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ABSTRACT

:5 \==-
Em!—. - The interior stability of an isothermal shock is studied as an initial

=03 value problem for inviscid one- and two-dimensionalperturbationsand as an
Zcf: initial-boundaryvalue problem for viscous one-dimensionalperturbations,
:tn, The initial steady velocity profile is linear with finite width, Results,
:03:””_.Obtained from energy integral estimates, indicate stability at low Mach

* 1- numbers and instabilityfor large Mach numbers.
c

I. INTRODUCTION
●

The structure of strong, steady shocks has been

investigatedfor many physical processes, atomic and

nuclear. The emphasis has been on shocks in gases,l

usually with low density. Particle transporthas

been included in some approximation. For dense

gases, liquids, or solids, the strong shock structure

problem has received less attention although many

numerical schemes for.treating nonsteady shocks are

in use. Most of the schemes are based on the ideal-

ization of a discontinuityor on a nonphysicaldissi-

pation mechanism and not on reproducingthe struc-

tural details that the physics would show, The

adequacy of the numerical shock schemes depends on

whether the physical shock thickness is small com-

pared to the other lengths in the problem. If that

is the situation, the details in the shock are un-

important; With the present uncertain state of

knowledge of transport coefficients and reaction

rates in dense materials, it may be questionable

whether detailed calculationsof shock structure

could have a useful level of credibility.

There is, in addition, the question of whether

very itrong steady shocks can be internallyunstable

to the degree that their thickness cannot always be

predicted on the basis of a steady analysis. Such

internal shock instabilityhas been investigatedin

only two circumstancesto my knowledg~ collisionless

,.-

plasmas,3 not of interest for dense matter, and

Morduchowls and Paulley~s treatment4of a viscous,

heat-conductingperfect gas. The latter attacks the

problem by a normal mode analysis, but carries out

details for weak shocks only, and finds stability.

This study estimates the rate of growth of an

initial disturbance in the shock layer by means of

energy integrals. The results show stability for

initial Mach number close to unity and instability

developing for larger Mach numbers. The equations

are simplifiedby assuming isothermal flow and a

linear unperturbedvelocity profile, establishedby

a mechanism not included in the basic equations,

The effect of viscosity is seen to be stabilizing

although estimates of a critical Reynoldts number

are difficult. The major defect of the approach

taken is that the process establishingthe shock is

not permitted to influence the perturbations. This

deficiencywill hopefully be remedied in further

work.

II. THE

The

gas flow

STEADY SHOCK STRUCTURE

equations for isothermal

are

one-dimensional

(2.1)

;,.



For steady flow Eq. (2.1) becomes Consider the unperturbed flow (p, u., p, T

end th;irdif;!e;~ asecond flow (~, Gi, ~i> 7~j)

or perturbed flow+C2S!2=IJpu g p=o
O dx

(2.2)

with integrals

‘r!. =?. .-T.
lJ 11 lj “

(3.2)

pu = pouo = plul

(2.3)
The second flow also satisfies the basic equations

pouo (U-uo) + c: (p-po) = 0.

If the equations are made dimensionlesswith respect

to the initial values of velocity and density, U.

and PO, Eqs. (2.3) are
Subtractionof Eq. (3.1) from Eq. (3.3) gives equa-

tions for the perturbationquantities

(2.4)

The ranges of u and p are then

l>U>L,
M:

M;>P>l. (2.5)

Since the velocity dependence in the shock is

assumed to be linear and must satisfy the jump con-

ditions, Eq. (2.5), the velocity profile is
(3.4)

. u=q(l+$)-xpJ], -l<.x<,

(2.6)

If the perturbed quantities are small and their

products can be neglected, the linear equations are

where x is dimensionlesswith respect to the shock

half-width. The flow is taken to be from left to

right. For compactness,variables N and M are de-

fined so that Eq. (2.6) can be written
=- a&’+%J (3.s)

axl ax]

u= N - MX . [2.7]
ap’

au au’
‘-.--l+pm+u:m+P ax,

X+ ‘j axj 1 ax] --l
= o.

ax
III. THE BASIC PERTURBATIONEQUATIONS

The assumption of isothermal flow allows the

motion to be describedwithout the energy conserva-

tion equation. The remaining equations are those

for momentum and mass

In two dimensions and with dimensionlessvariables

Wu

‘1
= u(x),

‘2
=0, p=;, Re=#, (3.6)

o .

