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EARLY RADIO FLASH FRUM

A LOW-ALI'ITUDE AIR BURST

by

B. R. Suydan

ABSTRACT

This report reworks an earlier theory of the -
early part of the radio flash from a low air burst

by extending the results to quite general gamma ray

vs. time histories, and to times about ten times

longer than the earlier theory.

The previous theory

is also improved in that error estimates are given

for all approximations used.

are presented.

Typical signal shapes

I. INTRODUCTION

Some time ago a method, called the high-frequen-
cy approximation, was developed for calculating, ana-
lytically, the early part of the radio flash from an

air burst. 1 Subsequently the method was extended

to a ground burst.(a)

The first of these references,
(1) it

is classified, and (2) in it many approximations were

however, suffers from two defects, namely:

made in order to obtain simple results without any
estimates as to the limits of validity of the approx-
imations. It has accordingly been deemed advisable
to rework the theory removing as far as possible the
defects.

Our analytical theory of the radio flash re-

quires three classes of approximations:

1. Analytical approximations to the
temporal and spatial behavior of
the source functions, J and o.

2. An approximate treatment of Maxwell's

equations, arrived at by dropping

certain troublesome terms.

3. The evaluation of certain integrals
which express the solution of the

simplified set of Maxwell's equations.

In Section IJ we derive the equations of the
high~frequency approximation, first in full general-
ity, and then specialized to the low-altitude air
burst. In Section III we discuss the source func-
tions J and ¢ in sufficient detail to indicate tnat
the analytic form we assume is sufficiently general
Thus item 1.

to cover all practical cases. above
presents

late the

no problem. In Section III we also calcu-
radial E-field which is needed in the next
section.

Section IV contains our results, namely ana-
lytic expressions for the radiated signal, togetner
with typical curves. These results are, of course,
This

approximation may be viewed as the first term of a

based on our high-frequency approximation.

series expansion of the solution to Maxwell's
equations. We have made the usual heuristic esti-
mate of the limitations of the theory by calculating

the second term of this expansion and noting under



what conditions it is negligibly small. The details

of this calculation are in Appendix D. Generally
speaking, we can be confident in the first micro-
second of the calculated pulse. In order to express
the solutions to our equations in simple closed form
approximate expressions must be found for certain
integrals. These approximations, together with re-
mainder terms, are worked out in Appendices A and B.
As the remainder terms given are exact, there can be
no question as to the range of validity of our ap-
proximations; at the expense of more complicated for-
mulas, correction terms of any desired precision can
be added to our formulae.

Finally in Section V we discuss our results.
In this section it is pointed out why one may ignore
all nonlinear effects, as we have done throughout

this work.
I1. THE HIGH-FREQUENCY APPROXIMATION

The Compton current, J, and the electrical
conductivity, o, are both produced by a short pulse
of ganma radiation whicn expands radially outward
from the burst point with the speed of 1light. It is
tnerefore appropriate to describe events in terms of
proper time, T, rather than ordinary time, t

(2.1) 1=t -r/e,

wnere r is distance from the burst point. When ex-
pressed in terms of proper time, T, and position, r,

"
the Compton current and the conductivity have approxi-

rately the forms

J = Hr)e(r)
(2.2) )
o= s(r)g(r)

where f and g represent extremely short pulses.

Clearly,
. JJd dc
(2.3) o ™ -J/\ and 3c ™ o/x .

#here A is the gamma-ray mean-free-path. Now A/c is
about 2/3 microsecond and the pulses, f and g, are con-
siderably narrower than this. Therefore the operator,

3/or, operating on J or o, is much smaller than the

operator, 3/cdt. It is reasonable to assume that the
same is true of the field quantities, at least for
the early part of the signal. The high-trequency
approximation consists in ignoring 4/9r of various
field quantities compared with :3/c3t of the same
gquantity.

however, be done with circumspection, first noting

The dropping of such imall terms must,

all cancellation that may exist arong large terms
before small ones are dropped.

The easiest way to see how the high-frequency
approximation works in detail is to write out the
full set of Maxwell's equations in polar coordinates,
(r,0,9), and in terms of the proper time, T, rather
than ordinary time, t. Under this transformation,
Maxwell's equations take the form

~

JdE

l7r 1
2 > + ,-U(OEI_ = -’-U(Jr +

r sin 9§

d(sin 8B_) 9B

—FL“EES' ,

1 6Ee 1 dBr
e ¢ bnoEg = —tha t rsin # >
(rB_) dB
1 177
i k- L
JE JB o(rB,)
1l 17 1 2]
(2',*) < E’F + ,-U(OEQ = -’-U(Jq) T W + T T
_1%%
s 37

1 r 1 3

S “rsinal 39 ° 39 ’
iSBeﬂib(r )_ 1 k)l _idE(p
c o T or rsinsd o9 ¢ or °’
1an 1 9E. a(rEe) 13Ee

LET&T‘?W'?_&_*E .

The first step is to eliminate Be and BQ by formally
integrating the last two equations



r T
rB, = -rE_+ 3 rE cdr
3] P r (11}
-00
T
2.5) 4 B
(2.5) sin @ 56 EerT ’
-0
T T
B =) )
rB(p = rEe + 36 Ercd-r - d—r-f rEecd-r .
\ > %

Then substituting these results into the two
equations for Ee and qp gives

JOE

1
(2.b) '53}' (rEe) + 2no(rEe) = -2nrJe *3 T"E

T T
3B 2 2
1 r 1 9d 1 d
_ 1 _ = + = — E_cd
*Tsin o9 " 2amve | ESITH3 32 rEgedr
~® oo

and

1 aEr

(2.7) 83{- (rEtp) + 2n0(rEcp) = -2nchp + T sind %

T T
3B 2 2
r 1 1 J 19 -
36 " 5sintors | BT t3 araf rE,cdr .
-0 -0

-

So far everything is exact; Eqs. (2.5), (2.6) and
(2.7) together with the first and fourth of

Eqs. (2.4) are equivalent to the original Maxwell
Note that in Eqs. (2.6) and (2.7) the

cancellation of the two large radiation terms has

equations.

taken place.

