UNCLASSIFIED

CLASSIFICATION CANCELLED

For The Atomic Eerrgy Commission by the Declassification Officer

PUBLICLY RELEASABLE
Per Bill PlatinusFSS-16 Date: $11-8-95$ By. Marlene fyiancIC-14 Date: $\mathbb{L}-22-95$
LA - 1004

This document, contains 163 jugs

VOL. I EXPERIMENTAL TECHNIQUES
Part II Ionization Chambers and Counters

Written By:
Bruno Ross i
Hans Staub SERIES AT A SUBSEQUENT DATE.

UNCLASSIFIED

\qquad of \qquad Copies

UnClASSihied

UNCLASSIFIED

MANHATTAH PROUET TECHNICAL SLRIES CONTAIRUTION OF LOS ALALUS PROJECT

The following material may be subject to certain minor revisions in the event that factual errors are discovered previous to final publications of this part of the Technical Scries. any such changes mill be submitted for patent clesrance and doclassification in the usual manner.

UNCLASSIFIED

```
LGS ALANOBTTEEHKICALSSERIES
```

VULUFE I

EYFERHETAL TECHEITES

Tinfor II

THAFTEF: 13

ALIEA PAYMICLE DF:"ENOUS

1 by

CIAPTER 13

ALFHA PARTICLE UETECTCRS

13.1 ALPHA PARTICLE SPECTKOSCOPY

In most coses of interest tre source of α-particies is used in solid forn. Consequently the material under investigation is deposited as a thin filr. If one is interested in the energy distribution, the detector has to be constructed so thent, regardless of their energy, all of the particles spend their entire range in the detecter and also that the height of the pulses has a known reldition to the particle energy. Suppose a thin fils of active material is deposited on one of the electrodes of a plane parallel plate chamber, suck that no α - particle escapes from the counting volume. If the chamber is operated as an ion pulse chamber, the voltage rise of the collecting electrcde resulting from every particle will be directly proportional to its energy, regardless of the direction of emission (assunirig, of course, constancy of the value of the average energy spent per ion pair). If the chanber is operated as an electron pulse chamber, the pulse height is proportional to ν_{0}^{-}.

For α-particles originsting at the negative electrode ψ_{0}^{-}is given by tr.e equatic :

$$
\begin{equation*}
Q_{0}^{-}=N_{0} \theta\left(1-\frac{\bar{x}}{d} \cos \theta\right) \tag{1}
\end{equation*}
$$

Where N_{0} is the total number of ion pairs produced by an α-rarticle, \bar{x} is the distance of the center of gravity of ionization from the origin of the track and θ the angle between the track and the perpendiculay electrade (See Saction 10.5). Since for an isotropically emditing source, the number of particles emitted between θ and $\theta+d \theta$ is proportional to $\sin \theta$ $d \theta$ the number of pulses with height betwoen P and $P+d P$ is given by:

$$
f(r) d P=(\operatorname{const}) \sin \theta d \theta
$$

θ and P are cormected by (1) considering that P is proportional to Q_{0}^{-}. Therefore

$$
\begin{align*}
d P & =(\text { const. }) d(\cos \theta) \\
\text { and } \quad f(P) & =\text { (const. }) \tag{2}
\end{align*}
$$

Tho curvo representing $f(P)$ is called the differential pulse heigh: distribution. Equation 2 shows that for the case under consideration $f(P)$ is a constant between $\xi_{\max }$ and $Y_{\text {min }}$ where:

$$
\begin{equation*}
P_{\min } / P_{\max }=Q_{0}^{-} \min ^{/ Q_{0}^{-}}=1-\bar{x} / d \tag{3}
\end{equation*}
$$

The pulses of size $F_{m i n}$ correspond to particles emitted perpendicularly to the olectrode; those of gize $F_{\text {max }}$ to particles emitted parallel to the electrode. The relative spread of the pulse sizes depends only on the ratio of electrode separation to particle range and the stopping power of tre gas used.

In Section A.1 (see Appendix to Part. II) the value of \bar{x} is given as a functior of the α-particle energy for various gases. In figure 1 two experimental distributions measured with α-particles from polonium are shown, tom gether with tre theoretically expected curves. Tie finite differential resolution of the detector was taken irito account. This is the reason for the finite slope of the theoretical curves at $P_{\text {max }}$ and $F_{\text {inin }}$.

From the foregoing, it is obvious that the use of plane parillel chambers with electron collection for α-particle spectroscopy would offer great difficultjes in the interpretation of the result, since every uorochromatic
$\mathcal{\alpha}$-line would show up as a squire distrinution of piuless. To avoid this difficulty, one can insert a screening grid electrode between tre collecting and high voltage electrodes. As descrioed in jection 20.2 , the grid electrode, which is placeq so far from the negetive sectrodo (carrying the oparticle

Figure 1

 $\alpha-$-articies of poinhiti in: th electrun pulse chamter. Artive moterial on makative ciectrone. Uata tiker vilth
 of different values of $\vec{x}_{\text {fin }}$ Curver are calculeted and

source) that it is not reachod by the α-particles, shields the collecting electrode frcm the field of the positive ions remeining after tr:e complete collention of ti.e electrons. Consequently, the pulses okserved are all equal aro proportional to \mathcal{N}_{0}. Ire construction of a grid chamber used for α-particlez is shown in Figure 1r.12. The negaiive electrode, carrging the thin deposit of the d_{-}-solurce was kept at -2500 V with respect to the collector, and the grid electrode at -1250 V . It is rather important for good resolution that the grid is at a relatively high negative potential with respect to the collector. The voltage betseen grid ard negative electrode can be small. It should only be high encugh to prevent recombination or attactment of the electrons. The rigt. voltage between grid and positive electrode tends to reduce the spread in the sizes of the α-jarticle pulses since the higher field in the neighborhcod of the grid lowers the probability for capture of the electrone by the wires. The grid is cc::structed 80 as to give a maximun of transparency in order to make the fraction of electruns captured by the wires as smail as possible. It consists of 3 mil diameter parallel steel wires, spaced $1 / 10$ inch apart.
\because Ith a chamber filling of 7.5 itm. argon, and a normal sample of urenium (U-234 in equilibriur wity U-238), the djfferential pulse height distribution given in Figure 2 was obtained. It 由ows the two groups of α-particles well resolved and of about the same istersiiy. The width of the peaks is only slightly larger than the charnel width of the detector as indicated in the figure.

It may be pointed out lliat spectral distributiuns could also quite conveniently be determired by accurste range measurements. However, it was fcund that the results ottaired by the above described pulse helght method showed considerably better resolution, since the straggling in range has no eifect on the pulse size.

APPROVED FOR PUBLIC RELEASE

Figure 2

Fijferential ruisa raleht ciatrirution for α-partivije of
 tron pulfe cramber atherid.
דSvitay $\operatorname{sitana~yo』~ainoyady~}$

13.2 AESCLUTE CCLNTERS

Very often it is desired to measure the α activity of a sample for determination of half lives or of the amcunt of α active aiaterial. In this case the size of a pulse pratuced by the particle is of minor importance. It is, however, necessary to delermine accurately the number of α-particles emitted ritnin an accurately known solid angle per unit time.

If the material is present in the form of a thin deposit (thin compared to the range of the α-farticles in the material) backed by a heavy plate, the arrangement is called a " 2π detector". Usually it is built in the form of a simple plane parallel plate chamber with such dinensions, that any χ-particle traversing ti.e courting volume produces a pulse large enough to be counted. Ideally the solic angle subtended for every nucleus of the sample is 2if. Therefore, the detection efficiency defined as the number of courts divided by the nunker of disir.tegrations shcuid be:

$$
F=1 / 2 .
$$

However, tho correcticrs have to be applied. Hie first arises from the finite thickness 6 of the active material. Farticles energirg under an almost grazing angle witt: respect to the ioll surface may have undergone such a high energy loss on their long path in the material that they carnot produce a pulse of sufficient height to be counted. Mis resuits in a reduction of the efficiency wrich now depends on the oias energy B. The quantity B is defined as tre ainimum pulse height which is detected. As stown in section A.0, $F(B)$ is given by the equation:

$$
\begin{equation*}
F(P)=1 / 2\left(1-\frac{t}{2\left[R_{0}-R(B)\right]}\right) \tag{4}
\end{equation*}
$$

where R_{0} is the range of the α-particles in the materigl of the source, and $R(B)$ is the range of an α-particle of energy $B, F(B)$ represents also the so-called integral pulse reight distribution:

$$
F(5)=\int_{B}^{\infty} f(p) d p
$$

Where $f(P)$ is nommalized so that $\int_{0}^{\infty} f(P) d P$ is equal to tre ratio of tre number of particles penetrating the chamber to the total number of disintegraticns.

The seccnd correction is die to the back scatteri:g oi tha α-jarticles ty the plate supporting the active materjal and the material itself. The beck srattoring of an α-partinle fravelling in the material in a direction away from the counting volume will give rise to an increased counting rete. The ilumber of \mathfrak{x}. particles moving toward the counting volume and being scattored toward the bachplate is obviously smaller than the number of tnose scsttered inco the counter by the backplate, since the former ones traverst oniy a small amount of material. From Rutherford's formula it follows that the back scattering, due to a single scattering process, is extremely small on account of the small probability for scattering under a large angle. fowever, a noticeable inorease of particles in the counter volume is caused wy a large number of muitiple scattering procegses under small angles. The prowlen was irested theoreticaliy at the Netallurgical laboratory. It is assumed that if an ini ially narron and parallel beam of α-particles has travelled through a sufficient layer of material, the density of particies in a radial direcion in the plane perpendicular to the beam will show a Gaussian distrisution. Under this assunpti on the counting effiriency is glven by the expression:

$$
F(\xi)=1 / 2\left[1-\frac{t}{2\left[R_{0}-R(B)\right]}+\therefore O 1 \Phi(B)\right]
$$

where the second term is life thiakness correction as befure, and th:e cerm $.201 \Phi(\mathrm{P})$ is the back scattering correction. tre quantity Φ is a function of the initial range R_{0} of the α-particle, trie residual range $F(B)$, and depends on Wie material in which bact: scattering takes plece. Nunierical values of Φ regiveri in section A.13. It nk! be pointer out that ion is

Figure 3

Parallel plate type 2π counter for absolate meascrement of the numeer of x-particles enitted iy a soirce.
i. Polystyrene insulatre.
2. Unllecting electroite.
3. Ampherol insulator.
4. Gard electrode.

〒. High voltage electroie
e. Holder for plate carryinf the source.

Figure 4

4π rprorortional counter for absolute measurement of the number of α-particles pmivted by a source.

1. Gas inlet.
2. Kovar-glass seal.
3. Tolder for fail.
4. Collectine electrodes (.004" platinum wire).
5. Lucitie diges supporting the collecting electrotes.

 scattering coes rot ce:em on the thickness t ci the active laver.
an exwnple of a 2π counter is shown in figure 3. The active material 23 soread over : circie $0 ; 3.1$ ca diareter on a olatinum foil, which is mountea on the nep:tive electroie of ihe ch:mber. The sepir:tion of the electro:e3 is 1. 2 cm . The chamber is fillec with 1.5 Atm. of arfou. The back scittering for a uranium sonrce wis detorimined o\%oerisuntaidy ans theoreticilly with the results:

$$
\begin{aligned}
& 201 F_{i}=. i 13 \text { (experimentiaily) } \\
& \text {. cul } 1: \quad \text { ino (theureticiaiiy) }
\end{aligned}
$$

ar a.rangefuent known as a "LTrcounter", whach allows fuantitative counting of $\mathcal{\alpha}$-particles and avoids the eftect of back scattering is shown in flegre 4. It consists of a brass block. in v:lu ch two ovoxlaifing cylindrical openings have been drilipd. Two thin wiere ire fochutci ilcont the ahes of the two cyiander's, thus fornifigy two proiortiunaj cuunter:. They are supported on one side by ketal gles: seals, on the other by llacite diskr. The α-active siaterjal is depo:ited cn a very thin colloaicn fuid which is sounted over the windew ef the deij huleser (see oetail; The foil hulder is inserted intu a slot betweun the two count.tirg.
 detected. The counting. rate i: not aifected by buck scatterilig ard only the thilckness comection tus tu be applied. It, was fours to be linnecessary to insure conductitiaity on both siose of the col? ondicr. The counters are filied with 1 itu:. uf are, an and operatec with a voltige of -fll volts at the wall. a biag curve ia shown in figure 5.

\therefore very simpir irranmemert for the redsurei.ent of the ranpe of α-particies is shomn ir figure i_{i} mhe donization chatater, of the parallea riate tyere, and

Bias curve of 4π sounter (shom in Figure 4), thin collodion foil with thin uranilra coating, The ordinate represents the sum of the counting rates of woth counters.

APPROVED FOR PUBLIC RELEASE

Figure 0
Arrangement of source and ionization chamber for range reasurements.

track. This allowi an exict reproduction of their rejative distance. The whole arrangement is placed in an alrtjght container filied with argon at approximate?y 1 Atm. pressure. in accurate wanontter is used to neasure the pressure. In order to determine the renye, the number of counts is measured is a function of the pressure in the container with the sampie a fixed distance from the chauber. This distance shoula be rather large in order to avoid excessive variaticns in the piath length of the various partiries if absointe range neasurencnts aro desired. The - : ber is very shailom (i.] cre. The front electrode is formed by a serid of paralLel wires of 24 mil , diameter and spaced $\dot{\mathrm{i}} / 32^{\prime \prime}$ apart. The charaber is operated
 α-particle traversinf the clamber at the lowest pressure in the container is counted.

A typisul number versus pressure curve cbtained with tinis apparatus is shown ir. Figure 7. The most simple procedure to obtain accurate values of the rame consists in comparinf: the unkrown: sample witli a standari, such as polonium. If the unknown sample and the stabiard are both thin (layer thiciness very spall compared to the rarige) and are opread over tho same surea, the mean rarye kx int standard air of the unknowr sample is

$$
H_{x}=5_{0}+d \cdot\left(\frac{\Delta p}{7 a}\right) \cdot 5^{3}
$$

In this equation ha is the resan rance in stisndard air (see Livirgston, Bethe: " Rev. Hod. Hhys. 9,281,1937) of the standard, d the distance of the samples froui the chanber, s the stopping power of the eas ior an enerpy of the \mathcal{X}-pirticie corresponding to a range $\frac{{ }^{11}+1 ?}{\text { ? }} 0$, and Δ p the pressure difierence for corresponding points of thes number versus preseure curves for the unknown and the standard source, ds corregponding zointis of the two curves, urie can, for instarice, iake those at which the counting rates are one-hail of the maxinun. The vaiue of d is obtainud from tre meicsureaert with the etindard. If the ax -particies were

ripure?

Counting rate versus prissure takea with apparaius of Figure 6 with a jolonium sample, Diginnse of sompe to chariber: 2.84 sentimeters.
lated to the rean range $\bar{त}_{0}$ and the distance d by the equation

$$
d=\left(\frac{200}{F_{i}}\right)_{150} \cdot \frac{-20}{5}
$$

where 8 is the stouping power for α-particles of mean range \mathbb{R}_{0}. This procedurn is not quite çorrect since the lick of coliifrotion rosults in the abscis:a at hulf maxinum counting rate beinf. sightiy swillar than the mean range. The error, however, enters only in the colpuitation of the diffecerice in range betwoen standard and unknown samples and is therefore smeil.

The data show in Figure '? were obtained with a thin sample of poloniun srread over a circle of 1 cm dianeter at a distance of 2.04 ca. It may be pointed out that argon is particularly suitable as a gas filling, since its stopuing power is $v \in r y$ nearly independent of the α-particle energy,

For range measurements of safiples with several ranges, dilferential ionizaticn chambers have been used. The arrangenent is schematically shown in figure e. The ions procuced by α-particles which cress both suctions of the charioer indice on the collesting electrode opposite and nearly equal cherges. Therefore they give rise to small pulses which can be biased off, and onjy particles ending in the front half of th.e two charnbers are recorded, With polonium samples differential α-particle distributions witl, a wicith at nalf maxinum of (. .3 an air at li. T. P. were obtained. Tuis widt: is caniocrioiy more than the une observal with grid chanbers using the pulse hefort method, where (sec iigure 3) the width: at half maximum corresponds to about $1 . i 3 \mathrm{~cm}$.

Fipizure 8
Jifereritial chambes for rarer measurments of \times - - warticies (Schematiz).

LOS ALAROSTEOONTCLSEKIES

VOLIAFE I

EXPEKILEMSAL TEHKIGUES

FAFT I]

CHAFTER M_{4}

GETEMCAS FGE MEUTHUN FECOILS
r.s

BRLNC FEGEI AND HANS STAUB

DETECTURS FOR NEUIRUN RLCOILS

IE.I INTRUNUCTORY CORSIDHEATUNS

Tho ohambere dosoriter in tho froaent seotion are doslerod for tho Wutpos of detacting recoils proúuced whon routrors col ind olsitionily wit: aもcnis r.unla!.

Ir the invoretory systom, let B_{n} bs tite onergy of the noutrun besore the ccilision and fore the te tetwon the lines of flight of tie incoming, noutru: and of the rocoil nuclous. Frim the prinozplos of sonselvetion
 Tollowint oxpreseim:

$$
E=\frac{i A}{(1+A)^{2}} E_{n} \cos ^{2} \theta
$$

wiote A it tho mazambor or tho ruclous. The rocoil erorgite in a
 ve ! : \%

$$
F_{i b a i}=\frac{4 A}{i 1+A i^{2}} F_{n}
$$

 rie :el:ter of grayity of the rostron mid the noucleus is at rest. This raingiul cor ro orally shony tis ve an fullows:

$$
\begin{equation*}
E=\frac{\ddot{A}}{i+i_{i}^{K}} \quad E_{n} i 1-\operatorname{acs} \varphi! \tag{array}
\end{equation*}
$$

Let σ_{g} be the integral scutearing eress section, $\sigma(\varphi)$ the difforontial sentoring oross section in the center of gravitio ejstom, sc that $\frac{\sigma(\phi) d w}{\sigma}$ represonte the probatility thet in avilisicn the neutran be cottered through the angle ϕ. into the elemert of solid anglo dw, φ and dw teing mes.surad in the contor of gratity ayston. Tho probability $p(E)$ dE for the nucleus to acquiro in a collision a recoil ororgiz botween E and $E+d E$ is ther: given ly:

$$
p(E) d E=\frac{\sigma(\phi)}{\sigma_{s}} \quad 2 \pi \sin \phi \dot{\theta}
$$

$$
\begin{equation*}
p(E)=\frac{\sigma(\phi)}{\sigma_{B}} \frac{\pi}{E_{n}} \frac{(A+1)^{2}}{A} \tag{4}
\end{equation*}
$$

Equation 4 expresses a simple relation tetzoer the orerey distribution is the recoil muoled in tho saboratery syetom and the arcular distribution of the soxttorod noutrors in the ooiztor of firavity aysten.

It may bo paintod out time the mamim recoil onerey dearonsea as the mass number increases. Henca the rocusls of lifghest onergy alwaje ariso from tho olements of lowest mase rumer presorit in the ges or the wills of tize chambors. In cruger to inearpret the obserpations Zunntitativeis, one gexerall 3 soes to it thet one of the elomortis preferit In the active volumo of the chamor is oorsideralily lifhter then all
 cnly tine reoollg of hifher orarejerisirg from this lishtor elemer.t.

Recoii charters maj ion asiriad according tw the rature of tho Light elemer.t from which the re-uils aro froducod, ard acocrdirg to whether triss olement is part $n i$ the gas or is pressitias a film or the yalls of tho onamer. Ir the lattor case ore may further distiriguish

witin the range of the fasteist rocoils, ard thicis raciators, nimoly radiatura of a tinicinose larger thmithe zmufe of tine fastosk rocoils. Normuror, rocoil chanters differ mecording to tuejr tacmotry (parallol plato, ijlindrical, sptorioal, ote.; and acurdiry to the method of doteotion of thu ionization (olatron pules ormene, ior. pulse chamter, proportional counter, irtegrating chambior).

 olmerers tocause at mest orergies its soatoring crase sootion is aperecimbly largor tisan that of other lifint malei and is woll krown, at least in the orergy rerior, from about r. 4 to 5 . is milison eleotron volt: (seo Soction A.tic Aiso, the oross section is smotin functicy ef.
 tinar. that os rec:olls frcm mrit nther elamerit.

