
LAMS-2607

CIC-14”REPORTCOLLECTION
REPRODUCTION

con

LOS ALAMOS SCIENTIFIC LABORATORY
OF THEUNIVERSITYOF CALIFORNIAo LOSALAMOS NEW MEXICO

THE lVY SYSTEM

. .

. I

LEGAL NOTICE

l%isreportwas preparedas an accountofGovern-
ment sponsoredwork. NeithertheUnitedStates,northe
Commission,noranypersonactingon behalfoftheCom-
mission:

A. Makesanywarranty orrepresentation,expressed
or implied,withrespecttotheaccuracy,completeness,or
usefulnessoftheinformationcontainedinthisreport,or
thattheuseofanyinformation,apparatus,method,or pro-
cessdisclosedinthisreportmay notinfringeprivately
ownedrights;or

B. Assumes any liabilitieswithrespecttotheuse
of,or fordamagesresultingfrom theuseofanyinforma-
tion,apparatus,method,or processdtsclosedinthisre-
port.

As usedintheabove,“personactingonbehalfof the
Commission”includesany employeeor contractorofthe
Commission,oremployeeofsuchcontractor,totheextent
thatsuchemployeeor contractoroftheCommission,or
employeeof such contractorprepares,disseminates,or
providesaccessto,anyinformationpursuantto hisem-
ploymentorcontractwiththeCommission,orhisemploy-
mentwithsuchcontractor.

PrintedinUSA Price$3.50. Avatlablefrom the

OfficeofTechnicalServices
U. S.DepartmentofCommerce
Washington25,D. C.

LAMS-2607
MATHEMATICS AND COMPUTERS
(TID-4500,16thEd.)

I
I

LOS ALAMOS SCIENTIFIC LABORATORY
OF THE UNIVERSITYOF CALIFORNIA LOSALAMOS NEW MEXICO

REPORT WRITTEN August1961

REPORT DISTRIBUTED: October6,1961

THE F/Y SYSTEM

by

ForrestW. Brinkley
BengtG. Carlson

ChesterS. Kazek,Jr.
ClarenceE. Lee
ZaneC. Motteler

MANUAL EDITOR: ZaneC. Motteler

ContractW-7405-ENG. 36 withtheU. S.AtomicEnergyCommission

All LAMS reports are informal documents, ueually prepared for a special pur-
pose aid primarily prepared for uee wfttdn the Laheratory rather than for
general distribution. TM report hae net been edited, reviewed, or verified
for aoouracy. All LAMS reports exprese the views of the authors ae of the
time they were written and do net nec.essarfly reflect the epinions of the Loe
Alamos Scientific Laboratory or the final opinion of tbe authors on the subject.

-1-

H!rY

ABSTRACT

IVY, an algebraic coding system for the IBM 7090 and 7030 elec-

1 tronic da’taprocessing machines, i.sdescribed. A sample code is first

illustrated for purposes of familiarization. The general features of the

I IVY system are then discussed in the Inixoduction. Tne body of the text

discusses card types, the entry of data, remarks, and calling sequences,

I and the formats for writing code in the IVY algebraic language. Finally,

I subroutines incorporated in the IVY system and error indications given by

I the system are described, and some coding exxnples are shown. The final

I chapter is composed of tables for reference purposes. The appendices dis-

1 cuss more sophisticated coding techniques and the longhand coding conven-

1 tions for the 7090 and 7030.

-3-

Ivy DATE
7317417517617717817S160

PAGE NAME PROBLEM
26 JUNE I J$EhBLI$W DI$T PR$)DUCT Dl$ T P RI#) D

Line No. I 2 72 CODE

I

2

3

4

5

6

7

8

9

10

II

12

13

14

Is

16

17

18

19

20

21

22

23

I

I
I—

I

I

I

II

H

I

I
II

* ❑ JOEABL$W,A7-5360~212 D4TTOII02HIOOOO0

s (0), A(O), X(4), L(3), R(2)

D A0(7) =2.15, 3.0), .223 +1, 5.732.-2.71,-.032-1, .7S6,

B@(7) =9.2222,.0D063, 2.575, -. 057-I,-33.233-5, Z3I6I7,.43,

FL6W, SUER, T(1)

R RI= CRP. (OIjTh PRODUCT=) 1.0.1.7 .2.SSS

R R2=ERR@R.hCWNTSA 13FATHEATW13&VECT@RSAARE A NOT AEQUAL. $$$

c FLOW ACOOE.ACONVERTS A AND ~ GOES ATO A SUBR&JTINE .

A SWR2, I

I

I

I

I
I

I

I

I

I
I

([1 I lFLIiIW, (s p,$AP: $R02,2), ($ P,suBR:AO($w): 613($ w]: T($wA)+I),

I

I

I

I

I

I

I

I

I

I
.

F,’
($ P,LI)

.:
g ($? $PR: SF, RI(SWP): $PI, T($WA)+ 1) ,($P, SLD), -. .

: ‘-k
xi

61

LI , ($P, $PR: $P, R2($WP)), ($P, $LD), $E. FL~W, ---

I r+
-Oxlt

I
] A $WR2,2 — IJ

1 SUOR. X4, $D(4), $DI, XI, $D2=X2. $D3=X3, $D4=0,

I Xl=$iI(X4+l, $WC), X2=$ Z(X4+2, $WC), I
(LI)XI-X2=NZ, X2=$ Z(X4+I, SWA), X3=$Z(X4+2. $WA),

.
L2, $D4=$M+$Z(X2+I)% $Z(X3+I),

X2=X2+ 1, X3=X3+1, Xl= Xl-1, (L2) Xl= Ni!,

I p xl =$ Z(X4+3), Sz(xl) :$D4,
i

I

I

I

I

I

I

I

I

I

I

I

I

I

I I

I I
I I

I I

I I
II— -—

L3, XI. A=$DI, X2. A=$D2, X3.A=5D3, (X4+5) ,

Ll, X4=X4-I, (L3),
a-

)

A $RD2, I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I
I

I

I

I

I

I

I

I

A SIMPLE AND COMPLETE IVY CODE

-4-

PREFACE

The facing page illustrates a complete, though trivial, code in

the IVY language, for finding the dot product of two vectors. This is

included at the start of the manual in order to familiarize the reader im-

mediately with the appearance of a finished IVY code. As the discussion

in the manual proceeds, the reader can occasionsll.yrefer back b this

example for enlightenment on some of the techniques discussed. FinaX1.y,

in Chapter 8, a discussion of the organization and philosophy of this

code wild.occur, a discussion which applies to any IVY code regardless of

its length.

-5-

ACKNOWLEIXXMENTS

The editor is indebted to Ben@

Forrest Brinkley, and Clarence Lee for

this manual, much of

helpful suggestions;

Sue Vandervoort,

the final draft;

the examples and

for

and

which was done on

to Justine Stehl,

Carlson, Chester Kazek, Jr.,

their careful proof reading of

their own time, and for their many

for producing the IVY tree; to

typing the rough draft;

to Bea Hindman, for her

drawing the illustration.

to Grace Cole, for typing

excellent job in lettering

-7-

CONTENTS

Abstract

A Simple and Complete IVY Code

Preface

Acknowledgements

Table of Contents

Introduction

Chapter 1.

Chapter 2.

Chapter 3.

Chapter k.

Chapter ~.

Chapter 6.

Chapter 7.

Chapter 8.

Chapter 9.

Preliminary Remarks

Coding Forms and Types of Cards

Definition and I.aadingof Data, Remarks, and
Calling Sequence Blocks

The IVY Algebraic Language

Flow of Control, Calling Sequences, and the
Execute Statement

IVY Subroutines

IVY Error Indications

Coding Examples

Summary and Tables

Appendix 1. Manipulating the Symbol Table

Appendix 2. The 7090 Ion@and Instruction Set

Appendix 3.The 7030 Imnghand Instruction Set

Index

Page

3
4

5

7

9
11

17

21

43

68

97

118

1’37

162

185

203

210

239

264

-9-

INTRODUCTION

The coding system described in this manual, the IVY system, repre-

sents a considerable extension, sophistication, and simplification of ear-

lier attempts by the authors on the design of an efficient and practical

coding system for both the casual and experienced programmer. Frequently

an individual, usually called a “programmer” or “code+’in this manual,

concerned with the solution of a complicated problem, must resort to the

use of computers. For such people IVY was designed. Detailed knowledge

of the behavior of various different computers is not required, but, if

available, it can be applied when ~ fancy

by an experienced programmer conversant with

are warranted. However, it is believed that

in mathematical physics amenable to computer

coding techniques (presumably

a particular class of machines)

the vast ma~ority of problems

solution can be solved ade-

quately, almost in their entirety, in the simple algebraic language sup-

pliedby IVY.

The IVY system is a load-and-go, one-pass compiler-assembler con-

sisting of an algebraic language which can be used on any of a class of

computers for which the system is designed, as well as facilities for cod-

ing in the language of

run. The main purpose

the particular computer on which a program is being

of the system is to simplify and expedite the

-11-

programming of problems and the debugging of resulting codes, the schedul.

ing of machine time in installations with two or more types of machines,

the exchange of codes, and the use of these at other installations.

Another purpose of the system is to provide a load-and-go compiler which

gives the programmer closer touch with the computer hardware, besides

supplying numerous other new and uniqye features, many of which have never

before been offered in any system of this type.

The IVY algebraic coding system has been designed for coders who

are somewhat familiar with electronic computers and programming tech-

niques, but who do not have a detailed knowledge of a particular computer.

The algebra itself is written in a system called machine algebra, as

opposed to FORTRAN and other algebraic coding systems which simulate

~algebra, that is, the algebra of equations and formulas in the

traditional mathematical.sense. This machine algebra is a system similar

to display algebra except in conventions regarding the use of parentheses.

In addition, the coder is allowed (and often required) to specify actual

index registers (unlike FORTRAN), to utilize a “store-address’’feature,

and to construct loops and sequences of code fully as complex as those

possible in longhand coding, without the many restrictions imposed by

FORTRAN-like systems. A code in the IVY algebraic language will be ac-

cepted, unchanged, by any computer for which IVY is available.

As previously mentioned, a longhand coding system is available in

IVY, which allows the entry of ~ instructions in the instruction set of

the particular machine being used, following IVY addressing conventions.

-12-

Of course, use of this feature will make an IVY

machines of a different type. Nevertheless, in

code incompatible with

practice such longhand

portions of a code are usually short, and a separate set of longhand

cards can be produced for each computer, and one set substituted for

another when one changes computers. For the programmer who is interested

only in longhand coding for a particular machine, IVY

load-and-go longhand coding system.

The “IVY” system consists essentially of three

program (#IJl),the assembly program (@P) and various

punch, tape manipulation, etc.). Only that portion of

presents a fast

parts: the loading

subroutines (print,

IVY currently in

use is in core memory at any one time;

other packages as needed. Thus all but

available to the problem program. Core

a master control program calls in

a few thousand words of core are

storage is never taken up by un-

converted code, which, instead, is written on a tape designated by the

programmer at initial loading time. Once a progrsm is debugged, this tape

may be saved and used to load the program whenever it is run thereafter,

saving some machine time, since this tape contains a condensed version

the code. This tape will in general not be interchangeable among

machines of different type for which IVY is available, since the con-

densed code on the tape is in a partially assembled form.

Each IVY deck begins with an “S” or “start” card,

IVY for a new program. (IVY programs can be

in the card reader or on a BCD tape prepared

stacked one

by off-line

of

which initializes

behind another

card-to-tape

-13-

1

equipment). This “S” card also contains specificationsof the basic quan-

tities of the particular program, such as the number of independent “store

address” quantities, the number of index registers desired (which maybe

more than the particular machine contains, in which case the extra index

registers are simulated with a slight loss of efficiency), the number of

formulas desired, and the maximum number of branch references within a

formula. Following the “S” card, cards controlling the definitions and

loading of data, remarks, and calling sequence entries, may occur. The

instruction cards are normally at the end of a deck. Preceding, and in-

termixed with, the instruction cards are “A” or “assemble” cards which

control the writing of the code on tape and its subsequent conversion

into machine language. The code may be followed by an “X” or “execute”

card, which specifies the formula set at which execution starts.

The chief advsntage of IVY, aside from its simplicity, is that no

preliminary processing is necessary, such as obtaining binary cards from

a separate assembly program. Thus, not only is the assembly process im-

mediately under the programmer’s control at all times, but also the

source deck and object deck are one and the same. Corrections can be

made in the source deck without the necessity of a tedious reassembly to

obtain a new object deck. Furthermore, because of a unique new type of

coding form, one comes closer than ever before to punching cards directly

from the flow chart. And finally, IVY contains a feature which enables

one to obtain a listing of his code if desired, at the loading time.

During its one-pass examination of the source deck IVY detects a

-14.

great many different types of errors. If a detectable error occurs, IVY

prints out the contents of the card on which the error occurred, one or

more symbols to aid in localizing the error on the card, and a number.

This number can be looked up in a table which is available at the console

of each machine for which IVY is available, and which will be distributed

to manual holders separately from this manual. The table entry gives an

exact description of the error. It is in the detection and treatment of

errors that one of the chief advantages of IVY occurs. If errors are de-

tected in code, for instance, the programmer is still permitted to exe-

cute his progrsm up to that point where the first executed error was de-

tected. From this point a transfer is made to IVY, which prints out a

comment to the effect that execution cannot proceed further, and gives

some indication as to where this point is located. Similarly, if a data

block has been defined or loaded incorrectly, references to this block

are replaced

run, obtains

but also the

by similar transfers. Thus the programmer, in a debugging

not only information on coding errors detectable by IVY,

results of executing the problem code to the point of the

first error encountered in execution, allowing him to ferret out both

coding errors and logical errors in one and the same run. As far as is.— .— .

known, IVY is the first programming system ever designed to allow this

feature. Of course it is possible that errors detected may be of such

a magnitude as to make compilation impossible, in which case IVY will

suppress execution. However, it must be asserted that errors of such

magnitude seldom occur, and that IVY is unique in failing to penalize

-15-

programmers for minor programming errors, by allowing execution when

possible. (No claim can be made that ald possible detectable errors are

caught, since to do this would require an impractically long program.

Hopefully a useful balance between detectable and non-detectable errors

has been maintained.)

The IVY system and its features, as outlined in this Introduction,

are discussed in detail in subsequent chapters, with special.emphasis on

the algebraic system and its conventions. A knowledge of the algebraic

addressing conventions is necessary to code in one of the particular longh-

and systems, which therefore are described in appendices at the end of

the manual, briefly but completely, and in a manner assuming some famil-

iarity with earlier chapters, and, of course, the particular computers

being utilized.

-16-

CHAPTER 1

PRELIMINARY REMARKS

Character set. The character set used by IVY is the well-known

Hollerith set, i.e., the character set used by FORTRAN, which is avail-

able on the IBM 026 punch. This set consists of the alphabetic upper-

case characters, the numbers O-9, and a few punctuation marks and special

characters. Limited as it is, this character set will be used until such

time, if ever, as extended character set keypunches (IBM 9210) become

generaUy available. For reference purposes, the Hollerith set consists

of the characters O (numeric zero), 1) 2y 3P 49 53 69 79 89 9)Aj B> c,

D, E, F, G, H, I, J, K, L, M, N, ~ (alphabetic “@”), P, Q, R, S, T, U, V,

w, x, Y, z, +, -, *, /,=9 ‘, ●9 :> #$ ($)~ co-$ and bl-a**

Symbols. IVY symbols and symbolic names (with the exception of

a few special symbols mentioned later) must consist only of alphabetic

characters, that is, of the characters A, B, C,...jZ. Symbols may be of

any length up to 6 characters. Examples: MB, SAM, =, c, pm,

vEL@Y.