.
the perturbationequations are

(3.1)

ap ap
a.

E+u” —
+pa. lj.

1 axj 3XJ
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(hi au;

)p~+U~+PUi~ +plu~

I apt aTil + aTi2=. —— —
~2 ax + ax ay s
o

(3.7) (4.4)

(
au; au;

)

la, a% aT+2
‘Eax

+U—-= —---A+ —_~2ayax+ay ’
o

ap’ apI
~+U~+Ui*+pl #+p

(2+9=”

When viscosity effects are treated, the bulk viscos-

ity will be assumed zero so that

(3.8)

Iv. INVISCIDONE-DIMENSIONALINSTABILITY

A particularlysimple situation exists if the

flow is inviscid and one-dimensional. The system

of equations is hyperbolicwith low order terms,

(:)+(3(9=ML)()
(4.1)

or

auI auI

Ti- ‘A%7=BU’” (4.2)

An energy principle for Eq. (4.2) is obtained by

forming the scalar product of v = Pu’ and Eq. (4.2)

after the matrix A has been symmetrizedby a simi-

larity transformationP. This is most easily done

by diagonalizing A. The diagonal matrix is

.( \u++ -0
0

A(x) = = PAP-l . (4.3)

o
J

u-+
o

The matrixes P and P
-1

are

If Riemann variables v are defined by

()
uf+— :0“

V.pu. ,

:0 “
ul-_

Eq. (4.2) is

(4.5)

av

(

.A*+ pap-l
3Z ax )

—+AP~
at

v = PBP-lV.

(4.6)

In component form the equations are

(H
avl

w
u++

o
+

av2

Tr
o

(

2
l+MolJ-~

1 + MOU

or in matrix form

av +A*=~v
X ax ‘“

)()
avl

o
FM

.—
2

av2
u-+ E

0

1 - MOU

)()

‘1

( )
l-MoU-&

‘2
o

(4.7)

(4.8)

The energy principle can now be constructedby

taking the inner product of v with Eq. (4.8). The

inner product is the obvious one

(U,v) = Ulvl + U2V2 (4.9)

and gives with Eq. (4.8)



where

; (V, v) +: (v,Av, = (v,[++4V)
(4.10)

(4.11)

Consider now an interval D < x < C contained in the

shock region and having a domain of dependence also

in the shock region. The boundaries in (x,t) space

of the domain of dependence of [P,C] are the initial

segment [A,B] and the characteristics. Integration

of @q. (4.10) over the domain of dependenceand use

of Greents theorem gives

~c(v,v]dx -[g(v,v]dx=fl(v,[~+ ‘ijv)kk

D

-./
A[(v,Av)nl + (v,v)n2] ds

D

-1

c

g [(v/@n2 + (v,v)n2]ds

The two integrals along the characteristics

positives The energy at time t is

/

c
E(t) = (v,v)dx

D

and at t = O

J

B
E(0) = (V,V)dx

A

(4.12)

are

(4.13)

(4.14)

The energy inequality is then

,(,,.,,0,<J’’”(v[%+ +)dxdt,4,,,

The integrand is a quadratic form for which the sym-

metric part of the matrix (~ + ~)/M has eigen-

values satisfying

4

( )
2

A2=MoU-& +
o

Regardless of the size of

A, is always positive and

largest value of 1 occurs

1.

M., one

greater

(4.16)

of the eigenvalues,

than one. The

at the outlet boundary of

the shock region for U = ~ .~2
The inequalityin

o
terms of Amax is

E(t) = E(0) <MA
J

t E(t)dt
max

o

or from Gronwallls Lemma

goes

This

(4.17)

Mat
E(t) < E(0)e ‘ax . (4.19)

As a function of MO, the growth rate Mimax

to zero as M + I and for M >> l,MAmax = Mo.
u o

would imply stability for weak shocks and a

degree of instabilitydepending on the accuracy of

the estimate for strong shocks.