For hydrogen, Frumatioris 1 mr.d 2 te: oxis:

$$
\begin{align*}
& E=E_{n} 300^{2} 8 \tag{5}\\
& E_{\operatorname{tin}:}=E_{\Delta}
\end{align*}
$$

 syaters, ratioly:

 hydrogen resoil of erorgy ($E, d E$) beire froduced in oollision is given by:

$$
\begin{array}{ll}
F(E)=\frac{1}{E_{n_{1}}}=\text { sonst } & \text { sor } E<\ddot{\theta}_{n} \\
p(E)=0 & \text { ror } E>\tilde{r}_{n}
\end{array}
$$

$$
\because ;
$$

 or:trga luss fier contimotor ajvioud by the energy por ior pair ísoo
 furn per cantirnter, a fairly good approximation or the erergy-range rejatirm in trie righ enorgy rayiun as tha folluring:

$$
\begin{equation*}
K=a^{3 \dot{c}} \tag{3}
\end{equation*}
$$

 ? os 5 the expreasloris

$$
\begin{equation*}
=\frac{d E}{d x}=\frac{1}{\frac{d F}{d E}}=\frac{z}{E \alpha} F_{1}^{-?} \tag{2}
\end{equation*}
$$

[^0]The following stations (Sections 3 and following) dascribe the distribution if siza of the ionization pulses produces in hydrogen conoil. shernors of difforent dedign b_{j} moncontrotio reatrons. The funtions reprosenting tho difierential rulso height distributions aill bo nomalitel
 by tine total number of recoil mrotons rrodused in the radiutur. Corresporiingly, tho Punctions roplosorting the ir. lotral Fulss high ajsteibutions will be normalizad to give tha numior of pulses larger tnan a cortin in anount, rolative to the total amber of recoile. ifith this normalization, the whiso of tho intogral pulas noifit iistrib:ation funcion correspoajing to a given value P of the pulse joifht ;oinsiles with the deteotion offloioncy for a bias onergy $B=F$. The dotacion affioioncy is hero dofined a the ratio of the number of counts to the number of secomiar. processe3 produced in the radiator.

It is convariont to neasuro fulsg hoights in torns of the noutron
 differential and intogral pulse height liotribution by moans of funotions
 function of the rocosil enorgy ulona, $f\left(f, \xi_{n}\right)$ is related to tho probubilizy HiEj definot previously by tire oquation

$$
\begin{equation*}
f\left(p_{1} \dot{m}_{n}\right)=\Sigma_{r_{1}} p(\underline{E}) \frac{d E}{d r} \tag{10}
\end{equation*}
$$

The efficienoy or a radiator, \mathcal{E}, wifired as tho averais nimber un hydroger rozoils prodicen minori a neutron traverss tho chamer hias, for monienorgutia noutroris, the followini, expressior.:

$$
\begin{equation*}
\varepsilon\left(E_{n}\right)=4 \nu \sigma_{B}\left(E_{n}\right) \tag{II}
\end{equation*}
$$

 $\left(\mathrm{C}_{57} \mathrm{H}_{210} \mathrm{O}_{6}\right.$) of 11 : micruersms for squaro witinaione.

$\begin{gathered} \mathbf{5}_{\mathrm{n}} \mathrm{n} \\ \text { (Mor }) \end{gathered}$	0.1	0.5	2	ε
$\varepsilon \times 1.5$	9.56	4.54	$\therefore .23$	$\therefore .0 .47$

 - juration:

$$
\begin{equation*}
\eta=\mathcal{E}\left(E_{n} ; \Gamma\left(E / E_{n}\right)=t \nu_{\sigma_{g}}\left(E_{n}\right) r i B / S_{n}\right) \tag{n}
\end{equation*}
$$

Nierb 3 is tho Ui*s GEarẼ.
14.3 INFINITELY THIN SOLID RAUIATG: ION PULSB CHAMBER, OR ELECTKON FULSE CHABER VITH GRID, OR RROFJRTO:NL COONIER: NO WAL CORRENTION
 reooil protons in the radieter, und tre ohember is surponeat oo be sufficiontily

diakiçiod by oach proton : : : the chamber is oqual to its oriflrai racoli
 puifs :ielght F is oqual to tive onotsy diesitatol. Thoreforo,

$$
\begin{equation*}
P=E=E_{n} \cos ^{2} \theta \tag{13}
\end{equation*}
$$

if wo nus assume virt the ohsabas is irraidater with neutrors all of tho
 Equa: iops innd 10, is given by

$$
\begin{array}{lll}
r\left(E, E_{n} ;=1\right. & \text { for } i / E_{n}<1 \\
f\left(E, E_{01} ; \quad 0\right. & \text { for } i ; / B_{n}>l \tag{1.1}
\end{array}
$$

Tho suriuaporiding lintagrel idiso height distribution is

$$
\begin{equation*}
\left.F\left(F_{i} \xi_{n_{1}}\right)=\int_{\left[\cdot / E_{n}\right.}^{1} F\left(F^{\prime} / E_{n}\right) d ; F^{1 / E} E_{n}\right)=1-P / E_{n} \tag{15}
\end{equation*}
$$

Ths counting yieid or the chantor for a bias onergy 3 (800 Eqution 12) enn io arittori as rollows:

$$
\begin{equation*}
\eta=t \nu \sigma_{n}\left(E_{n}\right)\left(1-B / E_{r_{i}}\right) \tag{15}
\end{equation*}
$$

 Mrit*

$$
\begin{equation*}
\sigma_{\Sigma}\left(\varepsilon_{n}\right)=\sigma_{0} \varepsilon_{n}^{-2 / 2} \tag{17}
\end{equation*}
$$

whore $\sigma_{c}=$ ancsunt. fiztinthis exiression for σ_{3}, fiquethon 15 coundes

$$
\eta=\varepsilon_{B}\left(\frac{E_{n}}{\square}\right)^{-1,2}\left(1-\frac{B}{E_{n}}\right)
$$

Figurs 1

Ion pulse, parallel plato chamber with infinitely thin radiator or ion pulse gas rocoll chamber with nogigible mall esfocts. Counting, yioldn in terms of the offioioncy ε_{B} at the bias energy, as a functior: of the ratio E_{n} / B_{B} of the neutron energy to the bias enerej.

wi:ors

$$
\varepsilon_{E}=t \nu \sigma_{0} E^{-\lambda ; \alpha^{\prime}}
$$

 (soe Elidetior. 11). one soos that tree sountine yielit is s Eunction of ti: rat'os of ti. noutrar onergy to tho bias ororgy Ths tohavior of this finction is shown in Figure 1. The yioli η is obviously zors for E<3.

24.4 INFINITENY THIN KKLIATX: YF.LALLEL ILATE, KLENTRGN TUESE CHAMBE : IV ILALL CORETIONS

The enorsi loss of the -ecoil protris in the ryisiator is still negligible, and the protuns aro auppriged to dissipateall of thoir enorgu
 lorisia gqual to the onorgy dissipated in tina ormmor but js fiver. by thia Hnergy miltiplied by the distande of the "cor.ter of siayitif" of tho ionization from thr positive olectrcse and divided by the seperation of tne oleotrodes. Let as amsume that tine raiator is placed on the regatiro olectrodo and tiat tho routrons wro inoideni porpendisularly upori it, as shown in figure 2, i.ot d be the soparation of the oldctrodes aid p tide grossure of the gas !natabsheros.
 angle 0 , und lot \bar{x} / p be the distande from the origir di the roonit track to the centor of gravity nit the ionization, The fulse helinit ororiacoly iy tho

$$
\begin{equation*}
P=\left(1-\frac{\bar{x} \cdot 305 B}{p^{4}}\right) E \tag{1.8}
\end{equation*}
$$

Pigure 2

farallel plate racoil ctamber sith solid radiator.

Since the apocific ionization is proportional to the energy loss, the quantity \bar{x} has the following general expreasion

$$
\begin{equation*}
\bar{x}=\frac{1}{2} \int_{0}^{R}\left(-\frac{d E}{d x}\right) x d x \tag{19}
\end{equation*}
$$

where energy losses and ranges are relative to the gas under consideration at one atmosphere pressure. The value of $\overline{\boldsymbol{x}}$ for various gases is given, as a function of energy, in Section A.l. For sufficiently large recoil energies, one can use for R and $-\frac{d E}{d x}$ the expressions Equations 8 and 9 and one obtains: -

$$
\begin{equation*}
\bar{x}=3 / 5 R=3 / 5 \alpha E^{3 / 2} \tag{20}
\end{equation*}
$$

If one remembers Equation 5, Equation 18 becomes

$$
\begin{equation*}
P=\left(1-\frac{3}{5} \frac{R}{p d} \sqrt{\frac{E}{E_{n}}}\right) E \tag{21}
\end{equation*}
$$

whioh oan also be writton as

$$
\begin{equation*}
\frac{P}{E_{n}}=\frac{E}{E_{n}}-\frac{3}{5} \frac{R_{0}}{p d}\left(\frac{E}{E_{n}}\right)^{3} \tag{211}
\end{equation*}
$$

where $R_{0}=\alpha E_{n}{ }^{3 / 2}$ is the maximum range of the recoil protons.
By differentiating Equation 2ll one obtains

$$
\begin{equation*}
\frac{d P}{d E}=\frac{d\left(P / E_{n}\right)}{d\left(E / E_{n}\right)}=1-\frac{9}{5} \frac{R_{0}}{p d}\left(\frac{E}{E_{n}}\right)^{2} \tag{2I'1}
\end{equation*}
$$

Now E is a single valuod function of P only if $d P / d E$ never changes sign. Aocording to the equation written above, this is the case if the following oondition is satisfied:

$$
\begin{equation*}
R_{0} \leqslant 5 / 9 \mathrm{pd} \tag{22}
\end{equation*}
$$

If, howerer, $R>5 / 9 \mathrm{pd}$, there are recoils of two different energies, emerging from the radiator at two correspondingly different anglea, which give rise to pulses of the same size.

When Equation 22 is satisfiod, the maximum pulse size corresponds to tho maximum reooil energy, namely:

$$
\begin{equation*}
\frac{P_{\max }}{E_{n}}=1-\frac{3}{5} \frac{R_{0}}{\mathrm{pd}} \tag{23}
\end{equation*}
$$

When Equation 22 is not satisfied, the maximum pulse size is that for whioh $\mathrm{dP} / \mathrm{dE}$ vanishes, namely:

$$
\begin{equation*}
\frac{P_{\max }}{E_{n}}=\frac{2}{9}\left(\frac{5 \mathrm{pd}}{R_{0}}\right)^{1 / 2} \tag{23'}
\end{equation*}
$$

If Equation 22 is satisfied, the differential pulse height distribution $f^{\prime}\left(P / E_{n}\right)$, acourding to Equations 7, 10 and $21^{\prime \prime}$, can be written as follows s

$$
\begin{array}{rlr}
f\left(P / E_{n}\right) & =\frac{1}{1-\frac{9}{5} \frac{R_{0}}{p d}\left(\frac{E}{E_{n}}\right)^{2}} & \text { for } P \leqslant P_{\operatorname{mx}} \tag{24}\\
& =0 & \text { for } P>P_{\max }
\end{array}
$$

where E is given as a function of P by Equation 21^{\prime}.
Graphs of $f\left(P / \mathscr{E}_{n}\right)$ for various values of the parameter $\frac{R_{0}}{p d}$ are given in ficure 3. The area under all ourves is 1 , since all the recoll protons produced in the radiator penetrate the active rolume of the ohamber. $\overline{f o r} \frac{\mathrm{R}_{0}}{\mathrm{p}}=0$, the function $f\left(P / E_{n}\right)$ reduces to a constant as in tise caso discussed in the preoeding section. For $\frac{R_{0}}{p d}=\frac{5}{9}, f\left(P / E_{n}\right)$ becomes infinity at $P=P_{\text {max }}$ For $\frac{R_{0}}{p d}>\frac{5}{9}$, the function exhibits peculiarities on aocount of the multiple valued relation between E and P. The function $f\left(P / E_{n}\right)$ for the caso under

Figure 3
Electron pulso, parallal plate chambor with infinitely
thin hydrogenous radiator on one plate. Difforential
pulse height distributions of hydrogen recoils produced by
monoonergetic neutrons falling perpendicularly upon
the radiator, for different valies of the ratio between
the maximum range $\mathbb{R}_{0} / \mathrm{p}$ of the recoils in the gas and the
depth d of the shamber.
$f\left(P / E_{n}\right)$

consideration, has also been exlculated by using the energy range relation given in seotion $A .1$, instoad of the $E^{3 / 2}$ law. The results are summarized in Table 14.5-1.
14.5 THIN RADIATOR: YARA LLEL FLATE: ION PULSE CFAMBYF: ELECTRON FULSE CHAMBER VITH GRID OR FROPORTIONAL COUNTER: NO WALL CORRECTION.

This case is similar to that discussed in Section 3 exoept that the thickness of the radiator, even though amaller than the maximum range of the recoil protons in the radiator itself, is not negligible compared with this rango. ife shall agsume that the radiator is placed on ore of the plates of the chamber and that monoonergetic neutrons of energy E_{n} fall perpendicularly upon it, as indicated in Figure 2. The recoil protons which give a pulse larger than P are those which emerge from the radiator with an energy larger than P. If $R^{\prime}(E)$ represents the range in the material of the radiator of protons of energy E, it follows that a proton, generated at a depth x in the radiator, at an angle Q, and with an energy E, will produce a pulse larger than P if $x \leqslant x$, where X setisfies

$$
\begin{equation*}
R^{\prime}(E)-\frac{X}{\cos \theta}=R^{\prime}(P) \tag{25}
\end{equation*}
$$

or

$$
R^{\prime}(E)-x \sqrt{\frac{E_{n}}{E}}=R^{\prime}(\rho)
$$

Hence, the total number of pulses larger than F, relative tic the totai number of racoils generated in the radiator, is given by the follawing expression:

$$
\begin{equation*}
F=\frac{1}{t E_{n}} \int_{p}^{E_{n}} x(E) d E \tag{26}
\end{equation*}
$$

where X is efther the thicknos3, t, of the radistor or the function of E defined by Equation 25, whichever is smaller. If we assume that $R^{\prime}(E)$ is proportional to $\mathrm{E}^{3 / 2}$. Equation 25 bocones:

$$
x=R_{0} \cdot \sqrt{\frac{E}{E_{n}}}\left[\left(\frac{E}{E_{n}}\right)^{3 / 2}-\left(\frac{P}{E_{n}}\right)^{2 / 2}\right]
$$

where R_{0} is the range ir the radiator of protons of onergi En Equation 26 can then be writton as follows:

$$
F\left(\frac{P}{E_{n}}\right)=\int_{I / E_{n}}^{1}(1 / t) \times\left(\frac{E}{E_{n}} \cdot \frac{F}{F_{n}}\right) d\left(\frac{E}{E_{n}}\right)
$$

Since X / t is eithar $=$ c.r a furotion of $\frac{R_{o}^{\prime}}{t}$. E / E_{n} and Γ / E_{n}. Erustion $2 G 1$ shors that, under the assumption made, the function F depends only on the retios $\mathrm{F} / \mathrm{E}_{\mathrm{n}}$ and $\frac{\mathrm{R}_{0}^{\prime}}{\mathrm{t}}$. The seme is trus for the differontial fulse height distribution, which is obtained by differentiating F with respect to $f^{\prime} E_{n}$.

The functions $f\left(F / E_{n}\right)$ and $F\left(P / E_{n}\right)$ have beon calculatod, under the asamption of R^{\prime} proportionsl to $\mathrm{E}^{3 / 2}$, and the rosults are given in Ficure 4.

It may be noted that the aress under the curves for $f\left(P / E_{n}\right)$ corresponding to different thigknesses of the radiatcir are not oqual. The reason is that as the radiator becomes thicker, an incroasing fraction of the recoils Froduced in the radiator ara abscrbed by the radiator itsolf before they reach the active volume of the chamber.
14.6 THIN RADIATOR: PARAIMBL PLATE, ELECTRON FULSE CHAMBER: NO WALL CORRECTION

This oase is similar to that discussed in Section 4 , except for a finite thichness of the radiator. The differential and irtegral pulse roight aistributions for this case wore calculatod, on the basis of the onergy range relations giver ir Section f. .l. for rediators of glyceroltrictearate $\left(\mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}\right)$ and arecn filled chambers.

These reaulta are sumarizod in Table 14.6-1, where f and F are given es
a function of P / E_{n} for various velues of the noutron gnerey E_{n}, of the

Figure 4

Ion pulse, farallel plate ohamber with thin hydrogenous rediator on one plato. (A) Difierential and (B) integral pulse hoight distributions of hydrogen recoils produced by monoenergotio reutrons falling ferpend. icularly upon the radiator, for different叹lues of the ratic t / R_{0} between the thickress of the radiator and the maximum range of the roccils in the radiator.

Table 14.6-1
Differential and Integral Pulse Height. Distributions for Argon Filled. Paraile: Plate. Rlectron Pulse Chambers with Olycerol Tristearate Radiators

$$
E_{n}=0.3 \mathrm{Mev} \quad \mathrm{pd}=4.02 \mathrm{~atm} . \mathrm{cm}
$$

P / E_{n}	$t=0$	$t=25 \mathrm{r} / \mathrm{cm}^{2}$		$t=50 \mathrm{r} / \mathrm{cm}^{2}$		$t=75 \quad \gamma / \mathrm{cm}^{2}$	
	f	f	F	f	F	f	F
0.1565	1.0083	0.8430	0.7410	0.7449	0.5622	0.9864	0.8045
0.3333	1.0122	0.8935	0.5960	0.8159	0.5337	0.7642	0.4853
0.5000	1.0476	0.9557	0.4420	0.8931	0.3845	0.8485	0.3531
0.5000	1.0695	1.0004	0.3425	0.9444	0.3007	0.9020	0.2644
0.5866	1.0874	1.0260	0.2735	0.9773	0.2355	0.3396	0.2024
0.7000	1.0979	1.0393	0.2385	0.3952	0.2022	0.9613	0.1701
0.7333	1.1088	1.0562	0.2050	1.0266	0.1697	0.9854	0.1383
0.7866	2.1203	1.0742	0.2700	1.0375	0.1362	1.0082	0.1055
0.7848	1.1278	1.0850	0.1500	1.0496	0.1168	1.0216	0.0864
0.8386	1.1508	1.1145	0.0915	1.0830	0.0605	0.7220^{-}	0.0400
0.8909	1.2773	1.1467	0.0300	0.5733	0.2150	0.3822	0.0100
0.9423	1.2040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Table 14.6.1 Continued

Table 14.6-1 Continued
$E_{n}=0.6 \mathrm{Mev} \quad \mathrm{pd}=4.02 \mathrm{~atm} \pi \mathrm{~cm}$

P / E_{n}	$25 \mathrm{~V} / 0$	$t=50 \mathrm{~V} / \mathrm{cm}^{2}$		$=75$	cm^{2}	$t \cdot 100 \mathrm{~V} / \mathrm{cm}^{2}$	$t=175 \quad \gamma / 0^{2}$	
	$\underline{1}$	f	F	1	F	F	$\underline{1}$	5
0.1666	0.8507	0.7576	0.7488	0.7103	0.7181	----	--m-	---*
0.2500	0.9220	0.8491	0.6798	0.7995	0.6538	0.6503	0.6826	0.5710
0.3325	0.0825	0.9246	0.6067	0.8818	0.5843	0.5634	0.7740	0.5101
C.4.1€6	1.0447	2.0001	0.5258	0.9034	0.5076	$0.49 \mathrm{C4}$	0.8651	0.8429
0.5000	1.1141	1.0805	0.4408	1.0502	0.4246	0.4095	0.9660	0.3665
0.5833	1.2004	1.1556	0.3482	1.1534	0.3336	0. 2194	?. 0823	0.2812
0.EE66	1.3329	1.3151	0.2440	1.2968	0.2513	0.2142	1. 2352	0.1652
0.7000	1.40 .87	1.3772	0.is98	1.3569	0.1870	0.1762	1.3082	0.1434
0.7333^{1}	2.5083	1.4889	0.1507	1.4692	0.2401	0.1295	1.4144	0.0982
0.7E2 4	2.5¢86	1.5485	0.2225	1.5320	0.1111	0.1008	1.4782	0.0720
0.7649	1.5213	-. 5934	0.1027	2.5794	0.0962	0.0822		0.0530
0.7770	1.6632	2.6491	0.0837	1. 5357	0.0736	0.0631	---*-*	0.0377
0.786	1.7306	1.7169	0.0623	1.7030	0.C520	0.0414		0.0237
0.8010	1.7551	1.7806	0.0425	1.7654	0.0221	0.02 .41	---*---	0.0138
0.5325	1.6618	1.8471	0.6220	------	0.0147	C.0120		0.0063
0.5243	1.5375	----**	0.0050		0.0033	0.0025		0.0014
0.8351	0.0000	0.0000	0.000	------*	0.0000	0.6000	---mem	0.0000

Tatie i4.6-2 Continued

$E_{n}=1.6$ 3.er piz 8.58 etm. crn

$E_{n}=1.6$ hev $p d=12.7 C a t m$. cm

radiatur thickness, t, and of the produot., pd, of the ges prossure times the dopth of the chainver.

