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STABILITY OF THE FLOW IN A SHOCK LAYER
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%%w =il " ‘The interior stability of an isothermal shock is studied as an initial
=M value problem for inviscid one- and two-dimensional perturbations and as an
== initial-boundary value problem for viscous one-dimensional perturbatioms.
=== "’t .. . The initial steady velocity profile is linear with finite width. Results,

.

- Obtained from energy integral estimates, indicate stability at low Mach
1. numbers and instability for large Mach numbers.

I. INTRODUCTION

The structure of strong, steady shocks has been
investigated for many physical processes, atomic and
nuclear. The emphasis has been on shocks in gases,1
usually with low density. Particle transport has
been included in some approximation. For dense
gases, liquids, or solids, the strong shock structure
problem has received less attention although many
numerical schemes for, treating nonsteady shocks are
in use. Most of the schemes are based on the ideal-
ization of a discontinuity or on a nonphysical dissi-
pation mechanism and not on reproducing the struc-
tural details that the physics would show. The
adequacy of the numerical shock schemes depends on
whether the physical shock thickness is small com-
pared to the other lengths in the problem. If that
is the situation, the details in the shock are un-
important. With the present uncertain state of
knowledge of transport coefficients2 and reaction
rates in dense materials, it may be questionable
whether detailed calculations of shock structure
could have a useful level of credibility.

There is, in addition, the question of whether
very strong steady shocks can be internally unstable
to the degree that their thickness cannot always be
predicted on the basis of a steady analysis. Such
internal shock instability has been investigated in

only two circumstances to my knowledge; collisionless

3 .
plasmas,™ not of interest for dense matter, and

Morduchow's and Paulley's treatment4 of a viscous,
heat-conducting perfect gas. The latter attacks the
problem by a normal mode analysis, but carries out
details for weak shocks only, and finds stability.

This study estimates the rate of growth of an
initial disturbance in the shock layer by means of
energy integrals. The results show stability for
initial Mach number close to unity and instability-
developing for larger Mach numbers. The equations
are simplified by assuming isothermal flow and a
linear unperturbed velocity profile, established by
a mechanism not included in the basic equations.
The effect of viscosity is seen to be stabilizing
although estimates of a critical Reynold's number
are difficult. The major defect of the approach
taken is that the process establishing the shock is
not permitted to influence the perturbations. This
deficiency will hopefully be remedied in further
work.

II. THE STEADY SHOCK STRUCTURE

The equations for isothermal one-dimensional
gas flow are

(2.1)



For steady flow Eq. (2.1) becomes

pu ax *C I 0 —éﬁgl 0 (2.2)
with integrals
pu = pouo = plul
(2.3)

2
PY, (u-u) + ¢ (p-p ) = 0.

If the equations are made dimensionless with respect
to the initial values of velocity and density, u
and po, Eqs. (2.3) are

pu=1,

1
—— (2.4)
M M
o o
The ranges of u and p are then
1 2
1>u>-—2—,Mo>p>1. (2.5)
M
o

Since the velocity dependence in the shock is
assumed to be linear and must satisfy the jump con-
ditions, Eq. (2.5), the velocity profile is

1 1 1 ’
u=—=—11 + =1- x - — , 1< x<1
[+] [+]
(2.6)

where x is dimensionless with respect to the shock
half-width.

right.

The flow is taken to be from left to
For compactness, variables N and M are de-
fined so that Eq. (2.6) can be written
u =N - Mx (2.7)
III. THE BASIC PERTURBATION EQUATIONS
The assumption of isothermal flow allows the
motion to be described without the energy conserva-

‘tion equation. The remaining equations are those

for momentum and mass

du, du, 9T, .
P (sfl + U, ——%) = - 227-+ —1)