The characteristicsgive a clear picture of

the flow “inthe shock layer. They are given by

X-@) ( -0) ,x;M(t-to) .
[4.19)

The positive characteristicsall continue through

the layer whereas at the sonic point, x~ = Mo-l/Mo+l,

the negative characteristicis a vertical asymptote

for both the supersonic and subsonic negative char-

acteristics. Points to the left of xs have a do-

main of dependencealso to the left of X5. Points

to the right of xs have a domain of dependence

stretchingboth left and right of x~. The domain of

influence,of course, can only extend downstream of

the shock layer.

An obvious question at this point is whether

the initial value approach is the best one. Why not

impose boundary conditionson the disturbanceeither

on the edges of the shock layer or at infinity as is

done for shear and boundary layer stability? If the

shock layer were infinite in width, as is the case

for constant viscosity,boundary conditions at in-

finity would be natural. For nonlinear viscosity

f

*

.

,
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(Von Neumann-Richtmyerpseudo-viscosityfor example)

it is possible to have a finite width as has been

assumed for this investigation. It is difficult to

see how in a physical way boundary conditionson the

disturbancecould be applied in the interior of the

flow. If homogeneousboundary conditions at infin-

ity are chosen, the standard treatment involves as-
at

suming a time dependence of the form e . An eigen-

value problem for a results, and the stability is

determinedby Re[a]. There can be difficultieswith

this normal mode analysis as pointed out by K. M.

Case.
6

v. INVISCIDTWO-DIMENSIONALINSTABILITY

The two-dimensionalperturbationequations are

+

0

u

0

‘o
000

+ ooJ!-
M:

0+0

0
IOU2

=M 000

-$0 ‘

or

(5.1)

(5.2)

The characteristiccondition for the first order

system is

IAI+MA+vBI=o.

Expanded Eq. (5.3) is

()(A+llu)3-(A+pu) ~=o.
M:

, (5.3)

(5.4)

Solutions of Eq. (5.4) for A are

For real p,v, A is real, and the system is totally

hyperbolic. The bicharacteristicsor rays are given

by

(&uJ2+ ($..=$
(5.6)

which are the equations for particle paths and Monge

cone for small disturbances.

Finding a useful energy principle for Eq.(5.2)

is not so direct as in the one-dimensionalcase.

Then the matrix A could be diagonalizedand was

therefore symmetric. If A is not symmetric

(U,AUX) = (U,h)x - (u+l) - (UX,AU). (5.7)

If A is symmetric

[ 1(U,AUX) = ; (U,i!U)x - (u+l) . (5.8)

For Eq. (5.B) Green’s theorem converts the divergence

term to a surface integral and the term (U,AXU) is a

quadratic form that can be estimated. In the two-

dimensionalcase, Eq. (5.2), both A and B must be

symmetric or symmetrizableby the same transformation

for the energy principle to work. Although the basic

nonlinear hydrodynamicequations are symmetric hyper-

bolic (the matrixes can be simultaneouslysymme-

trized), their linearizationis not always symme-

trizable.
7

Fortunately the matrixes A and B of Eq.

(5.2) can be simultaneouslysymmetrizedby the pos-

itive definite transformation.

5
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1

H= O

0

~ (u>Hu) + & (U,HAU) + $ (u,Hh)

([ 1)
(5.1s)

. u, 2MC+9 u .

0

1

0

(5.9)

D

●

Integrationover a domain of dependence in the shock

region between times t = O and t gives

h(u,Hu)nt+ (u,HAu)nx+ u,HBu)n 1~dsThe conditionsunder

simultaneouslysymmetrized

For a single matrix A, it

which two matrices can be

do not appear to be known.

is known that when the
(5.16)

.

/([
u, 1)2FHC + V U dxdydt.matrix has distinct real eigenvectors,a symmetrizing

positive definite matrix H can be constructedfrom

the matrix T, which diagonalizesA by a similarity
The region of integrationis a truncated conoid.

The energy terms come from

J
(u,Hu)ntdS =

J
(u,Hu)ntdxdy= E(t).

(5.17)

The result is

transformation,in the simple manner

(5.10)

A of Eq.(5.2).

matrix B of

H = T*T.

