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DEVIATIONS FROM THE3WU EQUILIBIUUM I3 SHOCK WAVES 

The  various  terms  contributing  to  the  energy  content of a gas, viz. 

translation,  rotation,  vibration,  electronic  excitation  and  dissociation, are 

discussed (par.1). Tables  are  given of the  snergy  content  and  the  specific 

heat of a simple  harmonic  oscillator  (Table I), of the  energy  content  and the ' 

dissociation of nitrogen,  oxygen (Table 11) and air  (Table 111). The  molecular 

vibration  becomes  important . fo r  air  at  about 600'~~ the  dissociation at' about 

3000 OK. 

The theory of shock  waves is generalized to the  case when the spe- 

cific  heat changes with  temperature (par, 3 ) .  General  formulae are obtained for 

the velocity, (3.10)~ density ( 3 . 8 ~ ~ ) ~  pressure (3.&), and  temperature (3.9) oq 

the  high  pressure  side. It is shown that  the  asymptotic!  values of v, p, p arr3. 

~ T on 'the high pressure side at  sufficient  distance from the  front of the  shock 

wave  are  uniquely  determined by the  valuea of these  quastities  on  the low pres- 

sure  side,  aad  are  independent of a,ny intervening  phenomena  connected with the 

approach of statistical  equilibrium  between the varioua  degrees of freedom of 

the molecule. This we consider  the most iruportant result of the  PreSent 

investi@tiona. 

A table  is  given  (Table VIII) of the  asymptotic  values of v, p, p 

and T on the high pressure  side  a8 a function of the  velocity v of the shock 
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wave, The four qwtities &re calcula.ted (a) using  the  actual  specific  heat 

of air as a function of teqxrattlre, as given by Table I11 (quribntities  are 

oubscript  in  Table VIII), and (b) using a constant  specific heat equal to  that 

at 300°11 (eubacript 2 ) .  Large differences  are  found for the  temperature In ' 

the  two  calculation8  (T2 = 8 0 0 0 ~  when T3 3: 5000') and for the  denuity 

(p2 .= 5.8, p3 = 9.1) but  the.  pressure,  which  is  the most important quantity  for 

applications, is ahost lndependent of the  specific  heat (p2 = 155, p3 = 168 

atmospheres in the  example  quoted). 

The sudden  change of' the  temperature of a gas when  passing thou& 

a shock  wave  destroys  temporarily  the  statistical  equilibrium  between  the  various 

forms  of  energy  of.the gas molecules, The degrees  of  freedom of a molecule can , .  

conveniently  be  divided  into  two  classits,  the  active ones and  the  inert  ones 

(par. 2). The  "active" degees of  freedom  are  translation and rotation;  they 

come  into  thermal  equilibrium  after w e  or a few  collisions  (par. a). The 

moat important "inert" degree of freedom  is  the  vibration (par. 2B). Experiments 

,on the  absorption  of sound show that between 20 and  more  than 5OO,OOO cdllisions 

are  necessary  to  establish them1 equilibrium  between  vibrations and the  active 

degrees  of  freedom  at room temperature  (Table V). Thia result agrees  with  the 

eqectation from the  theory of Landau and Teller. This theory Elllowa one t o  

predict  with moderate accuracy the temperature dqendence of Z, the  number of 

collisions necessary to de-excite  the  first  vibrational  quantum  state, when a 

measurement of Z at  one'temperature  is  available  (Table N). Unfortunately  no 

accurate measuremnts have  been made for oxygen 'and none  at a l l  f o r  nitrogen, 

which  makes  quantitative  statements  almost impossible. Therefore we have only  

listed (Table V I )  the  values of the  mean  free path for vibration,'h,  which 

follow from  various  asaum'ption  (par. 2D) about  the  efficiency  of  the  collisions. 

Tho resulting value8 of h, for the  cases  which  have  practical  importance for  

. 

c. 

shock  wavee lie between 3 and 0.0016 millimeters,  depending on the vibrating 
I 
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a 

molecule (N2 or 02) ,  the  assumption  made  about  the  efficiency of various 

molecular  collisions, and the  humidity  of  the  air. 
. .  

The  dissociation  also  requires a considerable  time  to  come  into 

equilibrium.  The  theory (par.2C) is somewhat  more  definite in this  case  than 

for  the  vibrations  because it depends on the Boltzmann  factor  rather  than  on . * 

asswrptions about the  kinetics of collisions.  Very  large  values  (from 1 milli- 

I . meter  to 1 meter)  are  obtained  (par. 2 D J  Table VII) for the mean  free  *th for 

dissociation, X&, in  practical  cases. 

The theory of par. 2 is. applied  to  shock  wave  in par. 4. It  is shown 

that  the  shock  wave has a sharp 'front  on  the  low  pressure side while on the 

high  pressure  side  it  extends  over a distance of the  order of the mean free 

path for vibration, hJ or for  dissociation, Ad. Immediately  at  the  Wave  front, 

but on the high pressure side, the  physical  quantities I?, pJ T, v can be calcu- 

lated assuming that  only  the  active  degrees of freedom  exist  (Table VIII, quan- 

tities with.s~scripts 2). Going  away  from  the  wave  front  into  the high pres- 

sure region,  the  energy Ei of the  inert  degrees of freedom  increases gradually 

and  approaches  the value corresponding  to'  thermal  equilibrium. In sinrple 

cases, Ei, p, p, T and v will  follow an exponential law (cf. 4.10, 11) . .If 
the shock  wave is violent  enou&h so that  dissociation OCCUTB on the high pres- 

sure  side,  there  is  first a region  of  extension % near  the  wave  front  in  which 
vibrational  equilibrium is established  but in which  the  dissociation  is  hardly 

affected,  and  then a much  more  extended  region  (extension  Ad)  in  which 

dissociation  takes  place. 

Two .special  cases of very soft shock waves  are  discussed in pars. 5 

and 6, these  discussions  having mostly academic  interest. In par. 5,we consider 

the  case  where  the  velocity of the  shock  wave vl is between  the  actual  velocity 

of sound a1 and the sound velocity  obtained  by  considering only the  active. 

degrees of freedom, i.e.,' 



where cv is  the  total  specific  heat a t  constant  volume  and c- the  spec;,fic 

heat  due  to  the  active  degrees  of  freedom only. It  is  shown  that  in  this nar- 

row velocity  interval  the  shock  wave is diffuse on the low pressure 8s  well 

as on the high pressure  side.  These  diffuse  shock  waves go over  automatically 

into  shock  waves  with a sharp front  when vz. approaches  the  upper  limit  given 

in (A) .  