Special symbols. Certain symbols for internal IVY subroutines,

-17-

data blocks, and operation conventions, start with the character “$”,

which is not available as a symbol for IVY remarks, data, or code. Two

of these symbols, $LD and @l?j were encountered in the Introduction.

All “$” symbols will.be discussed and defined as the need arises; a

table of “@” symbols appears in Chapter 9, page 187. Note that only

these internal IVY symbols begin with “$”: ~ symbol defined by the

programmer must begin with an alphabetic character.

In addition, the programmer may define symbols for certain numbered

quantities and numbered blocks on the “S” card (see below, page 26), e.g.,

Al, A2, etc. for stored addresses (page 28); Xl, X2,..., for index regis-

ters (page 28); Ll, Ii?,...,for internal brsnch references (page 28); as

well as numbered blocks beginning with an alphabetic symbol as defined

above, used only to represent

29).

*
The Svmbol Table. All

remarks and calling sequence blocks (page

nrozrammer-defined swnbols are placed in
the IVY symbol table. T%s ta~le-consists of two ~arts: (1)-a twenty-
six entry table, with each entry corresponding to one letter of the
alphabet, which is always in core, and (2) a variable length table hav-
ing one entry for each symbol of two or more characters, which is con-
structed by IVY as the symbols are defined. Each entry of these tables
contains the following items of information: the symbol itself, in BCD;
two addresses used by IVY for searching purposes; and a control word,
containing a count of the items of information in the block, a flag in-
dicating what type of information is loaded, and the base address of the
block minus one. Once constructed, the symbol table is always in core,
available to both IVY and the problem program. With the exercise of due
caution, the problem program may consult and alter the symbol table at
will, using conventions described in Appendix 1.

*
Paragraphs marked with “*” and single-spaced, while informative, are
not essential to the understanding of the IVY system, and can be
skipped if desired.

-18-

The Order of Definition of Symbols. Since IVY is a one-pass pro-

gram, all symbols must be defined before they may appear in the defini-

tion of another symbol and before they are referred to by code. Symbols

can be defined on “S”, “D”, and “R” cards, described on pages 2G,15,and 61.

Furthermore, all symbols must be defined before ~code is converted,

regardless of whether the code refers to the symbols or not. Since the

symbol table is loaded in core immediately preceding converted code, the

symbol table must be full to avoid destroying code with new entries.

All symbols must be defined on “S”, “D”, or “R” cards except for

symbols consisting of a single alphabetic character, other than the spe-

cial symbols “A”, “X”, and “L” (pages 28-29). Single-character symbols

never need be defined since IVY always contains the 26-entry table for

the single alphabetic characters. Note that by a symbol being defined

is meant that the symbol must be entered in the table, although it need

not have been assigned an address, value, or length unless the conver-

sion of code or definition of another symbol requires such assignment.

(For detailed instructions on defining and/or assigning values to sym-

bols, see pages 45-61.)

*
The Role of the Control Word in Error Detection. By examining

the flag of the control word for a symbol, mentioned above, page 18,
XVY detects such obvious errors as attempting to perform arithmetic-on
code and remark blocks and attempting to transfer to data or remark
blocks from the problem program. If the entire control word is zero,
meaning a symbol has been defined but the block has not been loaded
such errors as referring to the block in arithmetic instructions an~

*
Detailed discussions of the symbol table and control word formats, of
interest only to the more-than-casual coder, will be found in Appendix 1
and in the various appendices relating to particular machines for which
IVY is available.

-19-

attempting to define another symbol in terms of this one can be dis-
covered. References to undefined symbols are, of course, easily de-
tected because of the absence of the symbol from the symbol table.
Ordinarily these errors are not of such magnitude as to inhibit com-
pilation of the problem program, and whenever this is true, execution
is allowed to proceed to that point where the code is first affected
by such an error.

-20-

cHAPrER 2

CODING FORMS AND TYPES OF CARDS

Coding Forms. There are two forms available for IVY programming. The

first form is divided into one column for tie control punch (described later

in this chapter) and 71 columns for the entry of information, with the

last eight columns left for program identification. The contents of the

program identification columns are not available to the program. The

second form is similar to the first, and in addition it contains guide

lines in the margins for drawing arrows, to mark flow of control, thus

Wing the coding sheet, in essence, a flow chart. These mOWS ~e ~t

punched on the cards, but are merely intended as a convenience to aid

the programmer in reading

follow and understand the

lessen, if not eliminate,

his code, and in making it

flow of the program. This

the need for flow charts.

for

the

the

Control Punches. The first column of IVY cards

easier for others to

feature should also

is always reserved

the control punch. The function of the control punch is to des+gnate

type of information found on the cards, and to give instructions to

compiler, or both. A card containing a blank in column 1 is assumed

-21-

.

to be a continuation of the previous card and to contain the same type

of information. Certain types of cards may not have a continuation card

following them; this is noted, when applicable, in the following descrip-

tion of the particular card types. The continuation of “R”~ “K”) or “T”

cards if any, must contain a blank in column 1} as explained below.

Identification Card. An “identificationcard” must precede any

code which produces off-line output for printing, punching, or plotting

on the SC-4020. For consistency this card should precede all IVY decks.

(This card is the standard ID for the m 7090, as adopted bY the ~s

Alamos Scientific Laboratory and described in a buUetin distributed to

7090 users dated April 14, 1961.) The function of this card is to iden-

tify any off-line output (listings, cards, microfilm, etc.) with the pro-

grammer’s name and telephone nwber~ so that it can easi- be seParated

from other programmers! output and delivered to the individual concerned.

To aid the operator in logging, the contents of this card are printed

on-line.

The format of the Identification Card is as follows:

COLUMN

1

2

3

4

5-7

8-26

27-30

*

*

*

*

PUNCH

(Produces BCD print ID)

or blank (* if BCD off-l=i-nepunching is done)

or blank (* if binary off-ldme

or blank (* if 4020 tape is to

punching is done)

be prepared)

maximum time in minutes

programmer’s name and phone number

coder’s number

-22-

COLUMN (continued)

31-33

34-36

37-B

39

40

42

44

45

46

47-48

73-80

MCP control cards.

name of code

group for which

category number

problem is done

2 (for IVY codes)

G if debugging, H if production

machine used (Iocal conventions are used)

o

0

0

number of tapes
for this cod@

used exclusively by and

programmers name

These cards may be

on the 7030 if IVY is run under MCP. In this

required only in decks run

case these cards must pre-

cede any deck run on the 7030. These cards may be included in q IVY

deck on ~ machine, however, and if not needed, will be ignored.

The purpose of these cards, all of which have a “B” in column 1, is

to define input-output units in a symbolic manner; MCP then assigns abso-

lute units to these symbolic numbers well in advance of the time the pro-

grem is run, so that tapes can be mounted properly, etc. These cards

*
The systems tape, standard print output tape, etc., are not included in
this count.

-23=

must be the first ones present in any IVY deck which is run on the 7030;

and, as mentioned above, can be removed for 7090 runs if desired.

The various “B” c=ds required are as follows:

A. Job Card.

12 910
B 1$J B, IDENTIFICATION

Any identification desired, e.g., name and phone number, can be—
a~er the operation “J@B.”-

B. Type-of-Problem Card.
112 9110

B I rv-YG@,

This card merely specifies
and will assemble and go.

Iocal conventions must be observed.

that the problem coming up is in IVY

placed

language

c. Input-Output Definition Cards. One of these cards must be entered

for each tape unit the programmer uses outside the system, i.e., for
tape units other than the standard input-output tapes used by IVY.
The format for these cards is as follows:

112 9]10 &169

B II~DNAMEI

where:
1.

I~D,T=,EXIT,CHANNEL, NUMBER,M4DE,DENSlTY,DIS+SITI@~~

“I~DNAME” represents any symbol of from one to six alphabetic

characters, used by MCP to

ment stated on the card.

2.

3*

in length

signed by

“I@D,” “TAPE,”

be synonymous with the input-output

and “EXIT” occur as illustrated.

require-

“CHANNEL” is any symbol from one to six alphabetic characters

specifying some channel, the absolute address of which is as-

MCP. Different symbols wi12 be assigned different channel

addresses. If the “CHANNEL” field is null, it is assumed that the channel

-24-

assignments of tape units are irrelevant, and MCP assigns any free tape

unit regardless of channel.

4. “NUMBER” iS the IVY tape number in hexadecimal (lt2~3~...~9~A~

B,C,D,E,F). See page 120.

5. “M@DE” may specify either “@DD,” for odd parity, or “ECC,” for

odd parity @US ECC

6. “DENSITY”

density. This must

tape in the calling

checking.

is either “HD,” for high density, or’’LD,”for low

agree with the density, if any, requested for the

sequence to “$TP,” the tape program. See page 122.

7. “DISP@@N”

any case;“ “CSAVE,” for

“ISAVE,” for “save tape

“save tape reels in any

may be “NSAVE,” for “do not save tape reels

“save tape reels only if job is complete;”

reels only if job is incomplete; or “SAVE,”

case.”

in

for

8. “REF” is an octal nunber corresponding to the hexadecimal tape

number in 4 above.

D. Reel Cards. A reel card must immediately follow the “I@D” card to
which it refers, or another reel card referring to the same unit
and channel. The format is:

1 2
B REEL, R1,R2,”””,etc.

where
10 “REEL” is the pseudo-operation defining this type of card.

2. “Ri“ represents a symbol up to eight characters in length; the

first three are not part of the reel identification, but specify whether

the tape is labeled or not and whether the tape is protected (ring out)

or unprotected. The remaining 5 characters agree with the identification

shown on the physical reel. Thus Ri may be:

-23-

If

be

Pm Xxxxx

PUL xxxw

NUlxxxxx

an’’R~’is null, a

entered for each

protected, labelled

protected, unlabeled

unprotected, labelled

labelled, unprotected tape is assumed. An “Ri” must

reel of the tape desired, even if only one reel is

used. All reels are labelled automaticallyby MCP.

the reader is referred to the MCP manual.

In general the programmer need not worry about

For further details,

punching the MCP

control cards, since the 7030 run request sheet is used by the operators

to punch the necessary “B” cards. These cards are placed in front of the

deck, which is then run. Iocal conventions are important in the use of

these cards and should be studied by the programmer interested in running

on the 7030.

Start Card. A “start card” must precede eve~ IVY code, behind any

“*” or “B” cards. This card performs the following functions:

1. Erases the symbol table of the previous code, if any, and ini-

tializes IVY for a

loading to initial

2. Sets the

start card and all

new code in such ways as setting base addresses for

values, etc.

print trigger on, which causes the contents of the

cards following it to be printed on-line, until a

“print suppress” card is encountered (see page 30).

3. Defines the maximum number of formulas in one formula set, num-

bers of independent store-address expressions, references within formulas,

index registers, and numbered remark symbols used by the code.

-26-

The format of the Start Card is as follows:

Col. 1 CO1. 2-72

s I (N,)JA(N2),L(N3),x(N&),s~#L, (N5),s~~PL2(N~)>*.*
Here’!Ni’’represents a decimal number which cannot be symbolized,

and ’~YMB#L,’’represents any legal symbol (from one ta six alphabetic char-
.1.

acters except the symbols A, L, or

by a continuation card.

The fields on this card will

where necessary, to indicate where

x). The “S” card cannot be followed

now be explained, with page references,

further discussion of the concepts in-

troduced by consideration of this card may be found:

1. (Nl): N, is the maximum number of formulas which will appear

in any formula set of the IVY code introduced by the “S” card. Briefly,— —

IVY codes are always &ivided into one or more subsets called formula

sets, and each formula set contains one or more subdivisions called for-

mulas. Within a formula set, the code can flow at will among the formu-

las, but direct branching between a formula in one formula set and a for-

mula in another set is not allowed. Formula sets are to be thought of

as almost independent packages of a code, to be entered from another

formula set only by branching to the start of the set, and not to one of

its formulas. (For further discussion, see page 114). Thus, if Ml is

the number of formulas in the first formula set, M2 in the second set,

.... ~ in the nth set, then N, = max (Ml, M2,‘*”,%). This entry

causes a table to be constructed,(N1 + 25)words in length, to aid the

compiler in assigning addresses to branches between formulas. The

minimum value N, can have is O.

-27-

2. A(N2): The symbol “A” is always reserved for the “store address”

symbol, even if no “store address” expressions are used in a code. If no

“store address” expressions are used, the entry A(0) must still be present

on the “S” card. If, however, the coder wishes to use “store address” ex-

pressions (whichareusually helpful when working with multi-dimensional

arrays), “N2” specifies the maximum number of independent “store address”

expressions in any formula of the program. (For further enlightenment

see pages T~-’78.) This entry causes a table, N2 words in length, to be

constructed for the use of the compiler in setting up “store addxess” in-

structions in machine language.

39 L(N3): The symbol “L” is always reserved for internal branch

references (Ll, L2,..o) within formulas. If no internal branch references

are used, N =
3

O,and L(0) must occur on the “S” card. N3 is the maximum

number of internal references within formulas, i.e.y if J, i$ the number

of references in the first

then N = ma (Jly J2y0..~
3

pages 97-102.) This entry

strutted, to aid

to “L” entries.

4. X(N4):

formula, J2 in the second,..., JM in the Mthy

JM). (For discussion of “L” entries see

causes a table(N i-2~)in length to be con-
3

the compiler in assigning addresses to

N3 canbe at most 51Z.

The symbol “X” is always reserved for

branches referring

index registers.

,IN4!1 specifies the number of index registers used in the program. The

first N4 consecutive index registers, Xl, X2,...j XN4 must be used, ~

any combination of N4 different registers. Regardless of the machine

used, IVY index registers always modi~ by addition, or appear to do so;

-28-

furthermore, IVY index registers are always positive, and even on Stretch

(except inlonghand coding) must nottske on negative values. This entry

causes a table N4 in len@h to be constructed to aid the compiler in simu-

lating extra index registers, if N4 happens to be larger than the n~ber

of index registers available on the particular computer, and a second

table, also N4 in length, for aid in the computation of index branches.

N4 must be at least 1 but may be no larger than 256. For more discussion

on index registers see pages 89-93.

59 SYMB@L1(N5): The remaining entries on the “S” card are option-

al (the first four listed above are mandatory) and specify numbered sym-

bols which may be assigned only to remark blocks or calling sequence

blocks. The symbol specified may be any symbol consisting of from one

to six alphabetic characters except the symbols A, X, and L, which, as

noted above, are always reserved for special.purposes. “N “
5

is the num-

ber of symbols which will begin with the alphabetic characters and end

with one of the numbers 1, 2,..., Ns: SYMB@Ll, SYMB@2,..., SYl@LN5.

Each of the blocks corresponding to these numbered symbols must be

loaded separately on “R” or “K” cards (see below). A group of numbered

symbols beginning with the same alphabetic symbol must all address the

same type of information; that is, the symbols of a numbered block R,

namely RI, R2,..., RN,must all address either remarks or calling sequence—

information,but not both. The number of numbered symbols allowed is

obviously restricted to the remaining columns of the “S” card, since no

continuation is allowed.