This process was

Application ofH

Eq. (S.2) almost

applied to the matrix

so determined,to the

symmetrized B. A small change to

the form, Eq.(5.9),resulted in a matrix symmetrizing

both A and B. In the one-dimensionalproblem, A was

diagonalizedand symmetrizedby a similarity trans-

formation,P, and the dependent variable u was

transformedto v by P. The matrix H symmetrizesA

and B by the single matrix multiplication

E(t)-E(0) = -
JI 1(u,Hu)nt+(u,HAu)nx+(u,HBn)ny dS

sides

(5.18)

([
u, 1)2K9iC+~u dxdydt. “

(HA) = (HA)* , (HB) = (HB)* , (5.11) The integral

conoid is

over the sides or mantle of the

not by a similarity transformation. H is positive

definite, however, and is used to form a new inner

product J( [u, Hn + HAn
t

+ HBny]u)dS,
x

(5.19)

and this side surface must be characteristic. The

characteristiccondition is that the matrix in
(u,Hv) .

(5.12)

Eq. (5.19) have a determinant

The energy is then
Unx

+ Un
‘t

o
x ~

o

0 + Un %
‘t x

M:
Un

$
~ ‘t+ ‘n’

o

{
(u,Hu) dx dy . (5.13)

Transformationof Eq. (5.2) by H in this way

and forming the inner product with u gives

O. (5.20)

Two Iationsresult, as in Eq. (5.5)
(s.14)

+ Un
‘t

=0
XJ

(nt + Unx)2 “y.
o (5.21)

The symmetry of HA and HB and their dependenceon x

alone permits Eq. (5.14) to be written

6
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For this symmetricmatrix there is a unitary

formationreducing the form in Eq. (S.19) to

2 ,(nt+unx.qqVI(nt+Unx)+ v

trans-

(5.22)

This form will be positive or negative definite if

+ Unx z O or< O.
‘t

For the lower sheet of the

coniod associatedwith a domain of dependence,the

positive sign is correct. The integral Eq. (S.19)

is positive and Eq. (5.18)yields the inequality

E(t) - E(0) <
[( [ 1)u,2MHC+~ U dxdydt.

(5.23)

An upper bound for the integral in Eq.(5.23)in

terms of the energy, E =
J

(u,Hu)dxdyis obtained

again from the maximum eigenvalueof the symmetric

part of the matrix

( J/2MC + H-l ~ M.

The eigenvaluesof Eq. (5.24) are given by

(
2

~z=l+ U,_;-+-l

2U M: )

~=-1.

.

(5.24)

(5.25)

The maximum A occurs for U = l/M~, the outlet value.
4.

For MO >> 1, Amax = M. In this two-dimensionales-

timate whereas from Eq.(4.16), the one-dimensional

eigenvalue is proportionalMO. The difference is

the result of the new inner product in terms of H

and not of the extra dimensionality. There are,

indeed, no terms from HB contributingto the low

order forcing terms. The new eigenvalue that ap-

pears in Eq.(5.25) is X = - 1, which indicates a sta-

bilizing effect. The significant fact remains that

tilemaximum eigenvalue“ispositive at every point in

the shock layer.

VI. VISCOUS INSTABILITY

When viscosity is included; as in Eq. (3.1),

the equations are not hyperbolic; the concept of

domain of dependence is lost, and a different energy

principle must be found. Serrin’s8 energy

(6.1)

whichhe used to prove uniqueness for viscous, com-

pressible flows, is an obvious candidate. His argu-

ments show that specified velocity perturbationson

all boundary surfaces and specified density pertur-

bation where the normal velocity is into the region

yield a unique solution. In spite of the reserva-

tions expressed at the end of Sec. IV, ui, p’ will

be specified zero on the boundaries of the shock

layer according to the rule just stated. Multipli-

cation of Eq. (3.4) by ui and pt followedby inte-

gration over a fixed volume with use of the boundary ‘

conditions through Green’s theorem gives

J[~p,u, &+ 9P, ‘. au:123+p,2padvcm=
dt - j axj axJ ax]

.J[py(~+#)+p!u,(# tij~)

-Jp,2
2P

‘4nlm .

For a problem with only shear viscosity

(6.2)

With the strainrate tensor D.., Eq. (6.2) can be
11

written



+~D!. D!.
]/

q ,2
- “ ‘;k Re lJ lJ

dv - 2P ‘lnl& “

The incompressibleversion

(6.4)

of Eq, (6.4] is just

~fia- J[ 2u!u!D.. 1+—D!. D!. dvp dt 1]1] pRe lJ 1]
(6.5)

which contains only primed and unprimed quantities

and has not been linearized. Equation (6.5) is the

basis of many nonlinear stability analyses for vis-

cous fluids (Serring).