In par. 6, slightly  faster  shock  waves  are  considered,  viz. wave8 

for  which 

For such  waves,  the  temperature  on  the  high  pressure  side  increases  with 

increasing  distance  from  the  wave  front while for wave8 of higher  velocity vl, 

the  temperature has its lllaximum immediately at the  wave  front and decreases 

from there. 

. 

c 
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NOTATIOTT 

~hroughout t h i s  Report,  the  following  notations w i l l  be  used: 

p = density of gas 

p = pressure  (in atmospheres) 

T = . temperature in degrees  Kelvin 

E = energy  content of one gram of e 6  

CX degree of dissociation, 

1 + o f =  P A P  

cp = specific  heat a t  constant  pressure per gram 

cv. = specific heat at constant . .  volume per gram 

7 = cp/cv 

R = gas constant per wa~n 

c E velocity which the gas  would have if streaming into vacuum 

a = velocity of souna ' 

h, E mean free path for vibrations 

hd = m e a n  free  path fo r  dissociation 

7, = frequency of molecular  vibrations 

D. = dissociation energy of molecules 
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SUBSCRIPTS 

a for   act ive  degrees  of freedom 

i for   iner t   degrees  of freedom 

V fo r   v ib ra t ion  

d for dissociat ion 

h for   an   a rb i t ra ry   po in t  on the  high  pressure  side of a 
shock wave 

P fo r   an   a rb i t r a ry   po in t  on the  low pressure  side 

1 f o r  a point on the low pressure  side where thermal  equilibrium 
e x i s t s  between a l l  degrees  of  freedom  of  the  molecules 

2 f o r  a point on the  high  pressure  side  immediately a t  the f ron t  

3 f o r  a point on the  high  pressure  side at suff ic ient   dis tance 

of the shock wave 

from  the wave f ront  so that thermal equilibrium  exists 
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Par. 1. The Energy Content of Cases 

Perfect gases obey the  equation of s ta te  

P/P = (1.1) 

where p, p, T arc pressure,  densdty and absolute  temperature and where the 

gas constant R is a characteristic of the  gas considered. If the gas dis- 

sociates, (1.1) ceases t o  be  valid; in the  particular  case of a diatomic gas 

dissociating  into atoms, we have instead: 

where wis the  degree of dissociation,  i .e.,  the fraction of molecules dis- 

sociated.  Generally, p/p T is proportional  to  the number of separate par t ic les  

(molecules or atoms) per gram of the  substance. 

The energy  content of a gas consists of f ive main parts, viz:  

(1) the kinetic energy of the  translation of the molecules 

(2) the energy of molecular rotation 

(3) the energy of vibration 

(4) the energy of electronic  excitaticm of the molecule 

( 3 )  the energy of dissociation  into atoms (or smaller groups of 
atom).  

We shall write the t o t a l  energy  content per pam i n  the form 

E = (B " 1) (P/d (1.3) 

The inclusion of the term -1 is convenient  because  the quantity occurring in 

t he  theory of shock mves is E + p/p, where p/p is connected with the work 



The  various  contributions  will now be  discussed  in  order: 

1. The  translational  energy  is 3/2 p/p for any gas, independent 

of  the  number of atoms  per  molecule,  the  temperature,  etc. 

2. The  rotational  energy,  for  all  gases  except q, and  at all 
temperatures  at  which  the  substance  is  gaseous,  is  given  by the classical 

kinetic  theory  of  gases  without any 'important  quantUm  correction.  It  is zero 

for  atoms, 1 RT per gram for  diatomic  molecules and all polyatomic  ones  whose 

atms lie on a straight  line  such as C02, and 3/2 €2 for  all  other  polyatomic 

molecules. At  high temgeratures,  there  is a correction  because  the  molecules 

change  their  shape  due  to  their  vibrations. This correction,  commonly  called 

the  interaction of vibratians asd rotations,  is mually not  very  great. 

3.  The vibrational aergy can  be  approximated (at m t  too' high 

temperatures) by resolving  the  vibration  into  normal  modes and treating , ,  each 

mode  as a harmonic  oscillator. 

The lllzmber  of  normal  modes is 1 for a diatomic  molecules, 3n-5 for 

a molecule  containing n atoms  on a .straight  line  and 3n-6 for a molecule  with 

n atoms not on a straight  line.  The  energy  contained in one  mode  is  (per . .  em) 

where 

y ib  the  frequency  of  the  vibation, h Planck's and k Boltmaan's  conatant. 

If y is given in wave nmbers (crn-l) and T in degrees  Kelvin, 

? 
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The frequencies of the  various normal modes of molecules  can be 

obtained from band spectra. A good survey of data can be found in H. Sponer, 

Molek&spektren I (Springer 1935). The frequencies of simple ,light molecules 

are  very hi&, e.g. f o r  N2 we have Y = 2345 crn-l, f o r  02, 1570 crn-l. For 

more complicated, a d  especially f o r  polyatomic  molecules, the luwest frequen-' 

cies  are much smaller,  the  highest ones of the same order as for  diatomic  ones. 

E. E . ,  Cog has four  modes of vibration with frequenc'ies Y = 667,  667,  1336 and 

2350 cuio1. 

. For low tengeratures ( z  large),  the  vibrational energy is nepJigible . 
E.g . ,  for  z E 5 ,  it amounts 0ril.y t o  0.034 RT, i .e,  1 per cent of the value ae 

E t. p/p f o r  translation and rotation of a diatomic molecule. z = 5 correspands 

t o  6 8 0 " ~  f o r  N2, 450" for 02 but only  192 O for  the low frequency mode of CO, , 

Thw the vibrations may be neglected a t  room tentperatme for N2 and O2 but 

not f o r  Cog. 

. A t  high temperatures ( z  small), the  vibrational energy i e  RT per 

mode. T h i s  value is attained very slowly. 
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- - -  1 - kT 
z h v  
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0.1 

O*l5 

0.2 
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Energy Content of Harmonic  Oecillator 

1-- 1 z + - 1 z2 
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1.287~ 
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In Table I, we  give  the  vibrational energy of a harmonic 

function of the  temperature.  We  also  give  the.  contribut 

to  the  specific  heat,  viz. 

oscillator as a 

ion of the  vibration 

(+* 6) 

which is seen  to  become  appreciable-at  much  smaller  tempemtures  than E,, ' 

and  td  approach itsaspptoticvalue much  faster.  We  have also included  the 

ratio, p' . of the  specific  heats  at  constant  pressure  and  volume,  for a diatomic 

gas witl,  harmonic  oscillation,  viz. 