-29-

The discussion of the “S” card is now complete.

emphasized that the “S” card must not be followed by a

i.e., another “S” card or a card with the first column

sary information must be included on the one “S” card.

also note that much of the information discussed above

Again it must be

continuation card,

blank. All neces-

The reader should

will be discussed

in detail later. As a man once remarked when presented with the IVY sys-

tem, “The lS1 card is supposed to

will probably be the last one you

lesson here is clear: although an

be the first card in your code, but it

write down on the coding sheet.” The

IVY deck must be ordered in a specific

manner, quite often the order of coding will not correspond to the order

of the deck, or to the order of treatment of topics in this manual.—

Print cards. These cards, the purpose of which is to turn the

print trigger on or off, may occur anywhere in

print trigger is on, all.cards willbe printed

thus allowing’the coder to obtain a listing of

gram. A card with “P” in column 1, and column

an IVY code. If the

until it is turned off,

all or part of this pro-

2 blank, turns the print

trigger on; “S” in column 2 (for “suppress”) turns the trigger off. Re-

call, as remarked on page 26, that an “S” card also turns the print trig-

ger on. Thus, once a listing is obtained, on subsequent runs a “PS”

card should follow the “S” card to suppress any unnecessary listing.

The listing wiU appear off-line unless key 35 is down (7090) or binary

key 63 is down (7030).

Comment cards.

whatsoever in an IVY

The “comment cards,” which may occur anywhere

deck, are announced by a “C” punch in column 1.

-30-

These cards are ignored by IVY for assembly purposes, except that their

contents will be printed if the print trigger is on. Any printable com-

ment may be punched on a “C” card; generally, of course, these comments

are of an informational nature, describing the subsequent code for the

benefit of anyone (including the coder) who might want to read it. C1!11

cards may be followed by any number of continuation cards with a “’C”or

“blank” in column 1.

Definition cards. After the “B,” “*,” and “S” cards the “defini-

tion cards” must occur. These cards, which have a “D” punch in column 1,

are used to define symbols for data blocksj psrsmeters~ and formula sets.

Formula names, however, should not be defined on “D” cards; these symbols

are defined by their occurrence on “I” or “L” cards, described in Chap-

ters 4 and 5 and in Appendices 2 and 3. Recall the distinction between

formulas and forrm,ilasets, discussed previously on page28. A detailed

description of the allowed formats on “D” cards is given in Chapter 3,

pages 43-57 . “D” cards may be followed by any number of continuation

cards ~th a “D” or “bl.a&” in column 10

Remark cards. “Remark cards” provide a means for entering BCD in-

formation into core for printing comments on a listing, punching comments

on cards, or for use as format statements for printing. Ordinarily re-

mark cards should occur next after “D” cards in an IVY deck. Symbols may

be defined on remark cards, remark blocks may be loaded, or a block of

fixed length maybe set up so that a remark may be constructed in it

later using the character manipulation program described in Chapter 6,

-31-

pages 154.156 Remark blocks may be named tith numbered symbols entered

on the “S” card (page 29) or with ordinary alphabetic symbols which

have not been previously defined otherwise. A description of the for-

mat of remark cards occurs in Chapter 3) pages 61-64 ● Remarks for use

as format statements are described in Chapter 6, pages 132-I&5. The first

card of a remark must have an “R” punch in column 1, because it is on

this card that the symbol is defined; continuation cards, if any, are

allowed, and must have a “blank” in column 1.

Calling sequence cards. “Calling sequence cards” are used for

entering calling sequence information into core; calling sequence infor-

mation may also be entered directly on instruction cards. However, the

option of using calling sequence cards is allowed because of the flexi-

bility of such a system: like remarks,cd.ling sequence blocks can be

defined without being loaded, so that values for them can be computed

later in the code (see pages 182-184) for examples. Variable celling se.

quences, or calling sequences whose length depends on a parameter, may

be defined; and a previously defined and loaded calling sequence can

easily be altered. None of these operations is possible with calling

sequences which occur on instruction cards. Discussions of the usage

of calling sequences occur throughout this manual, e.g., Chapter 5,

pageslo~-llo,~d Chapter 8, pages lT6-l&. Calling sequences for Parti-

cular IVY subroutines are discussed in Chapter 6. The actual format of

calling sequence cards is described in Chapter 3, pages 64-67. As

with remark cards, continuations of calling sequence cards g contain

-32-

“bI@” in column 1; the first

appears, must have a “K” punch

card, on which the symbol of the block

in column 1. Unlike remark cards, however,

the symbol on a “K” card must have

into the symbol table; that is, it

by an entry on the “S” card, ~ an

been previously defined, i.e., entered

must be either a numbered symbol defined

alphabetic symbol defined by its appear-

ance on a “D” card. (See Chapter 3, pages 47-48.)

Instructions to operator card. Cards of this type contain an “~”

column 1 and may not be followed by continuation cards. The “~” card,

in

in

columns 1 to 72, may contain any comment, interpreted

the operator. When an “~” card is encountered by the

causes the following to take place:

as an instruction to

loading program, it

1. The
ter
the

2. The

contents of the”d” card are printed on-line (using the prin-
on the IBM 7090 &d machines without a typewriter, using
typewriter on machines which have one attached, such as the
7030)●

machine then stops or waits, and a gong is sounded on ma-
chines which have one attached.

3. The operator presumably reads the instructions, carries them
out, and presses an appropriate button (“start” on the 7090-
type machines, “console signal” on the 7030), and IVY regains
control and proceeds.

If the coder’s program currently has control, the same functions may

be performed by using the IVY subroutine’’$@P’)describedin Chapter 6,

pages 151-152.

Tape control cad. The purpose of the “tape control card” is to allow

the programmer to read or write information on a binary, high- orlow-density

tape under control of the loading program. The same thing may also be done

internally by using the IVY subroutine’@P,’’describedin Chapter 6, pages

121-126.

-33-

A tape control card has a “T”

if any, must have a “blank” in

sequence to @P, consisting of

punch in column 1, and continuation cards,

column 1. The “T” card contains a calling

various items of information separated by

colons. These items are as follows (“H” is a hexadecimal digit, 1 ~H~C

on the 7090, 1 ~ H~F on the 7030):

$HDH

@IJ)H

$RWH

@!3?H

@LH

@?TH

$BBH,p

$BFH,p

@BH, P

@FH,P

@DH,AD(@A)
+P:AE(#w)

@RH,AD(@A)
+P:AE(@W)

@DH,AD(@A)+p

MEANING

set tape “H” to high density

set tape “H” to low density

rewind tape “H”

write end-of-file

rewind and unload

write end-of-tape

on tape “H”

tape’k”

record, tape “H”

backspace tape “H” through
“P” records

backspace tape “H” through
“P” files

forward space tape “H” through
“P” records

forward space tape “H” through
“P” files

read from tape “H” the record with
ID= C(AD(@A)+P) into blockAE

write a record on tape “H” with
ID=C(AD(~WA)+P from block AE

last entry only: compare ID of
current record on tape “H” with
contents of AD($WA)+P. “$CSI”
is set to O if not equal, 1 if
equal.

-3J+-

In all of the above, “P” stands for “parameter algebra,” which is

explained at the beginning of Chapter 3. Other notation is explained in

Chapter 5, pages 103-llQ and the calling sequence for’)#N?’isfully dis-

cussed in Chapter 6, pages 122-125. Page120 contains a table showing cor-

respondence between the tape number “H” as used above and tape and channel

numbers on the 7090 and 7030. Below is an example of a “T” card and its

continuation,whichwrites two blocks on tape, and reads in a third from

another tape:

T@W3:@WR3,@@A)+l :SN(@):#WR3,AX($WA)+3:ST(@) :$RW3:

l#RW2:@B2,4:#RD2,FNP(@A)WE:m(#W):

Assembly card. The “assembly card,” which has an “A” punch in

column 1, and for which no continuations are permitted, is required to

be present in an IVY program. Once this card is encountered it is

assumed that all symbols (except those for formulas) have been defined,

on “D,”“S,” and “R” cards. The purpose of the “A” card is to cause

the instruction and/or longhand cards which follow it to be compressed

and written in a specified file of a specified tape, or to read in and

assemble instruction and/or longhand cards which have been previously

written by an “A” card. Note that the “A” card differs quite markedly

from the “T” card: The “T” card is used for writing or reading data;

the “A” card is used to control assembly, and writes only unconverted

instructions, and when reading, converts simultaneously into machine

language. The use of “T” cards is optional, whereas “A” cards sre re-

- in order for the assemblY to Proceed ProPerlY*

—

The two formats

for “A” cards are as follows:

1. preceding code: The card

Al@RN,F

causes the instructions on cards following to be written
on tape “N,” where “N” is a hexadecimal digit (1 ~ N < C
or F; see “T” cards), in the file number specified byq’F,”
a decimal numbero If N = O, a special systems tape is
used, equivalent to N = A.

2. following code: The card

Al@lDN,F

causes the unconverted code in file “F” of tape “N” to
be read into core and converted to machine language.

An “A” card of type “l” will write instructions on tape Until

another “A” card or an “X” card (see below, pages 39-40) is encountered.

The smallest unit of code which may be written using “A” cards is a

formula set. In general it is best to write a long code in as many

files as possible, one formula set per file, since, if several files

contain part of the code which have been debugged, it is not necessary

to read in the cards again for these particular files. One need only re-

write and re-load the undebugged portions of the code; the rest may be

read from tape using Al#RD cards.

read and assembled in its entirety

a portion of the code which occurs

A completely debugged

from tape. Noke that

in a certain file, it

code may be

in re-writing

cannot be re-

written in the same file (unless it occurs in the last file on tape)

without destroying some subsequent information; it must be rewritten

in a file beyond the last previously written file. Tapes mitten under

-36-

the control of

using the same

the “A” card may not be used interchangeably smong machines

types of tape units (e.g., the 7090 and 7030) since they

contain partially assembled code. Files of a tape may also be read and

assembled under program control, using the IVY subroutine “~, “ de.

scribed in Cha~ter 6, ~ages 119-120.

Instruction cards. “Instruction cards,” which have an “I” in

column 1 and may be followed by any number of continuation cards with “I”

or “blank” in column 1, are used to load IVY algebraic code. The format

of these cards, and the IVY algebraic language itself, are discussed in

Chapters 4 and 5. “I” cards must be precededby ~’A”cards, writing U~ts

of the code containing one or more formula sets on tape, and may be fol-

lowed by other “A” cards or “X” cards, as

All symbols for data, remarks, etc., must

the first instruction block is assembled,

described below, pages 119-120.

have been defined by the time

regardless of whether or not

the block in question refers

loaded into core immediately

been completed, subsequently

to these symbols, since instructions are

above the symbol table; if the table has not

defined symbols will destroy the first in-

structions of the code. Blocks of “I” cards must not contain “D,” “R,”

ttIt“K, T,“ “@,” or “E” cards; in other words, all cards containing infor-

mation not pertinent to instructions and their assembly must have been

loaded before any instruction blocks, or must be loaded after the first

“x” card.

Imghand cards. These cards, which have an “L” punch in column 1

and may be followed by any number of continuation cards with “L” or

-37-

“blank” in column 1, are used for the entry of longhand instructions for

a particular machine, as opposed to the “I” cards which enter the alge-

braic instructions valid on all machines. The formats of “L” cards are

described in the appendices appropriate to the machines under considera-

tion.

Binary deck cards. These cards, identified by an “F” in cOIUmn

1, are used to load a relocatable column binary deck. The relocatable

cards must, of course, contain instructions in the set of the particular

machine being used, and must be in the ProPer relocatable format for

that machine. The chief purpose of the “F” card is to allow a programmer

to load a previously coded subroutine, not a complete codes The format

of the “F: card is as follows:

Fl:J@B,M:#&L

“AD” is a symbol for the formula set representedby the
binary deck; “M” is the n~f~rds (if any) reserved
for data before the subroutine> in decimal; ~d “L” is the
number of words (if any) reserved for data after the sub-
routine, in decimal. The purpose of the latter two entries
is to take care that space is allowed for data blocks used
by the subroutine for which no cards are loaded, such as,
for instance, blocks definedby use of “BSS” or %ES” in
the SAP and FAP systems. This is not necessary ordinarily
on the 7050, since space for blocks defined by “DR*’or
“DRZ” is reserved by the use of special conventions on
the binary cards.

Continuation cards are obviously not appropriate for “F”

cards: IVY assumes that the cards following the “F” card are relocat-

able binary cards with 7 and 9 punches in column 1, and that the Ist

non-relocatable card following is an IVY card with a non-blank punch

in column 1.

-9-

The “F” card has been included primarily as a feature intended to

simplifi the transition from other coding systems to IVY; thus, subrou-

tines available in relocatable form can be loaded in this manner until

such time as they become available in IVY language. In no sense is IVY

to be considered merely a relocatable loader: IVY recognizes only relo-

catable cards, and none of the other types of the large class of cards

handled by the FORTRAN BSS loader.

It is the programmer’s responsibility, then, to set up calling

sequences to these relocatable routines correctly in the IVY language.

Normally such subroutines should be self-contained, i.e., they should

not refer to other subroutines, and should carry with them their own data

and erasable blocks. If this is not done, then the programmer must exer-

cise extreme care in the use of the subroutine. F$RTRAN, which can be

used to produce relocatable routines which refer to outside data blocks o

and to other subroutines, stores data backwards in memory, at the time

of this writing, while IVY stores data forwards. This difference should

always be borne in mind when using a routine produced by F@RTRAN.

Execute card. The “execute card,” with an “X” punch in column 1,

is the IVY transition card; its detection causes IVY to transfer control

to the programmer’s code. Its format is as follows:

xpD

where “AD” is the symbol for a formula set which must have
been converted by means of an “A” card (or the routine’~”)
before the “X” card is encountered. If columns 2-72 of the
“X” card are blank, it is assumed that the programmer has
entered the loading progrsm “@n” from his code, and control

-39-

is returned to the first instruction following the pro-
gram’s “@D” calling sequence. An “X” card with columns
2-72 blank is illegal if the programmer has not entered
‘$ID”from his code. Normally,’~~’is entered to read
data from “E” cards, described below.

Enter data cards. These cards, with an “E” punch in column 1,

may be followed by any number of continuation cards marked by “E” or

“blank” in column 1, and are used to enter data in blocks which have

been previously defined on “D” cards. Normally “E” cards occur after

the program’s first “X” card,which transfers control to a specified for-

mula set;’’@D”is then entered to read the “E” cards, which must be

followed by an “X” card with blanks in columns 2-72 to return control to

the ’~LD’’callingsequence. The format for “E” cards is described in

Chapter 3, pages 57-59.

*a?!2?E4” It has been the intention of this chapter to describe
. the various types of cards used in an IVY deck, and as much as possible

the order of discussion of these cards has been the order of an IVY deck
at loading time. When possible, the card format has been described; in
many cases, however, the reader has been referred ahead to those por-
tions of the manual which describe the format of the card in question
in more detail than can be attempted this early. In setting up an IVY
deck for assembly, the programmer should keep one idea paramount: that
IVY is a load-and-go, one pass system, meaning that every card is ex-
amined once and only once. Therefore, the order of loading is somewhat
restricted in that symbols must be defined prior to their occurrence in
code and calling sequences, making it necessary to place the “S,” “D,”
and “R” cards in that order at the beginning of the deck. All symbols
must be defined, i.e., entered in the symbol table, before any “K,” “I,”
“L,“ or “F” cards occur, since the information loaded from these cards
occupies space immediately above the symbol table, and any subsequent
attempts to define symbols (treated and detected as errors) would des-
troy part of the information loaded by these cards.

