMNN /FRTY1/ AAA

AAA=FTA

St11=04N0

MM=1A

NN=11

NN 2 J=14MM
SU1=SU1+A(NN’J)*(F1(Y(NN’J)) + F1(=Y(NNsJI))
CANT TMETE

ro2=cU1

WOTTF(ReSN) F?
FORMAT(1X o #Co=%4F1848)
RFTIIRM

FNR

EIINCTTIAN FY (1)

CAMMON /FRT1/ AAA

FTAzAAA

F1=A(05H(.5*(1./¢TA-1.)'U+.‘*(1o+1./FTA))
HACASH( T o/ (a5%(1a=FTA)#U+o5%#(FTA+1e)))

'(1./(U+(1.+1./FTA)/(1o/FTA-1.)\)
RETURN
(= V]

FUNCTION D2 (FTA)

DIMFNSINN Y(11416)9A(11516)
COMMON Yo A

COMMON /FRT?/ RRR

RRR=FTA

SUT=0,0

MM= 16

NN=11

DO 2 J=leMM
SUT=SIIT+A(NNs IR (F2IY(NNsJ)) + F2(=Y(NNsJI))
CONTINUF

nNo=<yU1

WRITF(6+59) N?
FORMAT(1Xs%#N2=#,F1548)
RFTURN

)




62

78

SFM,

FUNCTTION F2(U)

CAMMOM /FRT2/ RRR

FTA=RRR

F2=((14=FTA)/(2,%FTA) ) #

1 SORT(1a/((aS5%(1a/FTA-T1)%U+,5%(1,+1e/FTA))I#%2=1,))
2 HACOSH( 1o/ (o "% (1a=FTAY ¥+ oG8 (FTA+14)))

RFTURN

FNP

FUNCTTION FA(FTA)

DIMENSION Y(11+16)15A(11+16)

COMMON YA

COMMON /FRT3/ CrC

CCC=FTA

SU1=0,0

MM=x 16§

NN=11

PO 2 J=1 MM

SUT=SHT+AINNs IR (FA(Y(NNGJ)Y + F2(=Y(NNsJ)))

2 CONTINUF

FA=SU1

WRITE(6+62) FA
FORMAT (1X s #F=%5F15,8)
RFTURN

END

FIUNCTTON F2(1})
COMMON /FRT2/ CCC

FTA=CrC
PIOF=3,1415926528/4,
ACAGTD= (1e—FTARRD)

F3=PIOF* SORT(14/(14-(ACBGTR YRSIN(PIOF#(14+U))
1 *#SIN(PIOF#(144U))))

RFTURN

END

FUNCTTION FA(FTA)

NIMENSION Y(11476)9A(011,416)
COMMON YoA

COMMON /FRT4/ DDN

PNN=FTA

SU1=0,0

MMz 164

NN=11

NN 2 J=1eMm

SUT=SUT+A (NN J)*(F4 (Y (NNsJ) ) + F4(=Y(NNyJ))Y
CANT IMUF

FA=SU1

WRITF (K, 7R) FA
FOPMAT(1X s #Fx%,F16 R}
RFTUPN

FND

FUNCTTION F4 (1)
COMMON /FRT&4/ DND

FTA=DAN
PINF=2,14159062R /4,
ACRGTR= (1e—FTA#%2)

F4=PINFASORT(}1,-(ACRGTR YRSIN(PIONF®(1,+4U))
1 #SIN(PIOF#(14,+U)))

RFTUIRM

FMA

FUNCTION ACQOSH( XX)
ACOSH=ALOG( XX+SNRT(XX%#%#2-1,4))
RETIIRM

FNND
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