For the shock stability problem, the nonlinear

Eq. (6.4) appears formidable. The linearized form

of Eq.(6.4) will thereforebe used. Third and

higher order terms in primed quantitiesbeing neg-

lected Eq. (6.4) reduces to

du.
+ PU!U!D. + P’U: ‘- p’D’lJlj 1 dt kk

IJ+&D; jD;j dv - P IZunds
~P1l

The unprimed nonzero cpantities for the in.

one-dimensionalsteady shock are

aul

‘1 =U(x), P=U-l, ~=~=-M,

.~=-M
’11 dx

The linearizedenergy equation is then

(6.6)

tially

(6.7)

~= J[P(u\2+P2)++PPtu\~

au!
+p2pr --l+ 1! dU-~D,

3XJ ‘“l”~ ~ kk ‘6.8)

2+—D!.D!. IJdV - ~ ‘z Unlds .
Re lJ lJ 2 P

According to Serrin’s uniqueness theorem p’ in the

surface integral at the outlet shock b?undary may

not be taken zero. The integral is, however, posi-

tive, and Eq. (6.8) may be converted to an inequal-

P’U’ UM -~D’ 2
~2 kk+~
o

If Eq. (6.9) is simplified for the

Cl&3 295
dx+pp

3XJ

‘ij Dij
1
dv. (6.9)

one-dimensional

case,

This

from

that

it is

(6.10)

inequalitycould have been obtained directly

the one-dimensionalEqs. (4.1) It is clear

much of the inaccuracy of any estimate will be

the result of the lost flux terms.

The question is what kind of bounds can be

obtained from the inequality Eq. (6.10)? Compared

to the hyperbolic inequality,Eq. (6.10) is compli-

cated by the presence of the x-derivativesof p!

and Ut; it is not a quadratic form in P!,u!. Al-

though the mathematicalnature of the approximation

is not clear, the form of the inequality,Eq. (6.10),

suggests the followingapproach. Suppose

&+MuP’-
1 ap’—— .
~z ax

pu’ci

o

1 au’—— .
- Uz ax pp’a

(6.11)

I

8
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If such an a can be found, the nonviscouspart of

the integral in Eq. (6.10)would be 2aE(t). The

differentialEqs.(6.11) are for u’,p’ satisfying

homogeneousboundary conditions as described. They

are also the inviscid equationsminus the flux terms.
at

where time dependence is e . This situation is
10

reminiscentof viscous Taylor instabilitybased on

inviscid kinematics. The question asked above is

changed to what relation does the a in Eq. (6.11)

bear to a in the full equations? Before looking at

that and before estimating the viscous terms we will

see what can be said about the a in Eq. (6.11) and

whether it is physically sensible.

First in Eq. (6.11) U is introducedas an inde-

pendent variable. When this is done, the equations

are
.,

dp‘

()

~2 a—. –-1 u’-M~IJp’
dUoM

du‘
m (

.u:-

Eliminationof p’

d2u‘
–(

+M:u
dU2

)lP’++.
gives the single equation

)
2 du’

-Um

This

‘{$-M:[(:-1)2+11}U=0

is of standard Strum-i.,iouvilleform with

(6.12)

2
~+ P(lJ)f&+
du [q(u) - ‘21U’=0

()u’(1) = u’ ~
M;

=0.

(6.13)

(6.14)

The problem can be made self-adjointby introducing

a new function

h(U) = efp (6.1S)

to give

d
m ( )[ 1h ~+ h(U)q(U) - h(U)A2 U’ = o. (6.16)

IfA=ikl/2,hq=f>0,h >0,

()+h~+(f+hk)ui=o (6.17)

is a regular Sturm-Liouvillesystem with an infinite

sequence of real eigenvaluesk. < kl < - - with

Al kn = - . Since

~= jh[(%r-2:]du
1

;
hu‘2dU

(6.18)

there is a possibility of a finite number of k. < 0.

The number of negative k depends on the factorl~ =
U2

q(U) which has a range (2, 2M~). ForMo >> 1, k

will be more negative and AL . - k more-positive.