) ax ax* ax?
(3.1)
d .
P + ap u
o * U, +p 2L .
at J axj ° 3xJ °

Consider the unperturbed flow (p, Uss Py Tij) and a

second flow (@, ﬁi, ﬁi, Tij) and their difference
or perturbed flow

p"a-p,

(3.2)
T, =T,, - T.; .
ij ij ij

The second flow also satisfies the basic equations

U, 3, ~ 3T, .
5( i,a. __%>= .9, _ij

- (3.3)
ot axi axj

Subtraction of Eq. (3.1) from Eq. (3.3) gives equa-
tions for the perturbation quantities

aui aui aai aﬁi aﬁi
~ — : T ' u,
P\ee ” uj ax’ ' uJ axJ MR\ D uJ S;T

:
%

) (3.4)

If the perturbed quantities are small and their

products can be neglected, the linear equations are

< du} au'i> du, ( du, du,
pla—+u, —5J]+ pu! +p'{x—+u
at 35 e at P )

X
at! .
= - gp;l + _jLJ_ (3.5)
axt  ax?

u u!
', u, 22; +ul 2Py o —4 . p

- 0.
G g d T g ax? ax

In two dimensions and with dimensionless variables

1 ¥
u = U(x), u, = 0, p= T Re = Tt (3.6)

the perturbation equations are
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ot x 1 3x 3x
=_L§-&,+3Th a'tiz
Mg Ix Ix Yy (3.7)
1
(3‘i+ Ui‘i)_ 1o, T ¥
P\3t x /T T2 % 3x 3y
[o)

du!  Jul
CIPTE P SO O e ) Y

at x Y] ax x ox 9y /

When viscosity effects are treated, the bulk viscos-

ity will be assumed zero so that

L,
t o= —
Tij Re axj + axi . (3.8)

Iv. INVISCID ONE-DIMENSIONAL INSTABILITY
A particularly simple situation exists if the
flow is inviscid and one-dimensional. The system

of equations is hyperbolic with low order terms,

1 1
M
+ o =M

3p" 1 3o’ 1

w/ \i v/ \ox Y\
(4.1)

or
1 1
R L (4.2)

An energy principle for Eq. (4.2) is obtained by

forming the scalar product of v = Pu' and Eq. (4.2)
after the matrix A has been symmetrized by a simi-
larity transformation P. This is most easily done

by diagonalizing A. The diagonal matrix is

U + i%— -0 \\
° -1
A(x) = = PAPT . (4.3)
' v / |

1
0 "M
[o)

The matrixes P and P! are

1 L 1 1
Mo -1 1
P = VP =3
U M M
1 - o _ o
o [§] U
(4.4)
If Riemann variables v are defined by
U
1] = n!
u' o+ p
o
v =Pu = > (4~5)
U
t _ Moat
u M P
o

Eq. (4.2) is

-1 -1
3_"+A3_"+(p P, Ap 3p—) v = pBP" v,

it ax at ax
(4.6)
In component form the equations are
v v
1 1
v U + — 0
at Mo Ix M
+ )
avz o v 1 avz
at M Ix
[+]
1+MU--2 1 -MU v
o MU [¢] 1
[+]
1 +MU 1 -({MU - 2 v
o o MU 2
[+]
4.7)
or in matrix form
v vV _ a .
E-'bl\&-— v . (4'8)

The energy principle can now be constructed by
taking the inner product of v with Eq. (4.8). The

inner product is the obvious one

(u,v) = uv ey, (4.9)

and gives with Eq. (4.8)



2w+ ) = (v, L

(4.10)
where
2
MU-W l—MOU
M A °
==+ 2B =M
x 2
1 +MU - (M U - ——)
o o M
[*]
(4.11)

Consider now an interval D € x < C contained in the
shock region and having a domain of dependence also
in the shock region. The boundaries in (x,t) space
of the domain of dependence of {P,C] are the initial
segment [A,B] and the characteristics. Integration
of Eq. (4.10) over the domain of dependence and use

of Green's theorem gives

f (v, v)dx / (v, ) dx =//(

A

=+ 28 )dx dt
A
- / [(v.Av)n, + (v,v)n,] ds
D

c
B [ [(v,Av)n, + (v,v)n,] ds

(4.12)