The high-frequency approximation consists now
in taking the awkward set of equations (2.5), (2.6)
and (2.7) and ignoring terms in 3/dr, as compared
with those in d/cdr of the same quantity. Consider,

for example, the first two terms on the right-hand

side of Eq. (2.5). We see that
T T
(2.8) rE_ = 9 rE_cdr >> rE_cdr
car o) 3r s
-0 oo

and so on. We thus obtain

T
r 1 o)
I‘Be = -I‘EQ - Sin® 86 EerT 3
-®

T
rB = rE_+ 9 E_cdr
P 8 08 ro?
-0

b(rEe)

- 19E
=+ 2nc(rEe) = -2nrdy + 5 55
(2.9X
. 1 dBr
2 sin @ 99 °
d(rE_) -
P - . 1 oE
T 2no(rE(p) = 2nrJ(p * 3 sin e s
i i,dBr
2 7r
\

where we have written

T

JE
(2.10) Bdef g . / L cdr
r 2;1‘

-00
for short. We do not drop the smaller integral in
this case because it introduces no complication. On
the other hand, it does extend the range in time over
which the approximation is valid.
field components can readily be obtained from
Eqs. (2.9) and (2.10) once the longitudinal field
components are known.

All transverse

For these components we have
the equations

[ JE

l™r 1
Iy 3 + IU(OEI_ = -IH(JI_ +

r sin

5):)
(2.11) 4 §’§ (sin 8 B)) - 3%3} ,

1 aBr 1 aEe

- T — - a (Sln 3 E )
c 3' r sin 3 5@ 56 Q}
“




How these equations are solved depends on whether we
are concerned with a ground burst or an air burst.
For the ground burst, the operator, /08, becomes
very large near the ground and this allows an approx-
imation scheme discussed in detail in Ref. 2.

In this report we confine our attention to a
low-altitude air burst, in which case there are
three possible asymmetries:

a. Asymmetry of the bomb itself.

b. Asymmetry resulting from vertical
gradients of atmospheric properties
such as density and water vapor

content.

¢. The geomagnetic field.

All three of these are small effects, the second be-
cause atmospheric gradients are small, and the third
tecause Compton electron range at low altitude is
much shorter than its Larmor radius in the geomag-
netic field. As the asymmetries are small, so also
are the transverse components. Moreover the angular
derivatives are small operators, of order l/r or
smaller. The result of tnis is that the transverse
fields may be neglected in the radial E-equation

giving

1 dEr

(2.12) 3 37 +4noE, = -bnJ_,

whicn is immediately integrable by quadratures.
Fornal integration of the radial B-equation yields

,
1 9
(2.13) rBr-mw/‘Eech
-0
,

1 o)
- sine 3 sin ¥ f E(pcd-r .

-00

Using this in the remaining equations, we see that
the new terms involving integrals may be dropped for

exactly the same reason as could the others and we

have
J(rE ) 1 3E
-5t 2no(rhe) = -2nrdy + 5 5
(2.14)
d(rgm) o

1
ar + 2110(1‘%) = -2r(chp + Zsind 59 °

Thus our procedure is first to solve Eq. (2.12) for
Er’ next to calculate E from Eq. (2.10) and then
Eqs. (2.14) are soluble by quadratures.

Note that the geomagnetic field enters solely
through the quantities, Je and J , whereas the other
asymmetries enter solely through OE/36 and JE/09.
Furthermore note that E will be a function of atmos-
phere density, p, of water vapor content, W, and of
bomb asymmetry, 2. Thus we may write

dE  dp oE | oW ok . an oF

(2.25) 5= 363 * 56 o * 36 o5 °

In other words, the right-hand members of Eqs, (2.14)
can be broken into a series of terms each of which

expresses a single asymmetry. The same is therefore
also true of the fields.
rately the individual asymmetries, knowing that the

We shall consider sepa-

resulting signals may be combined linearly to obtain
the total signal in the complex real situation.

II1. THE SOURCE FUNCTIONS

The gamma rays from an explosion result from
inelastic scattering of neutrons in the bomb materi-
als themselves and in the air immediately surround-
ing the explosion. Other sources of gamma radiation
such as neutron capture and fission fregment decay
are of too low intensity to be of any importance to
During the reac-
tion the neutron population in the bomb rises as a7
and, after the peak which we conveniently define to

be at T = 0, falls exponentially as e®. Both @ and
The prompt gamma rays follow

the prompt electromagnetic signal.

8 are of order 108/sec.
this same time history at the source. Fast neutrons
which escape scatter in the air and, with every ine-
It is easily
seen that this population also decreases exponen-
tially with time, say as e-K T, but as air density

is much lower than that of bomb materials «

lastic collision emit a gamma photon.

5 is much

less than 8, typically around loo/sec. The air ine-
-KoT

lastic gamma rays also vary with time as e 2 . The

Compton electron current is proportional to the

garma-ray flux and therefore varies as

(3.1) J = -9(r,9,9)£(7) ,

where



a7 for <0,
(5.2) 12(r) =
-8 -y
e + €e for T > 0

I

near the explosion.

The electromagnetic signal, however, comes
mainly from a region which is 5 to 10 gamma-ray
mean-free-paths, i.e. a distance of 1 to 2 kilome-
ters, from the explosion. At such distances scat-
tering strongly modifies the time history and the
intensity of the gamma rays and the Compton current.
A convenient way to describe these modifications is
in terms of a build up factor, B(r), which is the
ratio of scattered to direct radiation at a dis-
tance, r, and ot a response function, u(r,r), which
describes the time history of arrival of scattered
gamma rays at a distance r from a 5-function source.