In Figure 5 the function $f\left(H / E_{n} j\right.$, correspondirg to $t=0$ and $t=175 \gamma$ per square contimater and celculated for the sar.o value of $E_{n}(1 \pi i l l i o n$ electron volt) and pd (8.98 atmonpheres times ountimetaris) is represented grapidcally in order to illustrate the influonre of a finito radiator thinkness on the pulse heinht $\dot{\text { aistrisintion curves. The difierontial pulae }}$ leaiglit cistribution fur $t=0$, caloulated on the basis of tho $R \in E^{3 / 2}$ approximation, is also reyresented in the samo ígure. The difference between this curve and that oalculated on the basis cf the mori accurate energy rarfe relation is very small.

14.7 THICK FADIATOR: IARALLYL FLATF, ION FULSF CHANBER, HLECTRGN YUISE CHAMBER WITH GRIL; OR PROTOKTICNAI, COUNTIR; NO BKIL CORRECTION

Tho raciator is again placed on the negative plate of the chamber, and the noutrons are iroident ferpendiculariy on it, as shewn in fifure 2. Tho thickness of the radiator is now supposed to te larger than tho range $\mathrm{R}_{\mathrm{o}}{ }^{\prime}$ of the fastest recoil frotons ir. the radiator itself.

The integral pulso height oistribution in the ofse of moncanergetio noutrons striking tho chamber is given by Equation 26 or 20^{\prime} whero now - $X\left(E_{n}, F, E\right)$ is always defirod by Equation $25 ; 1, e .$, it nevor becomos oqual to the thickness t of the radiatir. If we assume the range to be proportional to $E^{3 / 2}$, then Equation 25, holds and ono obtrins

$$
F\left(P / E_{n}\right)=\int_{\Gamma / E_{n}}^{\frac{R_{0}}{t}}\left[\left(\frac{E}{E_{n}}\right)^{3 / 2}-\left(\frac{F}{E_{n}}\right)^{2 / 2}\right] \sqrt{\frac{E}{E_{n}}} d\left(\frac{E}{E_{n}}\right)
$$

Electron pulse parallel piate chambor with glyceroltristoarato radiator or. ore plate. Plato separstion $d=1.33$ cortimotors; gas iflling 6.7 atmosphores of argon. Differential pulse height distributions for hydrogen recoils produced by neutrons of 1 million olectron volt cnergy falling porpencijcularly upon tre radiatcr.
(A) Infiritoly thin raciator($t=0$, calculatod by assuming R proportional to $E^{\dot{j} / 2}$. .
(B) Infinitely thin radiator $(t=0)$, calculated on the basis of the erergy range relation given isi Section A.l.
(C) "Thin" radiator ($t=175 r / \mathrm{cm}^{2}$), calculated on the tesis of the onergy range relation given in Soction A.l.

cr

$$
\begin{equation*}
F\left(\frac{p}{E_{n}}\right)=\frac{R_{o}{ }^{\prime}}{3 t}\left[1-\left(\frac{P}{E_{n}}\right)^{3 / 2}\right]^{2} \tag{27}
\end{equation*}
$$

The counting yield of the chamber for a bias onergy B (see Equaticr 12) has the expression:

$$
\begin{equation*}
\eta=1 / 3 \nu \sigma_{s}\left(E_{n}\right) R_{o} \cdot\left[1-\left(\frac{B}{E_{n}}\right)^{3 / 2}\right]^{2} \tag{28}
\end{equation*}
$$

or, if one assumes R^{\prime} to be proportional to $E^{3 / 2}$ and σ_{s} proportional to $E_{n}^{-1 / 2}$;

$$
\begin{equation*}
\eta=1 / 3 \quad b_{B} \frac{E_{n}}{B}\left[1-\left(\frac{B}{E_{n}}\right)^{3 / 2}\right]^{2} \tag{28'}
\end{equation*}
$$

In the above equation

$$
f_{B}=R^{\prime}(B) \nu \sigma_{C} B^{-1 / 2}
$$

represonts the average number cif recolle fer incident neutron of energy $E_{n}=5$ produced in a thickness of the radiatcr equal to the range of protons of ensegy E. Equation 28^{\prime} indicates that η is a function of E_{n} / B. A graph of this funstion is given in Figure 6 , from which one osn see that the counting yield of a recoll chamber nith thick radiator ircreasos rapidly ard continuously with iroreasing noutron energy.

$$
14.8 \text { GAS RECOIL CHABBFR: NO WALI EFFEETS }
$$

We shall essume now trat the chamber is filled with hydrogen, a hydrogen compound, or a hydrogen containing, moisture, and that the linear dimonsions of the chami,er are very large compared with the range of the fastest recoil rrotons, so that wall offects can be disregarded.

Figuro 6

Ion pulse parallel plato chamber with thick radiator. Counting yield η in terms of $\delta_{B}=2 \sigma_{0} B^{-1 / 2} R^{\prime}(B)$ as a function of the ratio E_{n} / B of the reutron energy to the bias enorgi.

If the chambor is uged as an ion pulae onamer, thon $P=E$ and the differential and integral pulae height distrikution for monoonergotio neutrons arn the garisa in Soction 3 (800 bquations 14 and 15) 。 If the ohmber is used as a eleotron pulse ohamber, the palse height. distrihution depends on the geometry.

If the charaber is used as an integratirg chamber and is filled with Fure hydrogen, then tro irtensity I of the ionization current is given by

$$
\begin{equation*}
I=H \frac{E n}{c} \frac{e}{W_{0}} \tag{29}
\end{equation*}
$$

where $I f$ is the number of recoils per second produoed in tre chamber, is thio oleotron charé, Wo is the onergy por icn pair, and $\frac{F_{n}}{2}$ reprosents the averago onergy of the hydrogen recoils.
14.9 AAS RFCOII, ION FULSE CHAMEER, COMPUTATION OF NALL EFFECTS

Let us consicer the two rollowing types, of ionization ohambers:
(A) Puallel plate chamber, with a circular colleoting elootrode, surrounded by a guard ring as show infigura 7.
(B) Cyiindrioal ohamber with axial collooting oleotrode supportod by guard electrodes as shown in Figure 8.

In both cases the active rclumes are eupposed to be sharply doined and in the shape of oylindera with ilat ends. The direction of tho incorifeg noutrons is perallel to the axis of tho cylinder, $2 s$ shom by tio arrows. In the casa of (A), the wall effoots are aqused: (1) by recoils hitting, the olectrode at the far end of the chamber; (2) by recoils procuced ir the active volume, but going out of the aotive volumo through its lateral toundary; and (3) by recoils produced outside the actire volume and ontering the active rolume through its latoral boundary.

```
    Figura 7
Wall offecti in gas roooil perallel plate chambor with oircular slootrodes.
```


Fipure 8

wall offects in a gas recoil cylindrical ohamer.

In tho cate of (B), tho wall effects are caused: (l) by rooolls produced in the active volume and crossing the boundary B (see figure 8); (2) by recoils hitting the lateral wall; and (3) by recoils produced outside of the active volume and entering the active volume through the boundary A. The recoils hitting the central electrode are neglected.

A general computation of the mall effects for the two types of chamber e described was carried out under the assumption $R=\propto \varepsilon^{3 / 2}$.

In these oelculations, ede effects (see Section 10.7) are neglected, nd accordingly the pulse height for a particle which crosses the boundary of the sensitive volume is computed by considering only the ionization produced by tho particle in the sorisitire volume. This procedure is justified if the condition e for an "ideal" ion pulse chamber are fulfilled; ie., if the decay time of the detecting equipment is very long compered with the time of collection of the positive ions (see Section 10.6). In the practical cases, the peculiarities in the shape of pulses produced by the motion of ions near the bounder; of the active volume ma have an appreciable influence or the observed pulse height distribution.

The results of the calculations are expressed by the following equations, in which b represents the radius of the cylirdrioal sensitive volume and a its length (a is the spacing of the plates in case (A) and the length of the collecting electrode in case (B)). Those results apply to chambers of any dimensions, provided that the maximum range R_{0} of the recoil protons is smaller than a.

Case (A) (see Figure 7)

$$
\begin{align*}
& r\left(\frac{P}{E_{n}}\right)=1+\frac{R_{0}}{2} A\left(\frac{P}{E_{n}}\right)+\frac{R_{0}^{2}}{B} B\left(\frac{1}{E_{n}}\right)+\frac{R_{0}}{b} C\left(\frac{P}{E_{n}}\right) \tag{30}\\
& F\left(\frac{P}{E_{n}}\right)=\left(1-\frac{P}{E_{n}}\right)+\frac{R_{0}}{2} D\left(\frac{F}{E_{n}}\right)+\frac{R_{0}^{2}}{E_{n}} G\left(\frac{P}{E_{n}}\right)+\frac{R_{0}}{b} R\left(\frac{P}{E_{n}}\right)
\end{align*}
$$

Table i4. 9-1

Funotions ontering in equations $9-30$ and $9-31$

Cag* (B) (seo Figure 8)

$$
\begin{align*}
& f\left(\frac{P}{E_{n}}\right)=1+\frac{R_{0}}{2} \dot{L}\left(\frac{E^{\prime}}{E_{n}}\right)+\frac{R_{0}^{2}}{E b} u\left(\frac{P}{E_{n}}\right)+\frac{R_{0}}{b} N\left(\frac{P}{E_{n}}\right) \tag{31}\\
& F\left(\frac{P}{E_{n}}\right)=\left(L-\frac{P}{E_{n}}\right)+\frac{R_{0}}{a} Q\left(\frac{E^{\prime}}{E_{n}}\right)+\frac{R_{0}^{2}}{a b} S\left(\frac{P}{E_{n}}\right)+\frac{R_{0}}{b} T\left(\frac{P}{E_{n}}\right)
\end{align*}
$$

The funotlone $A, B, C, D, G, H, L, M, N, Q, S, T$ ereaiten in Table 14.9-1.

14.10 USES OF RECOIL CHAMPERS

Recoll chamtors are used for the following purposes:
(A) Relative flux moasurements for neutron beams with the same energy distritution.
(B) Absolute flux mos urement for monoenergetio reutron besme.
(C) Determination of the erergy distritution of neutrons.
(D) Investigation of noutron seatterinf, or light atcmic nuclei. For (A), (B) and (C) hydrugen reooil chamors are gonerally usod. No special presauticns are needed in the corstructian of ohamer for rolative messurenents of neutron flux. High sensitivity, small physical sizo and directicnality may be desirable features. Examples of chambers designed In order to satisfy one or the othor of the above requirements will be found below.

The protlom of building a chamber for absolute flux mexurementis is a much more difficult one. In the first place it is necessary to know the efficiency ε of the radiator. In the case of a gas recoil chamber, this implies ar aocurate knowledge of the sensitivo volume of the tctal gas pressurs and of tlio concentration of hydrogen in the gas of the chamber. In the sese of a solid raliator, the mass of the foil and its chenical
composition must be known aocurately. The radiator is generally prepared by diatillation in a vacum, and if jt is mare of material containing different chemical speoies (like ordirary paraffin', the composition of the foil may be different from that of the bulk material. Jainly for this reason, the radiators for quantitative flur measurements wale prepared with gljcorol-tristearate, which is a dofinito chamionl sompound, rather thar with paraffin。

In tho second placo, one must determine the fractional number oi rocofls prounood in the chamber inhioh are detoctod with the spesific experimental arrangement. If no collimation or the recoil protons is used (see below). the pulsos obtsined ranfo in siza all the way from zero to maximum. Only pulsns above a certain size, \bar{B}, are dotected, where B is detarained by the bias sottinge It is noonsumrj to firat know B in absoluts value, i.s., in toms of onorgy, and then to ovaluato the quantity $F\left(B / E E_{n}\right)$ which represents tho fractional number of recoils giting pulsog larger than B. This requires a simple geomotrical design of the ohamber, so that $F\left(B / F_{n}\right)$ may be calsulated thooretically. Also, it requiros an experimental sheci of tie calculatod pulse height distribution. The exparimental check is necossary for the following reasons:
(A) It provides the only reliasle metiod for the calibration of tha bias sottiag ir terms of onergy; i.e., for the aboluto determination of B.
(B) It dotermines tine lewest hime at wich only hydrogen recolls are detoctad. In adaition to hydrogen recoils, ono usumily has in the chamor recolls of other lfegt nuciel (argon, osroon, eto.), and also secondary loctrons produced by γ^{2}-rays. If the resolving time of the detocting equipment is not small sompered with the average time separation of the spurious pulses, these latter will
"pilo up" and givo riso to pulsas larger then those which an individuel recoil or secondary electron could produce (see Sootion A.12). The bias at which spurious pulsos of the type dosoribed above start being oounter is generally oharactorized by a sudden departiurs of the experimental from the theoretical pulss height distribution ourve.
(C) Finally, in many cases it is found that the experimental pulse height distribution ourves do not agroe with the oalculated ones, even for bias energios at which one would not expect to detoot pulses due to spurious reoofle or to secondary olectrons from rerays. One can think of many reasons whioh may explain disorepancies betwoon sxperiment and theory, such as:(l) lack of monochromatioity of the neutrons, either inherent in the neutron source or produced by inelagtic scattering of the noutrons in the material of the chamber: incorront evaluation of the edge effocta (geo section lo.?); range atraggling or orror in the ovelution of the energy-range reiation (only likely in the low energy region); lack of proportionality botwon nurber of ions and pulse height; or spread in pulso height When ohambers with ges multiplication are used (see seotion ll.f). Often it is not possible to determine what the sourse of the trouble actually is, but it is cloar that no chamber should be used for absoluts neutron flux meksurements unless the theoretical and experimental pulse height distribution ourres agree.

It maj be pointed out that the measurement of the differential pulso height distribution provides a much more rigorous aheck on the behafior of the chamber than the determination of the integral pulse height distrioution. It may also be pointed out that for accurato results ono must be able to sot the bias
sufficiently low to count a largo fraction of the rocolls produced in the radiator.

Another possible method Eor determining the ratio of the numbor of recoils detected to the total number of recoils produced is to collimate the recoil protons in such a way that only protons ejected within a certain anglo, $母_{0}$, with respect to the direction of the incoming neutrons, enter tine chemher. These protons have onergies above $E_{n} \cos ^{2} \theta_{0}$, and if this ralue is surfioiently lurge, one can djust the bias so that all of the protuns are detected. In this way, the fractional number of rocoils detected is determined by the geometrical arrangomeat rather than by the bias settine. An example of a detector based on this principle will be discussed in Section 19.

Finally, one may use gas recoil, irtegrating, ionization chamber (seo Seotion 8) for absolute measuromonts of neutron flux. An instrument of this type will be describod in Section 18.

The onambers used as reutron spootrometers must satisfy requirements somemhat different irom those laid down for the chambers usod for absolute flux measurements. Only the onergy dependence of the effioienoy, but not its absolute ralue, neods to be knowi. On the other hand, the pulse height diatribution for monoenergetic neutrons must be aocurately known, and, also, it must be of sufficiently simple shape so that the noutron spoctrum may be calsulated from the obsorved distribution of recoil pulsese

In princiflo, one coulimaze an ideal neutron seotrometer by using a very thin radiator and by having both the incident neutrons and the recoil protons woll collimatad. In such a way, one would obtain pulees of single
 caused by the double collimation, and for this reason no detectors of the type described were bufltat the Los Almmos Laboratorios, even though they may be useiul for somo speoific applications*

The next best choice for a neutron spotrometer is a chamber in which a monoenergetio neutron beam fives a constant differential pulse height distribution (infinitely thin radiator, ion pulse chamber; gas recoil, ion pulse chamber of very large dimensions, etc.). In this ouse, if $N\left(F_{n}\right) d E_{n}$ represents the number of incident neutrons with energy between E_{n} and $E_{n}+d E_{n}$, and $\psi(P) d P$ represents the number of pulses observed with the height betwo on P and $P+d P$, the following equation holds (so Fiuntion 14)

$$
\gamma(P) d P=\text { constant } \int_{E_{n}=P}^{N\left(E_{n}\right)} \sigma_{s}^{\infty}\left(E_{n}\right) d E_{n}\left(\frac{d P}{E_{n}}\right)
$$

From this it follows:

$$
\begin{equation*}
N\left(E_{n}\right)=\text { constant } \frac{E_{n}}{\sigma_{2}\left(E_{n}\right)}-\left(\frac{d \psi}{d P}\right)_{P_{2} E_{n}} \tag{32}
\end{equation*}
$$

Chambers approaching this type were built and used successfully (ave Sections 11 and 12).

With regard to the chambers to be used for the investigation of scattering oross-sections, it will suffice to note that they must bo of sufficiently single design so that from the observed pulse height distribution one mable to bo deduce the energy distribution of the recoils. Equation 4 shows that the energy distribution of recoils in the laboratory system gives the differential scattering oross-section in the center of gravity system.
14.11 HIGH FRESSURE, GAS RECOIL ION I'ULSE CEAMBER

Figure 9 shows the construction of a chamber used as a neutron spectrometer. This ohamber is similar in its design to one described by Barschall and Farmer in Hysioal Review, 58, 590 (1940). The sensitive volume is a cylinder 8.5 centimeter
in diameter and 8.5 centimeters high. In order to obtain a sufficiently high field through the large sensitive volume, the lattor is divided into six sections by means of metal grids mado of annoaled copper wire of 0.008 inoh diametor, the mesh width being $1 / 8$ inoh. The transparenoy of osch grid is thus about 37 per cent. The solid plates, :mich limit the sensitive Volume at the top and at the bottom, as well as grids (2) and (4), are connected together and form tho hich volagge elsctrode. Grids (1). (3) and (5) are similarly oonnected together and form the collecting electrode. Eech of the three grids which forms the collecting elactrode is mounted on a thin bress ring. This is supported by a wider trass ring, the guard oleotrode, by means of two small amber beads. Fach of the three also carries a tongue which protrudes through a slot of the guard eleotrode into 2 gruunded brass tubing containing the connecting lead for the three collecting grids (sco detail). The capacity of the collecting eleotrode assembly is approximateis 60 micor ond orofarads.

The chamber was used with pressures up to 26 stmospheres of pure hydrogen or of hydrogen-argon mixtures. Beforo admitting, it into the chamber the gas Was freed from organic vapors and frum water. A small amount of oxygen (0.01 per cent) was added in order to produce nogative ions and thus avoid the fast part of the pulse due to tne motion of afree electrons. The ohamber was usually operated at 6000 rolts. The pulse amplifiler had a rise time oi 0.5 milliseconds and a decay time of 2.0 milliseconds . This small band width was used in order to minimize the noises. The ohamber, despite its sturdy construotion, is very sensitive to microphonic disturbances. It is also tery sensitive to r-rays beosuse of the high pressure used. The large value of the decay time constant. of the amplifier, which is required in order to avoid excessive distortion of the ion pulses, enhances the probability of large spurious pulses produced by

```
    Figure 9
High presaure gas recail ohamber ( see Section 11)
```


the piling up of γ^{2}-ray pulses. In the absence of γ-rays, it was found possible to record recoil protions dorm to an energy of about 0.6 milli in eleatron volt.

The advantages of the chamber are high counting yield (of the order of 1 or 2 per cent) and lack of directionality (excopt for the wall effect corrections).

The wall effect corrections can be expressed by the following equation, whioh gives the differential pulse height distribution:

$$
\begin{equation*}
f\left(P / E_{n}, E_{n}\right)=\alpha\left(E_{n}\right)\left[1+u\left(E_{n}\right) E_{n}\left(1-P / E_{n}\right)\right] \tag{33}
\end{equation*}
$$

The quantitiesa and u depend on the noutron onergy E_{n} and on the gas pressure. For a suffioiently high pressure, or for sufficiently low energy $(\alpha=1,4 \times 0)$, Equation 33 goes over into Equation 15 , which represent: the pulse height distribution when wall effects can be neglected (see Section 8). For a gas filling, the stopping power of which is equivalent to that of 39 atmospheres of H_{2}, α is represented by the curve in Figure 10 , while $u\left(E_{n}\right)$ is approximately given by the expression

$$
\begin{array}{ll}
u\left(E_{n}\right)=0.23\left(E_{n}-0.6\right) & \text { for } E_{n}>0.6 \\
u\left(E_{n}\right)=0 & \text { for } E_{n}<0.6
\end{array}
$$

where E_{n} is measured in million olectron volts. The neutrons aro assumed to travel in a direotion perpendioular to the eleotrodes of the ohamber.