++Becauseof the distinctionbetween formu~ sets ~d formu~s,
as sets and subsets of a program, formula set names must be defined on
“D” cards, whereas formula names are defined by their appearance on “I”or
“L” cards and should not be defined on “D” cards. Thus, for instance,

-40-

subroutines referred to by a number of formula sets should be defined
as formula sets, since formulas can refer only to formula sets or to
other formulas within the same set, All “I” or “L” cards must be wit.
ten on tape and assembled ~~ “A” cards, the usual procedure being
to write each formula set in a separate file. This makes it possible
to avoid reloading the entire deck for a second assembly, when none,
or only a few, of the formula sets contain errors.

*Finally, after assembly of one or more formula sets, the “X”
card transfers control to one of these sets and execution of the coder’s
program begins. At any time the program can re-enter’$ID”to load new
data from “E” cards and regain control from an “X” card with columns
2-72 bh~. The program also may use other IVY subroutines, such as
‘#AP’%oassemble a new formula set, and various input-output routines
for printing, punching, and the manipulation of tapes.

+Yl!ableI gives a summary of card types for quick reference, giv-
ing page numbers of descriptions and other useful information.

-41-

TABLE I

Table of Card Types

FORMAT ON CONTINUATION
COL. 1 PAGES AIJOJED? PURPOSE

*

B

s

P

D

R

K

$

T

A

I

L

F

x

E

c

22-23 No

23-26 NO

26-30 NO

30 NO

43-57 Yes “D” or “blank”

61-64 Yes “blank” only

6&67 Yes “blank” only

33 NO

33-35 Yes ‘blank” only

35-37 NO

68-117 Yes “I” or “blank”

Appendices 2,3 Yes “L” or “blank”

38-39 NO

39-40 NO

57-59 Yes “E” or “blank”

30-31 Yes “C” or “blank”

Identification of off-line output

Assignment of 1/0 on 7030

Start, define essential quantities

Set print trigger on or off

Define and/or load symbols

Define and/or load remarks

Define and/or load calllng se-
quence blocks

Instructions to operator

Tape manipulation under loader
control

Write or read and assemble in-
structions

Load algebraic instructions

Load longhand instructions

bad relocatable binary deck

Transfer control to program

Load data

Comment

-42-

CHAPTER 3

DEFINITION AND LQADING OF DATA, REMMUC3, AND

CAIUNG SEQUENCE BLOCKS

Definition and loading of parameters. A parameter, as referred to

throughout this manual, is defined as a fixed point integer, the value of

which remains constant throughout an assembly, and which is used to define

such things as the dimensions of a block, conditions on whether assembly

or loading of a block is to take place, and so on. The value of a param-

eter may, of course, vary from one assembly to another, but once defined

for a given assembly, it must remain constant throughout the assembly.

Since the notion of a parsmeter is the foundation of the whole IVY system,

and the algebra of parameters is a cornerstone, the definition of param-

eters, followed by a discussion of parameter algebra, sh~ occupy us

first in this chapter.

Since, as a rule, the entire assembly depends on the values of

parmeters, these quantities should be defined on the first “D” card or

cards after the “S” card. In different assemblies these “parameter

cards” can be changed for another set in order to change the dimensions

of various arrays, change some of the conditional assembly statements,

-43-

etc. Some simple parameter definitions are illustrated below:

DIGE= 2, AX= 15, BS(2) = 1,3,TH= 6, FINr(Bs2) = 5, 6, 12

The first two symbols are defined as single parameters, the numbers 2

and 15. BS is defined as two parameters 1 and 3. When any block,

parameter or not, is defined as being a vector or array N in length, N

numbers must follow to load the block completely. More about this point

later. TH is then singly defined, and finally FINT is defined as having

length BS2, which is 3, and three numbers are loaded. Note that in the

case of the parameters and data, the n~ element of an array AD is ad-

dressed by writing ADn, where n must be a number and cannot be symbol-

ized. However, the first element of a block may be addressed by using

the symbol with no number, so that, using the above example, one may call

on the number 2 by writing GE instead of GE1, though the latter is also

allowed. Similarly the symbol BS alone would address the number 1, the

symbol FINT alone would address the number 5.

Dimensions of multi-dimensional blocks can be symbolized by param-

eters defined in the above manner, or may be defined by fixed point num-

bers when dimensions never vary, or by parameter algebra, discussed be-

low. New parameters may also be defined in terms of previous parameters,

numbers, or parameter algebra involving Previously defined par~eters.

Examples of this appear in the next section.

Parameter algebra. Parameter algebra is defined as fixed point

integer algebra free of parentheses. The operations in this algebra, as

-44-

in IVY “machine algebra” discussed in Chapter 4, take place in sequence

from left to right, unmodified by parentheses. Examples of this alge-

bra occur below, after a discussion of allowed operands and operations

for this algebra.

The allowed operands in parameter algebra are:

1. Symbols which have been previously defined as fixed point in-

teger parameters, e.g., GE, AX, and TH in the above example.

2. Symbols with a number, meaning the n~ element of a previously

defined fixed point integer parameter, e.g., BS2, FINI’3in the above

example.

3* Literals, i.e., fixed point integers not symbolized, e.g., 2,

251, 3, 17, 23.

The allowed operations in parameter algebra are:

+

*

/

+$

-$
*$

●@

●SV

add

subtract

multiply

divide and truncate result to integer

take absolute value of the preceding

take negative absolute value of the preceding

change sign of preceding

if result of preceding calculation is
non-zero, set to 1

if result of preceding calculation is
zero, set to 1; otherwise, set to zero.

Some examples of parameter algebra, involving the parameters

-45-

defined in the example in the previous section, are as follows:

EXAMPLE

TH+3

Ax + GE*BS2

Ax/TH+2

Ax+Bs2/TH

-2WH+AX. @

-2WH-I-AX.@

FINT3*FINT-AX*$

TH-AX+~

RESULT

9

51 (multiplicationbyBS2 times AC%E:
operations from left to right)

4 (result of division is 2)

3

1

0

-45

9

Examples of definition of new parameters using parameter algebra involv-

ing previously defined parameters:

D@W=GE-AX*BS2,N!l?T=AMP+3#, PRT(GE+l) = AW’IH, O, FINT2-BS2/GEj

Thus we note that the value of a parameter, as well as the dimensions of

a block containing more than one parameter, can be defined by using

parameter algebra involving previously defined parameters. Other ex-

smples of parameter algebra wilJ occur in examples following treatment

of the definition and loading of data and remark blocks.

The definition of symbols and loading of data. As remarked in

Chapter 2, the definition of symbols (simply by their occurrence) and

the loading of data may both be accomplished on “D” cards. One example

of both symbol definition and loading is the case of parameters dis-

cussed in the previous section. We now come to the section covering

-46-

the definition of other symbols without any loading being associated, as

well as the definition of data blocks whose length may depend on pre-

viously defined parameters, and finally, the loading of these data blocks,

which may occur from “D” or “E” cards. Data blocks may, of course, be

left empty, to be filled by results calculated in the programmer’s code.

Entries on “D” and “E” cards are separated by corns. Since con-

tinuation cards are allowed for both “D” and “E” cards, an entry may be

continued from one card to the next; however, certain rules must be ob-

served in this continuation:

1. Symbols and literals (i.e., numbers) cannot be continued
from one card to the next, but must be complete on one
card.

2. Entries within parentheses may not be continued from one
card to the next, but must be complete on one card, in-
cluding the right parenthesis.

For the moment, these two simple rules win suffice. Note that param-

eter algebra may be continued from one card to the next, providing that

symbols and literals are not split, and that the algebra is not within

parentheses.

Symbol definition. A symboltiich occurs by itself between commas

on a “D” card is placed in the symbol table, and thus defined. No address

or other information is attached to the symbol table entry. It is in

this manner that the names of formula sets and non-numbered symbols for

calling sequence blocks must be defined. Example:

DIAGM, TDMT, L@IC, FSA,FSB, FSC,

As was remarked on page19, symbols consisting of a single

-47-

alphabetic character need not be defined in this manner, since IVY

always contains a table of the single character symbols.

Array definition. Arrays are defined on a “D” card by the ap-

pearance between commas of the symbol for the array followed by one or

more (up to fifteen) parsmeter algebra expressions for the dimensions,

enclosed in parentheses and separated by commas. No data are loaded for

a block defined in this manner; however, an address is assigned and

space is set aside for the array, which is now tagged as “data” in the

symbol table. Example (using parameters defined in earlier exsmples in

this chapter):

DIAVECT(N’IT),BMUUI(3,GE+I, ZYTH), CVEC(5), D~L(2,5,GE),

In this example we note that the dimensions of an array can be defined

by symbols, Iiterals, or parameter algebra. The advantage of being able

to symbolize the dimensions of an array is that by defining parameters

properly, an array can always be assembled with the exact dimensions

needed in a particular run. FORTRAN and similar systems do not allow

array dimensions to be symbolized, and hence the programmer must allow

space for the maximum size of an array, sometimes leading to storage

problems, since usually all arrays do not simultaneously assume maximum

size: one array may be smaller when another is larger. In IVY no such

problem exists. By symbolizing dimensions, array sizes can be tailored

to fit the particular input being used. In examining the above example,

and looking back in the chapter to the examples on parameters, we see

that AVECT is a vector 36 numbers long, BMULT is a 3 X 3 X 12 array,

-48-

CVEC is a vector of length 5, IEvSULis an array 2 X 5 X 2 long.

In the event that one or more of the expressions for the dimen-

sions of an array is zero, the array has length zero. A block legally

defined in this manner is called a suppressed block. A block maybe

suppressed, for instance, when it is not being used at all in a particu-

lar assembly. When this is done, no error indication is given, and the

assembly proceeds, replacing references to the block with references to

the location of zero, and suppressing any “store” references to the

block. The assumption is that since the block is suppressed, the portion

of the code containing references to it will not be executed anyhow, or

that replacement of the symbol by the address of zero is acceptable. Of

course,.in subsequent runs the coder may re-define the parameters used

in computing dimensions of the block so that it is no longer suppressed.

If one or more of the expressions for the dimensions of an array

is negative, an error indication is given, since obviously an array can-

not have negative length or a negative dimension. Any references to

such a data block in the code will be replaced by transfers which return

control to IVY.

Ioading of data on “D” cards. In addition to defining blocks as

described above, loading may also be specified on “D” cards, by following

the symbol and its dimensions, if any, with an equal sign and a number of

expressions which load the block completely. These expressions are sep-

arated by commas. In the section on parameters, we have seen a number of

examples of this, for instance:

-49-

DIGE=2, AX=15, BS(2) = 1,3, TH=6, FINT(BS2)=5, 6, 12

Here the symbols are defined by their occurrence and then loaded tith the

number or numbers to the right of the equal sign, in this case fixed point

integers. We have also noted that symbols for fixed point quantities can

be loaded using parameter algebra.

Besides fixed point numbers and parameter algebra, an array can be

defined using a variety of expressions. The general case can be symbol-

ized as follows:

S~@L(plj p2}““”,PN) = Q,, ~,”.=, ~

where ’!P~’represents parameter algebra for the itJ dimension, and the “~”

are expressions which cause the block to be loaded completely. \
The’ “----

be any of the following expressions:

1.

2.

3*

DIXPL(2).(B)77653,-62713,RST(3).256,-7212,(B)1371,FNP=XPU?+769

A fixed point integer, that is, a string of decimal digits,
preceded, if desired, by a sign and the value of which must
be less than 227 on the 7C90, 2% on the 7030.
12, -15792132

Parameter algebra, that is, parentheses-free algebra involv-
ing fixed point literals and symbols for fixed point numbers.

Octal fixed point integers, defined by prefixing an octal
integer with a “B” in Parentheses* Once a symbol ‘as
been loaded by an expression of this type it can appear in
a parameter algebra expression. Octal numbers as such can-
not appear in parameter algebra because this algebra must
be parentheses free. Octal numbers are restricted to the
same magnitudes as fixed point numbers, given above. Once
the “B” occurs. all numbers thereafter for the same array
are considered octal until overruled by some other entry.
Example:

-50-

IntLy

In this case 77653, -62713, and 1371 are octal. 256,-7212,
and 769 are decimal.

4. Boolean words, defined by prefixing an unsigned octal number
with a “W” in parentheses. A Boolean word is used in logi-
cal or Boolean arithmetic and may fill the ent re machine

kword; thus a Boolean word must be less than 23 on the 7090
and 264 on the 7030. Boolean words cannot be used in param-
eter algebra, but only in the machine algebra described in
Chapter 4 (see ;a~es9j-96). The prefix “W” operates in the
same manner as B , that is, all numbers entered thereafter
for the same array are considered Boolean until overruled by
some other entry. Example:

D@xx(3)=(w)457620001713, 76253I3, 963, AYX(2)=(B)76632, (w)75931,

In the above, 457620001713 and 762313 are Boolean, while 963
is fixed point, because it contains a digit greater than 7.
In the loading of AYX we see the “(W)” overruling the “(B)”
on the first entry. Note that Boolean numbers are always un-
signed.

5. Fixed point decimal numbers may also be entered by prefixing
them with “A” in parentheses, in the case where a “B” or “W”
is operative and the fixed point number does not contain a
digit greater than 7. Like the latter, “A” holds for the
same array until overruled. Example:

D@W(3) = (B)70707, 17231, (A)26513

70707 and 17231 are octal numbers and 26513 is decimal.

6. Floating point numbers may be entered using the following se-
quence of characters: a sign (optional), a string of from
1 to 16 decimal digits containing a decimal point, followed
by another sign and a fixed point number representing the ex-
ponent (optional). By “exponent” is meant the power of ten
by which the expression is to be multiplied. For example:

D@JIccD(2,2) = 3.1415926535, -2.742653-7, 500.263+12, -210732,

All the numbers above are legal floating point numbe s. Floati
point numbers N are restricted to approximately 10-$ <N<1O P

on the 7090, 10-307 < N < 103°7 on the 7030.

7. Zeroes may be inserted by prefixing a parameter algebra ex-
pression with “Z” in parentheses. The number of zeros

-51-

specified by the algebraic expression is entered. If no
parameter algebra is given, the remainder of the block is
filled with zeros. For example:

DIACDX(20,30)=2.7123, 5.7561, (Z), ARPX(N’IT)= (Z)~-3, 5.23, 6.51, 7.32

Two numbers are entered in “ACDX’*and the remainder of the block
is set to zero. All but the last three locations of “ARPX” are
set to zero, then the remaining three non-zero numbers are
loaded. In both cases, loading is complete, as required.