The two integrals along the characteristics are

positive.s The energy at time t is

c
E(t) -/ (v,v)dx

D

(4.13)

and at t = 0

B
E(0) = / (v,v)dx

A

(4.14)

The energy inequality is then

-0 < ff (v [+ 8] ) o

(4.15)

The integrand is a quadratic form for which the sym-

metric part of the matrix (% + 2B /M has eigen-

values satisfying

(4.16)

Regardless of the size of Mo’ one of the eigenvalues,
A, is always positive and greater than one. The

largest value of A occurs at the outlet boundary of

the shock region for U = —%—-. The inequality in
Mo
terms of A is
max
t
E(t) = E(0) < MAmax E(t)dt (4.17)
[}
or from Gronwall's Lemma
M}‘maxt
E(t) < E(0)e (4.18)
As a function of M_, the growth rate MA
o max

goes to zero as M+ 1 and for M_ >> 1, MA = M .
o o max o
This would imply stability for weak shocks and a
degree of instability depending on the accuracy of
the estimate for strong shocks.
The characteristics give a clear picture of

the flow in the shock layer. They are given by

1
N & =
M -M(t-t
< = of {, . e-M(t—to) +xe ( o)
M [¢)
(4.19)
The positive characteristics all continue through

= M-1/M +1,

the negative characteristic is a vertical asymptote

the layer whereas at the sonic point, Xg

for both the supersonic and subsonic negative char-
acteristics. Points to the left of X have a do-
main of depeundence also to the left of X - Points
to the right of Xg have a domain of dependence

The domain of

influence, of course, can only extend downstream of

stretching both left and right of X .

the shock layer.

An obvious question at this point is whether
the initial value approach is the best one. Why not
impose boundary conditions on the disturbance either
on the edges of the shock layer or at infinity as is
If the

shock layer were infinite in width, as is the case

done for shear and boundary layer stability?

for constant viscosity, boundary conditions at in-

finity would be natural. For nonlinear viscosity




(Von Neumann-Richtmyer pseudo-viscosity for example)
it is possible to have a finite width as has been
assumed for this investigation. It is difficult to
see how in a physical way boundary conditions on the
disturbance could be applied in the interior of the
flow. If homogeneous boundary conditions at infin-
ity are chosen, the standard treatment involves as-
suming a& time dependence of the form et An eigen-
value problem for o results, and the stability is
determined by Re[a]. There can be difficulties with
this normal mode analysis as pointed out by K. M.

Case.6

V. INVISCID TWO-DIMENSIONAL INSTABILITY

The two-dimensional perturbation equations are

1 1
u voo U\ /™
at MZ Ix

o
aua u!
ETa I x
2 1 3p!
3t T ax
0 0 0 duj
. 9y
1
oo [ ] e
M2 dy
o
1 '
0 ] 0 3y
2 '
1 0 U u1
=M 0 0 0 u%
- Ji 01 p'
U
or
%% + A %% + B %% = MCu . (5.2)

The characteristic condition for the first order

system is

[AI + wA + vB| = 0. (5.3)
Expanded Eq. (5.3) is
o+ ul)S - (4 + W) “z%zw. (5.4)
o
Solutions of Eq. (5.4) for A are
A=—pu1—‘/‘:M—ZT"T,-uU. (5.5)
o

For real u,v, A is real, and the system is totally

hyperbolic. The bicharacteristics or rays are given
by

dx

at - U

(5.6)
2 2
dx ayyY _ 1
-y (@) -
[o]

which are the equations for particle paths and Monge
cone for small disturbances.