At high  temperatures,  the  vibrations  can  no  longer  bo  regarded  as 

harmonic. The  e2fect of the i3nhanronicity  is to increase t h e .  energy  content of 

the g a s .  E.@;., for N2 at 5000°H the  harmonic  oscillator  model wodd give 

&. = 0.699 while  the  correct value is 0,753, including  the  interaction of vi- 

bratior,  and  rotation, and a amall  contribu-Lion  from  excitation.  The  influence 

of the  anharmonicity is greater  for  molecules  which  are  easily  dissociated. 

4. The  electronic  excitation is usually rather  unimportant,  compared 

with  vibration  'and  dissociation. 

5.  The  dissociation  becomes  iqportant  at  temperatures  above 2-3000°K. 

If OC is the degree of dissociation, p the  total pressure, pA and pbl the  partial 

pressures of atoms  and  (diatomic)  molecules, we have 

* p in (1.7) is  considered EL dimensionless  quantity,  viz. the ratio  of  the 
pressure  to  one  atmosphere. 
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22 equality follows from pn = -- 
constant, Ro the gas constant  per  mole = 1.987 calories/degee, 

FA the  difference of the free energies per mol of the  molecular 

1 - a  
1 + a p, = l+a p. E: is  the  die- The first 

sociation 

AF = F M -  

and the  atomic @s, each  taken  at  unit  pressure. For some @.ees, like Ne and 

02, tables of AF as a function of temperature  have  been  published  (cf.  below). 

Where  they  are not published, AE' can  be  calculated from the  Stern-Tetrode 

formula, which reads f o r  diatomic gases 

(1.8) 

where mA is  the mass of one  atom, n the  number  of  separate  particles  per cn? 

of  the gas at unit  pressure and temperature T, and D the  dissociation  energy 

in calories  per mol. According  to  spectroscopic  evidence  (Sponer), D has 

the  value ll7,2OO cal. f o r  oxygen and 182,000 cal . for  nitrogen, so that 

D/Ro = 59,000 and 91,600 degrees, respectively. 

@;A and % 
In general, gA may 

multiplet to  which 

are  the  statistical weights of the  atom and th.e molecule, 

be  put  equal  to  the  combined weight of all  states of the 

the  ground  state  belongs, 80' that 

kA = (2L 4- 1) (2s f 1) 

where L and S are orbital angular momentum  and  spin  of the atomic ground state. 

N, having a s ground state, has therefore gA =,  (1) (4) = 4; oxygen,  with a 3,  

state, has a weight  gA = ( 3 ) ( 3 )  a 9. $ consists of three  factors  referring 

to the electronic  state (g,) of' the  molecule,  the  vibration , .  (&) and  the 

4 . '  

rotat ion (G) respectively, 

GM = gr/r gV (1.10) 



g M = 2 5 + 1  f o r x  states (A = 0) 

2(2s 4- I) Tor all  other  states (A # 0) (1.11) 

The  ground  state  of Ng ie a ’2 state (gM = I), t k t  of 02 a ’2 
state (% = 3 ) .  Q, is  always  given  with  sufficient  approximation by 

classical  kinetic  theory 

(1.12) 

vhere Br is  defined by the  fact  that  the  rotation levels of t h e  molecule are 

Brj (,j+l) if j is t h e  rotational  quantum  number; Br = 1.44 cm-’ f o r  O2 a d  

2.00 cm-l  for N2. If Br is  measured in cm-l and T in  degree8  Kel-vin; 

gr. = T/1.438 Br: The vibrational  part, %, is  given by 

. ’  1 
,% = x (1.13) 

with z defined as in (l.fja).  Ordinarily,  dissociation  is o d y  important at 

high temperatures;  then gv is  sufficiently  nearly 

for  each  mode, 

Wher. K has been  calculated,  and  the  total  pressure p is known, a 

can be calculated  immediately  from (le.”), v i z .  

(1.14) 



In  the  theory of shock waves, the  density p on the  high  pressure  side  can be more 

readily  estimated  than  the  pressure  (par.3). Then, inser t ing  (1.2)  i n  (1.7), we 

have 

4RT p a2 (I + a )  = K ( 1  - a2) (1.14a) 

which gives 

with 

If' po is the  densi ty  of the  gas a t  temperature To sild unit   pressure,  we have 

. The d issoc ia t ion  (2 depends strongly on the  temperature  (increasing  with 

increasing T) and s l i g h t l y  on the  pressure  or  density  (decreasing  with  increasing 

p or  p ) .  The equation of s t a t e   f o r  a dissociated  gas has already  been  given in  

(1.2) ., The energy  content i s  given by . 

(1.16) 

where pM and are   the  coeff ic ients  of energy  content  for  the  molecular and the 

atomic  gas a t  the  given  temperature a Disregarding  the  term D/RoT, (1.16) is simply 

the weighted  average  of % and BA, the  weights  being  given by the  par t ia l   pressures .  

The d issoc ia t ion   i t se l f   cont r ibu tes  an energy aD per mol of  the  gas;  to  obtain p, 

the  energy  per mol must  be divided by Mp/p = (1 + 'a)RoT (M the  molecular  weight). 

.. f 

can  be  calculated by adding  the  contributions 1 t o  4 discussed. above. 

i s  e s sen t i a l ly  due to   t r ans l a t iona l  energy  only, and has  therefore  the  value 

5/2 e (The energy of e lectronic   exci ta t ion of the atoms is seldom important below . 

3,000° and has therefore been neglected; ) 
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At  extremely  high  temperatures  (above 5, 000") the  ionization  of  atoms ' 

and  molecules  must  be  considered,  This  can  be  done  using  similar  calculations  as ' 

for  dissociation. 