8. A given number of locations maybe skipped (without being
set to zero) by the entry “S” in parentheses followed by
a parameter algebra expression. The “skip” feature is written
in the same manner as the “zero” feature. For example:

DIACDY(NTl) = 3, 6, 12, (S), ACDA(21) = 2.o, (S) 19, 3.561,

9. A number, once entered, may be re eated a specified number
!l-&--of times by following it with R in parentheses and param-

eter algebra telling the number of repetitions desired.
As with “Z” and “S,!’if no parameter algebra is given, or
ifthe result of the algebra is zero, the number is repeated
until the end of the block. For example:

DIACDB(5) = 2.7653+6, (R), ACDC(NTT)=205617, 9.986301-10, (R)~-3,8.653,

In “ACDB”, the entire block is filled with one number; however,
only a portion of “AClX!”is filled with the repeated number
9.986301-10. As always, loading is complete. The last N num-
bers loaded into a block may be repeated M times by the entry
“N(R)M” between commas, as illustrated below:

D[BBCX(25) = 3,2,1,5,4 (R) 5,6.513, ...

The numbers 3, 2, 1, 5 are entered six times; the last number
of the block is 6.513.

10. Any number of linear interpolants maybe entered between
two floating point numbers by placing between them an “I”
in parentheses followed by p&%ameter algebra specifying
the number of interpolants desired. Note that this entry
may be used only with floating point numbers. For example:

DIAcDD(626) = 1.0, (1) 623,625.0, 7.363-1I,

-52- ‘

The 623 interpolants 2.0, 3.0, 624.o are entered in “ACDD”
between the two numbers shown.

11. A block may be loaded with multiples of a fixed point
number by the entry of “M” in parentheses followed by
parameter algebra specif~ng the number for which mul-
tiples are desired. If the block has dimension “P,”
the multiples of a specified number “N” entered are:
O, N, 2N, 3N, (P-1)N. Only the entry for mul-
tiples may occur if it occur= all in the loading of
an array. Examples:

DIACDXM(30)=(M)20,BMULXA(5)=(M)2,LWXB(GE)=(M)5)

BMU13A(GE+1)=(M)3,BMUITB(2WH)=(M)GE+1,

The multiples defined by this exemple are the same as would be
obtained by writing

D\AcDxM(30) = 0,20,40,60,...,~0, DMUXA(5)=0,2,4,6,8,etc.

This example computes what we shall call the index multiples of
the arrays ACDX, DMUL, and EMUIL’,which were defined in pre-
vious examples of this chapter. For further discussion see be-
low, page 54, and examples in Chapter 8, pages 168-169. By use of
the “(M)” entry one can also load the multiples of a number I
plus a second number J. The entry’’J(M)I”will enter the num-
bers J, J+I, J+2*I, J+3*I, etc., to the end of the block named.
Thus, for instance, one might enter the 476 consecutive nmbers
25, 26, 27, 499,500 by the following entry:

DICPDAL(426)=25(M)1,...

12. A group of floating point numbers all having the same ex-
ponent may be entered without writing the exponent more
than once, by preceding them with an “E” in parentheses
followed by the exponent, in fixed decimal representa-
tion (Parameter algebra is not allowed). For example,
the following two entries are equivalent:

Dlm(6)=3.512+6,-2.7I3+6,9.9I&6,2o.251+6,-3.3216+6,2.51 5+6,

DIHFNT(6)=(E)+6,3.512,-2.713,9.916,20.251,-3.3216,2.515,

The exponent specified by the “E” entry is effective until it is
overruled by a different “E” entry, a fixed point number, a
floating point number with an explicitly stated exponent, or the
definition of another symbol.

-53-

The usage of index multiples. Before we continue our jaunt through

the jungle of “D” and “E” card notation, a brief aside on index multiples

is appropriate at this point, to ease any curiosity on the subject that

might

sions

have been aroused by paragraph 11 above.

Suppose we have am array “B,” which has been defined with dimen-

1, J, K. (The multidimensional case canbe generalized from this

treatment of the three-dimensional case.) In IVY the first element of

this array will have indices (1,1,1). Most coding systems start indexing

with (0,0,0) because of the way computers are built; but IVYj by an in-

ternal trick, causes all indexing to start with 1. Similarly the last

element of this array has indices (I,J,K). Now, suppose we wish to com-

pute the

presents

address of some random element (i,j,k) of the array. If “B” re-

the base address minus 1, the address of the (i,j,k) element is:

B+i+(j-l)I+(k-l)IJ

We see that to compute this address, three multiplications are

- multip~cationsin general, for an n-dimensional array, ~

necessary;

are re-
C

quired to compute the address. However, multiplications

altogether if we happen to have access to a table of the

and of IJ. It is for this purpose that the “M” entry is

can be avoided

multiples of I

used on “D”

cards: to set up tables of index

addressing is needed. The act~l

of index multiples are covered in

multiples for all arrays where random

details of coding involving the use

Chapter8, pages 168-169.

-54-

Other entries allowed on “D” cards. Besides defining symbols and

blocks, with the options of loading mentioned above, two other types of

entries are permitted on “D” cards: one to set up equivalent blocks, and

the second to skip certain definitions under parameter control.

1. Equivalent blocks are two blocks of data which share the same

memory locations and have the same dimensions, but which have different

symbols. Tne use of equivalence is a means to conserve storage by using

the ssme area for a second array when the need for the first has disap-

peared. A second block is defined as equivalent to a previously defined

block by prefixing its symbol with an asterisk (*) and following it with

an equal sign followed by the first symbol. The second symbol must not

have been previously defined. A symbol which has once appeared on the

left of an equivalence may not appear on the right of a subsequent equi-

valence statement; i.e., equivalence chains are not allowed. However,

two or more symbols may be defined as equivalent to the same symbol. The

example which follows is based on previous block definitions given as

examples in this chapter:

l)l+@Acl)E.Acl)D,*ACDF=GE,*ACDH=GE, *ACDG=U,

so that “ACDE” is a vector 626 in length, “ACDF” and “ACDH” both repre-

sent the same parameter “GE,” and “AClXl”is a block with dimensions (3,

GE+l, 2+$TH)sharing storage with “RMULT.”

2. The ~~ feature allows the programmer to skip certain defini-

tions of symbols, or to define a symbol in one of several ways, under

.55-

pareneter control. This is effected by placing “@” in parentheses, fol-

lowed by a parameter algebra expression and an equal sign with one of

eight conditions. If the condition is met, the definitions following the

comma are skipped until another “@” is encountered between commas. The

general format is as follows:

(@) P=c, ... (definitions) @J. ...

where “P” represents a parameter algebra expression and “C” represents one

of the conditions:

c CONDITION

ZorO

NZ

Lz

ZL

GZ

%

P

M

jump if expression is zero

jump if expression is non-zero

jump if expression is less than zero

jump if expression is zero or less

jump if expression is greater than zero

jump if expression is zero or greater

jump if expression is plus

jump if expression is minus

If the condition is met, the definitions following the comma are skipped

until the “,$J,” is encountered. If the condition is not met, the defini-

tions are handled in a normal manner. For example:

Dl(@) GE-2=0, ACDH(’5,7,11),*ACDL=13MU~,@J,

Dl(@) 2WH-7=ZG,ACDJ(2*NTr,GE+1),@, (@)2wrH-7=Lz,

D lAcDJ(2wIH-7,GE+l), $J,

-56-

Here we see that the definitions of “ACDH” and “ACDI” are skipped if GE

Is equal to 2, and that the definition of “ACDJ” takes on one of two

forms depending on the value of “W’TH-7.”

The loading of data on “E” cards. Data may also be loaded from “E”

cards, but one should bear in mind that all symbols appearing on “E” cards

must have been previously defined on “D” cards, and the dimensions of any

blocks loaded from “E” cards must also have been previously defined.

Thus on “E” cards only the symbol for the block can appear to the left of

an equal sign, since the dimensions are known. The expressions allowed

on the right of the equal sign are the same as those allowed on “D” cards.

For example, the following “E” card will.load two blocks defined in ex-

amples of “D” cards earlier in this chapter:

EIBMULT = 2.56312-13, (1)25,9.6732153-2, (R)3, (S),CVEC=l.,2.,3.,h.,11.72,

Note that as on “D” cards, loading must be complete. The “(S)” in the

expression for “BMUIll”guarantees this.

The “jump” feature is also allowed on “E” cards in order to skip

the loading of a certain block or to load it in one of two or more alter-

native ways. The “equivalence”feature is not allowed unless the symbol

to the left of the equal sign has been defined by its appearance on a “D”

card sarisdimensions, since the “E” card is merely a loading card, and not

one on which symbols can be defined. In other words, no symbol can make

its first appearance on an “E” card. For example, the-entry “WXCMT=BMULT”

is permissible since “TIMI’”has occurred on an earlier “D” card in this

chapter, without dimensions. “*BMUIT=AVECT” is not legal since “EMULT”

-57-

has already been defined with dimensions and hence assigned a location

in core. “*AcDK=~” is not le~l since “ACDK” has not occurred at all

on a previous “D” card.

Double-stored data. An entry for loading double-stored data is per-

mitted on “E” cards; this entry is not allowed on “D” cards. Double-

stored data is data each word of which contains two numbers paired in

the single memory location. The high-order portion, called the c#antit~

or simply “Q,” can be a signe~ fixed or floating point number. The low-

order portion, called the ~ or “T,” is an unsigned fixed-point integer

15
which must be less than 2 . The exact length of the tag in bits can be

specified by parameter algebra. The IVY algebraic language has special

formats for handling double-stored data, discussed in Chapter 4, pages

79-8o . Double-stored data has many uses, the chief being in mesh-type

problems for solving differential equations. For instance, in boundary

value problems, the boundary points can be labeled with tags having dif-

ferent values from the tags at interior points. In hydrodynamics codes,

points corresponding to different substances can be identified by their

tags, and so on. The format for loading double-stored data is as follows:

SYMB@L(Q.P) = El, E2,...,~, SYMB@L(T.P) = F,, F2,...,FN

where the “Q” signals that the “Q” portion of the block is to be loaded,

and “P” represents parameter algebra whose value gives the tag length in

bits. The “Ei” are expressions for fixed or floating point numbers which

completely load the block. “T” now signals that the tag portion is to be

loaded, “P” being the same expression for the length of the tag as

-5$-

I

appeared in the first parentheses. The “Fi” are expressions for unsigned

fixed point integers which completely load the block. For example:

EIAVECT(Q.3)=~.32132-2,4.71531-l,(I)N’IT-3,2.1532+2,AVECT(T.3)=

El(B)1,2,3,7,6,5,4,2,1,7,(R),BMuU(T.GE+2)=TH,TH+~,TH+2,15,14,

E112, 3, 5, (S),

We thus note that AVECT is loaded with a tag 3 bits in length, and that

both the “Q” and “T” portions are loaded completely. “BMUL!T,”a block

which has been loaded previously, is now defined to have a tag GE+2, or

4, bits long, and the tag portion is then loaded. This is possible only

when a block contains floating point numbers: the block can be loaded

on a “D” or “E” card with floating point numbers without specifying “Q”

and the tag length, and the tag can then be loaded on “E” cards in the

normal way.

=“ Before proceeding to the study of remark and calling se-

quence cards, a sumary of the treatment of “D” and “E” cards is needed.

This summary, for review purposes as well as for quick reference, is

given in Table II.

-59-

COL. 1

D

TABLE II

SUMMARY OF ENTRIES ALLOWED ON “D” AND “E” CARDS

FORMATS AND EXPLANATION:

1. “SYMB$L1“ is entered in symbol table.

2. “SYMB~L
d?

“ is entered in symbol table, assigned
an ad ess, and allotted 11 12 ... IN words of core.

3. “SYMB@L “
2

is entered in
and 10 ded with Q.

4. ,,=@4,t is handled as
ing must be complete.
of the following:

a.

b.

c.

d.

e.

f.

g-

h.

i.

J.

k.

Fixed point number
parameter algebra.

symbol table, assigned address,

case 2 and also loaded. Ioad-
“Q” and the “Ei” maybe any

(sign and decimal digits) or

Floating point number (sign, digits with decimal
point, * exp. if desired).

(B)N1, N2,...NI, N2, etc., are
integers until (B) overruled.

(W)MI, M$,...M , M , etc., are
words un il (W) ov&ruled.

~&&~2~~~~1 /A~&~t&~e~ .

octal fixed point

Boolean octal

fixed point decimal

(Z)P insert P zeroes. “P” represents parsmeter
algebra. Proceed to end of block if P=O.

(R)P repeat last entry P times.

(S)P skip P words.

(I)P insert P interpolants

(M)P insert multiples of P
to end of block.

between 2 fl. pt. numbers

(o, P, 2P, 3P,...,)

(E)kN the following fl. pt. numbers all have ex-
ponent = * N until overruled.

All names except remark names, numbered symbols and formula
names must be defined on “D” cards.

-60-

TABLE II (Continued)

I

I

COL. 1

D

E

of two

FORMATS AND EXPLANATION

*SYMB@Li = SYMB@Lj,(@) P=C,...definition@...@

1. SYMB@L. equivalent to S~@Lj providing S~@Lj is defined
and wa% not defined by another “*” statement.

2. If parameter algebra “P” satisfies one of the conditions
“c” (Z or O, NZ, M, GZ, ZL, ZG, P, M) definitions are
skipped.

SYMB@L1 SYMB@L2(Q.P) = Q1,Q2,009~, ~~L5= ‘1’ ‘2’”””;pN’
(T.P)= T1, T2,..., ~

Used for loading previously defined blocks. Iaading must be
complete.

10 “Pi’’and’~i’’areany of the expressions under “4” above.

2. ‘Ti’’areunsigned fixed point numbers.

3* “Q.p” and “T.P” mean “qyantity” and “tag” of DS number,
IIrlP = tag length in bits.

Jump and equivalence can also be used on “E” cards, equivalence
with some restrictions.

The definition and loading of remarks. Remarks are usually for one

purposes: first, to provide comments and headings for output listi-

ngs and cards; and second, to provide format statements for printing,

punching, and microfilm output. In this section we will consider only re-

marks for comment purposes. Remarks for use as format statements are de-

scribed in Chapter 6, pages 132-14Z By using “R” cards and their contin-

uations, if necessary, remark blocks can be defined and/or loaded; the

“R” card for remarks is thus analogous in function to the “D” card for

data. However, no great parallel

punched. An “R” card must always

is found in the way these cards are

begin with a symbol which is called the

-6I-

“name” of the remark. Only one name can appear on an “R” card. If a re-

mark is too long to fit on a single card, it may be continued on the next

card providing the continuation card has a blank in column 1. (This

point was first made in Chapter 2.)

The general format of an “R” card is as follows:

1. “R” in column 1.

2. Symbol or name of remark. This maybe any legal symbol or
numbered symbol.

3. Optitlnal: after the symbol, a parameter algebra expression
in parentheses. The value of this expression is takenby
IVY to be the number of characters in the remark, so that
IVY will set aside this amount of space for the remark.

4. An equal sign, followed by any group of Hollerith charac-
ters, which may fi31 any number of cards. The number of
characters in the remark must not exceed the number defined
by the entry of “3” if this option is used.

5. In three consecutive columns, the characters @#@to signal the
end of the remark. rd~ need not appear if the remark is ter-
minated by the end of a card.