Finding a useful energy principle for Eq. (5.2)
is not so direct as in the one-dimensional case.
Then the matrix A could be diagonalized and was

therefore symmetric. If A is not symmetric

(u,Aux) = (u,Au)x - (u,Axu) - (ux,Au). (5.7)
If A is symmetric
(w,Au) = = [(u,Au)x - (u,Axu)] (5.8)

For Eq. (5.8) Green's theorem converts the divergence
term to a surface integral and the term (u,Axu) is a
quadratic form that can be estimated. In the two-
dimensional case, Eq. (5.2), both A and B must be
symmetric or symmetrizable by the same transformation
Although the basic

nonlinear hydrodynamic equations are symmetric hyper-

for the energy principle to work.

bolic (the matrixes can be simultaneously symme-

trized), their linearization is not always symme-
trizable.7 Fortunately the matrixes A and B of Eq.
(5.2) can be simultaneously symmetrized by the pos-

itive definite transformation.



1 0 0
H={0 1 0 . (5.9)
2
0 0 97
M
o

The conditions under which two matrices can be
simultaneously symmetrized do not appear to be known.

For a single matrix A, it is known that when the

matrix has distinct real eigenvectors, a symmetrizing

positive definite matrix H can be constructed from
the matrix T, which diagonalizes A by a similarity

transformation, in the simple manner

H = T*T.

This process was applied to the matrix A of Eq. (5.2).
Application of H so determined, to the matrix B of
Eq. (5.2) almost symmetrized B. A small change to
the form, Eq. (5.9), resulted in a matrix symmetrizing
both A and B.

diagonalized and symmetrized by a similarity trans-

In the one-dimensional problem, A was

formation, P, and the dependent variable u was
transformed to v by P. The matrix H symmetrizes A
and B by the single matrix multiplication

(HA) = (HA)> , (HB) = (HB)* ,

not by a similarity transformation. H is positive

definite, however, and is used to form a new inner

product
(u,Hv) (5.12)
The energy is then
ﬁu,Hu)dx dy . (5.13)

Trans formation of Eq. (5.2) by H in this way

and forming the inner product with u gives

(u,H %%) + (u,HA %%) + (u,HB %;): M(u,HCu).
(5.14)

The symmetry of HA and HB and their dependence on x
alone permits Eq. (5.14) to be written

(5.10)

(5.11)

a—at- (u,Hu) + '()a_x (u,HAu) + %- (u,HBu)
J(HA
- (s [omc 2] W)

Integration over a domain of dependence in the shock

(5.15)

- region between times t = 0 and t gives

f[(u,Hu)nt + (u,HAu)nx + u,HBu)ny] ds

= /-(1, [ZLHC + a—gxﬁl] u) dx dy dt .

The region of integration is a truncated conoid.

(5.16)

The energy terms come from

f (u,Hu)ntdS = f(u,Hu)ntdx dy = E(t).
(5.17)

The result is

E(t)-E(0) = - 5/.[tu,Hu)nt+(u,HAu)nx+(u,HBn)ny] ds
es

si

(5.18)
+ / (u, [ZMHC + %(xﬁl]u) dx dy dt .

The integral over the sides or mantle of the

conoid is

f (u, fin, + HAn_ + HBny]u)dS, (5.19)
and this side surface must be characteristic. The
characteristic condition is that the matrix in

Eq. (5.19) have a determinant

Unx
nt + Unx 0 ;7—
o
Un
0 n, + Un =X |=0. (5.20)
t 2
Mo
Unx Un
- X n_ + Un
M2 MZ t X
o o
Two equations result, as in Eq. (5.5)
2 2
2 nx +1
nt+Un—0, (nt+Unx) -——2—L.
My (5.21)




For this symmetric matrix there is a unitary trans-

formation reducing the form in Eq. (5.19) to

/nzm2
2 X'y

2
vl(nt+Unx) v, nt+Unx- Mo
(5.22)
2 2
2 n+n
* vz |ntUng M

This form will be positive or negative definite if

n, +Un_ >0 or < 0.
t X

coniod associated with a domain of dependence, the

For the lower sheet of the

positive sign is correct. The integral Eq. (5.19)

is positive and Eq. (5.18) yields the inequality

E(t) - E(0) < /(u,[ZMHC . 3—3()(@1] u) dx dy dt .
(5.23)