The performance of the chamber was tested by irradiating it with monoenergetic neutrons of 2.5 milli on eleatron rolts energy obtained from the D-D reaction. The observed pulse hejpht distribution is represented by curve (a), Figure 11. Curvo (b) in the same figure represents the energy spectrun of the primary neutrons, s computed from the observed rocoil distribution,

APPROVED FOR PUBLIC RELEASE

209

Figure 10
Values of the function $\propto E_{n}$, which entors in Equation 33

Figure 11

Differontiel fulse hoight distribution of hydrogen rucoils cbtsined by moars of the chamber desirifiod in Section 11 irradiatod with monoenergetic reutrons of 2.5 mililion eleetron volts onergy (ourve (a)). Curvo(b) represents tho energy spectrur of the primery noutrons, as computod from the observed recoil distribution. Gas tilling: 13.8 atmospheres of argor. plus 2.73 atmospheres of hgdrogen.

approved for public release
takinf irto acoount the all correotions. The extont. to mich curve (b) arproximates ar infinitely narrow distribution givas a measure for the aowracy of tim experimental method.
14.12 PAIN RADIATOR, ELEETRON HULSE, PARALLEL FILATE CHASBER

Fifure 12 sfiows the construction of a chamber used for absolite measurementa of neutron flux and as a neutron siectronster. The chamber is filled with argon and prossures up to 7 atmosphores can be used. A hot caleium nurifior is parmanentiy connected to the chambor through two $3 / 3$ inch atsel pipes, rut shown in the diagram. This mates it possible to purify the pas whenevor recossary. The chamber is normally oporated at -2000 volts.

The radiator is a nlyoorol-tristearate film of about 180 人 fer s quare centimeter proparad by ovaporation in a vacuram. It is placed on a plntinum foil, whith is part of the hifh voltage olectrode. Frtersive tests were mate in order to mate sure that tine conductivity of the foil was sufficiently lareo to prevent ac:umulation of oharges wich might disturt tise olectric field ard therefora distort the ;ulss height distrikution. For this purpose, a polonicm source was depositud on a platinum foil and then covered with a filyerai tristarate $i f 1 \mathrm{~m}$. The platinum foil thus prepared was placed in the chamber in place of the radiator and the pulse height distribution of tho α-partioles was determined. Ther: a gram redium source ma placad rees the thanior so an to protuen an irtensa ionization of the pas. The radium source was renorad and the :ulse heirht distribution was remeasured imediately aftermerds. The palse hoight distributions measured before and after irradiation croved to ne identical. This result was taken as a proof that, even in the presence of an ionization much hoavier than that existing under normsl operating conditions, the glyoarol aristoarato film dces not acquire an amcunt uf rharge safficient to distort the pulse heisht distribution.

Figuro 12
Solid raciator, parallel fiate ohamer (see Soctior 12)
(1; Grill suppcrted on brags ring.
(2) Two mil platinum foil which bears tho glycerol tristearate rediator.
(3) Colleoting electrode.
(4) Guard electrcde.
(5) H.V. electrode.
(i) Lead to the oollectirg electrucie insulated from the base plate rith G.E. Kovar glass soal.
(i) H.V. leas insulatad from the plate with a G.E. ícoar Elass seal (a similar lead, not shonn in the diacram, provides the cornection to the gridi.
(3) Sylfhon bollows.
(9) Structure with ise way for lit'ting ard rotating the rauistor in or cut of positicn. Tno figura shows the rediator liftod out of position. A similar structure sueperts e blant flatinun foil which may be substituted for the radiatur in order to determire the backeground.
(10) Scft metal gaskot.
(11) Stool plato, 1/4 iroh tiniok.
(12) Steel shell, 1/1tinch thick.
(13) ifless insulatcre. The onda aro platiniged and sclaered to brass cafs.
(14) Cress-section of a U-shapod jcke carrjirg the knurled screw.
(15) Keyway for rotating rediatcr.

- Tho colleatirg eleotrode and the attached ieac have a cepacity of 10 to 15 mioromicrofaracis. The chamber mes ustd with an ampifitor havinf, a rise timo of 2 microseconds and a decay time oonstant of 20 miorosoconds. The small value of the latter time constant praotioplly olimirates microm Fhonic disturbances and makes it posaible to operates the chambor in the presence of a fairly strong γ-rediation. Tho minimum pulse height winich can be measured safely is approximately 0.乏 millicir. electron volt. The maximum noutron onergy for whith the chamber can be used is determirod by the cordition trat the maximum range of the reccil protions should bo not more than 5/C the spacing of the alectrodes (see Soction 4). This energy is about 2 miliion eleotron rolts.

In the corstruction of the chamber care vas taken to avoic hoary materials in the path of the incident neutrans sc as to minimizo the denger of inolastic soatterirg. All metal yarts in contact with the active volume eif the oramber were goldmplated and then outgassed by heatinf; in recuum ir. an efrort to minimize the tachground ceused by zecoils from hydrogen absorbed in the motal. This background ias experimentally detornined by irradiating the chamber with noutrons after replacing tre radiator with a blan's filatirum foil. The number of recosls reoorded undel these oorditions was about ton pel cent of the number rocorded with the radiator in place.

Tho chamber can bo used with or without the grid (I) shom in Figuro 12 . inen usod, tho grid is kept at a voltage of -1400 volts with respoot to the colleoting eiectrode (the high voltage electrode veing at -2000 volts). In both conditions, the operation of the chamber was tested bj determining the pulse hoigtht distribution with a poloniun souroe an a platinum foil in place of the radif.tcr. if thout any grid, one should expect a "rectargular" pulse height distribution if the masuranents are taken with a ohannel disoriminater
of infinitesinal width, or a "trapezoidal" pulse height distribution if a channel discriminator of finite width is usod (gee section 1. .l). rith the grid, one should expoct all the α mparticle pulses to be of the sane size (see Seetionc 10.2 and l\%.l). The experinontal curves obtained conijirn this prodiction (see Figures 13.1 arci 13.2).

Tho craniber was 0.1 so tested, again with anc without the gric, by determining the pulse height distributicn of tho hydrogen receils vhen the chamber is placod in a monconergetic noutron beam, falling nomally upon the radiater. The curves obtained were of the expectod shapo. As an oxample, Figure 13 gives the results of measurements taken with the grid in position, ir vhich case, if an infinitely narrow oharnel woro usod and if the radiator were infinitoly thin, or:o shouic obtain a "constart" pulse height distribution as descrited in Sectior. 3.
14.12 THIN RAIIATOR, ELECTRCN PULSE, PARA LLEL FLATI DOUBLE CHALBFR

This chamber, based on the same principle as that described in Section 12. Was designed primarily for the purpose of measuring fission crosseseotions. It consists essentially of a fissian chamber and a recoil chamber in the same case, the latter being used as a neutron flux meter. The fissionatle material and the thin layer of hydrogenous material are deposited on two thin platinum foils which are placed back to back and constitute the common high voltage electrode of the two onambers. Thus the two samples are alrost exactly in the same plane and are separated by an amount of material which does not produce any appreciable amount of acattering or absorption of the neutron beam. The neutron flux is therefore the same for both samples and the ratio of the oross-esctions is simply equal to the ratio of the number of proceases per gram atom of the active material.

Figure 13

[^1]
ixtratio core has tainen to aveid any heary materiel alcmp the path of ihe noutron boam, so as to minimize the danger of scattering ani absorption of neutrcils. The chamber walls were mallo as thin as suitable for tine prassure they had to vithstanil. Only glass insulators were used iriside the chamber. The seal votweon brass cap and the base flate was made gas-tight by means of a fuse wiro gaskety, so trat no other materials but metal and glass are in contact with the gas. The lends to tho collecting electrodes and to tio high voltage electrode wero shielded from each other t.y the brass tubes supporting the ohambor (see Figure 14).

Both argon and xénor, at pressures up to about 9.5
atmospheres, were usoc as gas fillings. A hct calcium purifier was Fernanentiy atitachod to th:e chambor. Tr:e chamber vas operstad at a voltage between 2000 and 3000 rolts, depending on the pressure, with the high voltage electrode negetive.

As hydrcgenous radiators, glycerol tristearate filns of verirus thirinesses wore used. In orcer to apoid edge effeots (800 Seotion 10.i), the diameters of the hydrogenous foil and of the fission foll were chosen so that the ranges of ail hydrogen recoils and fission fragmonts were well within the sensitive volumes of the chambers.

The amplifipr used with the recoll ohamber had a rise time of 0.5 mioroseconds and a deary time of 20 mioroseconds. The pulses were analysod with an olectronic cinannel discriminator.

The operation of the chamber was tested mith polcnium α-particlas, as descrited in Section 12. In eddition, the pulse helght distribution of hydrogen recoila ras neasured fer a number cif noutron energiss. In these mossurements, the plates of the ohamber vere perpendicular to the neutron beare with the glyoorol triatearete film facing away from the
Figure 14
Double recoil and fission chamber (see Section 13)

Figure 15

Difforential pulso height distribution ourvos of hydrogen recoils obtained with the chamber described in Section 13 by using monoenergetic neutron beams perpendicular to the radiator. The ohannel shafes are indicated in each graph. Experimental results are represented by dots, circles or crosses. The rertical bars give the standard statistical errors. Points differently merked refor to different sets of messurements. The dotted lines are theoretical curpes without ohannel correction. The solid lines are theoreticel curves with channel corrections.

Graph A $E_{n}=0.457$ Mov; $t=67 \gamma / \mathrm{cm}^{2} ; 3$ atmospheres argon.
Graph B $E_{n}=0.57$ Ners $t=67 \gamma / \mathrm{cm}^{2} ; 3$ atmospheres argon.
, Graph $C \quad E_{n}=2.0$ Mer; $t=173 \mathrm{r} / \mathrm{cm}^{2} ; 6.7$ atmospheres argon.
Graph $D \quad E_{n}=1.6$ lev; $t=173 \gamma / \mathrm{om}^{2} ; 9.5$ atmospheres argon.
Graph $E \quad E_{n}=2 . E \quad$ Mev; $t=173 \mathrm{r} / \mathrm{cm}^{2} ; 9 . C$ atmospheres xenon.

neutror source. Some of the results obtained are reproduced int fifure 15, where the ocrresponding theoretical curves (see Soction 6) are also given. A channel correction was applied to the theoretical curres. This correction was determired experimentally by means of ertificial fulses. The share of the ohamel which is indicated ir each curve ias found to be approximstely trapeabidal, the deviation from a rectangle, of ourse, being due to noisos. The abscissae of the experimental arid lheoretioal curves were matched at the high energy end near the point of steepest descent, where the iniluence of the channel correction is a minimun. The ordinates mere matched a little below the peaks of the ourves.

It appears from an inspeotion of the figures that the agreement between thooretical and experimental pulat heizht distribution ourres is excellent. Tho deviations at the low energy end are oaused by sfurious fulsos produced by piling-up of argcr. recolls or of olectron recoils from rarays. The energy at wifch these offects set in depends, of course, on the experimental conditions. The directionality of the chamber was tested by taking counts with the ohambor inverted; i.e., with tho glyoergl tristearate film porpendicular to tho beam but facing the neutron source. Undor these conditions, and with neutron energies around 1 million olectron volt, the counting rate was found to be about 3 per cont of that recorded in the same neutron beam with the chamber in normal position. The per oent oounting rate inereases somowht with increasing energy and is about 5 per cent around $1 . \theta$ milion electron volts. Tests wero also mado with a blank platinum foil in place of the radiator. in most cases. the counting rate with the blank webout 2 por cont of that reoorded with a rediator of 173 fer aquare contimoter thicknest. .

1'. If GAS HECOIL, CYLINLRICAL CPAMBER

 difforolitial beattoring crossmoctions of light nualei. The chamber ia cylirdrioal in shape with a tinfrimes the culloctint oloctrode. It is built as light as possillo in order tomininize iroin;ife acettoring and absorptior: of noutrons. Tho chambar can bo use: beth with ard witrout gas multiriootior. ard ir oither ase iro unter oylindur is left nogative rith resfoct to the wire. The rocoils linder investigntion arise from the gas. Ir orear to roduoe the wall offects it is advisabio to use a surficientig high. ges pressuro so that the maxfrum range of tha recoils is a s'mil fraction of tie diameter cif tino crantor (2.E centimeters).

The oreretion of the chamber was testad by using the $N^{14}(r, p) C^{14}$ reactiun,
 mijlion eleotren voit enorgy. For this tiest the chanler vas filled with 0.5 atinaspisres ci nitrogon and l.E stincispleres of argor. Under thaso conditicns the rer.go of the $0 . C$ nililun olectron vilt protors is abont 0.5 centineter.

 multiplicatiar, the chamber was oporatou as an eloctron fulso shamber. floweror, because of trie very smill dimetrer of tim wire not much epreai ix pulso height ias produced by time raot that only tio fast pert of the pulso as racorded (see Sootion 10.8 . Fifure 17 reproserts the diprertntial fulse hoipht diatributionp.
 A tineorotion pulso hoight instribution curve ior electror pulses wa oalculeted by oorsidering the jrotor treoks as irifinitoly short, which irrolves (a) neglocting the all arocts and (b) assumizg; in tro calculation of the cleotron pulso:

```
Figure 16
Cylirdrieal chamber (aee Sootion 14)
```


$\because 1$ gurs 17
Lifferextinl paist hoight dictrizeitior ourves ir on the $N^{24}(n, y)^{14}$ rowetion in tice $\because j l i r d r i r a l$ eriamer iesoribod in figurn le. ins fililrg. O.5 armenpheres of lir, 1.5 tmosptintos of argon.
(a) Sic gas multiplication
(b; jas muitigileation os ato:2t 35
(0) Tiniratical cirve for ofarmifor as my oiectron fuise :inmer foorreciod Por charnei width.
(Ghanol widih indiasiod ty the rectangle in tro figuro)

trat tho ionization rif eazh track: is noncentratocir one point. This theoretionl curse, corroctal for the chaniel widtr, is also reprosented in figure 17 . Bolh of the axcorimental fulse height distributions appear to de scmewhat widis than one might have anticlpatod. The doparture of the ourpe taken without gas multipligation from the ocrresponding tineoretical curve may possibly be acocurted for by wall ofrecte. In the case of the moasuraments taken with gas multiflication there was protebly some spread in pulse hoight due to lack of liniformity of the wire, ord efsects, or to a small mourt of cafture aince tho gas was not, furified. Tho mesemoments with gas muitiplication wero ropatod,

 photograghioally. Tho fulso hoight distrivution thus cojairod is reprosanted ir Figures ie. This curre is considetakly rarrower than tho corrospording curve (b) in Figurs 27. The lifiexence is probatly duo partly to a decrase in the rall effects ard fartly to or improvement in the unjlormity of the gas muatipligatione The clamber wes used succestfully for measuring the differontial soattoring crozesoction of r.clium and of aftroger.

A chamber of aimilar daziga operatod as proportionsl countor mela used as noutron flux meser. For tho noksurenenta the loweat noutron onorgien (0.03 millicn olectror roll) tho chamber wa fille i_{i} with pure hydrocen at a groseure of ic contimetors fig and tho voliage was adjusted so as to obtain a gas
 prossurar of hydrogen or hydrogenargon mixturos wero ued. It may bo noted that ice oan nouticn energy the prosture should be wdjustod in suoh a way ag to strike th:e most favorate compromite between the f-iky backgrourd, which increasea With inoremsirg pressuro, anis the wall otfoots, minols decrease with ineroasing prossuro. Far a comtol if the proporijens shown in Figurg lio with the noutron bena farsillol to the $x i s$, the seat condition is reacheri when the naximum range

```
- - Figuro 2&
```

Difforential pulso height distribution ourve ohtained irom tre $\|^{14}(n, r) c^{i \frac{1}{2}}$ reocticr. in the oylindriosi ormmior cosorited in Figure lte Gas filling O.E atmospheres of $N_{c}, 4$ tmospherof of argon. Gas multiplicalion about 15. Fulmes anulyzed photographically.

 a ounter. Also, in ordor to minimite the γ^{2}-ray background, it is adrisablo te isso, whorever fossitle, iure hydroger. ratho than a hydrugenmeren mixture.

A nimber of fulse i.eigit distriburior curves were mesurstioy oxpoalre the cuinco: Lo moncorolgotio noutrons traroling :aralisi to tice axis. The reaisita intairod with rouirenn of 0.5 milliem oloctror volt onorey aro representod in
 tho rocoil protuns ins 1.2 tixoe the redius of the oounter. The diferartial rudue height distribution ourre, doriros theoretionlly as deseribed in seotion
 ine grajeinl decreaso of the gem multipliantion towneds the ends of the wirea (seo Soction llefi was rogleated. A Exicuiation mich taies into wocount thin
 resuita are given by cirvo (b) in Figure 19. If ore consjiers tho uncerifinties ir tre feouretical calauletions ard the infite wicth of the charnel disorimirntor used fir the analugis of the pulses, cre corcludes tritu the agreement katineen ino offerimontal ond thooretical results, cistoa io) and (b),is romsonal.ly good. It maj to rofort that tine pulso hsight distrifution curves ara not revy sonsitive

 :1jeftiy jifforers in the twe erbot.

At lower onereios, the oxferimental curves depurifrom the thacretion onex wnt the discraytney becoroa more prorounand as tho energy dooronses. The reasors

 used.

Figure 19

Difforential finla neight aintritution ourves if hydrogen rotoils for a proportional counter if the typo shomr. in Figure lö. Noutron bean. perallal tu the axis.
 tho ohange in gas multipliostisn ratar the mis of the wire.
(b) Celculated for $R_{0}=b$, by taxitio into aooqumt tho crerige ir gas muitililiceticn near the erde of tho wirn.
(o) Obgerved with. Dec millior olertror roit noutrma ($\left.F_{0}=1.2 b\right)$.

Figuro io illustrates the onsiruotion of a onember (similer in principle to trat dosorited in Section l4) which ras usec as a flux moter for noutrins of low onergy (down to 0.035 millition elactom voit). The riost interesting foeture is the arrangenent of the collecting, olectrodo and of the supporting guard olectrode mich are so designed as to avoid any dofcriaation of the leatrio field near the onds of the collecting electrode (see Seation 11.5). The oollocting eleotrodo and tho guard electrode bolh consist of socticis of hypodermio roodlss, 0.042 inoh O.D. Thoy are mochanioally conreoted and eloctrionlly insulated by mans of glass tubes about 0.025 incl. O.D., as shown in the dotall in Figuro 20. The olectrioal connoation to the colleotiric olectrode is medo by menns of a thin metal wiro wioh slides through the guard eleotrode and is soldered to the inside of the collecting electrode. The walls of the counter and the outer oese are rate of durel iri order to minimize the darger of scattoring and aborptior of noutrons. The Kovar fiaoes are soldered to the dural end platos with the folloring technique: first, the fovar piedes are tinned with soft solder and the dural pieces are covered with Eelmont aluminum soldor. Thon each Kovar pioco is suldered to the crrespordine dural piece with aiuminum solder without using any flux. The serow ecnecetion botween the pieces (3) and (5) makes it possible to djust the posjtion of the guard olectrodes supperting the collecting elootrode iofere tho last Korar Fiece is soldered into place. The countor mas used only at low onorgies (dovin to 0.035 million electron volt), usually witt, a ges filling of pure hydrogen at 1.5 centimetor Hg fressure and gao multiplication around 50. Tho pulzo height diatirituticr curvos obtmiriod with monoonergetio neutrons ars very miniar to those obtained at the corrozponding onergion with the counter desoribed in sontion 14, and do not agine vory well with the csiculatod ouryon.

Figure 20
Mroporticanal counter (see seoil m le)
(1; Outer dursl caso, grouncied; 4 inohes C.D., 1/16 inch wall, 13 Inchos lorg.
(2) Kovar tute, $3 / 8$ inch O.D., it is grounded during operation.
(3) Kovar tube, 3/8 inoh O.D., threadod on the inside.
(4) Glats.
(5) Brass rod, threaded on the outsido.
(6) Lucite spacer ring.
(7) Dursl tubo, 3 inches O.D., 132 inch mill in th:e thinner section.
(8) Kypodermio needle, 0.042 inch 0.D.. it forms the guari olotrodo.
(9) Mypodoraie needle, 0.042 inch O.D., 4 inohoa long: it forme the ocllectirc elsotrodo.
(10) rover tube, $1 / 18$ inch mall: $2-1 / 4$ inch O.D.
(11) Ga: iniet and needle valro.
(12) Amphenol connootcr tc tin colloating electroje.
(13) Arplem:ol oonneator to tho high volt go electrodo.
(14) Glass apacer.