Then at a distance r from the explosion, we have

(5.3) J=-9(r,*,0)< £(7) + B(r)

Tf( shu(r- s)ds} ,

-00

where 9 includes the exponential absorption and
l/r2 attenuation of the unscattered beam.
A fair approximation to the response function,

u, is the simple exponential, x_e , where k. is

0 0
constant in 7 and varies slowly with r. 1In this
case Eq. (2.3) readily works out to be

f B
K
1+ 9 ea-r for T< O
a + r
0
kB -KAT
e-s-r 1 - 9 + k. Be 0
8- 5 0
(5.4) J=-9
1 1 €
a+ «k + 8 ~ & K. - K
0 0 0 2
KOB€ -KAT
+ P e for >0 .
L o~ "2

Typically %o is of order lO7 so that it is consider-

ably larger than « At the large distances which

interest us, the biild up factor, B, is quite large,
of the order 10, and therefore we see that J falls
as e O rather than e o7 throughout most of the
prompt period.

At the large distances of interest to us,

electron-ion recombination is completely negligible

and the conductivity, g, can be separated into
electronic conductivity, Tgs and ionic conductivity,

ay governed by the equations

-

doe
TE t e = ALY
(5.5) 4 do,
i 2
Tt alog)” = A
c=o0_ +o0. ,
\ 1

where B is the electron attachment rate in air, g =
108/sec at S.T.P., and Ae is a factor depending on
electron mobility, M the number, v, of secondary
electrons made by a primary, and the Compton elec-
tron patn length in air, £, namely

(5.6) A, = vue/l .

The quantity, Ai’ is the same thing but formed with
twice the ion mobility, Zpi, instead of Mo (two ion
species), and a is the ion-ion recombination coef-
ficient expressed in appropriate units. On our
time scale it is quite accurate to set a = 0. Be-
cause the electron attachment time, ﬁ_l, is so short,
the conductivity, Oos follows the prompt source, 0
-AeJ, except for a short period of duration about B
after the peak. Thus ¢ also rises as SZT for T< O
" at first. Later the conductivity
levels off to a broad shoulder falling, let us say,

-K2T
as e .

%g
and falls as e

This leveling off may occur because air
inelastic gamma rays have caused J to level off. 1In
the absence of air inelastic gamma rays, o levels
off because of the build up of ionic conductivity.
As we indicated above, noe-K "
approximation to the scattering response function,

u(r,7).

is only a fair

It can be made a good approximation, how-

ever, if we replace the constant, « by a time

o’
It follows, then, that

except for a very short period of order, (0<T<1/8),

dependent function, w(r,r).

the conductivity can be accurately described by the

expressions
e
o=2 (r,9,9) for r<0
(3.7) .
-j‘KdT
“K,T

o= L/+(r,a,¢) xe for v> 0 .



with « a slowly varying function of r and 7, n a
slowly varying function of r, and Ky & constant.
The 7 > O part of such a curve of ¢ vs. T is shown
in Fig. 1.
to differ; in fact they must bc so chosen that J is

The quantities, ., and <, , are allowed

continuous at v = 0. From Eqs. (3.)) we now find

( ﬁ +
Jr=- A, L e forTt< O
(5.8) ﬁ 3 "
Jr = - A—+{ﬁ -k + x/c)ke ™
e
N
L + (B - na)ne }for T>0.

Continuity at v = 0 yields

Ko(ﬁ - kot ;co/no)
B +a

2
+n B+« ’

(3.9) & _=3,

wnere dots mean d/dT and zero subscripts mean the

value at T = 0. We have defined

T

(3.10) g def / kdr .

0

when there are many air inelastic gamma rays, the
electronic conductivity levels off before ionic con-
ductivity becomes important and we hgve

135.11) n =7 (with air inelastic) .

In the absence of air inelastic gamma rays T} vanishes

and
T

Ai -
(5.12) o, = A—L; + (B - k + &/k)(ke Hdr)
0

>

= 2,8 - k) - (8- 0]

)

Thus, as (p - K)Ai/KAe is very small
Ai
(5.13) n= A_e ([30 - no) y Ky = O (no air inelastic)

in the absence of air inelastic gamma rays. The peak

to shoulder ratio, no/n, is normally of the order of
100 at distances of interest to us.

With the above general expressions for o and
for J we can calculate the radial E-field. For this
we define two auxiliary quantities, S and Es’ defined

by
T
(3.14) Sdsff hxcodr
0
snd
(3.15) E, %fg/0 .

From these definitions we readily see that

(3.16) & = hxczj+[l -eed(1- e"‘aT)]
2
for r> 0,
(S is undefined for T < 0), and

.
ES=Ea=(B+a)/Aefor-r<O

T

-x
LB rrim)e™ H (B k) (Wn)e
(3.17) <E o
s e e™™ + (n/r)e 2"
for > 0 .
.

All of our equations so far are accurate except for
a period of order (1/8) after the peak. During this
period, that portion of the signal which arises from
asymmetry of Er is very small and sizeable percent-
age errors here simply do not matter.
We can now solve Eq. (2.12) for E_. In fact,

from our definition above of Es we see immediately
that ’

T T
—é bneodr! [ f hxcodr”

-0
/Ee
s

-00

(3.18) E =e Urcodr’ .

As Es = Ea = constant for T <« O we have immediately
(3.19) Er('r) = Ea[l - e-lmco/a] for <0 .

For v > O we break the range of integration at r = 0
and we split S into two terms, writing



0 1
= ,4 N
(5.20) So rtc__,+ ,
KT
S, = lbrne {e-“-——q—(l-e 2 )}
1 K
2
and obtain
- -s(7)
(5.21) E_(7) = E(-O)e
T
Sl(T) -Sl(T')
+ e E(7')e brxodr’ ,
0

where Er(-o) is given by evaluating Eq. (3.19)at T =
0.