The remark as stored in core consists of all characters, taken in

order, from the first character to the right of the equal sign to the

last character to the left of $$$. These characters will be printed if

the symbol of the remark is specified in a calling sequence to “@R,”

the print routine (page 131). By using the characters 1$ in two

consecutive columns in a remark, the remark may be printed on two or more

lines: the portion of the remark following $@ will be printed on the

next line below the portion preceding @@. The characters $& are not

printed. Examples of remark entries:

-62-

N(YI’ES

R I RL =W~CES”~AA~~~~SA@FtiS@@~S~$@ 1, 2

R I REM(NTT*3+GE) = @#$ 3

R I R2 = THIS%S’A”@#%’W@’’LINE%MARK$$@ 4

R I R3 (3627) = c@NsmucmD%wH%@@ws@#”@@# 5

R I REMB=BESSEL%UNCTIONS”CCM?UTED%Y%ECURSION’’FORMULA.“ SEE”ANY%A33LE%O%

I ERIFYAACCURACY* ~j$! 6

Notes:

1. The following conventions should be observed to make the coding

sheets appear unambiguous to the keypuncher: “blank” is represented by

the carat “’’”;n blanks are represented by the number “n” in a box: ~

Alphabetic “I” must be written with

it from numeric “l”; alphabetic “@”

numeric zero; and alphabetic “E” is

ber two.

bars or dotted (“i”) to distinguish

is slashed to distinguish it from

slashed to distinguish it from num-

2. Our first remark is an illustration of a simple heading, the

name of which is a numbered symbol presumably defined on the “S” card.

3* In this case, space is assigned for a remark having NIT*3+GE or

110 characters. No characters are loaded. It is presumed that a remark

will later be constructed in the space, for instance, by “@CM,” the

character manipulation subroutine described in Chapter 6, pages 154-156.

4. In R2 we see the

If printed, this remark

THIS IS A

TW$4LINEREMARK

convention for printing a remark on two lines.

wi2J_appear as fo120ws:

-63-

5* Space for 3627 characters is reserved. 27 of these are loaded,

namely, the comment and its $@ spacing control. Note that to avoid con-

fusion, the $!@and $$?$are separated by a blink. 3600 spaces remain in

a block; a 60 x 60 character graph could, for instance, be constructed

in the remaining portion of this remark block using “$X.”

6. An example of a remark which is continued onto a second card.

Note that the continuation card has a blank in column 1, as reqpired.

The loading of calling sequence blocks. Calling sequence blocks,

for the use of subroutines, are loaded from “K” cards. As has been re-

marked previously, the symbol assigned to a calling sequence block must

have been previously defined, either by its occurrence on a “D” card or

by its occurrence in the naming of a numbered block on an “S” card. Con-

tinuations of a “K” card must have “blank” in column 1 since the symbol

of the block is assigned on the “K” card. The general format of a “K”

card is as follows:

K]SYMB@(P) = (..calling sequence information...)

where, of course, the calling sequence information enclosed in Paren-

theses may be continued onto subsequent cards if necessary. “SYMB@L” re-

presents any legal, previously defined symbol or numbered symbol. The

optional entry “(P)” is parameter algebra defining the length of the

calling sequence in mchine words. Inside the parentheses to the right

of the equal sign may occur any number of calling sequence word entries,

separated by colons. The information in each entry between colons is

stored into one full word of the machine being used. The calling

-64-

sequence word entry, to

in constructing calling

be described shortly, allows for great flexibility

sequences. The IVY subroutines described in Chap-

ter 6 use only a portion of the available calling sequence

the full generality is available for those programmers who

struct their own subroutines and calling sequences.

A digression on notation. Certain notations are used

words; however,

wish to con-

in the IVY sys-

tem for addressing various quantities connected with the control word,

i.e., the word associated with a symbol in the symbol table which contains

the base address minus one and the count of the block having this particu-

lar symbol. These notations are as follows, where “AD” represents any

s~bol, except IVY swbols sta~ing with “?”:

NOTATION QUANTITY GIVXN IN CALLING SEQUENCE

AD(@) control word of “AD”

AD(~wP) position of control word of “AD”

AI)(@WA) control word
-1 of “~”)

AD(~wc) control word

address (base

count of “AD”

address

Calling sequence word entries on “K” cards set up full words in the calling

sequence in the same format as control words. Thus, below we will speak

of the “@WA” or “@WC” portion of a calling sequence word, and it is hoped

that

more

as the manual progresses, the reasons for this notation will become

clear.

CalMng sequence word entries. Calling sequences may contain any of

the following entries between colons:

-65-

1. ~XXX, where “XXX” represents one, two, or three alphanumeric
characters. The core BCD (octal) equivalent of these char-
acters, exclusive of the “~,” is placed in the “@WC” portion
of the calling sequence word. A table of hollerith charac-
ters and their BCD octal equivalents follows:

TABIE III

HOLLERITH CHARACTERS AND OCTAL EQUIVALENTS

Character BCD Character BCD Character BCD

o
1

2
3
4

60
01
02
03
04
05
06
07
10
11

H
I
J
K
L
M

z
P
Q

30

?!
42
43
u
45
46
47
50

x
Y
z
+

7=
1

67
70
71

E
54
61
13
14

33

A 21 R 51
B 22 s 62 ~;
c 23 T 63
D 24 u 64) 34
E 25 v 65 73
F 26 w 66 &ank 00
G 27

2. AD(@)+P, where “AD” represents any legal symbol, numbered
or not, and “+P” represents parameter algebra. The control
word associated with “AD,” as modified by parameter algebra,
is placed in the entire calling sequence word.

3a. AD(~WP), where “AD” represents any legal symbol, numbered
or not. The location of the control word of “AD” is placed
in the “@WA” portion of the calling sequence word.

b. KD(@WC)+P, where “~” is the above and “+p” i.s any parameter

algebra. The count of the control word of “AD,” as modified
by the parameter algebra, is placed in the “@A” Portion of
the calling sequence word.

-66-

I
I

1

!

I
I

C. AD($WA)+P. Same as “fi” except the address of the control
word of “AD” is used. 1.

d. AD(P), where “AD” is any legal non-numbered symbol and “P”
is parameter algebra. The contents of location AD($WA)+P
are placed in the calling sequence word.

e. P, i.e., parameter algebra. The ’resultof the algebra is
placed in the calling sequence w&d.

I

4a. Anentry of type 1, followed by a comma snd an entry of type
>> ~~ ~ 3C is allowed.

b. An entry of type 1 followed by a’comma and by an entry of
type ~ is allowed, providing the number addressed is fixed
point and less than 218, or by an entry of type je prov”d-
ing the result of the parameter ~lgebra is less than 2lb.

Chapter 6 is rife with examples of calling sequences to the various

IVY subroutines. Only one example will be given here: suppose we wish
I

to enter “$TP,” the tape program, internally. If we use the same calling
I

sequence covered in the example in Chapter ~ (page 35) on “T” cards, as-

signing it the name “TAPE” (which we

vious occurrence on a “D” card), the

as follows:

presume has been

“K” ca{d calling

I

defined by its pre-

sequence appears

I

KTAPE=(@lW3:@fR3,GE(@A)+l :SN(@):@&3,AX(@A)+3:ST(7W) :$RW3:

l~RW2:@B2,4:@D2,17iP(@A)+ GE:FRNB(#W))

I
Note that, as on “R” cards, the parameter a~gebra expressing the length

,
of the calling sequence is optional. If th{s algebra is given, the call-

ing sequence need not be completely filled, and entries can be computed

by the programmer, if desired. Examples of $his technique appear in

Chapter 8, pages 182-184.
I
,
,

I
I

-67.. ~
I

I

I

CHAPIER 4

THE IVY AIGEBRAIC LANGUAGE

The IVY algebraic language, or machine algebra, iS capable of han-

dling expressions in floating point, fixed point, Boolean, or index re-

gister algebra, as well as the simple parameter algebra already discussed

in Chapter 3. We will consider these types of algebra in succession,

with examples. Index branching will be covered along with index algebra

and Chapter 5 will consider other types of branching. A SUmmaI’y of

machine algebra appears in Chapter 9) Pages 190-195.

The operation “=” is permitted in all classes of algebra except

parameter algebra, and means the following: “evaluate the expression to

the right of the ‘.’ sign, and place the result in the location specified

on the left of the ‘=’ sign.” In other words, expressions such as

B =B+l

are allowed and make sense with this definition of “=”. This statement

means “increment the number in location ‘Bt by one.” With this pre-

liminary remark we shall launch ourselves into a discussion of the var-

ious types of algebra.

-68-

Floating point algebra. The follo

floating point algebra:

OPERATION

+

*

*

/

//

+?

-7

*$

.$R

.$CX

NCY1’E

1

2

3

.$CA

.@

NU3!ES:

1. The expression for the exponex
parameter algebra. For exampl

B**2, B**(GE + 1),

2. Reciprocal divide differs fror

the denominator appears first,
equivalent. See pages 72-73.

-69-

lg operations are permitted in

MEANING

add

subtract

multiply

raise to a power

divide

reciprocal divide

take abs. value of preceding

take neg. abs. value
of preceding
change sign of preceding

take square root of preceding

convert exponent minus one
of preceding result to fixed
point integer. (Integer
part of log2 [result]).

convert preceding result to
fixed point integer.

if result of preceding is
+0, settol.

If result of preceding is
= O, set to 1; otherwise
set to O.

following “*,” must be in

+(+F(2qH)

egular divide only in that

Thus, “C//B” and “B/C” are

.

3. This operation is valid only when the preceding result is
positive. If an attempt is made to take the square root
of a negative number, an indicator is set which may be
tested by entering the IVY subroutine “$!?T”(Chapter 6,
pages 128-I3o .)

Parenthesis conventions. Floating point algebra, unlike parameter

algebra, may contain parentheses, for one of two purposes: first, to

contain a modifier of a symbol, or second, to contain units of the alge-

bra. The second use will be described here; the first will.be encoun-

tered later in the section on modifiers (pages 74-84).

As in parameter

operations proceed in

observe the following

and its equivalent in

algebra, if parentheses are ~cking altogether~

simple sequence from left to right. For example,

equation in machine algebra without parentheses

display algebra:

MACHINE DISPIAY

RI = C=*2 - 4.0Wl+W3.#R - C2/2.OWl, r, = m-ca.c
2 1

The

one

equation shown is an attempt to use the quadratic formula to find

root of a quadratic equation with real roots. Correctly written,

with parentheses, the equations appear as follows:

MACHINE DISPLAY

m-c,RI = C=*2-(4.0WI*C3) .#R-C2/(2.~Cl), .rI=
2C1

Note that the purpose of parentheses in machine algebra is to localize

the operations so that they do not affect the result of the previous

-70-

computation. When a left parenthesis is encountered, a new level of

operation commences in which the algebra Within parentheses is performed,

with the convention that each operation within parentheses is performed

on the preceding result only as far back as the left parenthesis. The

above example might be diagramed as follows:

Level O:

z

R1-Result Adr.

s

&Res.lt Adr. Continue

Level 1:

c“mp”-~ “’ “’

Level 2: *F--I*] Ea-+%$1
Ten levels, i.e., ten sets of parentheses within parentheses, are allowed

in IVY. Thus one can evaluate quite complicated expressions in the

machine algebra, for example:

MACHINE

2.0 + (c1*(c-(3+TH))) +c3H2

Note: To avoid confusion, brackets
can be used on coding sheets
as parentheses, however.

11
[

if

However, it should be pointed out that

DISPLAY

(2+C1C23+TH + C3)2

u]“ and “curly” brackets “ “
desired. They will be punched

this example can be written with

only one set of parentheses, as follows:

C-(fiTH)++Cl +

In general most equations can be optimized

theses occur, by moving multiplications

-71-

and

2.0 + cy*2

so that a minimum of paren-

exponentiation to the

beginning of the equation and by using the “reciprocal divide” (//) in-

struction. Below is the quadratic formula, optimized in this fashion,

and evaluation of the polynomial P~= d1y3 +d2y2+dy+
3

algebra:

Thus, note

one set of

RI = 2.@Cl//C2*2-(4*ClW3).#R-C2

P4 = D1*Y+D2*Y+D3*Y+D4

that the quadratic formula cannot be optimized

parentheses, while polynomial evaluation needs

d4) in machine

for better than

no parentheses

whatsoever. A peculiarity of the “//” operation should be noted here:

everything to the left of “//” is the denominator of the fraction being

computed; everything to the right is the numerator. Thus parentheses are

not needed to enclose either expression, and the field of the square root

operation (in this case) need not be enclosed in parentheses since its

field of operation is assumedto start to the right of the “//.”

A further advantage of the “//” operation becomes apparent if one

considers the evaluation of continued fractions; for instance, in display

algebra, the expression

y=~

d+e
f+g

This quantity can be written in machine algebra in either of the follow-

ing ways:

Y = ((F + G//E)

We note that the first

i-D//C)+H//B, or Y = B/(H -I-(C/D + (E/(F+G))))

expression, using

-72-

the reciprocal divide

instruction, has two less sets of parentheses than the second. Generally,

algebraic expressions containing fractions with complicated denominators

can be

ter 8,

evaluated more efficiently using the “//” instruction. See Chap-

pages 163-164, for further discussion.

Operands which may appear in a floating point expression. We

have seen above a number of allowed operands in the examples given. Be-

low is a complete list of the operands which may appear:

1. Any symbol for a

and/or loaded as a floating

first element of the block.

2. Any symbol as in

IVY to mean the nth element—

single word or array which has been defined

point number, interpreted by IVY to mean the

“l” followed by a number n, interpreted by

of the block.

3. Any floating point literal, i.e., a string of digits contain-

ing a decimal point and which may be followed by an exponent. The nota-

tion here is the same as the notation for loading floating point numbers

on “D” and “E” cards, except that in literals the decimal point must

occur between two digits, and not at the beginning or end of the number.

Examples: 2.o, 3.1415926535, 500.62-3, 256.15+2, etc. Illegal: 2, 2.,

.2, etc.

4. Any parameter algebra expression (including a single symbol

or a single fixed point literal)

Some further examples of machine

clarify the above list.

may occur following

algebra and display

the operation “**.”

algebra follow, to

-73-

MACHINE ALGEBRA DISPIAY AIGEBRA

Y=z - 3.w(z-6.53) Y = (z-3) (z-6.53)

AREA=R**3*4.@+3.1415926535/3.0
4

A=~fir3

AREAT = B1 + B2W.7H

DFUV = U1*VI + (U-V2)

D =B+ C+@

D_ B+~+(C+#)

CPUV1 = U&V3-(U3*V2)

D=Z1-Yl**2+(Z2-Y&2)
+ (Z3-Y3~2).#R

YS1 = AX+ (2.WBX)*AX
or AX + BX~2

‘t
=’~(bl +b2)h

+ (U3W3) U“v=uv
+ ‘2V2 + ‘3V3

d=lb;~l

d= Ibl + ICI

(u+ = U2V3 - U3V2

f
d= (Z1-yl)2 + (Z2-Y2)2 + (Z3 -Y3)2

+ (BX**2) Y; = a: + 2axbx + b: or (ax + bx)2

We note that in many of the above expressions, more parentheses are needed

in the machine algebra than in the display algebra counterparts. However,

quite often in general equations fewer parentheses are needed in machine

algebra than in display algebra. In a complete code, quite frequently the

number of parentheses used will usually be less than the number needed in

display algebra.

Address modifiers. Any symbol in a floating point expression

may be followed by a modifier in parentheses. ‘Thepurpose of these modi-

fiers is to do one of the following:

A. To modify the address of a block in some ways, e.g., by mems

of parameter algebra, contents of an index register. or stored address.