APPROVED FOR PUBLIC RELEASE

14.16 THICK RAIIATMR, ELEC TRUN EULSK, SPHFEICAL CHAXBIKX

This chamber, the construction of which is shown in Figure 21, wis afsieried as a directionial detector for rejative flux measuremersts. The radiatcr is a thick paraffin layer dejosited on section of the reacvable hemispherical cap and coated with a very thin layer of graphite to make the surface conducting. The chamber is made gas tight with neoprene gaskets tr:rouphout. The inner electrode assembly is put together, then placed in position and fistuned with the nut (a). The gaskets between the collecting electrode and the inner lucite insulator, and between this insulator and the guard electrode, are tightened by mears of the nut (b). The gasket between the guard electrode and the outer lucite insulator is tightened by means of the mut (c). The gasket between this insulator and the brass collar is tightened by means of the mut (a). The brass disc on the stem of the collecting electrode is used to reduce the disturbing effect of recoil protons from the lucite insulators. The chamber is filled IIth argon and pressures up to 6 atmospheres can be used. The chamber is usually operated at a voltage of -2000 volts. A small hole in the chamber wall. covered with an aluminim foil enables one to introduce α-particles fram a polonium source into the chamber for testing purposes. As already menticned, the chamber was designed as a directional counter which detects only those neutrons wich enter the chamber through the paraffin radiatcr. The "directionality factor", tefined as the ratic between the numbers of counts recorded when the reutruns enter the chamber thrcuph the coated and the uncoated surfaces, respectively, was improved by lining the chamber with gold sheet. In this way a value for this ratio of about 100 was obtained. The counting rate, as a function of the angle of incidence of the neutrons is show in Figure 22. In these measurements the incident neutrons had an energy of 3 milli en electron volt.s. The two curves were taken with

APPROVED FOR PUBLIC RELEASE

Fipure 21

Spherical chamber (see Section 16)

Figure 22

Anfular response of the chamber represented in Figure 21. The black areas represent the pertion of the shell lined with paraffin. The arrow marked N represents the direction of the incoming neutrons. Neutron enerey 3 million electron velts.
APPROVED FOR PUBlIC RELEASE
biases adjusted in such a way as to count all pulses larger than 1.4 and 1.7 million electron viits, respectively.

The dejendence of the counting pielif of the chamber on the bias energy was investigated and found similar to that described ty Equation 28^{\prime} and shown in Figure 6. A close agreement could not be expected because the assumptions under which Equation 28° was deduced (plane radiater, ion pulse chamber) are not fulfilled.

It may be noted that the chamber described was not provided with a gas purifier. Some difficulty was exferienced during its operation because of a gradually increasing contamination of the gas of the chamber leading to electron attachment. This was probably caused by organic vapors slowly evolving from the lucite insulators and the neoprene gaskets.

- 14,17 THIN RAAIATOR, PROPORTICNAL CCURTER

Figure 23 shows the construction of a counter designed as a flux meter for neutrons of lon enargies. Argon and krypton at pressures ranging from 12 to 170 centimeters Hf were used as gas fillings. The voltage was chosen so as to obtain gas multiplications betweon 5 and 50. The radiator was a layer of glyoerol tristearate deposited by distillation in vaculim on a platinum foil. Its thickness varied from 60 to 390γ per square centimeter. The counter was operated with the case grounded and the center wire at a high positive potential. The pulses were taken off the center wire by capacity coupling.

If the gas pressure is sufficiently high so that practically all recoil tracks from the radiator terminate in the gas, the yield of the counter should depend on the neutron energy E_{n} and the bias energy B as indicated in Figure 1.

Experiments were carried out to test this prediction and the results were in fair agreement with the theory.

Figure 23
Thin radiater proportional counter (see Section 17)

APPROVED FOR PUBLIC RELEASE

14,18 INTEGRATING GAS RECOIL GHAKBER

Figure 24 shows the construction of an fintegrating chamber designed at the British T. A. Preject for the flux measurements of monoenergetic neutrons. The chamber is filled with ethylene ($\mathrm{C}_{2} \mathrm{H}_{4}$) and the walls are coated with paraffin wax to a thickness larger than the maximam range of the recoil protons. The surface of the wax is made conducting by evaporating silver to a thickness of 0.2 milligrams per square centimeter The paraffin wax used had the composition ($\left(\mathrm{H}_{2}\right) \mathrm{n}_{;}$i.e., it contained carbon and hydrogen in the same proportion as the gas filling of the chamber. Under these circumstances, when the instrument is used as an integratinc chamber, the wall effects are eliminated. In other words, the ionization per unit volume of the gas is the same as if the dimensions of the chambers were infinitely large compared with the range of the recoil protons. The ionization current produced by the hydrogen recoils, I_{H} is then given by Equation 29 rhich may be rewritten as follows:

$$
I_{H}=\phi A n_{H} \sigma_{H}\left(E_{n}\right) \frac{E_{n}}{2} \frac{e}{n_{0}}
$$

whare A is the volume of the chamber. ϕ the neutron flux density, i.e., the number of neutrons per second and per square centimeter, n_{H} is the muber of hydrogen atoms per cubic centimeter of the gas, and σ_{H} is the total scattering cross-section of hydrogen.

To the ionization current produced by the hydrogen recoils ore has to add that produced by the carbon recoils, which has the expression:

$$
I_{c}=\phi A \eta_{0} \sigma_{c}\left(E_{n}\right) \quad(E)_{a v} \frac{e}{\pi_{0}}
$$

where n_{c} is the number of carbon atoms per cubic centimeter of the gas, $\sigma_{c}\left(E_{n}\right)$
is the total scattering cross-section of carbon and (E). v. is the average energy

APPROVED FOR PUBLIC RELEASE

Fipure 24

Integrathe gas recoil ionization chamber (see Section 18). Yacuum seals on the body of the chamber nade with low melting point wax.

uf the carbon recoils, Because of same uncertainty in the values of $\sigma_{\text {, }}$ and (E$)_{3 v .}$, the relation between I_{c} anj. n is not so well known as that between I_{H} and n. On the cther hard. $I_{c} I_{s}$ small compared with I_{H} since the carbon cross-section 43 consideration inaler than that of hydrigen, so that this unecrtainty soes not introduce any appresiable sourise of error. Ver: ofte: neutrons are accompanie \pm by $\gamma^{+}-$ruys, while, with a pulse chamber. the r-ray pulses can be blaged off, This cannot de done rith an intarrating chamber. However, it is possible to separate the eifects of reutrons fron thase of γ^{2} rays $b y$ determining the ionization current simitaneously with the chamoer desaribed above and with a second identibal thamber in which all hyilecen has been repliced with deuteriun.

The substitiation of deaterium for arragen in an ionization chamber toes not ehange the scnsitivity of the chamber for $\boldsymbol{\gamma}^{2}$-rays (this vas experinentally verisied). It c!anges, bowever, its sensitivity to neatrons. Hence, the differense of ionization currents is proportional to the neutro: .lux.

If one assumes isotropic scattering of neutrons on deuterons in the venter of grarity system, the differerce of ionization carrents. ΔI, is related is the neutron flur density n by the equations

$$
\Delta I=\phi A \frac{E_{n}}{2} \frac{e}{W_{0}} n\left[\sigma_{H}\left(E_{n}\right)-\frac{8}{9} \sigma_{D}\left(E_{n}\right)\right]
$$

where $\sigma_{D}\left(E_{n}\right)$ is the total scatteritig cros:s-section of deuterons, n is the number of eftier hydronen ar deaterium atons per cubic contimeter, and $\frac{1}{a}\left(\frac{8}{9} F_{n}\right)$ represents the averige energy of the druibrium recoils. It may be pointed out that the assumption of isotrople scatterine of riedtrons on dellterons. which enters in the evaluation of the averafe energy, is sorewhat, unsertain。

14.19 COINCIDENCE PROPCRTIONAL COUNIH

 sentron : Clux meter, it enrsist.s essentially of two proporifinal counters. rie reanil protons, efectact from the parzifin radiatcr, arn allimated by the Hapararms (2) an. (3). Only those recolls are recorded which traverse both "roportional conters, thus srobu:lnp simultaneous pulses. The rais: of the sumber of recolls recorded to the total number of resoils generateri in the ratinjor is determined by the solid ancle defined by the diaphragms. The effective area of the ratiator is determined by another diaphragir (1). placed directly in front of the rajia:or.

The radiztcr sonsists of a parafifin film evaprejted on a metal disi. Tank zreon, zt pressures rarnging irog 1 to 10 centlineters Hg, was used as a gas rillirir. Alumizum and collodion foils of ifferent thichmesses, mounted un iwc discs souid be placed alonf the path of the rennll protons for the puryose of Attermining their range, fron whech tie enerry of tho incisent meutrons culd be canculated. The discs carryinf the ausorbing foils :3:1 the rotited "rum the outside threugh ground joints, The thin wire rines on hoth sidos of -ne absurblney foils were uged to shield the tiw cointers electrically frim me anctror. This was found necessary because othemise the operation of the Dounters was modifiod by the insertion of an aluminum foil between sheme Heatidements of the colncidence counting, rate ve: sus bias were carlis: out.
 produced by the hodrogen recoils in the proporiional countrers had sizes gr:ater tnan 3 certuin valie, Which, in turn, was well above the bact.ground noises.

It mat. be noted that the instrumat describerl did not frove very reliat le as an absodute neutron flux meter. Hownar. it is likely thal. a sitisfaciory instrument based on the samo frincifle could be built by improving the design of the counters. Multiple wire proportional ocunters (see seotion 11.7) might Frove particularly suitable in this arrengenent.

Figure 25

Coincidence proportional sounter (see section 19). Shaded areas represent harit rubber ingulators. Counters made gas tignt with giyptal.


```
#in:% T
```



```
BFTVI
CにAご等おこ与
E.ENEMOFG Tr (r,\alpha<, inT. (\pi,r) EELCMIOMS
r
```


CHATTER 15

DETECTOFS OF (n, a) ANTI $(r, a r)$ REACTIONS

15عـ NEUTHON SFECTHCSCOFY USING (n, α) OR ($n, p)$ REACTIONE

In principle it is pcesible to use the (n, α) and (n, p) reactions for measuring the energy distribution of a neutron beay. At any given neutron energy, the total erergy released in the reaction $1 s$ constant and depends on the neutron energy in a simple form, provided that the reaction products are emitted in the ground state (this is the case in mary reactions). Tre total energy, which is the sum of the incident neutron energy E_{n} ard the reaction energy Q, is divided between the two outgoing chareed particles. If the reaction occurs in a gas with aufficiert stofping perer to prefent the escape of any of the particles from the ccuntire volume, ore obtains Fulaes the sizes of which are proportionsl to $E_{r}+\dot{\psi}$. Since Q is constant and usually well know, such en arrangement provides an alrost ideal method for measuring the energy of monoenergetic neutroris for which $\left(E_{n}+Q\right)>0$. For accurate measuremente $\&$ should not be ton large. However, for the determination of the energy distrilution of norimer:oenergetic neutrons, it mould te recessery to know the ererey deferderip of the crose aection gerurately. Unforturxtoly, this is not the acse and, moreover, all reactions With sufficier.lly small Q extitift promunacd restorarces misch make the interpretation of the experimentel retulta erer, ncre difficult. The follomig
 Mrfoses.

Reaction

1. $3^{L_{1}}{ }^{6}+\mathrm{c}^{\mathrm{n}^{3}} \longrightarrow 2^{\mathrm{He}^{4}}+\mathrm{H}^{\mathrm{H}^{3}} \quad+\% .63$ Mev
2. $5^{\mathrm{B}^{10}}+0^{\mathrm{n}^{1}} \rightarrow 2^{\mathrm{He}^{2}}+{ }_{3}^{14^{7}}+2.34$ and 2.78 Mor
3. $7^{N^{14}}+0^{n^{1} \rightarrow} 1^{1}+6^{1 / 4}$
4. $7^{N^{14}}+0^{n^{1}} \rightarrow 2^{H 0^{4}}+{ }_{5}^{\mathrm{B}^{11}}$
$+0.60 \mathrm{Kev}$
$-0.28 \mathrm{Mev}$

Remarks

Resonance at $E \quad .27$ Mev.
Q high, σ very large at $E_{n}=0$.
No resorances, Q fairly large, σ very large at $E_{n}=0$ 。
Siema shows sharp resomances at .55, . 7 and 1.45 Mev

Sigua shows resonance at 1.5 Mev

15.2 FLUX MEASUREVENTS

Extenaive use kas been made of (n, α) reactions for detecting siow neutrors. The reaction $B(n, \alpha)$ is most conmonly used because the cross section is very large and furthormore known to cibey the 1/v law in the low energy region $\left(E_{n}<500 \mathrm{eV}\right)$. The value of the cross section for $\gamma_{n}=2200$ microeconds is $703 \pm 9 \times 10^{-24} \mathrm{~cm}^{2}$ for the natural isotopic mixture of B^{10} and B^{11}, and therefore $3830 \times 10^{-2 /} \mathrm{cm}^{2}$ for pure B^{20}. Heactions 1 and 3 in Table 15.1-1 (which, because of the positive Q value, occur also at thermal energies) have considerably lower cross secticn than the reaction $B(n, \alpha)$. In the case of reaction 1 , the meterials are not as easy to handle as boron. For thege reasons the following sections shall be confined to the discussion of koron detectors. Such detectors have not only teen used to measure small neutron flux but also to detect fast neutrons after they have been slowed down by a suitable moderator.

The $B(n, \alpha)$ reaction has been extensively studied by Bower, Bretscher and Gilbert. ${ }^{\text {(1) The reaction is not moncenergetic but leads for thermal }}$
(I)

Froc. Cambridge Phil. Soc, 3 34, 290, 1938
neutrons only rarels to the ground state of Li^{7}. The majority of the disintegrations result in the well known excited state of Li^{7} at .44 HeV . The
ranges of the particlea are given as .7 centimeters for the α-particies and .4 centimeters for the L nuclei. Since the Q value of the reaction leading to the excited state of Li is 2.34 Mev , the Li nucleus, for thermel neutrons, carries . 85 Mev .

Solid boron as well as gaseous compounds can be used. In the latter case the filling consists most frequently of BF_{3} which is a comparatively stable compound. However, considerakle difficulties are encountered in purifyirg the gas sufficiently to prevert electron capture, particularly at pressures in excess of one atmosphere. Careful distillation from frozen $\left(-127^{\circ} \mathrm{C}\right)$ commercial EF_{3} improves the gas considerably in this respect, apparently by remoring substances which capture the electrons, such as HF. However, the best BF_{3} fillings were obtained by thermal decomporition of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{BF}_{4}$. The difficulties of purification are avoided by using thin films of solid boron coated on the electrodes of the detector and filing the chamber with an inert gas like argon or a mixture of argon and CO_{2}. The films can be prepared by decomporing borane $\left(\mathrm{B}_{2} \mathrm{C}_{6}\right)$ on heated foils of tungsten or tantalum. The disadvantage of this type of detector as compared with the gascous ones arises frcm the fact that in order to obtain high ccunting yields a large number of foils must be used aince the range of the reaction particlesis very small. For absolute measurements the use of solid films is advisable because the amount of irradiated material can be very accurately deternined. (2) It may be mentioned that the use of $\mathrm{B}^{1 C}$ isotope (2)

Tungsten as a carrier foll has proved to be unsuitatile for such measurorente since boron apparently diffuses into the metal. This does not seem to occur in the case of tantalun foils.
obviously increases the sensitivity of both tyres of detectcrs by about a factiof of 5 as compared to detectcrs using the netural isotopic mixture of 81.6 per cent inactive B^{11} and 18.4 per cent B^{10}.

For absolute reasurements of a slow neutron flux, a knowledge of the
neutron energy is of course required since the cross section of the $B(n, \alpha)$ resction varies rapidly with energy. Corrections have to be applied for the finite film thickness in the case of solid films and wall corrections in the case of gas filled detectors.

Let us consider first the case of a parallel plate ion puise chamber With a solid boron film of finite thickness t deposited on the high voltage electrode. The detection efficiency $F(B)$ (number of counts divided by the number of disintegrations) is given by the equation:

$$
\begin{equation*}
F(B)=1 / 2\left[1-\frac{t}{2\left(R_{0}-R(B)\right)}\right] \tag{1}
\end{equation*}
$$

where R_{0} is the range of the emitted α-particle, $R(B)$ the range of an α-particle of energy B. Both ranges are to be measured in the materisl of the fils (see Section A.f). In this formula, (Equation 1), it is assured that all α-particles have the same energy, that $\left[R_{0}-R(B)\right] \geqslant t$, and that the pulses from the lithium nuclei are not ccunted ($B>.85$ Yev). The formula does not rigorcusily apply to the case of an electror pulse chamber. However, it applies approximstely if the range of the α-particles in the chamber is sufficiently small and the vilue of B sufficiently low. If the bias epargy is lower than .85 Kev so that L pulses are also counted, the expression for the detection efficiency becomes:

$$
\begin{equation*}
F(B)=1-\frac{t}{4}\left[\frac{1}{R_{O_{1}}-R_{1}(B)}+\frac{1}{R_{o_{2}}-R_{2}(B)}\right] \tag{2}
\end{equation*}
$$

where the subscript 1 refers to the α-particle and the subscript 2 to the $1 d_{0}$ Again this formula hclds only if $\left[R_{O_{2}}-R_{2}(B)\right] \geqslant t$. Let us consider next.a cylindrical gas filled chamber of radius b and operated as an ion pulse chamber. The computation of the exact expression for the detection officienoy is very complicated if the finite range of the Li recoil is taken into account. Furthermore, it cannct be carried out without an exact knewledge of the range energy relation of very slow Li particles. Thus it shall be assumed that the APPROVED FOR PUBLIC RELEASE
ionsation from the L decoil is confined to a very amall ragion arcund the origin of the diaintegration. The contribution of the Li, in the case of thermal nelitrons, shall be taken as equal to .85 Mev. This assurption is rather crude since the range of the Li reccil according to Bower, Bretscher, and Gilbert is abcut $4 / 11$ of the total range of the two particles. It appears, however, frcm the photometric traces of cloud chamber tracks that most of the ionization of the Li recoil occurs close to the point of origin of the disintegration. Under these assumptions the detection efficiency becomes

$$
\begin{equation*}
F(E)=1-\frac{F(B)}{2 b} \tag{3}
\end{equation*}
$$

where $f(B)$ is that portion of the range of the α-particle (measured frcm the point of origin) which it must spend in the sensitive volume in order to produce, together with the Li recojl, a pulse equal to the bias energy. If R_{o} is the range of the α-particle, $E(R)$ the energy corresponding to a certain range R, B the bias energy, and E if the energy of the $L i$ recoil, we have:

$$
\begin{equation*}
B-E_{L i}=E\left(R_{0}\right)-E\left[R_{0}-r(B)\right] \tag{4}
\end{equation*}
$$

In deriving Equation 3 it is assumed that $r(B) \ll b$.
In ruost cases the best prccedure to obtain the counting rate at zero bias energy consists in determining the number of counts as a function of the bias axd extrapolating linearly to zerc bias. This procedure proves to be satisfactory if the measurements extend to a sufficiently low bias.

15.3 BORON CHAMBEL OF HIGH SENSIMIVITY

Figure 1 show the construction of a highly sensitive boron chamber which can be used for detectirg neutrons of all energies by slowing them down in paraffin in order to increase the cross section for the $B(n, \alpha)$ reaction. The chamber consista of a cylindrical vessel with a central electrode supported by euard electrodese $\begin{aligned} & \text { It is is embedded in a block of paraffin } \\ & \text { FOR PUBLIC RELEASE }\end{aligned}$

APPROVED FOR PUBLIC RELEASE $\times 45$

Figure 1

High sensitivity boron trifluoride chamber.
,

$50 \times 50 \times 50$ centimeters. The dimeters of the inner and outer electrodes are 2-1/4 inches and 4-3/8 inches, respectively. The gas filling consists of EF_{3}, specisily prepared by decomposition of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{EF} 4$, at a pressure of 74.6 centimeters Hg . The chamber is connected to an amplifier of .2 microsecond rise time and 20 mic croseconds resolving time. Figure 2 showe the dependence of the counting rate on chamber voltage. The drop of the curve below 3 kilovolts shows that a considerable fraction of electrons is captured even in as pure a gas as the one used. Figure 3 shows the biss curve at 4 kilovolts chamber voltage.

For all neutron energies the highost sensitivity is obtained if the source is placed in the cylindrical cavity of the inner electrode. However, the sensitivity is then dependent, very markedly on the energy of the primary neutrons, and source strength comparisons are only possible by a careful csilibration at varicus noutron energies. If the source is moved away from the chamber in a plane perpendicular to the axim, the sersitivity decreases (see Figure 4). The decrease is more rapid for less energetic neutrons, and there exists therefore a region (13 centimetere from axis) where the counting gield depends only slightly on the energy. From the same Figure it appears that the maximum sensitivity, defined as the number of counts divided by the mmber of emitted neutrons, is of the order of a few per cent, in fair agreement with an estimated value. The detector has been used for measuring the strength of very weak sourcos. The background is about 15 ccunts per mimate.