Note that Sl becomes much smaller than So after
a period of a few times (<o)-l. During this short
period when the two are comparable, E, varies but
little and this circumstance enables us to evaluate
the integral of Eq. (3.21) to good precision, ob-

taining simply

(3.22) Er(T) = Er(-o)e's + Eo[l - e's] ,

where Eo is the value of ES obtained by evaluating

Eq. (3.17) at T = +0. The details of evaluating the
integral to obtain Eq. (3.22) are all worked out in
Even Eq. (3.22) can be simplified. As

we shall see, at times in the neighborhood of the

Appendix A.

peak the signal comes from a very narrow region about
the point r = R_ where 2no = 1/\, very nearly. In
this neighborhood, therefore, 4nco/x is very small

and

2c
(3.23) E_(-0) ~ Byt & <K

so that the term in Er(-o) may be dropped, giving
S
) .

As we shall see, carrying the term in Er(o) would

(3.24) E_ = Eo(l - e

introduce no additional complication, but would not
contribute noticeably to the signal.

In order to evaluate the integrals required to
calculate the radiated fields, it is convenient here

to define a new function, k, by the relation

-KkT
-u 2
(3.29) k % 5/0= kne 1o +(n/K2)(l-e )
ke M + qe—KaT ’
for >0 .

so that Eq. (3.24) may be written as
; . -ko
(3.20) hr(T) = Eo(l -e )Y forT>0.

We see that k depends only weakly on position but
strongly on T.

To complete our evaluation of tne source func-
tion we need the time integral ot Eq. (3.26). From
Eq.(3.16) we see that S, i.e. ko, is essentially
constant in 1t except for the first couple of gener-

ations after the peak. Therefore we can write

T

-ko)CT

(3.27) E cdr = Eo(l - e

to good precision, for when v is so small that ko is
varying this expression does not differ significant-
ly from zero. Thus we have
T

6Er

def
;I'_ cdr

(3.28) E "= E -

0

JE
_ _ 0 _ o-ko -ko
= (EO et 5% >(l e )+ Ech-rkoe .

where Z is defined by

def 1 3(ko)
(3.29) 2z = ks —g;—- .

Clearly 2 is about 1/A and the correction term to Er
would not be needed for cr << A. We keep the correc-
tion term in order not to be restricted by such a

severe limitation. The source function for atmos-
pheric and for bomb asymmetries is obtained by dif-

ferentiating Eq. (3.28), and is
2
~ JE d°E
oE _ 0 0 -ko
(5.30) cﬁ‘[a_e‘“ aear][l‘e ]

JdE JdE

0 [¢] aZ -kg
+ - —_— . R —_—
QEO c-r(n 3> Z 30 Eo oe) koe

+ QEOZCT[ko - (ko)a]e-ko .

where we have written for snort



(5.51) pef L oka)

The terms proportional to 1, which arise from

Eq. (3.27), we shall call the secular terms; they
are clearly of importance only when ct/A is appre-
ciable.

In deriving Eq. (3.30) we have allowed specifi-
cally for all effects of gamma-ray scattering except
for one, namely the change of angular distribution
of Compton electrons with disterce and with time.
This effect can, however, be included by simply re-
defining the quantity, v, the effective number of
secondary electrons per Compton electron, to be a
This introduces additional

T and r dependence of Es’ but we already have specif-

function of v and of r.

ically allowed Es to depend on these quantities.
Thus, with proper interpretation, our results are

quite general.
1v. SPECIFIC SOLUTIONS

We have seen that the geomagnetic signal can be
discussed separately from the other signals. As
this signal has been discussed quite well elsewhere
and is well understood,(j’u’5) we content ourselves
here with deriving the basic formula which we do
simply for completeness. We consider a perfectly
symmetrical explosion in a perfectly uniform atmos-
phere but in the presence of a uniform magnetic
field, ?Q'
of -B0 we find

W

Choosing our polar axis in the direction

L

{ue.1) JQ-ZaJsinﬂ, J, =0,

0

wnere ! 1s Compton electron range, a is its giro
radius in the geomagnetic field and J is the radial
Compton current.
is

Our only surviving field equation

(n.2)

rqv)
. !
5t 2no(rhw) -2nrJ’(§;) sin 9 ,

whose solution is

r

Lsind exf rE_e Xorodr ,
2a s

0

(n.5) rqv =

where
o

(4.1) deff 2rodr .

r

At large distances we can set r = oo in the rignt-

hand side and obtain for the radiated signal

(o 0]
! sin ¥ -
(8.5) rg, = L5022 / rE e Lorodr .

0

The factor, 2n§e_x, has a very sharp maximum at r =
ﬁs’ the point at which

1l dc
(’4.6) 2”0!2--3’3;.
This fact enables us to evaluate the integral. The
details are given in Appendix B and, to lowest order
in x/ﬁs, we obtain tne well-known formula

! sin 3
(’4.7) I‘Eq) = T

. §SES(§S’T) .

So long as ﬁs is considerably larger than A, Eq.(4.6)
above indicates that it is proportional to log o.

ES is constant during the ¢-phase and changes rapid-
ly at the peak, dropping to a lower nearly constant

value during the k-phase. Thus the geomagnetic sig-

nal is a short, sharp spike having its peak slightly

before ¢ reacnes maximum.

We now address ourselves in somewhat more detail
to the other asymmetries. We may ignore geomagnetic
effects, setting J¢ = Je = 0. It is convenient to
choose our polar axis vertical. If then we suppose
tnat the bomb itself is azimuthally symmetric, so

will be the field equations, which reduce to

o(rE,)
(4.8) _;ri + 2no(rEy) = 1 8

which has the solution

_ X 1 3E -X
(5.9) TEg = e /§§§e dr ,

X being the quantity defined above in Eq. (4.4). We
confine our attention to the distant field, writing



and shall refer to this as the radiated signal. If
we now substitute for éﬁ/be the expression given by
Eq. (5.30) we obtain

[o0)
(4.11) rEg - / ) [1 - e‘k"]e'xdr
1
0
™ o)
*/ (Dakoe'ko'xdr + f q),j[ko - (ko)a]e'ko'xdr,
0 0
where Ql, 02, Qj are given by
( 19K, 3%
®1 3|3 " " 33 |’
JE JE
1 dz 0 0
(4.12) {Qa 5 ﬂEo'f'CT(Eoggi-Zﬁ'-Q?;),
_ 1
0)5 =3 D.EOZCT .