Tables 

Table I1 gives,the energy  constant f3 o f  nitrogen  and  oxygen  at  temper- 

atures  from 300 t o  5000" Kelvin.  The  energy  constant  from 300" down  to  the  lique- 

faction  temperature  remains  almost  unchanged. .The data  for  nitrogen  were  taken 

from W. 3'. Giauque'  and  J. 0.. Clayton,  Journ. Am, Chem. SOC. 55, 4875 (1933) , those 
for  oxygen  from H. J, Johnston  and M. K. Walker,  ibid,' 55, 172 (1933). Both  sets 

of data  were  calculated  by  the  respective  authors  taking  into  account  all  correc- 

tions  such  as  anharmonicity  of  the  vibrations,  interaction  between  rotation  and 

vibration,  and  electronic  excitatione'  The  figures  given  in  our  table  for  nitrogen 

are  less  accurate  because  Giauque  and  Clayton  give only the  free  energy from which 

the  energy  content had to  be  obtained by numerical  differentiation,  involving  con- 

siderable  inaccuracy. A graphical  method  was  used  to  smooth  out  the  results of 

The  dissociation  was  calculated  for  oxygen  and  nitrogen  in  air  of a 

density  equal  to 8 times  the  density at 300°K and  one  atmosphere  pressure.  These 

conditions  were.  chosen  because  in a shock  wave in which  the  temperature  is  raised 

to 3000-5000°, the  density is increased  about 8 fold (cf I 3,  Table VIII) . ' Ob- 

viously,  the  figures  for  oxygen  would  also  be  valid  for  pure  oxygen  of a density 

of (8) (0.210)= 1.680 times  that  at 300" and  one  atmosphere,  and  the  dissociation of 

nitrogen  would  be  the  same  for  pure  nitrogen of a density  of(8) (0.780~) = 6.244 times 

the  density of nitrogen  at 300°K and one atmosphere. 
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Table 11. Energy Content and Dissociation of Nitrogen and Oxygen 

600 3.521 

700 3.541 

800 3.564 

2000 

2500 

3000 

3500 

3 731 

3 774 

3.871 

3.950 

4; 278 
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It I.s seen  that for oxygen the  increase of the  energy  content,  both  due 

to vibrations  and  to  dissociation, begins at much  lower  temperatures  than  for ni- 

trogen. At 5000°, the  values  of p differ  by  more  than 30 per  cent.  This  is due 

mainly  to  the  smaller  dis.sociation  energy  and  vibrational  frequency of' 02, and  to a 

small  extent  also  to  the  smaller  concentration of O2 in  air (cf 1.15a). 

Table I11 gives  the  necessary  data for air.,  We  have  assumed a compo- 

,s Stion  of 

78.05 per  cent Nitrogen 
21,OO per  cent Oxygen 
O,92 per  cent Rare  gases 
0,03 per cent c02 

all percentages  being  by  volume, €.e. by  number of molecules.  The  energy  content 

of the  rare  gases is /3 = 5/2 because  they  are  monatomic.  The of C02 was only 

guessed  because of its small concentration. 

From  the 8 ' s  and a's of the  constituent  gases,  the  dissociation  and  the 

energy  content of a mixture are calculated as' follows: 

(1.18) 

where ck is the  concentration  (by  vol.ume) of the & component of the mixture 

9ecifIc Heat 

. The  specific  heat  can  be  obtained  by  differentiatfng the energy  content. 

A s  long  as  there is no dissociation,  the  specific  heat  per  gram  at  constant  pressure  is 
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The  velocity of sound,  again  in  the  absence  of  dissociation,  is  given  by 

a2 = 8 RT (1.20) 

where  is  the  ratio  of  the  specific  heats at constant  pressure  and  constant 

volume,  viz. 

(1.21) 

If @ is  independent of temperature,  we may write from (1.19) and (1.21) : 

(1.22) 

.as is commonly done in the  theory of shock  waves  and  other  phenomena  involving 

gases  in  rapid  motion.  While  this is approximately  justified  for low temperatures, 

it  is  certainly  not  for  air  above 6 0 0 ~ ~ : '  

We  have  not  included  the  specific  heat  in our Tables I1 and I11 because 

another  numerical  differentiation  would  have  been  necessary  which would have  made 

the  results  very  inaccurate.  Moreover,  we  believed  that  there was at the  moment 

no pressing  need  for a table of the  specific  heat  and  of  the  velocity of sound at 

very high  temperatures  but  that  the  interest was centered  around  the  shock  waves. 

If there is dissociation, (l.lg) 2s no  longer  correct  because  the  energy 

is RT p(1 + a) and a as well  as 6 changes  with  temperature.  Moreover,  the  ,deriv-... 

ative  with  respect  to T must now be  calculated  at  constant  pressure,  Furthermore, 

the  difference  between c and cv is no  longer R so that (1.21) is no longer valid. P 



Table 111. Energy Content and Dissociation of Air 

300 2.726  9,733 0 023 0.001 3.483 3 483 

300 2.738  0.745 

3 0494 

3 507 

3 494 

3 * 507 
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Finally,  (1.20)  ceases t o  be correct and is replaced by 

(1,221 

2. The Approach of Equilibrium between Various  Degrees of Freedom of the  Molecules.' 

Suppose the  energy  content of a mass of gas is  suddenly changed, as i t  
) 

is when the  gas  passes  through a  shock wave.  Then it w i l l  take some time' un t i l   t he  

various  degrees of freedom adapt  themselves  to  the new conditions, and t h i s  "time" 

of relaxation" w i l l  be different   for   the  different   degrees  of  freedom. 

A ,  Translation and Rotation. 

The equilibrium w i l l  be a t ta ined  most rapidly by the  translation. For 

this   degree of freedom, one co l l i s ion  is in   genera l   suf f ic ien t   to  come close  to  

equilibrium,  In  order  to have conditions similar to   those  in  a shock wave  we  may 

consider a gas of a certain  temperature T2, i n t o  which streams a more d i l u t e  gas 

-of a lower  temperature T1* Then the  molecules of the  cooler  gas w i l l  (on the av- 

erage) become accelerated  as soon as they make the i r  first collisiol?,  with  those of 

the  hotter  gas.  The average  kinetic  energy of a molecule of a cool  gas w i l l  In- 

b 

crease from  3/2 kT1 in one co l l i s ion   to  something of the  order ( 3 / 2  k) 1/2(Tl+T2) * 

A shock wave can  obviously  never be quite  discontinuous  but  the  tran- 

s i t i o n  from  temperature T1 t o  T2 takes  place  over a distance of a t   l e a s t  one gas- 

k ine t ic  mean free  path A t  ( t  f o r  t rans la t ion) .  For ordinary  gases a t  room ten- 

perature  and  atmospheric  pressure, At is of the  order of 10-5 cm; it is i n  f i r s t  

approximation  independent of the  temperature and inversely  proportional  to  the 

density;   therefore,  even a very  violent  shock wave i n  which the  density  increases 

by a f a c t o r  6 t o  10 (cf.par.  3TaIj.l.e-.VIII),must  have an  extension of a t  least   about  

lom6 cm. The classical   theory of the  physical  structure of shock waves as given 

by Becker (Ze i t s  e f.. Phys 8, 321, 1922) gives  extremely small extensions which 

become of the  order of 10-7 cm for very  violent waves. The theory of Becker  which 

takes  into  account  the  heat  conduction  but  neglects  molecular  effects  can  therefore 
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no.!; 32 correc t ,  at l ea s t  cot f o r  violent  shock  waves.  Decker, hiuself ,   pointed 

0v.t thzt   the  problem requires 8. treatnent  based on the  kinetic  theory of' gsses. 