An upper bound for the integral in Eq. (5.23) in
terms of the energy, E = f(u,Hu)dxdy is obtained
again from the maximum eigenvalue of the symmetric
part of the matrix

(mc +p! M)/w
9x

(5.24)
The eigenvalues of Eq. (5.24) are given by
2
e (P he e )
2U M
o
(5.25)

The maximum A occurs for U = llMg, the outlet value.

For Mo >> 1, A « Mg in this two-dimensional es-

timate whereasmiiom Eq. (4.16), the one-dimensional
eigenvalue is proportional Mo' The difference is
the result of the new inner product in terms of ii
and not of the extra dimensionality. There are,
indeed, no terms from HB contributing to the low
order forcing terms. The new eigenvalue that ap-
pears in Eq. (5.25) is A = - 1, which indicates a sta-
bilizing effect. The significant fact remains that
the maximum eigenvalue is positive at every point in

the shock layer.

principle must be found.

VI. VISCOUS INSTABILITY

When viscosity is included; as in Eq. (3.1),
the equations are not hyperbolic; the concept of
domain of dependence is lost, and a different energy

. 8
Serrin's energy

E(t) =/—g—(u]'(u]'(+p'2) av =/-g- (u'2+p'2) &,

(6.1)

which he used to prove uniqueness for viscous, com-
pressible flows, is an obvious candidate. His argu-
ments show that specified velocity perturbations on
all boundary surfaces and specified density pertur-
bation where the normal velocity is into the region
yield a unique solution. In spite of the reserva-
tions expressed at the end of Sec. IV, ui, p' will
be specified zero on the boundaries of the shock

layer according to the rule just stated. Multipli-

cation of Eq. (3.4) by ui and p' followed by inte-

gration over a fixed volume with use of the boundary

conditions through Green's theorem gives

u 2 du!
p —3 |av
ax?

Ty ! a4 o~ ~ ~
- 0 uiuj (_a_u_l_ + El) + ptu! (.a_li + U .a_u_1.>
2 gt i\at 3 3ax)

pp'u; %_. pp'z —J—J +p

d4E _ |
dt ax? 3x

3P uinlds . 6.2)

For a problem with only shear viscosity

2 : 1 u! du!
1!, = 2 D! i, ), (6.3)

1j  Re 7ij " Re axj axi

With the strainrate tensor Dij' Eq. (6.2) can be
written



o ., u',
dE _ _ vt 9B _ 273, 42
at f[""“'j Free g ee

x x X

. au i au
LET\ 1 —_— .__.
+ puiuj Dij + p' u 3t J ax

- pP'D! 2 ] ] f....
POk * e iP5 |9V -/ 3

O

2

|

p ulnlds .
(6.4)

The incompressible version of Eq. (6.4) is just

_]_'..E - 1 1 l 1
L& f[ by ¢ ois 1JDIJ] av (6.5)

which contains only primed and unprimed quantities
and has not been linearized. Equation (6.5) is the
basis of many nonlinear stability analyses for vis-
cous fluids (Serring).

For the shock stability problem, the nonlinear
Eq. (6.4) appears formidable. The linearized form
of Eq. (6.4) will therefore be used. Third and
higher order terms in primed quantities being neg-
lected Eq. (6.4) reduces to

Bu du!
d
—f[L v Al

ax? ax? ax?
du1
—_— ]
+ puluJD1J p' u at p' Dkk
s+ 2ot |av- [20%nds (6.6)
Re "ij iJ 2 171 ) :

The unprimed nonzero quantities for the initially

one-dimensional steady shock are

du
= =yl L.4U_
u]. U(x)l P U ’ 3% dx =T M:
6.7)
du
Dy "ax =M

The linearized energy equation is then

4 _ 2, y2)4u dp
a - f[" (“'1 v e )dx"""'“'l ax
EJ_ p'
+p p' +p u U - D! (6.8)
3x dx Mi kk