We have defined Z and 2 in Eqs. (3.29) and (3.31).

Now consider for a moment the second term of
Eq. (4.11). The factor, kJ exp [-ks - X),is a rapidly
varying function of r with a sharp maximum at r = RS.
that value of r for which

def

(4.129) 2noy = 2, y = 1+ KkzZ/2n .

On the other hand Qa is a slowly varying function of
r and this enables one to evaluate the integral with-
out specifying the functional forms of ¢ and of o,

In Appendix B this is worked out in detail, as are
also the first and third integrals. In this Appendix
expansions are given out to third order in (x/RS).

As this quantity is normally about 1/10, it normally
suffices to take tne first terms of these expansions

obtaining the result

ok @k

1 2 3
(4.13) rE_ = —logy+—+—] .
0 ,z 2ry 2xy2 reR_

If higher order accuracy is required, additional cor-
rection terms will be found in Appendix B, along with

error estimates.

The quantity. k, {Eq. (3.2>)] is a rapidly vary-
ing function of T and, at most, a slowly varying
function of r.
most linearly with 7. Normally Qj is of the samc

The ¢'s,on the other hand, vary at

order as the secular term of ?, and, as y becomes
quite large, the term in Qb is a relatively small
correction.

We can now dispose of the a-phase in s general
way. During this period we have k = Uxc/x and Z is
very nearly 1/\ so that

2c 2c/a
(4.14) rEy = NP log (l oy ) o, 1_3_é3762

+ @ 2c/a

2 (1 + 2c/ax)2 )

But 2c/on << 1 and the terms of ®1, @, P, which

b
are proportional to T are completely negligible at
this stage. Thus we may expand Eq. (4.l3) and

obtain

JE
c 1 « . 1dc
= = = + = <
(4.15) rEe ° Ea{E rT s 56 for T o,

where E  is the (constant) value of E, when 7 < 0.
The signals which come later are clearly of order
AE, which is much larger than 2cEaA2. We can there-
fore completely ignore the a-stage signal.

For 7 > 0 the radiated signal behaves essen-
tially like the first two terms of Eq. (4.13%), the
third remaining always a small correction. Thus,
aside from the secular terms, which are important
only when T approaches a microsecond or so, the
signal is given by a linear combination of the two
functions of v, log y and Zk/2ny. Over most of the
range of T, Zk/2n is large and these become slowly
varying functions of k and hence insensitive to its
details. This becomes clearest if we examine these
quantities not as functions of real time, 7, but
rather as functions of generation number, I', which

we define as

def [ H
(4.16) 1 = lsign Tleog (opeak/o(T)]r:Rs .

In Fig. 2 we have plotted the two functions



F(r) = log (1 + k/2n)

k/2nn
6(r) = T3 %/omn

as functions of the generation number, T.

(4.17)

Each was

calculated for two different cases, namely:

a. The solid curves are computed from
the o vs. T history of Fig. 1. This
case is described by a prompt burst
with « varying from an initial value
of 2.8 x lO7 to a final value of
5.8 x 10°, plus a long tail of air
inelastic gammas for which Ky =
b x 10§. The peak to shoulder ratio,

(kg/n), 1s 70.

b. The dotted curves are computed for a
prompt burst of constant k, k = ko =
2.24 x 107 and without any long tail

to o.

The curves of case a. correspond to a o history
which is far from being a simple exponential, yet
the dotted and the solid curves lie remarkably close
to one another. It is clear that for many purposes
“"universal” curves for the two functions, F and G,
would suffice. In addition, of course, one would
need a g vs. T curve to translate generation number,
[, into real time and for times not much less than
Afjc the secular terms in Ql and Py would have to be
included.

We shall now proceed to discuss in detail
special cases. We have in every case retained all
the secular terms, including the small one in Qj but
have calculated only to lowest order in (x/RS),
which we have supposed to be 1/10. In all cases
calculations were made for the two o vs. T histories
designated as a. and b. above. Curves are shown
(case a-solid, case b-dotted) for normalized signal
strength vs. generation number I' and also vs. real
time, T.
simply 1/, but have used higher order terms to com-
pute AZ/38.

For the quantity, 2z, itself, we have used

A. Bomb Asymmetry Alone
1f the only asymmetry is that of the bomb it-

self, then J and o have identical angular dependences,

10

which may be written as

J = Jr,r) - o(6)
g = a(r,r) - ofe)
2 = dw/wde .

(4.18)

Thus Eo is independent of 9; as there is no atmos-
pheric gradient it is also independent of r and
Eq. (4.13) reduces to

1 \E, 0 k/2ra {1 et /X
2 1 + k/2=x 1+ k/2xn

(4.19) TE,
In case b. the secular term is completely unimpor-
tant, in case a. it never exceeds 0.1, and this
only after 1 microsecond. Thus this signal is
essentially described by the function, G.
are shown in Figs. 3 and 4 giving rEe

ation number, [, and real time, T, respectively.

Curves

vs. gener-

B. Gradient in Water Vapor Concentration

Next consider a perfectly symmetric explosion
in an atmosphere of uniform density. However, owing
to a gradient in water vapor concentration, the
electron mobility, and hence o, varies with altitude.

If, for convenience, we take the variation to be of

the form

r
(4.20) e = ko €xXp {'E cos a}
we find

( Rs sin 9 or Rs cos 4
Py (Rg) = - —mp— Eo[l'a—(l* —n——)

8
R_sin 9
s 2x 2\ cos 8
(4.21) gpa(Rs) = = Eo[l —(1+ . ——h——)]
R_s8in 9

s . oT A _Acosd
P5(Rg) = ——5— E, "[1+Rs+—“ ]

“

Assuming one is near enough to the equatorial plane
that R_ cos 38/h << 1, the radiated signal is

RS sin 9
(4.22) rEe = XEO —n

(-5 el (1o 57) pos (av wreenl}



to lowest order in A/RS. Here the secular term is

of order er/\ and quite important at 1 microsecond.