The growth rate a is related to AL by

(6.19)

Since

,2=}[%w’ndu<2M: ,620,
./

,
hu’2dU

for large Mo, a is proportional to Mo. For M. + 1,

a+o. This is essentially the behavior found be-

fore from the one-dimensionalinviscid hyperbolic

analysis. The approximationsmade in Eq. (6.12) so

far do not produce inconsistent results.

The next step is to examine the viscous inte-

gral which can be expressed in terms of a and the

primed variables

dissipation is

U’,p’. The integral involving

9

.



/(:)’ ‘x ‘\”’[”’”(:-‘)‘?+.
(6.21)

This can be estimated using upper bounds for AL, U

/( )au’ 2
K

dx<4M2M:E(t) .

The energy inequalitythat results is

Since for M. >> 1, 2a ss ~Mo in this case

(6.22)

(6.23)

(6.24)

where Re . wuopo/po. For weak shocks Eq. (6.19) and

the other inviscid results show that M E a B O.

The question remains whether a as defined by

Eq. (6.11) and the estimates based on it, particu-

larly for M. >> 1, are good enough for the final in-

equality Eq. (6.23) to be useful. The full inviscid

equations do not reduce to a standard Sturm-Liouville

problem for which the eigenvalueshave a known dis-

tribution as was the circumstancefor Eq. (6.11) so

that a numerical solution of the full viscous equa-

t$ons is probably necessary to determine the validity

of the viscous estimates. Before a numerical treat-

ment is deserved, model equationswith more realis-

tic physics should be settled upon.

VII. CONCLUSIONS

On the basis of simplifiedcompressibleflow

equations the energy estimates for inviscid shock

layer growth rates in one and two dimensions show

similar instabilitywith the rate increasingwith

the initial Mach number, Mo, and the rate tending

to zero as M + 1. The effect of viscosity in the
o

one-dimensionalcase is to reduce the instability.

If Re is sufficiently large for a given Mo, the

perturbationswould be damped. Since the growth

rates

ties,

10

are based on upper bounds for various quanti-

there is reason to question any numerical

values for the rates that could be obtained by pre-

scribing specificallythe initial quantitiesMo,

COD PO* w, vo“
The assumption,common throughout,that w,

the shock width, remains constant is probably not so

questionableas the omission of the processes pro-

ducing that width from the basic equations. In some

way the model used supposes that there are two

length scales, one determining the width, and the

other shorter scale associatedwith the perturba-

tions and that for small perturbationsthere is no

couplingbetween the processes. The fact that there

can be more than one length scale connectedwith
1shock structure is not is doubt. For ionizing shocks

calculationsshow as many as four internal scales

with the strength of the shock determiningtheir im-

portance.

The practical question behind this investiga-

tion is if shocks can be internallyunstable,what

is the final effect on a flow with shocks and is it

significant? The particular perturbationsadmitted

here, confined to the shock layer, certainly indicate

a degree of instabilitydepending on the shock

strength. Such perturbationsare, however, not the

ones most likely to occur in realistic, time-depend-

ent situations,although they could be injected in

a steady shock. The most likely perturbations

would exist ahead of the shock, would flow into it,

be amplified in the shock layer, flow downstream

and be damped. If this picture is correct, the

final effect would be to broaden the shock by dis-

tance over which amplifiedperturbationssubside.

This assumes that the perturbationson the average

do not increase the initial Mach number. If the

perturbationscontained sufficient energy to increase

M. the shock speed would adjust but width of the

shock could still be affected. In many respects it

appears that the problem of interior instabilityof

a shock encounteringdisturbancesin the inflow is

similar to that of a shock running into a region with

suitable scales of turbulenceor inhomogeneity. For

the turbulent problem there is some theoreticaland
10,11

experimentalevidence that for weak shocks the

width of the shock layer can be significantlyin-

creased. The effects of shock strength and scale of

turbulencehave not been considered to my knowledge.

In summary, for the simplifiedmodel assumed,

internal shock instabilityappears likely. More

*

&



realisticmodels are needed to determinewhether the

growth rates can be high enough to have practical

significance. At large Mach numbers, experimental

evidence of the effects of instabilityon the shock

structurewould be very difficult to obtain. At

lower Mach numbers, experimentsshould be possible

but it might prove difficult to determine whether

widening, if it occurred,was attributablepredomi-

nantly to instability.
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