In  practic'e a spat ia l   extension of the shoclr wave of the  order of one mean f r ee  

path is, of course, of no importance a t  a l l ,  even a t   r a t h e r  low in i t i a l   p re s su res .  

The molecular rotation may approach  equilibrium as rapidly as the  ' trans- 

la t ion .  This would be  expected fo r  strongly  elongated  molecules  such as C02. If 

the  effect ive boundary  of the  molecule is  nearly  spherical  (e.@;. N2 or S,) L. the 

exc i ta t ion  of rnolecular  rotations may be estimated  to take roughly 10 t o  100 

col l i s ions .  To show that the  rotation  approaches  equilibrium so quickly, we use 

the r e s u l t s  of Lanitau and Teller,  Physik.  Zeits, d. Sowjetunion lo, 34(1936). 

T&se authors have  found that  the  effectiveness of co l l i s ions  on a certain  degree 

of freedom is determined by the   ra t io  

where '7, is the  effective duration of the  co l l i s ion  and To the natural period of 

the  degree of freedom  concerned. If x is of order  unity or smaller, one or a few 

col l i s ions  w i l l  be suff ic ient   to   es tabl ish  equi l ibr ium whereas  a la rge  number of 

co l l i s ions  is required i f  x>.1 ( c f .  2.5). 

T~ i n  (2.1) mEy generally be written 

Tc = s/v 

where  v is the  re la t ive  veloci ty  of the two colliding  molecules and s the range . 

of the intermolecular  forces,  i .e. the distance  over which the  molecules  interact 

8 trongly. We may expect s t o  be of the  order of ,one ha l f   t o  one Bohr radius, 

i.6'; 2.5 t o  5-1.0-9 CM, a range of values which seem confirmed by some experimental 

r e s u l t s  on the approach of vibratioml  equilibrium  (cf.   Table I V ) .  I n  the _-- case . I.. of 

ro ta t ion .To may be taken 8s  the time required f o r  one revolut ion,   or   ra ther  t h i s  

time divided by 271 ( c f .  2-4) so that lo = r/vr where r is the  radius of the mol- 

ecule  (distance of an atom from the  center of gravity) and vr i s  the  velocity of 
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the atoms in   the i r   revolu t ion  around  the  center of gravi ty ,  Now vr is of the same 

-order   as  v, the  velocity of molecular  translation  (equiparti t ion of  energy! ) and 

r is of the  sme  order  as s. Therefore x is of order  unity f,or rotation, and 

equilibrium between rotat ions and t ranslat ion w i l l  be a t t a ined   i n  a few col l is ions.  

We shall find  in  the  following that a l l   o t h e r  degrees of  freedom  behave 

qu i t e   d i f f e ren t ly  in  that,many  collisions  are  necessary  to  establish  equilibrium. 

Therefore it w i l l  be convenient t o  group together   t ranslat ion and ro ta t ion  on one 

side,  and a l l  other  degrees of  freedom on the  other.  The l a t t e r  we shall ca l l   t he  

"inert"  degrees 02 freedom  while t rans la t ion  and ro ta t ion  w i l l  be denot.ed as the 

"active"  degrees of  freedom. For a l l  p rac t i ca l  purposes we may say  that  the  energy 

content of the  active  degrees of freedom can change almost  discontinuously,  because 

a distance  of a few mean free  paths may be considered  negligible. We can  then  define 

the  temperature of a moving gas a t  each  point by the  energy  content,of  the  active 

degrees of  freedomgwhich i s  

( t h e  last  relation  being  only  valid if  there is no dissociat ion) .   In  (2.3) B, i s  

independent  of  the  temperature and equal t o  5 / 2  f o r  monatomic, 7/2 for  diatomic 

gases  (cf.  par. 1). The energy  content of the  inert  degrees  of freedom, Ei, on the 

other hand, cannot change abruptly and is therefore  not always in  equilibrium with 

that of  the  active  ones;   in other words, Ei i s  not   necessar i ly   re la ted   to   the   loca l  

temperature T i n   t h e  way discussed  in par.1. 

B Vibra t Tons 

Theory 

The most important  inert  degree of freedom are  the  vibrations For these, 

we s e t   i n  (2.1) 

ro = 1/2 A Y 



where .gs is the  natural  frequency of  the  molecular  vibration. ( In  a l l  f o r n u h e  

l i ke  (2.1) 2 n 7  rather  than  should be used as representing  the  frequency  because 

the  frequency is generally  introduced  into  physical  formulae by taking  the time 

derivative of experssions  l ike  s in  25rv t . If we took Y instead of 2n v i n  (2.4), 

the  only change would be that  the  values of s deduced  from experimental  data would 

be multiplied by 2~r) .  Since the frequencies of  molecular  vibrations  are  rather 

high, it is p laus ib le   tha t  2l is rather   large;  this w i l l  be shown  by d i rec t   ca l -  

culat ion and  by  discussion of  experimental r e s u l t s  below. For the  case x>>, l, 
Landau and Teller  give  the  fornula 

p10 

Here pl0 is the  probabi l i ty   that  a molecule i n  the f irst  excited s t a t e  of vibrat ion 

is de-excited by a co l l i s ion  with another  molecule. C is a geometrical  factor which 
i 

gives  the  probabili ty that the   co l l i s ion  of the two molecules will take  place in  

a d i r ec t ion   su i t ab le   fo r   exc i t a t ion  o r  de-excitation of the  vibration, There are 

no experimental   data  sufficiently  accurate  to deduce C,so tha t   qua l i ta t ive  arguments 

m u s t  be used f o r  its determination. Obviously, C must be less  than  unity,  and 

probably it w i l l  l i e  between l/3 and 1/30 i n  most cases, i t s  value  being  higher  for 

diatomic  and  lower f o r  polyatomlc  molecules  because,it is less l i k e l y  that a com- 

plicated  molecule is h i t   a t  the   r igh t   p lace   to  induce a given mode of vibration. 

In  our computat-ions below, we sha l l   u se   a rb i t r a r i l y  C d / l O .  

Presumably,  a better  approximation  could be obtained by introducing in 

(2.3) another factor ,  viz.  a cer ta in  power of x .  Arguments--can  be given for a 

fac to r  x-*. However, these arguments a re   too   uncer ta in   to   jus t i fy   a t   p resent   the  ' ' ' 

inclusion of  such f ine   po in ts .  