B. To specify a particular arithmetic such as fixed point or

-74-

Boolean. Floating

modifiers is used!

text, e.g., by the

point algebra

or unless the

occurrence of

is always assumed unless one of these

arithmetic desired is obvious from con-

a fixed point literal or an index regis-

ter symbol in the expression.

c. To cause an address to be interpreted in.a particular way, as

for instance to address the “Q” portion of a double stored number.

D. To cause only a portion of the quantity addressed to be used,

such as the sign only or the magnitude only.

E. To cause all or part of the control word of a symbol to be

used instead of the data addressed by the symbol.

F. To cause the contents of two locations to be swapped.

For the sake of completeness, all modifiers allowed in IVY algebra

will be discussed here. Many of these are appropriate only in fixed

point or Boolean algebra. A summary appears in Chapter 9, page 1930

These modifiers will.now be discussed in turn and the conventions illus-

trated by exsmples.

A. A symbol may be modified by parameter algebra alone, parsm-

eter algebra plus an index register, as follows (where P represents any

parsmeter algebra, Xn represents an index register symbol, An represents

a store address symbol) and SYMBOL (#WA) is the control word address of

the block:

AIGEBRAIC FORM ADDRESS CCMPILED

SYMB@L(P) SYMB@L(#WA) + P

SYMB~L(Xn + P) SYMB~L(#WA) + P modified
by C(Xn)

-75-

AIGEBRAIC FORM (continued) ADDRESS COMPILED

SYMB@L(Xn) SYMB@L(@WA) modified W C(Xn)

S~@L(An) An

SYMB~L(Xn i-An) An

*C(X.) (“the contents of X=”) provides a dynamic

modified by C(Xn)

address modification;
theLLC(Xn)may be changed titwill during execution of a program, thus
dynamically stepping through an array or calling sequence. The C(Xn)
are added to the specified address in order.to perform this modifi-
cation. On the 7090, this addition is simulated, and how this is
done is of no concern here; the 7090 programmer can safely assume that
his index registers add as surely as do those of the 7030. In the IVY
system, index registers always contain positive values and are not
allowed to assume negative values, even on the 7030, which allows
signed value fields. The extra fields of the 7030 index register are
not accessible to the programmer unless he uses longhand code.

The “store address” feature allows the algebraic coder the unique

privilege of storing addresses, if he so desires. That is, he can

first compute the address he wishes to use, assigning to it one of the

“An” symbols, and then by placing it in parentheses as a modifier, in

a later expression, cause a “store address” to insert the calculated

expression. Thus the symbol modified

any symbol could be used, although in

addressed by “An” is generally used.

address is as follows:

An.m = F

SY@L(Xn+ An) = ...

● .* + SYMB@L(An) * ...

... (“An” occurs “m” times)

by an “An” expression is a dummy;

practice the symbol for the block

The format for computing a stored

I

-76-

That is, An is entered followed by a period and one or more digits which

give the number of times “An” occurs in the expressions following. The

letter “F” represents a fixed point expression for the address. The code

which follows must contain “m” symbols modified by “An”. Once these “m”

symbols have occurred, the same “An” is

a different address. Since only a very

necessary to encompass a given sequence

use each “An“ as its field of operation

available to be re-used to store

few distinct “An’s” are usually

of code, one can quite easily re-

is completed, and thus reduce

considerably the number of “A” symbols specified on the “S” card (page 26).

The number of “A” symbols specified should be minimized by adopting the

above practice of re-using an “An” as soon as its field of action is com-

pleted. This is what is meant by “independent” store address expressions

mentioned in Chapter 2, page 28. Note that “An” entries are “formula-

limited,” that is, once an “An” is

must appear in the same formula.

The following exsmple

sione This is a segment of

not yet been discussed. By

this exsmple will be clear.

should

defined, all symbols modified by it

serve to illustrate the above discus-

an actual code, and many details in it have

the end of Chapter 5, all the techniques of

-77-

Line No. NOTES
c MIX h CR&SS A SECTIONS

2 Ill I MX.X9,($J) MXS=O,*I=XI. *S= X2, *M= X3, 11111@
3

4

5

6

7

8

9

10

II

12

13
II

—
M(I, MM), S= MS(M), (LI)S=O, @

II AI.3=C($W)+CXX(M), 1111@
-D

1(1, CXX2), C(I+AI)=O, (I), @

*
L2,1= MN(S), TI=MOV(S)*EV+I.0,

1
1111@

1!(L3)TI .M,
I

j TIzMO(S,M,WTI, A2,1 nC($W)+CXXU),

*
I (I,cxx2), c(I+AI)s T[*c(I+A2)+c(x+ AI), (x),

(LI)MO(S)Z M,
*

S= S+ I,(LZ),

LI, (M), (L4)ICT=NZ,
*

($P, $PR: $F, FMI($WP): $A,C($WP): HM:GM),
It h

4111 L’$(xg+l)t
J

15 L3, ($P, $$P: EP2($WP))
~

... , ,,

(B I

@

@ I

Ill

Ill
,!0

1.

2.

3.

4.

Here we see the “*” convention, which we first encountered on
“D” cards (page 55), used here to define new symbols for in-
dex registers. Index registers are the only quantities for
which this is allowed on “I” cards. Note also the use of the
“@” or “jump” feature, originally discussed in connection
with data (page 55). If the condition fo120wing the’’(#J)”en-
try is satisfied, the formula or formula set is not assembled.
No second “@’’between commas is needed. This feature is use-
ful in case a particular formula is not used in an assembly,
i.e., is not entered if the condition is satisfied. See page 104.

Expressions for Al and A2 are computed.

Index registers plus modifiers Al and A2 occur in these
expressions.

Here we see modification by index registers alone.

The above exsmple will also serve as an example for

which wild.be described in this chapter and the next.

other techniques

B. In an expression consisting entirely of symbols, and where the

-78-

L

type of arithmetic is not obvious from

gister symbols occur); if algebra other

context (no literals or index re-

than floating point is desired,

one of the modifiers “A” for fixed point or “B” for Boolean must be placed

within parentheses, separated from the modifier of type A by a comma,

after the expression to the left of the equal sign. The formats are as

follows:

SYMB@L(MA, A) = ... (fixed point e~ression)

SYMB@L(MA, B) = ... (Boolean expression)

where MA is a modifier of type A (i.e., a parameter algebra expression,

index register, etc.) and “A” denotes fixed point arithmetic following the

!!=II
9 and “B” denotes Boolean. Whenever one of these modifiers is present,

modifier “MA” must occur. For example, if we wish to compute a value for

a single fixed point quantity “CE,” if the expression the right of the “=”

is unambiguous, we can write

CE= ... (expression)

but if the expression is ambiguous, we must write

CE(l, A) = ... (expression)

The “A” and “B” modifiers can appear only to the left of an equal sign.

c. Modifiers for dealing with double stored numbers can occur only

to the

comma,

in the

right of an equal sign, and are added inside parentheses, after a

in the ssme manner as modifiers of type B. These modifiers appear

following format, where “MA” represents a modifier of type A,

which must be present, and where “P” represents any parsmeter algebra:

-79-

FORMAT EXPLANATION

SYMB@L(MA,Q.p) “Q” portion of DS number having tag
length P

SY@L(MA,M. P) Magnitude (absolute value) of “Q”

SYMB@L(MA,T.P) “T” portion, length P, of DS number.

Note that since the “T” portion of a double-stored number is unsigned,

the magnitude (“M”) modifier always unambiguously means the magnitude of

the “Q” portion. Also recall that the “Q” portion may be either fixed or

floating point, so that “SYMB@L(MA,Q.P)“ and “SYMB@L(MASM.p)”are ~big-

uous expressions, and if fixed point algebra iS desired~ the “A” modifier

described above must be used left of the ayual sign to specify arithmetic.

However, “T” is always fixed point and defines an expression as fixed

point unless other arithmetic is

follow. In the section on fixed

examples:

EXAMPLES

specified. Exsmples of these modifiers

point algebra we wild.encounter further

NOTES

SN(X1+3) = AGT(X2,T.3).$CA*FN(x2)/3e15621-06 1

AF(X3+GE+17) = Rm(l,Q.5)//cx(N1+3) - CRyZ(2,Q07) 2

NUTES: 1. In this example the use of “T” in a floating point expression
is permitted, since the quantity is followed by the opera-
tion “$CA” which converts it to a floating point number.

2. The “Q” portion of two numbers having different tag lengths
are used in this algebra.

If it is desired to compute the “Q” or “T” portion of the qUtitY

to the left of the equal sign, one must use expression modifiers, described

below on pages 83-84.

-80-

D. Modifiers of type D are used to impose the sign of a quantity

on the result of the previous calculation, or to ensure that only the

magnitude (absolute value) of a quantity takes part in an operation, and

in one case, to save the remainder of a division or the low-order part of

any floating point operation, for double precision purposes. Type Dmodi-

fiers can occur only to the right of an equal sign. These modifiers are

as follows:

FORMAT

~@L(MAIM)

+~$L(MAp$)

-~@L(MA,#)

*~@L(MAjl)

SYMS@L(MA,R)

EXPLANATION

use magnitude of addressed quantity

impose sign of addressed quantity on
previous result

impose negative of sign of addressed
quantity on previous result

multiply sign of addressed quantity
by sign of previous result

save the low order part of the result
of this operation in the IVY location
“~csl” -

An example of the magnitude modifier “M” is shown in line 8 of the coding

example on page 78. Other examples:

EXAMME

RxN(xlWE?)= GFG(X3)**3+GE(1,#)

AFG = ALPHA(X3+N) + B(X2)
*~(Xl+Al,jj)

SUMY=AB(X1+l,R) +AC(X1+l)
+ AD(xl+l)
EMG(X5+3+GE) = SRN(X2+1,R)
-SRT(X2+1) + #/FNT3

-81-

NOTE

1

2

3

4

NCYI’ES: 1.

2.

3.

4.

E.

The sign of GE1 is attached to the result of the previous
operation.

The signs of STV(X1+A1) and the preceding result are multi-
plied, and this resulting sign is attached to that result.
If the signs are alike, “+” will result; if unlike, “-” wi12.
resuit.

The low order part of the floating point result of this cal-
culation is stored in “#CSl,” from which it may be obtained
for double precision work. We recall.that on the 7090, both
a high-and low-order part are carried in all.floating point
operations; on the 7030, the “R” is a signal to execute
double precision operations followed by a “store low order”
instruction to “@CS1.” The “R” modifier, if at all.possible,
should always occur as near to the beginning of the expres-
sion as possible in order to speed compilation.

In this case, the remainder of the division, if any, is
stored in “~CSl” once the operation (division) has been com-
pleted.

Address modifiers of type E cause the symbol to be interpreted

so that the operand becomes all or part of the control word, or the ad-

dress of the control word, associated with that symbol. Ordinarily these

modifiers are used only with fixed point and index arithmetic. All of

these modifiers except “@Wl?”are allowed either to the left or to the

right of an equal sign. Type E modifiers are as follows:

MODIFIER FORMA!I! OPERAND GIVEN

_@L(@) control word

SYMB~L(~WA) control word address

SYMB~L(@C) control word count

EM@L(@P) position of control word

-62-

Note that no other modifiers

the control word modifiers.

in the computation of stored

of any type may appear in parentheses with

The chief use of control word modifiers is

addresses (see lines 4

on page ~), for which “~W” is ordinarily used; the

register values, using “$WA,” “$WC,” and “@lP”; and

volving the symbol table. Examples of these latter

the sections of this chapter

and in Appendix 1.

F. The swap modifier

dealing with index

“S” always appears

and

and 8 of the example

computation uf index

in manipulations in-

two uses are found in

fixed point algebra,

to the right of an equal

sign and must follow a type A modifier. The format is as follows:

SYMB@L1(MA) =

The contents of the two locations

No arithmetic is permitted to the

Expression modifiers. Two

fiers, may be appended to the end

SYMB@L2(MA,S)

are simply swapped, i.e., interchanged.

right of the equal sign.

modifiers, known as expression modi-

of an expression in order to specify

that the result is to be stored in the “Q” or “T” portion of the quantity

which appears to the left of the equal sign. These modifiers appear as

follows, where “MA” represents a modifier of type A which may or may not

be present, and where “P” represents any parameter algebra:

SYMB~L(MA) = (expression).j!!Q.P

SWOL(MA) = (expression).@T.P

Ordinarily the modifier “.$T.P” should follow only fixed point expres-

sions. “.$Q.P” may follow either fixed or floating point expressions,

-83-

since the “Q” portion of a double-stored number may be either fixed or

floating point.

Special symbols addressable by IVY algebra. Four of the special

“~” symbols in IVY represent data blocks and maybe addressed byalge-

braic code. All of these except “@” may be modified by modifiers of

all types. However, the control word modifiers have a somewhat differ-

ent meaning when attached to “~CS” and “@Z”; this is covered in Chap-

ter 5 in the section on calHng sequences, pages 108-110.These special

symbols and their meanings and usage are as follows:

1. @M. This symbol may occur only to the right of an equal

sign, without modifiers. It means, “repeat the quantity to the left of

the equal sign.” For exsmple, the following two expressions are equi-

valent:

AD(X2+GW3) = AD(X2+GE*3)*SN(X3+2)/FN’3

and

AD(X2+GE*3) = @*SN(X3i-2)/FN5

2. #CS. This symbol represents the “caUing sequence data

block” and may appear on either side of an equal.sign, with or without

modifiers. Generally “#CS” is used to convey information to, or to re-

ceive information from, a subroutine. We have already encountered

another use of this block: the low order part of a double precision

result is stored in the location “~CS1.” The “@CS” block is twenty

words long and can be used the same as any data block except that it

should be recalJ.edthat the contents of “$CS” are destroyed by some

-84-

subroutines. Further discussions of “@CS” are found in Chapter 6,

pages 127-129.

3. @z. This symbol, which must always have at least a modifier

of type A, may occur on eitherside of an equal sign. It simp~y means

“supply an address of zero.” Its chief use is in store address expres-

sions of the form

#z(xn+~n, M2)

where the symbol is unimportant, since “An” is the address actually used,

and in subroutines, to refer to entries in a calling sequence, in the

form

@Z(Xn+N, M2).

(“M2” represents either a nu~ field or some type of legal modifier other

than type A.) The usage of “~Z” for the latter purpose is discussed

in Chapter 5, pages 108-110.

4“ @) $w @B~ “““)@Z. These 27 special symbols are shared by

subroutines and are used for internal data. A complete description of

their usage is given in Chapter 5, pages 110-112.

50 IL. The “@L”symbolsprovideaccess to certain special con-

stants and addresses used by IVY. The symbols address the following in-

formation: @Ll = FAC (first address for code); @2 = FAD

for data); ~L3 = NIA (next loading address for code); @!

block address for data); #L5 = 709010 if machine is 7090,

(first address

= NBA (next

703010if 7030;

jh% = number of remark characters per word. #Ll, @i2, ~L5 and #L6 are

-85-

available for testing purposes only. #L3 and #~ may be altered with dis-

cretion, as described in Appendix 1, pages 203-20g.

Statement separation and continuation. As one can observe from

examining the example on page78, IVY statements in the algebraic language

are separated by commas. There may be any number of statements on a card,

of up to 71 characters in length. An algebraic statement can be con-

tinued from one card to the next provided that symbols, literals, symbol

modifiers in parentheses, expression modifiers, and operations of more

than one character (“~j” “+$,” etc.) are complete on one card. These

items which cannot be split from one card to the next are called units

of an expression; thus we can say that expressions can be continued from

one card to the next provided that units of the expression are complete

on one card.