15ع BF_{3} COUNTER ARRANGENENT OF HIGH SENSITIVITY

The apparatus consiats of twelve BF_{3} proportional counters arranged with their axes on a cylinder of 9 inches diameter and embedded in a cylindrical block of paraffin 18 inches in diameter and 16 inches in length, with a ceritral cylindrical opening of 5 inches diameter in which the source is placed. The counters are 2 inches in diameter and 12 inches long, and are of simple construction. The central electrode is 1 mil kovar mire supported by glass insulators. No guard electrodes are used, which makes careful cleaning and drying of the APPROVED FOR PUBLIC RELEASE

Figure 2
Counting rate versus chamber voltage for the boron trifluoride chamber of Figure 1.
जStatay oltana yoa ainoyadz

APPROVED FOR PUBLIC RELEASE

Figure 3
Counting rate versus bias for boron trifluoride chamber of Figure 1. Voltage 4000V. Pressure 746 mi Hg.
msyatay $\operatorname{\text {Ittanayouannoyady}}$

Figure 4

Sensitivity of boron trifluoride chamber (Figure l) versus distance of source frcm chamber, in a plane perpendicular to the axis of the chamber. The various curves are taker with scurcos of different average primary neutron energies.

insulators necessary. 'The countere are illed with B^{10} enriched $E F_{3}$ containing 70 per cent B^{10}. to a pressure of 600 millimeters Hg . With a Po-Be neutron source in the center of the paraffin block, the sensitivity is 13 per cent. The counters were connected in parallel and operated at -2600.voIts. The resolving time of the amplifier was .5 mioroseconds. Figures 5 and 6 show the dependence of the counting rate on the ccunter voltage at fixed bias, and the dependence of counting rate on the bias at the normal counter voltage of -2600 volts. Both curves exhibit flat regions arcund the operating foint. In addition to its very high counting yield, this arrangement has a high resolution and is therefore capable of counting at high rates without appreciable loss. At 40,000 counts per second in the twelve counters, the loss is only 5.5 per cent. This quantity was measured in the ueual way by comparing the counting rates of two differont sources, measured individually, with the observed counting rate when the sources were placel simultaneously in the detector. From the measured loss and the resolving time of the amplifier, it is apparent that the total resolving time of the arrangement is mainly determined by the counters.

15.5 FLAT RESPONSE COUNTERS

The detectors described in the two preceding sections have sensitivities which depend very strongly on the enargy of the primery neutrons. Several attempts have been made to find an arrangement of paraffin surrounding a boron detector such that the mumber of boron disintecrations is proportional to the number of primary source neutrons and independent of their energies over a wide range. These detestors have been termed long boron counters or flat response counters. The theoretical treatment of the response of such an arrangement is very complicated. Qualitatively the following arguments might serve to illustrate their performance. Suppose a boron detector is embedded in a cylindrical block of parafifin. A source of neutrons is placed on the axis at a large distance from the front face of the cylinder. The

Figure 5

Counting rate versus counter voltage of high sensitivity boron trifluoride proportional counters.

Figure 6

Gounting rate versus blas at 2600 , volts counter voltage of high sensitivity boron trifluoride proportional counters.

detector is assumed to extend to the front face of the block and be very long compared to the mean free path in paraffin of any neutron to be detected. Neutrons entering the paraifin will be degraded to thermal energies and diffuse Into the detector where they will give ries to $B(n, \alpha)$ reactions. Due to the large cross section, the counting rate will be essentially determined by the flux of thermal neutrons. For an infinitely large slab of paraffin the efficiency would be higher for higher neutron energies since low energy neutrons penetrate only a short distance into the parsifin before being thermalized. They have therefore a better chance of escaping back through the front face (instead of passing through the boron detector) than neutrons which were originally of higher energy and are therefore thermalized at a greater distance from the front face. The reason for this is twofold. At higher energies, more collisions are required for thermalization, and the collision cross section is smallar than at low energies. In order to minimize the dependence of the efficiency on the energy, one has to limit the dimensions of the paraifin so that the thermalized fast neutrons have an increased chance to escape from the parafin. Obviously it is not possible to accomplish this for all energies from thermal to several Mev. However, arrangements have been found which exhibit rather flat response curves over energy regions of several Mev.

Among the various constructions, two shall be describod which have show the best flat response curves. The first one (so-called 8% long counter)
shom in Figure 7 consists of a paraffin cyinder of 12 inches length and 8 inches diameter. Along its axis a BF_{3} proportional counter, 1 inch in diameter and 8 inches active length, is embedded. It protrudes sifghtly over the front face of the paraffin but is protected from direct thermal neutrons by a cadmiun shield. The counter is electrically shielded by an aluminura tube. For insulation purposes the space between the counter wall and the shield is filled with ceresin max. The central electrode of the counter consists of a kovar wire of 10 mil diametex. The counter is filled with enriched (80 per cent B^{10}) BF_{3} to a pressure

APPROVED FOR PUBLIC RELEASE

Figure 7

Detall of 8 inch flat response counter.

of 25 centimetera Hg . With -2700 volts applied to the wall, a gas amplification of about 10 is obtained. The sensitivity versus ngutron energy is represented in Figure 8. The measurements were taken with the source of neutrons on the axis of the detector 1 meter from the front face. The arrangement was in the center of a room 20×15 feet, and 50 inches above the floor so as to minimize the effect of scattering and degrading of the neutrons by floors and walls. Nevertheless it is belleved that 15 per cent of the counted neutrons still were scatterod. The absolute sensitivity is about one count for every 10^{5} neutrons emitted by a spherically symmetrical source. The most reliable points of the sensitivity curves are those taken with the $L i(p, n)$ and $D(D, n)$ sources. The flux of these sources was determined by U-235 fission counts. Their energies are exactly knom (foints at.5, 1.0, 1.5 and 3 Mev). Similarly reliable are the points at .15 Mev and .023 Mev which were taken with (γ, n) sources of known strength of $(\mathrm{Be}+\mathrm{Y})$ and $(\mathrm{Be}+\mathrm{Sb})$, respectively. For the points at $.4 \mathrm{Mev}, 2.2 \mathrm{Mev}$ and 5 Mev , sources with a complex neutron spectrum were used to Which a certain average energy is ascribed. These points are therefore open to some doubt. This is particularly true for the point taiken with the Ra-Bo source. It is furthermore estimated that the response at thermal energy of the neutrons is around 70 in the units used on Figure 8.

A considerable improvement of the response was achieved with the arrangement shown in Figure 9. Here the counter is shielded with an additional layer of paraffin separated from the inner part by a boron-carbide or boron-trioxide shield, which reduces the number of counts caused by stray neutrons to about 5 per cent when the source is again placed at 1 meter distance from the front face. The sensitivity for low energy neutrons is increased by drilling a set of holes into the front face of the paraffin cylinder. These holes give the slow energy neutrons a better chance of entering the boron detector before being reflected back through the front face. Eight holes 1 inch in diameter and 3-1/2 inches deep are drilled parallel to the axis of the paraffin cylinder with their centers on a circle of $3-1 / 2$ inch diameter ${ }^{2}$. The boron trifluoride counter
Figure 8
Sensitivity curve of 8 inch flat response counter.

Figure 9

Detail of 15 inch shielded flat response counter.

approved for public release
used in this arrangement has a diameter of $1 / 2$ inch and an active length of 12 inches. It is otherwise similar to the one used in the preceding arrangement. The dependence of the sensitivity on the neutron energy is shown in Figure 10. The thermal energy point was measured with photo neutrons from ($\mathrm{Be}+\mathrm{Sb}$) degraded strongly by a layer of heavy water. The point at .023 Mev was obtained with the same source without degradation, and the point at 1.2 Mev by a $L i(p, n)$ source, the flux of which was determined by a U-235 fission detector. These points are therefore very reliable. The points at $.4 \mathrm{Mev}, 2.2 \mathrm{Kev}$, and 5 hev ($\mathrm{Ra}+\mathrm{Be}$) are taken with a complex neutron spectrum and are therefore somewhat questionable.

15.6 SOLID BORON RADIATOR CHAMBER

The chamber is of the parallel plate type with the boron covered foil on the negative high voltage electrode. The electrode separation is 0.4 centimeters and the diameter of the electrodes 1.6 centimeters. The chamber is filled with argon at about 3 atmospheres pressure and operates with a collecting voltage of between 100 and 200 volts. The boron is deposited on a tantalum foil by thermal decomposition of $\mathrm{B}_{2} \mathrm{C}_{6}$. The deposit has a diameter of 1.4 centimeters and has a thickness of about $25 \mathrm{\gamma} / \mathrm{cm}^{2}$ which is considerably less than the range of both the α-particles and the if recoils. The bias curve obtained with this chamber is shown in Figure ll. A sufficiently flat plateau is found, and the correction for finite thickness given by Equations 1 and 2 can be applied in order to determine the counting rate at zero bias.

15.7 ABSOLUTE EF 3 DETECTORS

Two detectors with gaseous boron compounds suitable for absolute flux measurements are shom in Figures 12 and 14. Their common characteristic is the accurately known volume in which the counted pulses originate.

In the cylindrical chamber (Figure 12), there exists only a small region where it is uncertain whether or not detectable pulses originate. This region is one where the collecting electrode passes from the opening of the high voltage electrode through the guard electrode. The counting volume was

Figure 10

Sensitivity of 15 inch shielded flat response counter at different neutron energies.

Figure 11
Bias curve of boron foil counter.

APproved for public release

Figure 12
Definite volume boron trifluoride ionization chamber.

APPROVED FOR PUBLIC RELEASE
determined by filling the chamber with water. The counting rate C is related to the neutron flux deneity ϕ by the equation:

$$
\begin{equation*}
C=\phi A \sigma n \tag{5}
\end{equation*}
$$

where n is the number of B^{10} atoms per cm^{3}, σ the disintegration cross section, and A is the active volume. For the chamber show in Figure 12, the counting rolume is $17.86 \mathrm{~cm}^{3}$. The volume of the uncertain region is $.31 \mathrm{~cm}^{3}$, or leas than 2 per cent of the main counting volume. The corners of the counting volume are carefully rounded, a precaution which greatly reduces the wall effecte. Figure 13 shows bias curves obtained with this chamber at different pressurea and suitable collecting voltages. The various curves were taken with the chamber in the same neutron flux. The numbers attached to each curve give the counting rates per und pressure at equal temperature, and it is apparent that within a small error of abcut 1 per cent these numbers are equal. The counting rates for zero bias were not calculated but were obtained by linear extrapolation of the observed curves. Since the slopes are quite small this procedure seems to be adequate. A calculation of the correction due to will effects for this type of chamber would be very inaccurate.

In the proportional counter (see Figure $\mathcal{L H}_{4}$), the counting volume is Iimited by two disce of semicohducting material carrying sufficient current to prevent accumulation of charges. The discs establish at the boundary of the counting volume an electric field which varies radially in the same manner as in the central region of the cbunter. In this way the usual end effects of proportiomal counters (see Section 11.5) are avoided.

The discs consist of soft glass, costed with "Aquadag", and metsilized on the outer edge in order to insure contact with the counter wall. The central 10 mil platinum wire is fused into very small holes in the glass discs. The technique of drilling small holes into the discs is as follows: The glass plate is cemented onto a rubber diaphragm covering a vessel connected to a rubber

Figure 13

Blas curves of definite volume $\mathrm{BF}_{\boldsymbol{z}}$ ionization chamber. Curves taken at different pressures. The numbers accompanying each curve give the counting rate at unit pressure at $0^{\circ}{ }^{\circ}$.

Figure 14

Definite volume boron trifluoride proportional counter.

1. Kovar-glass seal.
2. Outer shell.
3. Erotecting sleeve for collecting electrode.
4. Glass beads.
5. Glass discs (edges metalized or painted mith "Aquadag".)
6. Spacer
7. Inner shell.
8. Collecting electrode (.01" platinum wire).
9. Vent holes.
10. Kovar tube.

APPROVED FOR PUBLIC RELEASE
squeeze-ball. In this way the disc can be pressed gently and with uniform pressure against the driIl. The latter consists of a short piece of tungsten wire, the diameter of which is slightly leas than that required for the hole. It is soldered into a round piece of brass which is clamped into a cinuck driven by an air turbine or a suitable high speed electric drill rotating at about 7000 rpm. Six hundred mesh carborundum with water serves as a grinding agent. With this arrangement, holes as small as 3 mil in diameter can be drilled. In order to fuse the platinum wire into the glass, the wire is threaded through the hole of the disc which is then placed into a furnace at the annealing temperature of the glass. The fusing is accomplished by passing a current of suitable strength through the wire so that the glass melts onto the wire.

By shooting α-particles radially into the counter through mica window, it was found that the gas multiplication is very constant up to a distance of 1 millimeter from the discs. Figure 15 shows bias curves obtained at various pressures. The gas multiplication was made sufficiently high so that pulses from secondary electrons from $火$-rays within the counting volume were at least as big as boron disintegration pulses outside the counting volume. The bias curves are quite flat and can easily be extrapolated to zero bias. The counting rates at zero bias per unit pressure at $0^{\circ} \mathrm{C}$ are given with the corresponding curves. These counting rates are very closely the same. This shows that the detector can be used for absolute measurements.

Figure 15.
Bias curves of definite volume $\mathrm{EF} ;$ counter. Curver taken at different pressures. The numbers accompanying each curve give the counting rate at unit pressure at $0^{\circ} \mathrm{C}$.

 GUDE I

 }

: \because :7 II

\therefore atrin 16

b_{j}

```
ITD:.. - W=1 ANE iAN= -TALE
```


CHAPTEK 16

FISS ION DETECTORS

16.1 INTRODUCTION

The main purposes for which fission detectors are used are:
(a) Measurement of the rate of fissions in a given noutron flux for the determination of the fission cross section; measurement of the rate of fissions in a material with knom cross section for the determination of flux of monoenergetic neutrons. In both casea it is important to know accurately the amount of fissionable material and to count quantitatively the mumber of fissions occurring in the material.
(b) Relative meacurements of neutron flux of sources with identical spectra. In this case it is desirable to have a detector of high counting yield, but the absolute value of this quantity does not need to be known. The various fissionable materials offer the possibility of constuctirg detectors with different yields for different neutron energies since the materials have different threshold energies.
(c) Investigation of the energy distribution of the fission fragmente. Detectors for this purpose are very similar in construction to the ones used for the study of x-perticle spectra.

In most cases the fissionable material is used in the form of thin foils. Since the mean range of the fission fragments is only about 2.1 centimeters in air it is evident that only very thin layers of material can be used for absolute.

$2 \mathrm{Ci}^{-}$

detectors. This makes it, necessary to spread the rateriel revej large areas if detectcrs of hiEh counting yields are desired. The use of a gasecus fisnicnable compound would avcid this difficulty. Uranitum-hexafluoride (UF G) might te suitable, but n orturately expersmants in this direction have not teen successfu]. Electron collection, which in the ceec of fisgicn detectors is cif prime importance (because of the necessity of achieving short resolving times; efe belcri, could not ke ohtained in this gas. Noreover, the highly corrosive reture of UF $_{6}$ causes difficulties with comor: issulatcre.

The fission pulees originating from a solice deposit of fissionable material show, of course, a wide spread in energies ranging from zero to atout 110 Mev. This is partly due to the natural spread of abcut 40 and 110 liev, and partly due to the energy lcss which the fragments undorge ir: passing through the fissionate matarial. Nevertheless it is possible to clitain kias curves mhich (telon about half the mayimum erergy) sliow a rather flat flateal. It is also worthmile to remember that since tro fisaicn freguents risult from every fission process, the musuer of fissinn pulses observed within a solis angle of 2π is equal to the nurber of fissicrs produced in the material.

In every fission detactor, the fission pulses are surerimposed over s background of very miniescris $\mathcal{X}-\mathrm{pmoticles}(\sec$ Section A.II). It is therefore inportant that the reeolving time of a fission detector and its amplifier be made as short as possibile in order to aveid piling up eteveral dinparticle Fileeg to a relght comparabio to a fisoion pulse. Since the di-particles have enerejes of arcurd 4 biev, wherias the fiafion fragmenta have enargies of abcut 80 Nisv , one can allem a pile-up of abut five d-particies and stily obeerve a ratrer large fraction of the fiseion pulses. This consideration usually sete an upfer linit. on the total ancunt of material which can be fut Into s datector. An approximate estimate of the pile-ur of α-particles can we obtained from the followng formula (see Section A.12):

$$
\begin{equation*}
C(n)=\frac{N_{0}}{1+N_{0} \tau} \frac{\left(N_{0} \tau\right)^{n-1}}{\left(r_{:}-1\right)!} e^{-N_{r} \tau} \tag{1}
\end{equation*}
$$

$C(n)$ is the ramber of counts per unit time containing n unrosolved puises; N_{0} is the true number of prises per unit time. The pulses are assumed to be of rectangular shape of a duration τ. It may be pointed cut that n pulses of height P do not necessarily give a pulse of height $n P$. The resulting size dopends largely upon the frequency response of the amplifier, since the pulse height $n P$ is only reached during a time $t \leqslant \tau$. It should be notod that for practical purposes this formia bolds only aproximately since in most cases the pulses will be of an exponantial character. However, it gives the right order of magnitude if one takes τ as equal to the resolving time as: defined in Section 10.3.

In cany instances where it ia desirable to have as much fissioniable material as possible in a chamber, the pile-up of x-particles can be effectively reduced by adjusting the dimensions of the detecior and the pressure of the gas so that the fission fragments spand in the sensitive volume only a fraction of their rarige. Since, iri contast to the behavior r.f α-purticies, the highest energy lose per unit path lengtr. occurs for fissicus fraguents at the beginnirg of the track, and since the rarce of the d-particles is rcughiy twice the range of the fission fragmerts, such an arrangement leads to a large increase in the relative size of fission puils es as compsiad to d-particje pulses. An additional improvenent consists in placinf over the fissicnable material a plate in which a large number of suitable holes is drilled. In this way the fission fragments and capticles are cclilimated to a certain extent, and are preverited fran enterjif the chamber at small angles with reapect to the electrcio. Erer in a shallow parallel plate chamber, most of the farticles enitted at a grazing angle mculd have all or a large part of their path with.ir the countirg volung and therefere give an unfavorable ratice of fission to A pulse height.

Since in any fission detector, the size of the fistion fuises var!ne APPROVED FOR PUBLIC RELEASE
from eerc to a maximum vaiue, ore nill alkeys cbecrve only a frecticr of the fissions cocurring in the material. Fcr absclute measurements of flux or ercos section, it is recessary te coriect for the finde thickness of the foll; i.e., the detection of effficticy, defined as the rumber of otserved prises diulded by the number of fissions, has to be known. Fer a plane foid cif fissiorable material, arranged so that no fission fragment con escape frem the counting volume without producing a detectatle pulse, the detection efficiericy is giver hy:

$$
\begin{equation*}
F\left(B!=1-\frac{t}{2\left(R_{0}-R(B)\right)}\right. \tag{2}
\end{equation*}
$$

where t is the thickness of the foll, K_{0} the range of the fission perticies in tre fiasionabie materini, and $R(B)$ the range of a fission particle of energy equal to the kias erergy B. In Jeriving this relation (see Section $h, 6$), it ie assumed that all fission fragments have the same range R_{0} and that the tricinese t of the foll is $t \leqslant\left[R_{0}-R(B)\right]$. In figure 1 a calculated bias curve is compared with experimental data. At high bias; the experiwental prints deviate considerably from the curve. This is to ke expected in view of the assumpticrs rade in the calculation. In the case of a cylirdrical fissict chamer, cerryiteg fissionable material on the inside of the outer electicde, an additional correction, a "wall correction", has to be apriled. For an infinitely thin layer of fisrionable material, the detection efficiency which takes into acccunt particles striking the cylindrical wall is given by:

$$
\begin{equation*}
F(B)=1-\frac{I(B)}{4 B} \tag{3}
\end{equation*}
$$

where b is the radius of the chamber and $r(B)$ is that portion of the range of the particle which must be spent in the sensitive volume of the chanber in order to froduce a pulse equal to the hias enerfy B. It is assumed that $r(B)$ is very small sompared with b. The necessary data for computire the thickness and the wall corrections are found in Section A. 10, which gives storpirg power ami

APPROVED FOR PUBLIC RELEASE

Figure 1

Bias curve of an ion pulse chamber carrying a thin fission foil on a plane electrode. Curve calculated according to Equation 3. Crosses reoresent measurements using a foil of appropriate thickness.

APPROVED FOR PUBLIC RELEASE
range energy relations for fission particles. If both corrections are small, the final expression for the detection efficiency is the product of Equations 2 and 3.

162 PARALIFL PLATE FISSION CHANBER

A chamber suitable for the absolute measurement of the number of fissions is shown in Figure 2. It is operated at a pressura of 1.5 atm of argon or ritrogen with a collecting voltage of -300 volts at the olectrode which carries the foil. The largest amount of Fu^{239} which has been used was 1.2 mg deposited on a circle of 4 cm diameter $\left(95 \cdot \gamma^{2} / \mathrm{cm}^{2}\right)$. With pure argon, the rise time of the pulses is of the crder of 1 microsecond. The amplifier had a resolving time of .1 microsecond. This arrangement reduces the piling up of X-particles to the size of a fission pulse very effectively. No such pulae was observed over a period of weeks. Figure 3 shows a bias curve obtained with a .434 mg foil of plutonium irradiated with slow neutrons. It clearly shows a practically horizontal plateau over a considerable bias range.