The most  important  factor i n  (2.3) is  the exponential e - x  where 

(cf 0 2.1, 2.2, 2.4) 
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Let us invest igate  7~ fo r  the case when the  kinetic  energy of thP r e l a t ive  motion 

of the  c'olliding  molecules is  j u s t  kT, i. e 

where M i s  the  reduced mass of the two molecules; if they  are  equal, M is one half  ' 

the mass of one molecule. The value of x for the  velocity det%rmined by (2.7) is 

This  can be re-wri t ten as follows: 

For t he   co l l i s ion  of two equal  diatomic  molecules,  each  consisting of two equal 

atoms, M is the mass of one atom; then  the  reciprocal of the last  fac tor  is (2.9) v i z .  

b = Vh/4n2Elv (2.10) 

represents  the  amplitude of the  molecular  vibration  in  the  lowest quantum s t a t e .  

Generally,  the b def  Ined i n  (2.10) has the  value 
. I. 

8.2.10'8 cm 
= V j l T -  (2.10a) 

where t~ is the  molecular  weight of the  molecule  (assuming co l l i s ion  between equal 

molecules)  and v , the  vibrational  frequency  in cm-l. For N2, zd = 2345 and = 28 

so t h a t  b = 3el..10-10cm.  Thus we see  that  b i s  very  small compared with  the  range 

s of the  forces.  The fac tor  v m  i s  (2.9) is also' in  general   greater  than  unity,  

s o  t h a t  x is indeed  very large compared with  unity  as we expected  above.  There- 

fore ( c f .  2.5) the  probabili ty of t ransfer  of enerpy between vibrat ion and 
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seen from the  6eriva;tion that  the reason f o r  this r e su l t  is not s o  much that  the 

energy of or~e vibset ional  qumtyin h :;9 I s  lsrge compared with  the  average  energy , 

of t ranslat ion,  kT, but  rather  that  the  amplitude of the  vibrations, b, is very 

ma11 cornpared v i th   t he  range . . -, s __  . of the  intermolecular  forces.  Tnis  in  turn ' is 

due t o   t h e   l a r g e   e l m   t i c   f o r c e s  which govern  the  elastic  vibrations * 

I G ~ ~ o n  i s  Etn i n e r t  degree of freedom. It is  

. i  .< 

The purzntity 2; (2.6) will be reduced, and therefore  the  probabili ty of 

energy,  transfer plo (2.5) considerably  increased, if we take  higher  velocit ies V. 

Therefore a given  molecule will lose and gain  vibrational  energy  mostly a t  the 

times when i t s :   k ine t i c  energy of t rans la t ion  is high compared with kT, i,e. when 

it is in  the t a i l  of .the blaxvrell d i s t r ibu t ion .  If we average  over all the  mol- 

ecules  in  the  gas,   the  probabili ty of energy  transfer  per  coll ision becomes 

where 

- M v2 
2kT 

*. - II_ 

(2.12) * 

(2.12)  represents the probabi l i ty  (2 .5 ) ,  averaged over  the Maxwell d i s t r ibu t ion  of 

the re la t ive   ve loc i t ies  of the two colliding  molecules.* With (2.6) fo? g? , the 

integrat ion of (2.12) c m  be carried  out by the  saddle  point  methods,the  integrand 

having a s teep maximum near 

* It might be preferable   to  
of f a s t  and  slow  molecules, 

which would give  instead of 

take into account  the  different  coll ision  probabili ty 
i .e .   to   replace  (2 .12)  by 

Pl0 =&-x x dx c e - %  ( 4  

plo = 229 6 3 / 2 . e -  6 (b )  

(2.13) 

The temperature dependence of P10 would not- be changed very much by th i s   cor rec t ion  
because  the  difference between ( b )  and (2.13) would be largely compensated  by a 
different   value of s deduced from the  experiments. 
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The  integration  gives 

pl0 = C a- e' 6 

where 

(2.12b) 

(b as  defined  in (2 .lo, 2.10a), s the'  range  of  the  molecular  forces, 2, the  fre- 

quency of vibration).  (Eqs. (2.13, 14) are  similar  to  the  equations  determining 

the  rate of nuclear  reactions  in  stars). 

Numerically, (2.14) may  be  written 

where y is  measured  in  cm-1, s in  units of 10-9 cm, T in  degrees  Kelvin,  and b-2 is 
the  molecular  weight  per  molecule (or twice  the  reduced  molecular  weight, 

2//AMg/(.4/* + H ~ ) ,  if  two  unequal  molecuI.es  collide) b 

We shall now  try  to  get a more  quantitative  estimate of s. Experiments 

are available (cf. below),  among  other  gases,  for  pure  C02,  and  for  the  action of 

N2 on  the  vibrations of 02. For C02, Fricke  (Journ.  of  the  Acoust. SOC. of ,Am. 12, 
245(1940) ) finds  that Z = 86,000 collisions.  are  necessary  for  de-excitation of the 

first  excited.vibrationa1  state, so that 

Taking C' = 1/10, (2.13) gives Q = 11.5. Using this  number  in (2.15) with Y 

= 667 cm'', we  find, 

3 = 3.6*10-~ cm. (C02) (2.16a) 



For the de-excitation of the  vibrations of O2 by collisions  with N2, Kneser and 

fiudsen  find Pl0 = 10-5. Inser t ing   th i s   f igure  i n  ( 2 3 ,  15) and tnking 7/ = 1570 

cm-l, we obtain 

s = 3010-9 cm ( o ~ / N ~ )  . (2.1611) 

Both the   resu l t s  (2.16e) and (2 . l6b)  are of the  order of the Bohr radius . 

as we assumed above.  Differences between the  values of s for d i f f e ren t  molecules 

are,  of  course,  to be expected. We can  therefore  not  predict  the  value. of s f o r  

a p a i r  of  molecules f o r  which it  has  not been  measured experimentally,  This is 

very  unfortunate  because Pl0, or 

= VPlO > (2.17) 

is very  sensit ive to s .  This-can be seen  direct ly  from ( 2 3 ,  14)  or from Table IV 

in which we have calculated Z from (2.13, 14)  f o r  O2 and N2, i n  each  case  for two 

different   values  of s ,  A more detailed  discussion of Table IV w i l l  be given i n  

. par. 2D, 

Influence  of  foreign  gases,  experimental  difficulties. 

Collisions between two different  molecules  are  often more e f fec t ive   in   t ransfer -  

ring  energy t o  and from the  vibrations than co l l i s ions  between like  molecules. 