L 'p! 14 12 .
" Re DlJ 1J] av fZ'p Unlds

According to Serrin's uniqueness theorem p' in the
surface integral at the outlet shock boundary may

not be taken zero. The integral is, however, posi-
tive, and Eq. (6.8) may be converted to an inequal-

ity
dE < - v 2 12 ' g_e 21 au’i
dt - P u]. +p M+ pp ul dx + PP

_ Aty _.L' 2
p'u’ UM ) Dy * Re i ij] dv. (6.9)
o

If Eq. (6.9) is simplified for the one-dimensional

case, it is

(6.10)

This inequality could have been obtained directly
from the one-dimensional Eqs. (4.1) It is clear
that much of the inaccuracy of any estimate will be
the result of the lost flux terms.

The question is what kind of bounds can be
obtained from the inequality Eq. (6.10)? Compared
to the hyperbolic inequality, Eq. (6.10) is compli-
cated by the presence of the x-derivatives of p'
and u'; it is not a quadratic form in p',u'. Al-
though the mathematical nature of the approximation
is not clear, the form of the inequality, Eq. (6.10),

suggests the following approach. Suppose

.Biu_.,pMUp _._]'__a.&'.xpu'a

U 2 9x
MO
(6.11)
M 1 3u'
R
U 03 T




If such an o can be found, the nonviscous part of
the integral in Eq. (6.10) would be 2aE(t). The
differential Eqs. (6.11) are for u',p' satisfying
homogeneous boundary conditions as described. They
aiq also the inviscid equations minus the flux terms
where time dependence is eat This situation is
reminiscent of viscous Taylor10 instability based on
inviscid kinematics. The question asked above is
changed to what relation does the o in Eq. (6.11)
bear to a in the full equations? Before looking at
that and before estimating the viscous terms we will
see what can be said about the o in Eq. (6.11) and
whether it is physically sensible.

First in Eq. (6.11) U is introduced as an inde-
pendent variable. When this is done, the equations

are

du [¢]
(6.12)
du' _ a v, ul
v 'U(M'l)" TR
Elimination of p' gives the single equation
Lo, (2 y - )@
dUz [¢] u/du
2
+ {12._ MZ [(.g.'. - 1) + 1]}u =0 (6.13)
o M
U
This is of standard Strum-iiouville form with
dzu' du' 2
72~ * PU) g+ f{a(W) - A" ju' =0
du
(6.14)

1
u)y=uf5)=0
o

The problem can be made self-adjoint by introducing

a new function

fp

h(U) = e (6.15)

to give

4 (h %;—')+ [h(U)q(U) - h(U)Az] u' = 0. (6.16)

1/2

If A=ik/% hq=£>0, h>o0,

d du' _
Fil (h EU—)* (f + hk)u' =0 (6.17)

is a regular Sturm-Liouville system with an infinite

sequence of real eigenvalues ko < k1 < - - with

%i& kn =%

1
fu' :_u( %;—) au + kfuzhdu +ffu'2du =0,

Since

(6.18)

there is a possibility of a finite number of ki < 0.
The number of negative k depends on the factor j% =
U
q(U) which has a range (2, ZMg). For Mo >> 1, k
will be more negative and Az = - k more positive.

The growth rate a is related to lz by

Q
n
=
—
)

-5 - 1 . (6.19)

Since

2 A2
hj2u (Vg < o
2 U2 du [V}
A

= , (6.20)

f hu' 24y

for large Mo' o is proportional to Mo'

For Mo + 1,
o + 0. This is essentially the behavior found be-
fore from the one-dimensional inviscid hyperbolic
analysis. The approximations made in Eq. (6.12) so
far do not produce inconsistent results.