16.3 SMALL FISSION CHAMBER

A chamber suitable for quantitative flux measurements and of very small diuensions is shown in Figure 4. The small dimensions are a particularly desirable feature for measurements of flux in a neutron atmosphere where the introduction of large cavities would change the neutron distribution. The volume of the chamber including the long support is only abcut $50 \mathrm{~cm}^{3}$. It is filled with approximately 1 atrosphere of argon. The inner electrode serves as the high voltage electrode and as the collecting electrode, the outer electrcde being grounded. The inner electrode is ccupled through a smail capacity to the input of the amplifior as shown schematically in Figure 4 . No spurious pulses comparable in size to fission pulses were detected if the collecting voltage was kept below 250 volts. Foils containing up to $10 \mathrm{mg} / \mathrm{cr}^{2}$ of U^{235} were used. The material was deposit.ed on a 1 mil platinum

Figure 2
Parallel plate type fissi::n chamber for absolute measurments of fission rates.

1. Sas tight cover.
2. Mounting position of sample.
3. High voltage electrode.
4. Collecting electroxie.
5. Guard electrode.
6. Polystyrene insilator.
7. Gasicet.
8. Collar for connection with areamplifier.
9. High voltage lead.
10. Lead to preanplifier.
11. Gas inlet.

APPROVED FOR PUBLIC RELEASE

Figure 3

Fission bias curve taken with chamer shown in rigure 2.

APPROVED FOR PUBLIC RELEASE

Figure 4
Small fission chamber.

1. Luacite ingilator.
2. Contaci spring,
\therefore. Leai to selleeting electrafa (\#28 wire).
3. Lusite guides.
4. Aluminum shield (. 328 inch wall thickness) forming outer electrode.

Ine inset drawine shoss the electrical connections for the case that the inner electreje served as high voltage and collecting olectrade.

APPROVED FOR PUBLIC RELEASE
fcil whicin then wes rolled into a cylinder and slifped into the chamber. The total amount of material in thís case was 60 mg of $\mathrm{U}_{3} \mathrm{O}_{8}$.

16. 2 ELAT FISSION CHANELK OF HIGH COUNTING YIELD

A chamber for very large amounts of material confined to a comparatively small volunc is shom in Figure 5. It wes used with 750 mg of $\mathrm{U}_{3} \mathrm{O}_{8}$ on each plate (63 per cent $U^{235}, 37$ per cent U^{238}). Tne chamber was operated at pressuree between l. 1 atmospheres and 3.4 atmospheres of argor with a collecting voltage of 100 to 200 volta. Since the layer of material is very thick, no plateau in the bias curve could be obtainec. Using an amplifier with a square transient resconse and a rasolving time of about 0.1 microsecond, sericus trouble from plling up of α-pulses was erccuntered.

26.5 NULTIFLE PLATE FTESION CHAKBFF OF F:IGH COUNTING YIELD

In this chamber, stown in Figure 6, a vary large amount of material is distrituted over a number of electrodes. Trelve of the fourteen electrudes were covered with enriched uranium on both sizes. The two front and bottom plates were only plated on one sille. The plates consisted of .8 mil aiumimum foils of 20.5 centimeters diameter mounted on $1 / 26$ inch thick aluminum rings. Alternate electrodes are connected, so that they form tro sete, one set serving as a collecting alectrcde, the cther as the high viltage electrcio, With a coating of $1 \mathrm{mg} / \mathrm{cm}^{2}$ of uranium, a total af 7.74 gm was deposited on the plates. The material was rot highly errict:e3, since only, 89 gra were u235. The chamber wis filled with argon at ataios fieric pressure. No plateau in the bite curve matalred. Tho chamber ie therefore cniy suitatile for rolative measuraments of neutron flux.

26. C SFIHAL FISSIOL CHABEER

Thia section describes a fission cetector of very high crunting yield combined witt very small dimensions. It consists of tro concentric spirale closely spaced and costed with fist ionable material on koth sides. The two

Flat fisesion chamber of high countirg yield.

1. Ketal glass sesi.
?, $3 / 8^{n}$ sten: tuhirg $1 / 32^{\prime \prime}$ wall.
2. Lucfte supfort.
3. Brass cover plate.
4. Lucite ring.
5. Lucite rire.
6. Brass Luttom plate.

- Support for frila.
Э. Cas injet.

Figure 6

High counting yield chamber.

1. Lead through insulatore (lucite).

2, Cas inlet.
3. Heavy second top plate to be removed after filling of chamber.
4. Alumimum rings supporting foils.
5. Supportirg rod and lead.
6. Motal spacer.
7. Lucite spacers.

spirals represent the high voltage and collecting electrodea of the chamber. Since the preperation of the foils and the aesenbly of the spirals is uninue, a detalled account if the procedure is given in the followirg paragraphs,

Preparation of foils; Uranyl nitrate is dissolved in a minimum quantity of alcohci. A scluticr of 1 or 2 per cant of Zapon lacquer in Zapon thirner is prepared aril added to the firat solution until the concentration of uranyl nitrato is about $50 \mathrm{mg} / \mathrm{cc}$. The nitrate conceritration maj be much lower; sut the valuo mentionad should not be greatly exceedod.

This solution is aptiled to an aluminun foil in a thjr lajer by rearis of a soft brush. The brush should not again touch any fortion of the foll from onfeb the solvent has evaporated. The foil is then baked for three or four minutes at about $550^{\circ} \mathrm{C}$ to kurr off the $\mathrm{Zai}_{\mathrm{i}}$ on lacouer and to corvert tine uranyl nitrate to $\mathrm{U}_{3} \mathrm{O}^{\prime}$. If platimum foil is used, the beking temperature may be 800 or g000 C . The higher temperature will resuit ir: more nearly complete eliminetion of zapon sud quartitative conversion of uranyl nitrete to $\mathrm{U}_{3} \mathrm{O}_{8}$.

Whon the foil has cooled; it is rolled. flat betweens sheets of paper and the coatod side is rublued smooin wh a soft tissue. Initially, the costed surface vill exert considerable fricticnal drag on the tissue but thia rapidiy dinimshes, whout apyarent removal of oxide, and a smooth, lustrous surfece is produced.

A single layor of $\mathrm{U}_{3} \mathrm{O}_{8}$ applied b: this method is, and apperently must bs, quite thin. However, the procedure may be repested until the desired surface density ia rached. The cooting is very teracious and will withstand shary bending of the foil.

If the foil is to be ccated on both sides, as fer spirale, it is adrisable to paint alternately on the two eides rather than to complete the coating on one eido before teginrilig the otier.

Small areas of foil are conveniently painted, on flat surface, by hand. Larger areas are more essily haniled if the foil is mraplad arcund an aluminum drum which is rotated against the lrusk. APPROVED FOR PUBLIC RELEASE

Aluminum foil which bas been used in moet of the spirals, is prepared for coating by lightly atching the aurfaces in a dilute sodiun hydroxide solution. It is carefully cleaned with water and alcohol and thorourhly dried befọre the painting is begun.

Freparation of spirals: Spirqla have been wound by two methode. The first, illustrated in Figures 7 and 8 , makes use of a strip of material for spacing the foile as they are wiund. Ordinery sewing thread of the desired diamoter is wound on a straight, stiff metal bar somewhat longer than one of the.foile. The turris are wound tightily together until the width of the winding is slightiy less than the width of a foil. A dilute solution of Amphenol 912 Cemont and thinner or benzere (about 1 to 5), or of rubber cement and bensene (1 to 10), is now painted on the threads. After drying, the threads are cut at one end of the bar and are removed from it as a strip trice the length of the bar. In either solution the concentration of cememt ahowid be as small as will produce a coherent strip.

The winding form in Figure 7 is a piece of \ddagger " metal tubing with a narron, smooth-edged longitudinal slot a little deeper than the width of a foil. A flat-faced cylindor 1 inch in diameter and drilled with a $\frac{1}{4}$ inch hole is pushed inte the tube to provide a guide surface to prevent the foils from mindering axially as they are wound. The foil ends, provided with wife leads soldered across the ends, are inserted into the slot and are bent over against the inside of the tubs as show in Figure 8 . The midale of the thread strip is inserted into the slot and the spiral is formed by winding, undor tension, half a turn at a time, foil and thread alternately. The fingers are used to smocth the foil and thread to aid in producing a tight, evenly spaced spiral. When the winding is completed, narrow strips of an adhesive tape may be wound around the spiral to hold it together temporarily.

Final stages in producing a spiral consist of soaling the ends in supporting and insulating material and removing the threads. By means of a

APPROVED FOR PUBLIC RELEASE

Figure 7

Method of winding spirals for spiral chamber.

APPROVED FOR PUBLIC RELEASE

Figure 8

Fastening of ends of spirals.

the mandrel and abrut a third of the threads are pulled, one at a time, from the end of the spiral. Wrickled edges of the foils may be straightenod with a scriber.

Sulphur ur ordinary red sealing wax provides satisfactory support and ineulation for the ends of the spiral. If sulphur is used the lead wires should be platinum or another metal nich does not form a concucting sulphide. Otherrise flakes of sulphide may fall from the wires and short the foils. Ordinary ${ }^{n} f l o w e r s$ of sulphur" does not seem to insulate the foils satisfactorily. Better insulating and mectanical properties are obtained by using a mixtare of three parts by weight of sulphur flowers ard one part of finely powdered alumimum oxide.

A small quantity of this mixture is melted to the viscous atage on a pyrex plate or in some shallow flat-hottomed vessel and is stirred to keep the alumimm oxide in suspension. The exposed ond of the spiral, still on the mandrel, is carefully lowered into the molten mixture and geritly rotated to aid in wetting the entire end of the spiral. Unless care is taken in adjusting the temperature, sulphur in its fluid phase wild rise. to a considerable height between the foils. Excess sulphur may be removed by judicious application to a heated glass surface. The central hole in the spiral must be reopened if sulphur has covered it. A heatec wire may be used, in removing sulphur.

Temporary support for the sealed end is provided by applying a narrow strip of achesive tape around the spiral at this enc. The tape previously applied is now gently removed and the remaining threads are puiled from the open end of the spiral as before. Tape should be reapplied to keep the outside ends of the foils in place. The wire leads are now bent back on themselves and are pulled through to the completed ond of the spiral so that they will not interfer with the sealing of the remaining end.

If sealing wax is used for insulation, care is necessary in sealing the

A set of foils used in one of these spirals is show in Figure 9 . One of the large spirals is ready for dipping while the other is completed and resdy for installation in its chamber.

Should the spiral be damaged after completion, the foils may be easily salvaged. Sulphur-insulated spirals may be taken apart by puiling the two foil ends. Those employing sealing wax are placed in acetone or alcohol until the foils may be sasily pulled apart. All remaining wax is then removed with clean solvent. After all visible traces of insulating miterial have been removed, the foils should be baked for a fem minutea at about $500^{\circ} \mathrm{C}$. They may then be smoothed and straightened by placing tham between sheets of paper on a flat surface and draning a smooth cylinder along the foils.

A second method of winding spirals uses only tro or three threads in the rinding process and these remain in the spiral, serving both to support and insulate the foils. This method is particularly adapted to the winding of very small spirals but ray also be used in proparing the larger ones.

The winding mandrel consists of two lengths of $1 / 16^{\prime \prime}$ steel rods ach milled to a semi-circular cross-section for about an inch of its length. These are inserted into the bearings of the apparetus shown in Figure 1080 that the milled sections overlap. Threads which have been previcusiy soaked in dilute Amphenol cer.ent and dried are inserted betweon these sections. Their spacing is determined by the grooved rods in the foreground and backgroand of Figure IC. The ands of the foils are inserted between and on opposite sides of the threads for a little less than $1 / 16$ inch of their length. They are carefully aligned and the small cylinders are pushed onto the split section to serpe as clamps and as guides for the foils. The free ends of the folls are then placed in the clamps shom at the top and bottcm of Figure 10.

Tension of the fcils and thrpads is provided by weights and must be adjusted to the foil and thread which are used. Too much tension causes the APPROVED FOR PUBLIC RELEASE

Figuro 10
Second wethod for windrg of spirels.

foile tc be creesed and the threads to wander. Ton little teneion produces a loose spiral which mill core apart when it is removeri from the machire.

In the case filustrated one lead is soldered to the jridie end of ore foil and one to the outside erd of the other.

After the aligrment has been completed; the epiral is wound by turning the shaft shown in Figure 10. When about 1 inch of foil ramains unwouns. the top ciamp is loosered and a strip of .COI inch Arphenol poiystyrene tepe slightly pider than the foils and about 3 inches long is cemented to the last t inch of this foil. Tensica on the foil is maintained mankally and vinding is contimage until the hottom clamp nust be disconnected. The threado will guide the bottom foil for the last haif turn ar so. When the erd of the top foil has rached the epiral, a sharf razor blade is used to cut the top threads just beyond the ond of the top foll. After a fur ther half turn the other thresds are similariy cut. With the gulde cylinders pushed back, several layers of the Amphemiz tapeare applies and the end is fastened dom with a small drep of Amphenci cement.

The spiral is now compieted and is removed from the machine ity looseaing the set screve which hold the split. rods in their bearings and puiliog the rods from the spiral. If the spiral is ghorted, the trouble Will generally be found in the center of the winding. Careful probing in the $1 / 16$ inch central nole will ustally remove the distortion which shorts the foils. Small spirals produced by the above techrique are shomi in figure 11.

The spirale are rounted in a sultable small container. A completed chamber is connected to the filling system at the valve which is provided and is evacuated. The entire chamber is baked until evalution of vapers is negligible. The temperature of the ε piral end of the chamber mill be limited, of course, by the melting or softening temperatures of the insulating material of the spiral or by the solder used in sealing the chasber. Since the spacing of the two foils is quite small (20 mils) it is recessary to operate the

Figure 11

Three spiral chambers of different sizes ready for assembly. In the foreground are two coated foils.

chambers at rather high pressures, from 5 to 10 atmospherss of argon for the larger typo, 10 to 14 atmosphores for the smaller type. For the same reason the collecting voltage is quite low; 135 valts proved to be satisfactcry for both types regariless of foil spacing.

The capacity of the spiral chambers is as high as 500 micromiorofarm d . They can be operated by eithor grounding one foil, the other one serving as high voltage and collecting electrode, or by applying the collecting voltage to one spiral and using the other as collecting electrode. In the former case, the collecting voltage is applied through a .25 siegohm resistor and the input of the amplifier coupled through a condenser of 100 to 500 micromicrofarads. The leak resiator in the first case should be about . 25 megohms, and about . 1 megohms in the eecond case. Due to the large amount of material used in these detectors, the counting bias has to be set at a comparatively high value, in order to avoid pulses from piling up of α-pulses. Consequentiy the detection efficiency is somewhat low. For a background of not more than one to two counte per minute due to pile-up, the detection efficiency fan found to be between 80 and 90 fer cent. The amplifior used with these chambers had a resolving time of 1.5 microseconds. The rise time of the pulses is less than 0.2 microsecond. If not more than $.25 \mathrm{mg} / \mathrm{cm}^{2}$ of $\mathrm{U}_{3} \mathrm{O}_{8}$ are used, the bias curves shor a plateau. The following table gives a list of constructions which, were actually used.

$\begin{gathered} \text { Foil Spacing } \\ \text { in mSls } \end{gathered}$	Diametor inches	Length inches	$\begin{aligned} & \text { Useful Area } \\ & \text { in } \mathrm{cm}^{2} \end{aligned}$	Max. Deposit mg U
20	1	1	200	240
20	1	1	360	550
7	$3 / 8$. 3	22	35

16.7 INTECEATING FISSICN CHAMBERS

Figure 12 shows an integrating ionization chamber used for relative flux measurements in very dense slow neutron atmospheres. The ionfation current can be measured diredtly with a galvanometer. The chamber is constructed in such a way that the ionization current is prodominantly produced by fission APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

Figure 12

Integrating ionization chamber for fissiorus.

fragments and only to a small extent by γ-rays or electron. One tundred and eighty-four mg of U^{235} (345 mg of 63.1 per cent anriched $\mathrm{U}_{3} \mathrm{O}_{8}$) are deposited in the form of nitrate on both sides of the 14 electrodes with the exception of the end plates which are coated only on oneside. The plate spacing is 25/32". Alternato plates are connected to the collecting and to the high voltage leads. It was found that residual ionization due to the p activity of the chamber material, produced by previous neutron bomberdment, could be greatily reduced by using ordinary cold rolled iron for the container and parts of the internal structure. The chamber is filled to a pressure of one atmosphere of argon and operated with voltages up to 1800 volts. With the maximum voltage, a linear relation between ionization current and neutron flux was found for currente up to 21 microampores.

LOS ALA:OSTECEICAL こERTES

YOLUEE I

EXEFTEETAL TECGHKGE

TSFT IJ

APT'ENDIX

A. 1 RANGE ENERGY RELATIONS AND STOPEING FOPER

Figures 1, 2, and 3 show the range onergy relations for α-particles protons, and deuterons in air at N.T.F. $\left(760 \mathrm{~mm} \mathrm{Hg}, 150^{\circ} \mathrm{C}\right)$ according to Livingston and Bethe. These curves were obtained by fitting theoretical expressions to experimental data. In order to obtain the range energy relation for deuterons, it should be remembered that a deuteron of energy $2 E$ has twice the range of a proton of energy E .

Figure 4 shows the range energy relation for protone in argon according to Bethe's methods. The results were fitted to exferimental values. In addition to the range energy relation, Figure 4, shows the stopping crosssection σ as a function of energy. This quantity is directly connected with the spocific energy loss, $-\mathrm{dE} / \mathrm{dx}$, by the equation

$$
\sigma=-\frac{1}{n} \frac{d E}{d x}
$$

where n is the number of atoms per cm^{3} (at N.T.P., $n=2.548 \times 1 \mathrm{C}^{19}$). The third curve in Figure 4 marked \bar{x} gives the distance of the center of gravity of ionization of a track of energy E from the point of origin of the particle,

$$
\begin{align*}
& \text { measured along its path: } \\
& \qquad \bar{x}\left(E_{0}\right)=R\left(E_{0}\right)-\frac{1}{E_{0}} \int_{0}^{E_{0}} R(E) d E=\frac{1}{E_{0}} \int_{0}^{R}(-d E / d x) x d x \tag{I}
\end{align*}
$$

Figure 5 showe the same three quantitios for xenon.
Figures 6 and 7 show the range energy relations of protons in paraffin $\left(C_{n} H_{2 n+2}\right.$) and glycorol tristoarate. The curves are based upon calculated values of the stopping number B in $C, 0$, and H. The stopping number B is related to the energy loss $-d E / d x$ by the equation

$$
\begin{equation*}
-\frac{d E}{d x}=\frac{6 \pi p^{4} z^{2}}{m v^{2}} n B \tag{2}
\end{equation*}
$$

where $Z e$ in the charge of the incident particle, v its velocity, and the electron mass. The expressions used for the computation of these curves are! APPROVED FOR 291 $_{1}$ PUBLIC RELEASE

Fipure 1

Range erergy ralation for α-particles. (Livingston and Bethe)
4 RANGE (Gx) 5 CURVE II 6
ENERGY VS. RANGE α PARTICLES MEANRANGE $15^{\circ} \mathrm{C}$ AND 760 mm .

Figure 2

Range energy relation for protons and deutercns. (Luingston and Bethe)

APPROVED FOR PUBLIC RELEASE

, -

Figure 3
Range energy relation for protions. (Livingston and Bethe)

APPROVED
 RELEASE

Figure 4

Kange erergy relation, stopping cross section and ceriter of
iondze licn for protcns in argon ($760 \mathrm{mmH} \mathrm{Hg} 15^{\circ} \mathrm{C}$).

Figure 6

Kange encrgy relation for pretoric in paraffin.

APPROVED FOR PUBLIC RELEASE

Figure 7

Renge energy relation for protors in glycerol tristearate.