This is the case especial ly  (1) i f   t he  two col l iding molecules have  a chemical 

a f f in i t , y  and ( 2 )  i f  one molecule is &y l i g h t  so t h a t  i t s  veloci ty  i s  great .  In 

case ( 2 )  which i s  rea l ized  for E$, He, etc.,)A  in  (2.15)is  very  small.  In  case (1) 

the  interact ion between the two rnolecules i s  much  more intense  than  usually which 

may perhaps  resul t   in  more sudden  changes of interact ion and correspondingly  shorter 

effective  range, or  even i n  a complete fa i lur ,e  of the  Landau-Teller  theory when 

the two molecules  penetrate so deeply  into  each  other  that  they  can  be  said  to 

form  a temporary compound. I n  the  latter  case,  the  temperature dependence may 

be qui te   d i f fe ren t  from that indicated  in  (2.13). 



De -excitation 3f the First  Vibrational State , 

Temperature OIL 1 

Z 

Z 

2.5-10 - -9 6 

z 

Collisions  with H20 

O2 0.93 -10-9 z 
H2 I 1  Z 

300 500 700 1000 1500 2coc 3000 500G 

11. X 9.45 % 8.45 7 . 3 ~  6.35 5.95 5.20 4.33 

6'j,OOO 13,500 3300 2400 1080 620 340 180 

u. .82 9 -97 8.91 7.91 6.91 6.28 5.49 4.62 

' I  
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As w i l l  be seen  from  Table V, the  foreign  gases  investigated  are 3 to 

lt000 tinles  more  effective  in  de-exciting  the  vibration of O2 than O2 itself,  the 

effect  being  greatest for complicated  molecules  such  as C2H20H which  has a chemical 

affinity  to 02, and  for  wnter,which can probably fom a temporary  compound  with 02. 

The  effect of N2 on O2 is  almost  as small as  that  of O2 itself  because  there  is 

The  large  effect of water  vapor  on  the  variation of oxygen  makes  it 

extremely  difficult  to  measure  the  small  effect of collisions  between O2 molecules 

themselves. only a lower  limit fo r  2 was therefore  obtained  in  the  experiments 

on  "pure" 02, viz. 500,000. 

For the  problem of shock  waves we must  conclude  that  the  establishing of 

vibrational  equilibrium  will  depend  sensitively  on  the  humidity of the  air. On hot 

humid  days,  the  water  vapor  content  of  the  air may easily  reach 3 per  cent (23 mm 

vapor  pressure) so that only 400/0.03 = 13,000 collisions  would  be  necessary to 

establish  vibrational  equilibrium  for  the  oxygen.  On  the  other  hand,  for  complete- 

ly dry air  the  necessary  number  of  collisions  is  about 105 becauc  oe  then on ly  the 

collisions  with  nitrogen  will  be  important. A more  accurate  discussion of the 

humidity  effect  will  be  given in Table VI. 

Excitation  and  De-excitation.  Instead  of-the  probability Pl0 of de- 

excitation  per  collision,  it  is  convenient  to  introduce  the  probability klo of 

de-excitation  per  second  which  is  given  by 

Klo = 5 0  N = N/Z (2.18) 

where 

= V,VQ (2.18a) 

i.s the  number of collisions  per  second,  the  number of molecules  per cm3, $J the 

gas-kinetic  collision  cross  section  and 'i; the  average  relative  velocity  of  two 



colliding  molecules, ' kT . Tho quant i ty  k10 has two advantages compared V Z -  
' with Plo, viz.  (1) that i t  i c ;  more direct ly   re la ted  to   the  extension of the shock . 

wave and (2 )  t h a t  it is d i rec t ly  connected wi th  observational  data  jcf. 2.22, 26) ' 

whereas the  connect Ion of P v i t h  thet;e dab  involves the somewhat uncertain cross * I  

t o  which 

The time r a t e  of change of the number yo of moleculas without vibrstion is then 

where yl is the number of molecules in   the  first exclted v-.Lrati.onal s t a t e .  Sim- 

i lar  equat'ions hold' f o r  the  other yn .where, according  to quantum theory, n-l  =: 

equation for t h e   t o t a l  energy of' vibration, i 

can be. obtained, namely I 
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Eq. (2.20) is va l id  no matter how large  the  deviation from thermal  equilibrium. 

The factor  1 - e - h /kT takes  account 'of the  fact   that   there   occur   t ransi t ions 

away from equilibrium as well as  towards equilibrium. The solut ion of (2.20) is . 

E t v  - ET = Ae'wot (2.21) , 

where Lo is  the  reciprocal  of the time of relaxation and is given by (cf. 2.20). 

W o = k  10 ( 1 -e - h u  /kT, (2.22) 

It has been  assumed i n  (2.21)  that T remains  constant.  This  not  strictly  correct 
'. . " , ,  . , .  . .  .. . 

. i n  'Shock  waves (cf. par.3,4) where wO$ being a function of T, w i l l  change with 
.~ 

time so that the   in tegra l  of (2.20)  cannot be given i n  closed form. 

In  shock waves, we a re   i n t e re s t ed   i n  the spa t i a l   va r i a t ion  of E,. If 

the  gas  flows  with a ve loc i ty  v, we may write 

where 

= V A O  (2.24) 

defines  the mean free  path  for   vibrat ion.  

Evaluation of Experiments . We  experimental  determination of wo i s  

based upon the  absorption and dispersion of sound in  gases. The theory of t h i s  

phenomenon has  been  given by H. 0. Kneser, Ann .  d. Phys. 16, 337 (1933) and  Journ. 

Acoust. SOC. h e r .  2, 122 (1933), and others.  The absorption  coefficient-er wave 

length depends  on the  circular  frequencyhof  the sound wave approximately"  as 

LC 

tA 

*.In  order   to   obtain (2.231, cp-cga  must  be'assumed t o  be small   in comparison  with 
cp. Since pis the  absorption coe f i c i e n t  per wave length,  the  absorption  coeffi- 
clertt  pea centlmeter w i l l  behave a s  032 and w i l l  therefore  obtain i t s  

Wma2  3 w 2  

maximum value f o r  w = ea 



where w is the  frequency of maximum absorption  per wave length. Wmax  can be 

determined  experimentally, arldw, be deduced from i t using  the  relation 
max 

(2.26) 

Here  cp i s  the  ordinary  specific  heat a t  constant  pressure and  cPa the  s2ecif ic  

heat  counting  the  "active"  degrees of freedom only. In cont ras t   to  (2 .25 ) ,  (2.26) 

i s  exact. 

Experimental  Results.  Experiments were made  by E. 0. Kneser  and V. 0. 