Curves of rEe

time, T, are shown in Figs. 5 and 6, respectively.

vs. generation number, I', and real

C. Atmospheric Density Gradient
At low altitudes air density varies exponen-
tially with the altitude so that we may write

(4.25) p = P €xp {-r cos e/u} .

The quantity, H, is called the relaxation height and
may be taken to be about 9 kilometers. 1In this sub-
section we shall always use the subscript 0 to indi-
cate the value of a quantity at burst altitude. As

electron attachment is a three-body process, the

attachment coefficient, B, varies as n~ so that
(4.24) p - Boe-ar cos 8/H .

Now writing

(4.25) g = -g(r,9) - F(1) ,

we can write for 7, )

(4.26) g = %[% - co;He ] exp [_ :_o(l ) %\)]

so long as we confine ourselves to regions suffi-
ciently near the equatorial plane that R cos 8/H <<
1. The bomb yield expressed in appropriate units is
Y and b is a constant arising from an empirical fit
to the build-up factor.
Appendix C.

The details are given in

In calculating derivatives of ES from Eq. (3.15)
we shall ignore any dependence of «, n, and Ae on
position as we do not at present know these. Thus

we write

(4.27) E_E -l EQ . 2r sin 3
: a8 A_d6 A H ’
e e
dEs Eg 2 cos 6

}F':'AeT'

with Eqs. (4.26) and (4.27) and the relation, g =
J/ES, we can calculate the functions P15 Pps and Qi.
When the result of this calculation is set into

Eq. (4.13) we obtain

CT/KO

R k/2x bN ug
S AO 1+ Y _90 -1 +
R AeE 1+ k72nko

AU 1+ k72nko

8
Srio 4 4 k/2rt)\o .S ﬁ 1
- I
R AE |1+ Kkfanng R | AE

correct through first order in x/RS. As tio/AeES ~ 1
and A/Rg 1/10 we see that the secular terms are
again of order et/A. Curves of this signal vs.
generation number, [, and real time, T, are shown in

Figs. T and 8, respectively.
V. DISCUSSION AND CONCLUSIONS

We have shown how the early portion of the radio
flash from a low-altitude air burst may be computed.
Use of the high-frequency approximation enables us
to obtain simple analytic expressions for the signal
starting from a quite general g vs. T history. A
question still unanswered remains, namely, for how
long a time is the approximation valid? To answer
this question we have used the solutions found to
estimate those terms of Maxwell's equations which
were originally dropped. Inserting these estimates
into Maxwell's equations, one can solve and obtain
first-order corrections to the high-frequency ap-
proximation. This process is carried out in detail
in Appendix D, where it is shown that the fractional
error involved in using the high-frequency approxi-
mations is about CT/RS, RS being our usual signal
radius defined by Eq. (4.12a), that is to say, the

approximation is good so long as
(5.1) er < R_.

Typically this means that we can have confidence in
about the first microsecond of the computed wave-
form. It should be pointed out here that condition
(5.1) was achieved by including the secular terms,
which our earlier theory did not do. Without these

secular terms the much more stringent condition

1



¢t << A must be fulfilled.

The second conclusion we wish to point out is
the limited variety of possible pulse shapes.
Leaving aside the geomagnetic signal, we saw that
all other asymmetries lead roughly to signals which
are linear combinations of two basic pulse shapes,
described by the functions, ¥ and G, of kq. (4.17).
Because of the presence of the secular terms, this
is not strictly true; nevertheless, it is true in a
practical sense as illustrated in Fig. 9. In this
figure we have plotted as a solid line the atmos-
pheric asymmetry signal of Fig. 8 (solid line),
together with the dotted curve which is a linear
combination of the bomb asymmetry signal and water
vapor gradient signal (solid lines) of Figs. 4 and
. The linear combination chosen is an improbable
one, but it does show that there are essentially
This should, of

course, have been obvious from the beginning, for

only two independent pulse shapes.

there are only two basic asymmetries, that of J and
that of g. Practically, this means that inclusion
of new effects, such as the spatial dependence of

Ae and of k, will introduce no new pulse shapes. It
also means that it is impossible to sort out the var-
ious asymmetries from a given signal.

There is one effect which we have not included
in our calculations which might lead to an additional
wiggle in the curve, and tnat is tne effect of dif-
ferential scattering. Owing to the density gradient
of the atmosphere more of the gamma rays arriving at
some distant point r have been scattered downward
than upward. This will produce a net current of
Compton electrons downward at the point in question,
i.e., a negative Je. The signal produced by this Je
is calculated exactly as was the geomagnetic signal
and will in fact resemble the latter signal, with

two important differences:

a. Because only scattered gammas contribute,
the signal will be delayed and broadened
as compared with the geomagnetic signal.

b. The polarity of the signal will be posi-
tive regardless of magnetic bearing.

A rough estimate indicates that the amplitude of
this signal is small, but further consideration of

it is surely warran(‘.ed.(a)

Nounlin+ar etfects have been omitted from our
As the

+ivnal comcy from a thin zhell centered on r = Ks’

Lheory; in tuct they are negligibly small.

It suftices to confine our attention to this regioun.
Using Lhe furmulas we have developed for Er at tnis
position we see that this quantity is simply not
large rnoupgh to extract a signitficant fraction of
the Comptoun clectrun energy. The transverse fields
are inetfective in producing a transverse J for tne
simple reason that Ee, qv are very nearly a pure
radiation field so that their effects on the Compton
electrons very nearly cancel. The only nonlinear
effect remaining is the field dependence of the
electron mobility, Mg and the attachment coefficient,
B. Over a wide range of field strength, P and He
depend on the electric field as (

(5.2) p,=uNE, B=pME,

= lOb and ﬁo = lo8 when E is
During the k-phase, the elec-

where numerically “O

expressed in e.s.u.

tric conductivity depends on these parameters as

) )
(5.3) oast= 0 )
By - WE

It turns out that « is so much smaller than B that
the nonlinearity of He is essentially cancelled by
that of B and the field dependence of ¢ is so weak
that it can be safely ignored. During the ¢-phase
we do not necessarily have @ << . On the other
hand the radial E-field at r = Rs is very small
during this phase, around 0.03 e.s.u. or less. At
such low field strength the conduction electrons are
essentially thermal and Hes B are no longer field
dependent.