APPROVED FOR PUBLIC RELEASE

Carton:

$$
\begin{array}{rlrl}
B_{C}= & 9.4406 \log _{10}(E / .0094704)-2.2652 C_{K}\left(1 / \eta_{I}\right) & \\
& +4.3479 \quad \log _{10}(E / .22356)-1.0497 C_{K}\left(1 / \eta_{K}\right) & \text { for } E \geqslant .8 \\
B_{C}= & 9.4406 \log _{10}(E / .0094704)-2.2652 C_{K}\left(1 / \eta_{I}\right) & \\
& +1.0497 B_{K}\left(\eta_{K}\right) & & \\
B_{C}= & 2.2652 B_{K}\left(\eta_{L}\right)+1.0497 B_{K}\left(\eta_{K}\right) & \text { for } .03 \leqslant E \leqslant .8 \\
\text { with } \eta_{X}=E / .811520 \text { and } \eta_{L}=E / .034378 & \text { for } E \leqslant .03
\end{array}
$$

Hydrogen:

$$
\begin{array}{ll}
B_{H}=2.30259 \log _{10} E-.55248 C_{K}(1 / \eta)+4.800 & \text { for } E \geqslant .03 \\
B_{H}=(E / 1.81) B_{K}(\eta) & \text { for } E \leqslant .03 \\
\text { with } \eta=E / .029863 &
\end{array}
$$

Oxygen:

$$
\begin{aligned}
& B_{0}=18.421 \log _{10} E-3.4199 C_{K}\left(1 M_{L}\right)-C_{K}\left(1 M_{K}\right) \\
& +24.741 \text { for } E \geqslant 1.5 \\
& B_{0}=14.253 \log _{10} E-3.4199 C_{K}\left(1 / \eta_{I}\right)+B_{K}\left(\eta_{K}\right) \\
& +22.496 \\
& B_{0}=3.4199 \cdot B_{K}\left(\eta_{L}\right)+B_{K}\left(\eta_{K}\right) \\
& \text { with } \eta_{X}=E / 1.4809 \text { and } \eta_{L}=E / .09036 \\
& \text { for } .09 \leqslant E \leqslant 1.5 \\
& \text { for } E \leq .09
\end{aligned}
$$

The functions $C_{K}(I M)$ and $B_{K}(\eta)$ used in these expressions are represented in Figure 8 according to Livingston and Bethe. The energies have to be taken in Mev.

Figure 8

The functiona $B_{K}(\eta)$ and $C_{K}(I / \eta)$ for the calculation of stopping numberf. (From K. S. Livingetor and H. A. Bethe: Rev. Mod. Phys., 2, 245, 1937).

Table A-2-1 gives the various velies of W_{0} for different gases, particles and energies.

Table A.2-1				
Gas	Hoin O	Farticle and	Energy	Reference
Air	$32 \cdot 0$	electrons	. 31308	-
Air	36.0	protons	2.5-7.5 Lev	L. H. Gray, Proc. Cam-
Air	35.1	- -particles	7.8 Mov	bridge Phil. Soce, 40,
A1r	35.6	α-partioles	5.3 Hov	72, 29,14
H_{2}	36.0	c-particles	5.3 Mev	
He	31.0	\propto-particles	5.3 NeO	
60	34.7	$\propto-p a r t i c l o s$	5.3 Not	K. Schmieder
CO_{2}	34.8	- -particles	$5.3 \mathrm{Nav}\}$	Ann d. Phys., 35, 445,
$\mathrm{C}_{2} \mathrm{H}_{4}$	27.5	<-particles	5.3 siov	1939.
$\mathrm{C}_{2} \mathrm{H}_{4}$	28.2	<-particles	$5.3 \mathrm{NoV}\}$	
CH_{2}	27.6	O-particles	5.3 Mev	
Ne	27.3	α-particles	5.3 MeV	K. Schmieder
A	24.9	- -particlos	$6.3 \mathrm{Nev}\}$	Ann. d. Fhys e, 35, 445, 1939.
A	26. 9	- lectrons	17.4 KV	D. B. Nicodemus, Thesis, Stanford University, 1946
Kr	23.0	<-particles	5. 3 \%ev	K. Schmieder
				Ann. d. Physe, 35, 445, 1839.
Xe	21.4	\propto-particles	1.3 MeV	R. N. Gurney Proc. Roy. Soc., AlJ7,332,1925

A. ${ }^{2}$ RAKGE OF ELSCTRONS IK KLURINUK: SIFEIFIC IONIEATICR GF ELECTRONS IN AIK

Curves (a) and (b) in Figure G show the extrapolated renge of electrons In alumisum as a furction of their erergy. Curve (c) shows their bpecific jonization irı ion-faire per cminair for li.T.F.

Aع 4 SCATTERING CROSS EECTIONS OF FKOTONS AND DEUTLRONE FOK NFUTRCNS

Figure IC•and Figure 11 sincw the scattering crose-eections of Frotons and deuterons (at rest) versus the erigrgy of the impirging neutrons. The protcr curve is the plot of a theoretical expression which fits the experimentel date vely wei?. The deuteron surve is purely experirarital.
A. 5 COEFFICIENTS OF ATIENUATION OF ${ }^{2}$-RAYS INA AL CHA SNA AND FE

Figire 12 shews a plot of the coefficients of attenustion τ of γ-rays for $A 1, C u, S n$, and $F b$ vereus the energy of the gusntum. For lead the three comporents of τ (1.e., the fhoteclectric, Corifton, anc pair friduction: coefficient) are shcm. If σ is tie total cross-zention per atom, arair the nuniber of atoms fer cm^{3}, then τ is defiried as $\tau=\pi \sigma$.

A_E THICL NESS CORPECTION FOF FLANE FOILS

Suppuse particlas of uniform range are emitted iaotropically frem a material layer of thickness t, one particle being emitted per disintegtetion. The rocording device shall be biaseo euch that every perticle lasitef fis smount of energy $\dot{E} \geqslant B$ in the detector if counited. The observed numiter of counts C divided by the true rumer of disintegrations C_{o} is the detection efficiency F at the tias B. The number of counted particlas from a layor betweer x and $x+d x$ (sec Figure 13) is Eiven by

$$
d C=\int_{0}^{\theta} 2 \pi \sin \theta d \theta d x
$$

whare θ_{0} is that angle at which the particle, upon emerging from the foll, has iust enough erexgy to be counted. Let the range ai this energy ba $R(E j$,

APPROVED
 FOR
 PUBLIC
 RELEASE

(a) Rarige of slow electrons in alumimua
(b) Range of fast electrons in aluminum
(c) SFecific ionization of fast electrons in air. Rutherford, Chadwick, and

Ellis, NRadiation from
Radioactive Substances"

(b)

APPROVED FOR PUBLIC RELEASE

Figura 10
 Neutron froton scattering crobs section.

$=$

Figure 11

Neutron deutercn scattering croas bection,

Figure 13
Thickness correction for plane foil.

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

$$
\pi\left(B ;=R_{0}=\frac{\ddot{\theta}}{\cos \theta_{0}}\right.
$$

and the total miner ci counts ia

$$
\therefore=2 \pi \int_{0}^{t} d x \cdot \int_{0}^{\theta} \sin \theta d \theta=2 \pi t\left\{1 \cdot \frac{i}{2}\left[\frac{1}{R_{0}-h(B i]}\right\}\right.
$$

where $\sigma_{0}=4 \pi \mathrm{t}$,
asci $\quad F\left(B ;=\frac{\dot{\operatorname{L}}}{2}\left\{1-\frac{i}{2\left[R_{i}-\bar{R} \bar{R}\right]}\right\}\right.$
 that the paige size is independent of tho distention if the particle. Since Q_{0} is assumed to be rather large, the effect of plectron ecilection may be neglected if the foil is on the regitiva elesitrede.

For lew biased born detochars, the detection affictaniju will be the sum of the efficiencies fer a -igrticles and 11 thin teicils as shown in
 disintegration, the detection efflcieve: in twine thai giver hoy the formula, as stated in Sachem le. . For renctinis giving rise to singe parli:ias A uniform energy and for thick layers $\left(t \geqslant\left[K_{2}-K(B)\right]\right.$ i, F is giver. by

$$
\begin{equation*}
F(B)=\frac{F_{0}-R(B)}{l!} \tag{i}
\end{equation*}
$$

Ar a proximate range energy relation for $L_{i}{ }^{7}$ has being constructed from the photometric traces of clout blabber tracie from $E(x, \alpha)$ disirtegraBiotic of bower, Bratscher, and Gilbert. Within the considerntile uncertaifity it π as found that the same energy range relation holds for $L^{1}{ }^{7}$ as for slow α-parificies. The atomic stopping power relative to air for very alow

If a foll contairing the emituing subetarice is placec en the insido of the mail of a cylindizal detector of raifus b the detecticr efficierny is reduced teceuse of the particles, emerging nith sufficient enargy urder a large angle with resfect to the radius, thich leave the counting voiune by atrikirg tre cylindrical wall surface. If this geometrical effert and the thicknesa affect (see Seation A.G) are both small, the det,ection effichency is the pronist of the efficiencies for sach effect sefarately. This requiras, therefore, that $r(B j \ll b, r(B)$ keing thet part of the iritial range in the gas of the retector necessary to rroduce a meacurable puleen Frar an irfinitely tinin
 of a cyilidilial detector is given by the ratio of the area of that part of the surfsce of a sphere of radius $T(B)$ (with its center on the cylinces ef radius r) winch is located inside the cyliricer to the total sphericul surizte, $4 \pi r^{-\alpha}(B) \quad$ (see Figure i4).

Let us censider a folar system of courdiagtes with the origin on the wall of the counter, the prlar aris alore the radius, and the plane $\varphi=0$ porpenileuzar to the axis of the cyilicinc. The difference f between the surface of the raif sphera and its part loceted inside the rylincien is given by

$$
f=\iint r^{2} \sin \theta d \theta d \varphi
$$

The boundary curve of the surface is giver, biy the equations of the sphere and the cylirder

$$
\begin{gathered}
r=r(B ; \\
r^{2} \sin ^{2} \theta \cos ^{2} \phi+r^{2} \cos ^{2} \theta-2 r b \cos \theta=0
\end{gathered}
$$

If $\cos \theta=\mu$, ther

APPROVED FOR PUBLIC RELEASE

Figure 14
Wall correction for cylirdrical foll.

wiser μ_{i} is given by the equation of tine tourcary cure

$$
\mu_{1}=\frac{1-\sqrt{j-L(r(B) / \mathrm{b}) \sin \varphi \cos \phi]^{2}}}{\sin ^{2} \varphi(r(B) / \mathrm{b})}
$$

$$
\begin{align*}
& f=\frac{\pi}{2} \frac{r^{3}(E)}{b} \\
& F(B)=\frac{J}{2}\left(1-\frac{r(B)}{b}\right) \tag{5}
\end{align*}
$$

The total detection efficiency taxing the thickness of the foil into account is therefore

$$
F(E)_{\text {total }}=\frac{i}{2}\left(3-\frac{t}{2\left[R_{0}-B(B)\right]}\right)\left(1-\frac{r(E)}{4 b}\right)
$$

In the case rif fisaichs, where two particles are emitted, the teal detection efficiency is trice that giver: ty Equation 5'.

A\&H MALL CORRECTION FOR CYIINDEICAL DETECECF WITH VERY SMALL INKY ELSCTRCNE IF FAFTICLES ORIGINATE IN THE GAS

If the disintegration take place in the gas filling of a large cylindrical chamber of radius b, some particles will hit the walls before having produced a sufficient ionization to be recorded at the giver bias. It shall be assumed that all the disintegration energy goes into one particle, that all particles have the same range R_{0} measured in the gas and small compared to r, and that they are emitted isotropically.

If cartesian coordinate are introduced (see Figure 15) with the origin at the point P, the $z a x i s$ on a radius, ard the y axis parallel to the axis of the cylinder, for any giver direction of emission of the particle, there is a point F at a distance η from the axis O suck: that the farlicie loses ar: energy E equal to the bias energy before striking the mali. For particle e being efta in the direction given by the polar angles 0 ard if, the fruition effigerey is

Nall corzection for cyinciricel chamier if ionsinig partichos origirate in gas.
:

$$
d F=\left(-\frac{\eta}{6} \frac{Q}{2}\right)^{2} \frac{\sin \theta_{d} \theta d \theta}{4 \pi}
$$

The equation of the cylindrical wall is

$$
\begin{equation*}
(r \cos \theta+\eta)^{2}+(r \sin \theta \cos \varphi)^{2}=b^{2} \tag{6}
\end{equation*}
$$

ard

$$
\eta^{2} \approx b^{2}[1-(2 r / b) \cos x]
$$

if her terms
in (r / o) are neglected. This determinists η for every given r, θ, and φ. Let. $r(B)$ be that portion of the initial range which has to be wither the sensitive volume in order to produce a pulse of size equal to the bias energy.

$$
r(R)=R_{0}-R\left(E_{0}-B\right)
$$

where R_{c} is the original range of the particles, E_{o} the original energy, and B the bias energy.

In order to find the total detection efficiency, the integration hes to be extended from 0 to $\theta_{m}(\varphi)$, where $\theta_{m}(\varphi)$ is given by the relation in Equation 6 with $\eta=b$. The integration over φ extends from 0 to 2π. For $, \theta_{m} \leqslant \theta \leqslant \pi, \eta$ remains at its maximum valve b. Thus

$$
r(n)=\frac{1}{4 \pi} \int_{0}^{2 \pi} d \phi\left\{\int_{0}^{\theta_{m}}\left(\eta^{2} / b^{2}\right) \sin \theta a \phi+\int_{\theta_{m}}^{\pi} \sin \theta d \theta\right\}
$$

Pith $\quad \cos \theta_{n}=\frac{-b \pm \sqrt{b^{2}}-[r(B) \sin Q \cos i]^{2}}{r(B) \operatorname{in} 4}$

$$
\approx-\frac{1}{2} \frac{r(B)}{b} \cos ^{2} \varphi
$$

Within the above approximation, F becomes

$$
\begin{equation*}
F=1-\frac{r}{2}(B) \tag{7}
\end{equation*}
$$

A. 10 RANGE ENERGY RELATION ECK FISSION FRAGMENTS: STUFFING POKER FF

VARIOUS MATERIALS FOE FISSION FEACHENTS.

The mean range of fission fragments in varime materials has been computed
from the measurement of Bohr, Bhggild, Brestrfa, and Lauritere, and is show
in fipure 16. The twe curves represent averages for the two groups of fission fragrents.

It mas found that afproximateiy gil materials have the same atopping rower for fission fragrente as for 7 farticies of 4.5 M.ev. The data for air was takon from the atove reference. Values of the mear range of fission Eregrenta ant the storfing fower of varicus materiais for fission fragments ere given in Table A.ju-l. The vaiues for the ranges are not considered t.c be very accurate except for airs

$$
\text { Table A. } 1 \mathrm{C}-1
$$

Matertai	kear Range of Fisaign Fregmente in $\mathrm{mg} / \mathrm{cm}^{2}$.	Alowic Stopping Power
Air	2.70	1.60
Al	3.7	1.51
Ccilodien	2.6	
$\therefore 1$	5.2	2.40
Ag	t.j	3.08
Au	11.34	3.96
U	12.6	(4.2)
$\mathrm{U}_{3} \mathrm{O}_{8}$	10.0	

Figure 16
Kange erergy relation for fission fragments (Bohr, Boggild, Brostrdm, and Lauritsen, Prys. Rev., 28, 839, 1940; also Bogiild, Brostrom, and Lauritser, Phys. Rev., 59, 275, 1941).

A, 12 FEECLUTION AND PILING UF OF PUISES

in the following discussion of the resolution of pulses, two cases will be treated:

In the first case, it is assuned that every mulse which is ccunted paralyzes the detection equipment for a time τ which is large corapared with the duration of the pulse. The dead time τ shall be independeat of any other fulse occuring during this time. Such a situation arises, for instance, in the case of a Geiger-Mueller counter or in the cases of a thyratron triggered by a very short pulse. The prokability that n-l additional pulses oscur within the time τ after a pulse is given by Poisson's formula

$$
\begin{equation*}
P(n-1)=\frac{\left(\tau n_{G}\right)^{n-1}}{(n-1)!} e^{-\tau_{r_{0}}} \tag{8}
\end{equation*}
$$

where n_{o} is the average number of pulses per unit time. The mamber of counts fer unit time containing n pilses is given by

$$
C(n)=K \cdot F(n-1)
$$

where the constunt K is determined by the normalizing condition

$$
n_{0}=\sum_{1}^{\infty} k F(n-1) n=k \sum F(n-1)(n-1+2)=k\left(\tau n_{0}+1\right)
$$

Thus we get for $C(n)$

$$
\begin{equation*}
C(n)=\frac{n_{0}}{1+\tau n_{0}} \frac{\left(\tau n_{0}\right)^{i}-1}{(n-1)!} e^{-\tau n_{0}} \tag{9}
\end{equation*}
$$

Fir tine total courting rate (number of counts fer unit time, irrespective of how mary fries are contained in e count we have

$$
\begin{equation*}
r_{0}=\frac{n_{0}}{1+\tau} \tag{16}
\end{equation*}
$$

The relative counting lose is

$$
\begin{equation*}
L=\frac{2_{0}-C_{0}}{n_{0}}=\frac{\tau n_{0}}{\tau+\frac{\tau}{n_{n}}} \tag{11}
\end{equation*}
$$

 mad $r_{C_{2}}$ with th: counting rate $C_{0_{1}}$ of the combined source which is given by

The rate of accidents coircicepref \tilde{G} oi two raccreing devices giving pulses of duration τ and bering counting rates $C_{O_{1}}$ and $C_{O_{2}}$ is given by the equation:

$$
G=\sum_{2}^{\infty} C_{17}(n)-\sum_{2}^{\infty} \Gamma_{1}(n)-\sum_{2}^{\infty} c_{2}^{\infty}(v)
$$

For $\left(\mathrm{C}_{\mathrm{O}}+\mathrm{C}_{\mathrm{O}_{2}}\right) \ll 1$, one obtains, neglecting higher than linear terms:

$$
\begin{equation*}
G=2 \tau c_{O_{1}} \cdot{ }_{O_{2}} \tag{13}
\end{equation*}
$$

he a second case, consider that the dead lime is not a conetart, inderender, of subsequent counts falling within τ, but that the recording inanely react us a pulse provided that the voltage of the collecting electrode has teen at zero for any arbitrary short, time preceding the pulse.

Again let n_{0} be the pulse rate. The probability that a puise is followed by a "gap" of duration τ, (ro further pulso during the time τ) if given by $e^{-T n_{0}}$. Thus the counting rate C_{o} (rumber ci recorded counto rer unis, time) is

$$
c_{0}=n_{0} e^{-\tau_{1} \xi_{0}}
$$

The nurbert of ningle, double and n fold courta are, respectively:

$$
C(1)=n_{0} e^{-2 \tau r_{0}} \text { sinee one recuires a gap }
$$

of at least τ before and arter a puise;

$$
C(2)=n_{0} e^{-\hat{R} \tau n_{0}}\left(1-e^{-\tau n_{0}}\right) \frac{!}{\text { requiring tilet the }}
$$

rulee be follawed by one ather pithar tine tiat τ; wro

$$
c(n)=n_{0} e^{-i T n_{r_{1}}\left(1-e^{-\tau} n_{r}\right)} n-1
$$

For the doternimation of the resclofut time t we tove, using the same notation as hefres:

$$
T=\frac{\mathrm{C}_{\mathrm{O}_{2}}+\mathrm{C}_{\mathrm{O}_{2}}-\mathrm{C}_{\mathrm{O}_{2}}}{\mathrm{C}_{\mathrm{o}_{2} 2}-\mathrm{C}_{2}-\mathrm{C}_{2}}
$$

The filing up of square pule er or unffurs height F and onuni width T is diecuerea below.

A rulee height $n \cdot F$ la pruduced if n fulses occur withir a time t. The countidig rate rif counte of he:ght af is thelefurg giver, ly the coultrig rate $C(n)$ giver by Equation 9 . It should be kept in mind that the helght nf oxisits
 are of very ahort duralion. In fracticul casgs, where tine fulsos usually have un expmertial rieg nind docsy, the fomuin gives syproximate vajum if tis is thken ab tha resolving: tine. For an accurste trantmerit of rractical caces, tre knovieders of the complete transient responeq ef tino detectile griulrmerit is mecesrary.

A.13 NGAEPICAL VALUES OF THE BACF SCATTEFIE FYNCTJCA Ф FOKO- FAETICIES

(a) Relative values of for varicus materinis:

Paterial	
Au	i.co
Ft	. 8
$\mathrm{v}_{3} \mathrm{c}_{8}$. 894
SiO_{2}	. 19
AI	. 23
Ee	. 30

(b) Values of Φ for gold using α-particles af $3.6 E$ sm renge (N.T.i.) At variour valueg of $R(B)$ in ain $(R(B)=$ the raige of an $\alpha-$ particle whose energy is equal to the bias energy B):

$R(B) c m$	$\Phi .95^{2}$
0	9.7
.1	8.0
.2	8.5
.3	8.0
.4	7.7
.5	7.5

(a) For the variethins of Φ with the renge R_{0} of the $\alpha-p a r t i c i e s$, one can mpprexirately asaurs that

$$
\Phi^{2}\left(R_{0}\right)=\Phi^{2}(3.48) \quad \cdot \frac{3, f R_{2}}{H_{0}(c r)}
$$

\because that Φ varies approximately irversely fith the square root of tive rarize.

UnCLASSIFIED

DOCUMENT ROOM

REC. FROH R.R. Davis
UNCLASSIFIED vate .1-7-4? REC.

[^0]: w:o: $\alpha \times$ ad β aretw.j rionstants.

[^1]: Differential pulse hoight distritutions obtainod whth the chamber with erid show ir, ficeure 12 irradiatod with monoenergetio neutirons of twic differer:t onergies.