*Blzmks occurring in expressions are always ignored, as we can see
by again referring to the e~ple. Thus blanks may be used, if desired,
to separate units of the expression for easier reading. The carat’’’’”is
used to denote blank spaces on the coding sheet; if more than one blank
is desired, the notation is to write the number “n” of blanks enclosed
in a box, thus: ~. Note that oneneed notusethese conventions to
represent blanks occurring at the end of the card. In general, blanks
are totally ignored on every type of IVY card except the remark card
where they form part of the input data.

Fixed point algebra. The same operations are allowed in fixed

point algebra as in floating point algebra, with some changes in meaning

caused by the peculiar nature of fixed point algebra. These differences

are as follows:

-86-

OPERATION

/

//

.pcx

.$CA

.$R

MEANING

divide, and truncate quotient to integer.

reciprocal divide, and truncate quotient
to integer.

convert fixed point number to expon nt of
?floating point number, i.e., give 2 ‘esult)

in floating point.

convert fixed point number to floating
point number.

take square root, and truncate result to
integer.

These differences are, of course, occasioned by the difference between

floating and fixed point arithmetic. Fixed point arithmetic is the

arithmetic of integers; hence the difference in the divide instructions.

The same operands, with the exception of literals, and with the

addition of symbols for “K” blocks (page 18~, are allowed in fixed point

algebra as in floating point. Literals, of course, must be fixed point

decimal numbers, i.e., a string of digits not containing a decimal

point. In addition, symbols for index registers are allowed in fixed

point algebra; when these symbols are used, the contents of the index

register are used as an operand. When an index register appears in an

expression, there are two modes of operation: immediate and direct.

The “direct” mode is signalled by the modifier “A.” When the “A” is

missing, immediate algebra is assumed; that is, the expression is

assumed to be parameter algebra and is computed according to the values

of the parameters loaded at the start of the deck.

-87-

The same address and expression modifiers are allowed in fixed

point algebra as in floating point algebra. The same conventions are

also used for parentheses, the continuation of statements from one card

to the next, and the use of special “~” symbols.

The following examples of, and notes oqfixed point algebra

should serve to illustrate all necessary conventions.

EXAMPLE N(YTE

ARX(X1+3,A) = VDBC(X3,M) +RX3/AGT5*# 1

AD(l,A) = X3*VXC1 + PAR2 2

AE = x5 + GEwH/3 3

FRN(X2) = 3 + ART(X1)*56-SRTN(X2,@).@A. $Qe5 4

A3.6 =AD(@w) +ADX(XI) +AD@x2) 5

INDEX = Xl - VRN(~WC) 6

NW3!ES:

1.

2.

3*

We note that in this example the “A” modifier is used to spe-
cify fixed point arithmetic, since the expression, containing
only symbols, is ambiguous. Also note the use of the “magni-
tude” modifier and of %$tl to ch~ge the sign of the t?Xp?X?SSiOIh

In this second example the “A” modifier is used in a different
sense, since the expression contains a symbol for an index re-
gister and hence is unambiguous. The “A” is a signal that the
algebra is “direct” or “dynamic,” i.e., the computed values of
the symbols at the time of execution indicated are used in the
algebra.

Here again the eqression involves the contents of an index
register, but since the “A” is not specified, the arithmetic
is assumed to be “immediate” or “static,” i.e., the values of
the specified parameters at the time of assembly are used in
the algebra. This is done by placing the operands directly

-88-

into machine instructions, by using immediate arithmetic
on the 7030 and immediate-type instructions such as “TXI”
on the 7090.

4. In this fixed point expression the “A” is not needed since
the occurrence of fixed point literals makes it unambiguous.
Note that the expression is converted to floating point and
then stored in the “Q” portion of the double-stored block
“FRN,“ having tag length 5.

5. This is an exsmple of the computation of a stored address.
Recall that other examples of this were shown in the coding
example given on page 78. The usual expression for a
stored address includes the control word of a block (from
which the base adtiess is obtained) modified by the addi-
tion of one or more index multiples under the control of
index registers. The philosophy of this technique is dis-
cussed in detail in Chapter 8, pages 168-169.

6. This is an example of an immediate indexing operation in
which the control word count is subtracted from the con-
tents of the index register.

Index register algebra. Although index registers, as we have seen,

can appear in fixed point algebra, true index register algebra differs

considerably

noted by the

equal sign.

from fixed point algebra. Index register algebra is re-

occurrence of an index register symbol to the left of the

The operation set for index register algebra is as follows:

OPERATION

+

.7X

Thus we see that the operation set for index

stricted. However, under most circumstances

-89-

MEANING

add

subtract

if previous result
is negative, set to 1

arithmetic is quite re-

the operation, “*,” for

instance, is not needed since tables of index multiples can be constructed

on “D” cards and used in index arithmetic; and constructing index multi-

ples (done automatically by IVY) is the chief reason for the existence of

a “multiply” operation. If it is desired to load an index from a more

complicated expression, one can first use fixed point algebra to compute

the expression, and then load the index from the location where the re-

sult was stored.

It has been remarked before that index register contents are re-

stricted to positive, non-zero values. Tie purpose of the “.@X” instruc.

tion is to keep the index register contents positive by guaranteeing

that if the result of an expression is negative, a positive result of 1

willbe substituted. The magnitude of index register expressions must

be less than 2
15 18

on the 7090 and 2 on the 7030. Note that if the re-

15suit exceeds these bounds, the number given will be truncated modulo 2

or 2’8 as the case may be.

One modifier is allowed left of the equal sign in index register

expressions: “A” separated from the index register symbol by a period.

The purpose of this “A” is the same as in fixed point algebra when in-

dex registers are present, to specify “direct” arithmetic. Index regis-

ter algebra is always “immediate” if the “A” is not present. Of course,

here as elsewhere, the apel.lations“direct” and “immediate” apply only

to units of the expression other than index register symbols. In either

fixed point or index algebra, the contents of the index register at exe-

cution time form the operand.

-90-

Some examples of index register algebra follow:

EXAMPLE NOTE

xl =X1+1 1

X3.A = AD+3 2

x3 =GE+3 3

X2.A = AE-INDEX.#X 4

NOTES:

1. The contents of index 1 are incremented by 1.

2. In this case, direct algebra is specified by the “A.” The
contents of “AD” at execution time are incremented by 3
and placed in index register 3. Note that “N)” is the sym-
bol for a rather complicated expression illustrated in the
section on fixed point algebra. This example thus shows
how a dynsmic loading of an index register can be performed.

3* Immediate algebra is assumed here, which means that the con-
tents of GE at compiling time, plus 3, are placed in index
register 2.

4. Here the arithmetic is performed in the direct or dynamic
sense, and the index register contents are set to 1 if the
result is negative.

Renaming of an index register. An index register may be renamed

at any point in the code by the use of the “*” convention which was

originally discussed in connection with data blocks on page55.

Usually an index register will be renamed to a single-letter symbol to

save the necessity of writing the two or more characters associated

with every “Xn” symbol. If it is desired to use a symbol of two letters

or more to rename an index register, the symbol should of course have

-91-
●

been defined by its appearance on a “D” card. The format for renaming

an index register is as fo120ws:

*~@L = Xn,

where “SMB@L” represents any single letter symbol (except A, X, or L),

or any symbol of more than one letter which has been previously defined

on a “D” card, i.e., entered

Using what we now know,

index loop. An index loop is

in the symbol table.

let us construct’a simple example of an

specified by placing the values between

which the index is to run, separated by a CO=~ in parentheses afier

the name of the index register, at the beginning of a looPo The end of

the loop is denoted by p~cing the index register symbol in parentheses.

We have encountered other examples of index loops in the example on

page 78, lines 5, 9, and 3-12. The following loop is for the simple

PWOse of constructing the dot product “D” of two vectors “VA” and

“V-B,“ each having three components:

II*I = Xl, D

or, equivalently,

II*I =Xl, D

At least one of the limits of

= 0,1(1,3), D = D +VA(I)*VB(I),(I),...

= 0,1(3,1), D = D +VB(I)*VA(I),(I),...

an index loop must be 1. The other maybe

represented by a literal, as above) or by a s~bol~ as in the e~Ple

on page 78, or by a parameter algebra expression. The operation is per-

formed for the first value of the index, and then the loop is reiterated

after the index has been increased or decreased by 1, until the index

-92-,

I

reaches the final value. If it is desired to construct a loop for which

one of the limits is not 1, or for which the index increment is not 1, or

where the index is to run between computed (as opposed to parameter)

values, other techniques must be used, utilizing the “L “ entry. Examples
n

of this appear in Chapter 5, page 99, and Chapter 8, pages 169-171.

Boolean algebra. Boolean algebra is used for performing logical

operations by obtaining a result involving a bit-by-bit comparison of

two or more operands.

OPERATION

+

*

t

.$U

●*

The set of Boolean operations is as follows:

N(X?E MEANING

1 logical add, sometimes called
“inclusive ‘or’”

2 logical multiply, sometimes
called “and”

3 take one’s complement of preceding

4 give 1 if result is # O

4 give O if result # O, otherwise
give 1.

NCYJ?.ES:

1. The inclusive “or” of two binary numbers is obtained by compar-
ing the numbers bit-by-bit, and setting the corresponding bit
of the result to 1 if either or both operand bits are 1, and
to zero otherwise. For example, the inclusive “or” of
101101011101 and 001011100101 is 101111111101.

2. The “and” of two binary numbers is obtained by comparing the
numbers bit-by-bit, and setting the corresponding bit of the
result to 1 if both bits are 1, and to zero otherwise. The
“and” of the two numbers given above is 001001000101. Note
that the Boolean sum of the exclusive “or” and the “and” is
the inclusive “or.”

-93-

3*

4.

One

The lls complement of a binary number is obtained by replacing
all 1‘s with zeros, and all zeros with 1‘s. For instance, the
1’s complements of the two numbers in note 1 are 010010100010
and 110100011010.

These two operations are the same as
fixed and floating point.

can represent the Boolean operations

the corresponding ones in

graphically, as is illust-

rated below, assuming we have two intersecting regions “A” and “B.”

The result of the operation is the shaded area. We might say that the

area common to both regions corresponds to the

hers which are equal to 1, and the rest of the

differing bits of the binary number. The area

responds to the bits of both numbers which are

bits of both binary num-

area corresponds to the

outside the regions cor-

zero.

A+B A*B A’

From these illustrations a few identities of Boolean algebra become evi-

dent. For instance, the exclusive “or” of two numbers is equal to the

logical sum of the “and” of the first number and the complement of the

second, and the “and” of the second number with the complement of the

first. That is, the fo120wing expression produces the exclusive “or”:

-94-

Y(l,B) =V*(W’) + (W*(V’))

The exclusive “or” of two binary numbers is obtained by comparing the two

numbers

the two

note 1,

and

In this

bit-by-bit, and setting corresponding bit of the result to 1 if

bits differ, and to zero otherwise. If we use the two numbers of

page 93, this can be verified for a particular case:

101101011101 (exclusive “or”) 001011100101 = 100110111000

1011O1O111O1*(OO1OI11OO1O11)+ (OO1O111OO1O1*(1O11O1O111O11)) =

10I101O111O1*11O1OOO11O1O+

100100011000+ 000011000000

(001011100101*0100’

= 100110111000.

case, both results

no proof is offered here.

between Boolean operations

0100010) =

are the same. In general this is true, although

Many other similarly interesting relationships

can be discovered by studying the diagrams.

It is possible to obtain sixteen possible results by combining two numbers

using the IVY set of Boolean operations; these sixteen results make up the

entire set

The

1.

2.

of sixteen so-called logical connective.

following further observations apply to the Boolean set:

The operations “+” and tl*ttare Commutative and associative~

i.e., B+C=C+B, B*C = C*B, and~(B*C) = (~B)*C, etc.

The operation “*” is distributive over “+,” and “+!’
is distributive over “*,” i.e.,

D + B*C = ~C+(B++C);

IMB+C= D + C*(B + C).

The “and” (logical product) of two
one bits than either number unless

-95-

numbers contains less
both numbers are equal;

the inclusive “or” (logical sum) of two numbers contains
more one bits than either number unless both numbers are
equal. The “and” and inclusive “or” of equal numbers
are equal to the two numbers; the exclusive “or” of equal
numbers in zero.

Boolean expressions must always be denoted by the “B” modifier

to the left of the equal sign. The algebra to the right of the equal

sign may contain symbols for Boolean blocks or Boolean literals. Or-

dinarily Boolean expressions should not contain symbols for non-Boolean

quantities unless great care is exercised. While some very useful com-

putations can be carried out by violating this rule, such computations

usually will not work on all machines for which IVY is available, since

the formats of internal words differ. For example, on the 7090, the

following two expressions are equivalent and would compile the same se-

quence of instructions:

ADF(l,A) = AXCG(3+X3) .$CX

and

ADF(l,B) = AxCG(3+x3)*377000000000,uF(I,A) = Al)F/(2**27)- 129,*

whereas on the 7030, the latter expression will definitely not do the

same as the former, because of the differing word lengths and floating

point formats on the two machines.

*
In the last expression, “@l” can be used instead of “ADF” on the right
of the equal sign, if desired.

-96-

CHAFFER‘j

FIOW OF CONTROL, CALLING SEQUENCES, AND THE EXECUTE STATEMENT

L-entries. “L-entry” is the term applied to the use of a numbered

“k” symbol for branching purposes. An “L-entry” may be used for both

conditional and unconditional branching. In the algebraic language the

entry point is marked by the occurrence of an “In” symbol between commas

(for longhand conventions see Appendices 2 and 3). Unconditional branch-

ing to the statement

by the occurrence of

immediately following this entry point is specified

the same “Ln” symbol in parentheses between commas.

This branching may be performed in either a forward or backward direction,

thus:

....(h) (,~~. algebra)...
7

Ln,....(algebra)...
J

●..*.,

1

flow of control

......(Ln)....(algebra)...

An entry of “Ln” between commas for a particular value of

only once in a given formula. Conditional branching to a

“n” can occur

given “In” entry

is specified by the entry of “h” in parentheses, followed by a modifier,

-97-

if

the

the

necessary, specifying the tme of algebra used in the e~ression tO

right of the right parenthesis. If the given condition is satisfied,

branch is performed. Otherwise, control proceeds to the next algebraic

expression. The general format is as follows:

,(b, M)Algebra = C,

where

1. “h” represents the entry to which branching is to be
performed.

2. “M” represents one of the modifiers “A” (for fixed
point), or “B” (for Boolean), if necessary to spe-
cify the type of algebra to be performed in the
following expression. “M” and the comma preceding
it may be omitted if the algebra is unambiguous
according to the tenets of Chapter 4.

3* “Algebra” represents any machine algebra expression.

4. “C” represents one of the following conditions:

c

ZorO
NZ
GZ

Iz
Z.G
ZL
P
M

CONDITION

branch if result
branch if result
branch if result

than zero
branch if result
branch if result
branch if result
branch if result
branch if result

is zero
is not zero
is greater

is less than zero
is zero or greater
is zero or less
is plus
is minus

Examples. An examination of the coding example in Chapter 4,

page 78, will reveal an unconditional branch on line 11, and conditional

branches on lines 3, 7, 10, and 12. The “Ln” entries to which branching

is performed are on lines 6, 12, 14, and 15. Note how the flow of control

-98-