APPENDIX A - THE RADIAL E-FIELD

According to Eq. (3.21) the problem of calcu-
lating the radial E-field is solved once we evalu-
ate the integral

T

r
def .
.,

0

-8

(A.1) 1 Ege Lincodr’ ,



[ o] o0

(B.15) E-/ Q)e-*Exodr= -/(3)(e-*v'dr) ,

r r
which partially integrates to yield

[o0]

(B.16) E=$(1-e"")+/(3’-) (1 - e¥yar .

r

Using Eq. (B.11), this may be written as

«

oo
(B.17) }=2(1_e-w)_f 1:w($)
r

and we can integrate by parts again obtaining

‘*)‘_l“'w‘p

(B.18) E:g(l-e . y)[7+logv+El(v)]

' f[l 2 (2) ] 17 + 208y + Bl

where 7y is the Euler-Mascheroni constant, 7 =
0.5772156 ---.

Now put r = R_ into Egs. (B.13) and (B.18) and
We obtain

@
Vooar - | @ {1+ L@ ¥
fq)e 2rodr [y{1+ - (tp y)
0
(7 + log WH oot
rsK

s

add.

(B.19)

The remainder, indicated above by the dots, iu readily
estimated with the aid of the integrals of kqu. (B.t5)

and (B.18). The outer region contributes

[o's}
+ 00
) 1+ w/ o ’ (- )n—Lvn—l
(B.20) €., = /[—z (;)] z Y dr
R n=1
s
[ " *S o n-1 n-1
1l +wfl +w 9 2 (") Q dy
= 2 P y] =R nnt
L 0 n=1

, [o o] n-l.n
. l+w<l+wc2"> E ()" 3
" Z k4 y] 2 :
L rfRS

Similarly the inner region contributes

R

S Ne2)
. 1+w/1+w|q_>' 1 '
(B.21) € o f = ly]> v
0]
, ©
1l+w l+wc2]' Elw
~ z z [y ¥
r=R

s
s

Chandrasekhar(7) gives as tne value of this integral

(o]
E\(¥) 2 & ()
1 l 2 = s
f v ‘”‘57"12‘2 2

v

(B.22)

s

whence we find

2 ’
2 - 7_ n_][l-i-w{l-i-wm }
(B.23) €rot [2 5 -

very nearly.
that kz/2n is large.

error is about

The error is worst at late times such

Setting z y 1/A the fractional

t/11(°°’“"2 '% on) (Dq))}

s

(8.25) €Tc.)

tor tunctions, ¢, which vary as some low power of' r

this error is about 10% if R is as small as 5\.

L



For yields of reasonable magnitude RS is more like
10\ and the error becomes quite small. If to

Eq. (B.19) we add the correction term, Eq. (B.23),
the remaining error is of order ()\/RS)3 and thus
= 3X.
Applying Eq. (B.3) to Eq. (B.19) yields

/

[q{log y+ ity (7+ log v) [(%_

similarly, from Eq.

small even for such tiny yields as RS

-ko)e-x

(B.24) (1l - e dr

—) log y+ k22r(y] HR .

s

(B.4) we have

8

dr

{B.25) ®2n(0)

1n order to calculate second-order corrections
1 and 12 as
functions of a running upper limit; I5 however is

needed only in correction terms, which is why

Ltv tne field quantities we also need I

it is given above to first order only. We have
already calculated Il(r) and we can see that, as
¢(r) is presumed to vary slowly with r, we have to

first order

o(r) -w(r) .
y%;y e for r < Rs

As these quantities are used only in correction

terms,, we do not need higher order accuracy.

APPENDIX C - CURRENT DENSITY IN A NONUNIFORM ATMOS-
PHERE

If we write out Eq. (3.3) specifically for a

uniform atmosphere we should have

(c.1) J= -2

- )\ .
o (£(7) + Kr)K(T)},

where we have written F(1) for the faltung integral
of Eq. (3.3) and Y represents the yield in appro-
priate units; A is of eourse .the gamma ray mean-
free-path. ' .
sented empirically by

‘The build-up factor is quite well }epre-

(c.2) Br) =y5) ,°
with b a

it turns

constant. For distances such as r o 10A,

out that B>> 1 and we can in fact write-

(C.3) J= -g(r) - A7), , ) Ve
where

bYe—r/x r g
(c.u) '7:7({) . . .

Sometimes in fitting B(r), an exponential factor is

included on the right-hand side of°'Eq. {C.2), but

this merely leads to a redefinition of A in our
.(eu). :

-¥
. e "2rodr =
(3.26) e o 9 In an exponential atmosphere, A is no longer a
o] constant but is given by
—E ‘V( ) for r 2 R_,
Yo s -
. (c.o) %3% o7 C0S o/u , .
0
where subscript s means evaluation at r = Rs' Now
frum Eq. (4.5) it follows that
-
2ro
?|E ( glﬁ) - E (Z“UY) e ? for r £ R
r z 1 2 1\ gz
-kag, -X
(8.27) / (1~ e e dr = <
anc
0 P, o 2oy = X
2l ( cro ) - E ( ) e © forr 2 R_ .
z 1\ 2z 1 z
s s s
.