The next step is to examine the viscous inte-
gral which can be expressed in terms of o and the
primed variables u', p'. The integral involving

dissipation is



2
du' B 2f . fa u'
/(——ax) dx—/M [pu(ﬁ-1)+T dx.
This can be estimated using upper bounds for Az, U

2
du’' 2 2
/(‘a—x—') dx < 4M MOE(t)

(6.21)

(6.22)
The energy inequality that results is
g <5 [a -2 MZM‘Z’]E(Q (6.23)
dt ’ Re '
Since for M, >> 1, 2a% /7Mo in this case
Eam [r - %] E(t) (6.24)

where Re = wuopoluo. For weak shocks Eq. (6.19) and
the other inviscid results show that M= o = 0.

The question remains whether o as defined by
Eq. (6.11) and the estimates based on it, particu-
larly for Mo >> 1, are good enough for the final in-
equality Eq. (6.23) to be useful. The full inviscid
equations do not reduce to a standard Sturm-Liouville
problem for which the eigenvalues have a known dis-
tribution as was the circumstance for Eq. (6.11) so
that a numerical solution of the full viscous equa-
tions is probably necessary to determine the validity
of the viscous estimates. Before a numerical treat-
ment is deserved, model equations with more realis-

tic physics should be settled upon.

VII. CONCLUSIONS

On the basis of simplified compressible flow
equations the energy estimates for inviscid shock
layer growth rates in one and two dimensions show
similar instability with the rate increasing with
the initial Mach number, Mo’ and the rate tending
to zero as Mo + 1. The effect of viscosity in the
one-dimensional case is to reduce the instability.
If Re is sufficiently large for a given Mo, the
perturbations would be damped. Since the growth
rates are based on upper bounds for various quanti-

ties, there is reason to question any numerical
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values for the rates that could be obtained by pre-
scribing specifically the initial quantities M,

C,OO,W,U

o o’

The assumption, common throughout, that w,

the shock width, remains constant is probably not so

.questionable as the omission of the processes pro-

ducing that width from the basic equations. In some
way the model used supposes that there are two
length scales, one determining the width, and the
other shorter scale associated with the perturba-
tions and that for small perturbations there is no
coupling between the processes. The fact that there
can be more than one length scale connected with
shock structure is not is doubt. Por ionizing shocks1
calculations show as many as four internal scales
with the strength of the shock determining their im-
portance.

The practical question behind this investiga-
tion is if shocks can be internally unstable, what
is the final effect on a flow with shocks and is it
significant? The particular perturbations admitted
here, confined to the shock layer, certainly indicate
a degree of instability depending on the shock
strength. Such perturbations are, however, not the
ones most likely to occur in realistic, time-depend-
ent situations, although they could be injected in
a steady shock. The most likely perturbations
would exist ahead of the shock, would flow into it,
be amplified in the shock layer, flow downstream
and be damped. If this picture is correct, the
final effect would be to broaden the shock by dis-
tance over which amplified perturbations subside.
This assumes that the perturbations on the average
If the

perturbations contained sufficient energy to increase

do not increase the initial Mach number.

Mo the shock speed would adjust but width of the
shock could still be affected. In many respects it
appears that the problem of interior instability of
a shock encountering disturbances in the inflow is
similar to that of a shock running into a region with
suitable scales of turbulence or inhomogeneity. For
the turbulent problem there is some theoretical and

10,11 that for weak shocks the

experimental evidence
width of the shock layer can be significantly in-
creased. The effects of shock strength and scale of
turbulence have not been considered to my knowledge.
In summary, for the simplified model assumed,

internal shock instability appears likely. More




realistic models are needed to determine whether the

growth rates can be high enough to have practical
significance. At large Mach numbers, experimental
evidence of the effects of instability on the shock
structure would be very difficult to obtain. At
lower Mach numbers, experiments should be possible
but it might prove difficult to determine whether
widening, if it occurred, was attributable predomi-

nantly to instability.
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