1t




In Eq. (C.4) r/A means the distance measured in mean-
free-paths and tnerefore, in case of a variable den-

sity we must make the replacement

. r dr
{c.6) N -

- H -r cos I/H
A A, cos 8 (1-e ]

0

Wnen this replacement is made, Eq. (C.4) is found to
correspond with

YbH

r A, cos 3

0
H -r cos 8/H
sxp [’W(l'e )]

(c.7) 9= (1. T s 3/}{]

in the case of the atmosphere of variable density.
In the end this quantity and its derivatives
will be evaluated at r = RS. At low altitudes RS is
considerably less than H. Moreover the signal is
frequently observed near the equatorial plane so

that
(c.8) R, cos 8 << H .

When this is true we can expand some of the exponen-

tials simplifying 7 to

. bY¥Y[1l cose _x _rcos3d
(c.9) 7‘>\o[r H ]e"p[ }\0(1 oH )}’

which is Eq. (4.26) of the main text.

APPENDIX D - LIMIT OF VALIDITY OF THE HIGH-FREQUENCY
APPROXIMATION

In making the hignh-frequency approximation,cer-
tain terms were dropped from Maxwell's equations be-
Now that
we have obtained such a zero-order approximation to

cause they are unimportant at early times.

the fields, we can use these results to calculate tne
values of the terms dropped from Maxwell’s equations.
These additional source terms enable us to calculate
first-order corrections to the fields, and in princi-

ple one could continue, writing

I

e 50 gD,

(o) . (1) _ ...
(D.1) E = Eg ' +E 0 +

(0) (1)
= B + + v
BB *h

We shall carry out this program as far as the cor-
1) to the radiated field.

this calculation is not to achieve higner order

rection Eé gur aim in
accuracy of the fields but rather to define the
time interval for which the zerv-order solution i
valid. Thus we shall content ourselves with some-
what rough evaluations of the integrals wuich will
arise.

Owing to the term proportional to eT, the temm
in Qa is normally larger than the rest. As we are
only estimating an error it suffices to consider
this term alone, i.e. we may choose a model in
which

Q’l=¢j= o,

(D.2)
9. = = 0E (1 + ct/A)
2 2 ] !

typical of our worst cases. To achieve tnis we have
oEo/be = 0, whence from Eqs. (3.29) and (2.9) we ob-

tain

R L b

A
and
1 d : (0)

(D.4) [sm 8 - rB

r2 sin 6 3% @

’
- XEOQ 1+ &7 ) k/2nn . 2eT ko e~ko
2r2 ( AN /1 + k/ana N ’
where
. , def 1 o) Q si

(b.5)y q "= Sine S8 (Q sin 8) .
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In all our cases 0 is of the form € sin 6 whence o ’ ®
i = 2¢ cos @, where € is a small asymmetry factor “{D.ll)‘ rE(ll) AE & [ : 2. ]}/‘ g ko-X
whose exact form depends on the type of asymmetry 6 _1;—_

under consideration. In all'cases, however, '/ << 0

1. Equation (D.4) gives the source function for
(1)

plus terms of higher order in (x/RS). Partial inte-

the correction E ""to E o 1-e.

gration and the results of Appendix B show that the
above integral is simply l/Rs to lowest order and we

(0) have
(D.6) Er -?——— ae (sin orB )Cd‘r( ,
sin 9§
o .. AE. 22
v (D.12) rE(ll) - er + &1
: } ERS 2n ’
T M h
’ whereas
- Mo ke (v )AL, 2er o} ca
orl T + k/2xx ofcd A AE. 0
8 ' (0} . 0 c_f] k/2nn
(D.13) TEq 1+ T+ ’/2nn °

Now the quantity k/2nAy is &lways Yess than unity

but is very nearly one for all appreciable values Clearly ‘the correction term is negligible for small
of 7. Similarly, ko is nearly constant Tor such’ values of 7; it remains negligible just so long as
values of T and we have )

¢ ot
' ., (D.ll&)' ER—<<1..
PNIRY
(D.7) Egl) e ko[CT $ S (1 2ko)] ,
2r ' (11)

In addition to Ee

order correction term, Eéle), which has as its source

there is another first-

to adequate accuracy, and tnerefore

the term
l (l) XEOQ’ -ko c2 2
(D.8) 3 de = 5 € [CT + &1 (1 + 2ko) T
(D.15) z 5—2 rEe cdr .
+ o(ea)
The terms in 0(€°) vanish identically when § = n/2 This is readily calculated to be
and are in general small. We have defined
(2) aE 22
(0:10) > = g2 (er + S Je™
(D.9) o = dsf/de . A
This correction to E_ induces a correction to : - 2
(11) 99, ko X2 _ 2(ke - (k0)?)
Ey which we shall call E;~"'. It is given by or2 T z g - \ke ’
' . and .
(1 P gl A
11 1 r -X i - L.
(D.lo) I‘Ee -f é’ OT e "dr . ‘ ' - ®
/ (2) _
(D.17) rEél2) - z e Xdr .
Uetting Eq. (D.8) into (D.10) gives 0

When we set Eq. (D.16) into Eq. (D.17), all of the
integrals are given in Appendix B except for that
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involving the term in aan/ara. Writing v = ko + X,

we have
R R
s s
v ¥,'s ¥
(D.18) e 'dr = [re ]o - rye '2ngdr ,
0 0
as the result of partial integration. Now using

Eq. (B.19) of Appendix B, we obtain

R
s

1

(D.19) e Var - e T,

when we make use of the fact that vs 1. Using
this result plus others from Appendix B we obtain

3%
bra

ol

2
A°E .0 22
(D.20) rsélz) -2 (cf + 5 ) yet

(1+ k/anx)a

+ e Yk /ona [az Lzl 2 k/2ma
T+ k/2xa)or © Qor z g
r=RS

The worst case is that of the atmospheric density

gradient for which Q « r2. Then the term involving

z o0 .

(p.21) 29%: 2
s

dominates the rest and we have
£(12)
cT

0
(D.22) ~— .
ELOE eRS

From Eqs. (D.14) and (D.22) we can conclude that the
high-frequency approximation is valid for all times
such that

(D.23) o7 << R, .

Note that this conclusion is essentially independent
of the magnitude of the secular term.
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