Knudsen, A n n ,  d.  Physik ? 21, 682 (1935) on the  vibrations of 02, by Fricke  and by 

Knudsen and  Fricke,  Journ. Acoust. SOC. Amer .  l.2, 245 and 255 (1940) on C02 and a 

few other  gases, and by KGchler, Zei ts .  f .  phys. Chemie B 111, 193 (1938), on the 

temperature  dependence of the time of relaxation.  The'latter  experiments were pro- 

bably  carried  out  with somewhat impure gases  .because  Kcchler finds f o r  C02 a t  

4. 

. , room temperature Z = 50,000 whereas Fricke  gives 86,000 :impmities  reduce Z, cf .  

above and  Table V ) ,  and a similar decrepancy ex i s t s  for N20 (7,500 vs. 11,800). 

The experiments of Kneser and Knudsen were the first systematic  ones  carried  out 

and  were therefore  less  accurate  than the later work of Knudsen and  Fricke,  but 

the   resu l t s  of Ilneser and Iul- ... sen  are  most important f o r  us because  they were done 

with oxygen. For N2 there  ere no experiments  but  only  an  estimate by P. S. H. 

Henry, Nature 129, 200 (1932) based on the f a i l u r e  t o  detect  the influence of the 

vibrat ional   specif ic  hectt on the veloci ty  of sound in  certain  experiments. Henry 

estimates wo 3 lo4 sec-1,  i.e. Z s l O 6  f o r  I$ which seems not  implausible. 

Table V gives some of the  experimental  results. They bear  out  the  fea- 

tures discussed above and expected  theoretically,  viz. 
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1. A l l  the pure gases  investigated have rather  high2 ,(small wo, long 

relaxation times), the  smallest  being SO2 with Z ,N 2,000, the  largest O2 with 

2 > 5OO,OOO. The large  value  for O2 is  probably due mostly t o  i t s  high  vibration . 

frequency. The decrease of Z from C02 t o  COS t o  CS2 is also  in  the  direction 

of  decreasing y ' ;  on the  other hand, the small value fo r  SO2 is presumably due t o  

the  greater chemical ac t iv i ty  of that  molecule. 

2, The impurities  investigated gave smaller 2 than  pure  gases.. It can- 

not be decided a t  present whether th i s  is due t o  the  selection of gases used i n  

the experiments, o r   t o  a general  rule. Among diatomic  molecules, €$ is  most 

effective  in  de-exciting O2 and C02; t h i s  is to  be expected  theoretically from 

i ts  small mass (large  velocity).  Triatomic  gases  are on the whole more effective 

than diatomic ones; this  may be  due to   the  fact  that there will always be  some 

"corner" of a triatomic molecule which has a chemical aff ini ty   or  a t  leas t  a strong 

interaction  with a 

decrease of 2 with 

molecules a re  even 

given  molecule. Among the  triatomic  gases,  there is again a 

increasing  chemical  activity (C02  t o  H$3 and H20). Polyatomic 

more effective  than  triatomic ones, far   the  same reason. 

By coll isions with  the same molecule, the  vibrations of C02 are  in  general 

more affected  than  those of 02, because of the  smaller  frequency of vibration. 

3. The temperature dependence'  of 2 f o r  Cog is about as expected (cf . 
Table I V )  e Generally,  the  decrease of Z with  increasing  temperature is most 

pronounced if  2 is  large,  in agreement with  theoretical  expectation. Whether the 

- increase of 2 with  the  temperature as found by Kuchler for  coll isions between 

Cog. and H20, is  real cannot be decided a t  present; however, Z i s  very small i n  t h i s  

instance so tlpt the  Landau-Teller  theory can probably  not be applied, 

I1 

Several Degrees of  Freedom. A t  f i r s t   s igh t ,  it might be expected that 

each mode of vibration has i ts  own relaxation time, this  time being  greater  for 

the modes with  higher  frequency. Experiments show, however,' that th is  i s  not  the 
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case  because a l l  the  experimental  curves show only%  absorption maximum with  the 

absorpt ion  coeff ic ient   fa l l ing off  on both sides  according  to (2.23). This be- 

havior  can  easily be understood if  we remember that  the  resolution of  the  vibra- 

t ion  into normal modes i s  only  an  approximation which is correct   only  for   exact ly  

harmonic forces. The anharmonicity w i l l  mix the  various normal modes i n  each 

vibrational quantum s t a t e ,  An extreme case of mixing i s  known i n  C02 where the 

second exc i ted   s ta te   (v ibra t iona l  quantum number"  nl = 2)  of  the first mode'of 

vibration (Vl = 667,,1) is degenerate with the  first quantum state of  the second 

mode (d2 = 1336 cm'l) (n2 = 1) (cf'., e.g.,  Sponer,  loc. c i t .  ) . The anharmonicity 

causes  an  "interaction" of the two resonating quantum s t a t e s  with the   resu l t  that 

a spl i t t ing  occurs   into two states of  considerably  different  frequency (1286 and 

1388 cm").  The form of vibration  in  each of  these  states is a combination of 

modes 1 and 2 with  about  equal  amplitudes. 

In  other molecules,  the  mixing  of d i f fe ren t  modes is  usually less strong 

but it must.always e x i s t   t o  some extent.  Let  us assume, e.g.,that  there is a mode 

of  vibration  with a high f r e q u e n c y ~ ~  which is between 3 and 4 times  the  fre- 

quencyVl of another mode e Then the f irs t exci ted  s ta te  of mode 2 ( n2 = 1) will 

contain some .admixture of  the  fourth state of mode 1 (nl = 4). In  this  case,   the 

exci ta t ion of  the  state n2 = 1 w i l l  not  take  place by. d i rec t   t ransfer  of energy 

from the  translation,  but the t ranslat ion w i l l  excite  in  successive  coll isions  the 

s t a t e s  nl = 1, 2 and 3 ,  and f i n a l l y ,   i n  a fourth  coll ision, the state n2 = 1. 

This mechanism avoids  large  energy  transfers  in one col l is ion which are very im- 

probable  according to   t he  Landau-Teller  theory  (cf.  2.15). The t rans i t ion  fYom 

n = 3 t o  n2 = 1 is  somewhat less  probable  than a co l l i s ion   in  which n1 is raised 

by one unit because  the  mixing  between n2 = 1 and nl = 4 is ,  assumed small; on 

the  other hand, it is more probable  because  the  energy  difference'between 9 = h 

1 

* In  order  to  avoid  confusion wi th  the velocity v, we denote the vibrational 
quantum number  by  n rather  than  the customary v. 



and nl = 3 is  

fore  probably 

smaller  than Y 

of  the same order 
1' 

The Z for the   t ransi t ion nl = 3 to  n2 = 1 is  there- 

or  smaller  than  for  the  excitation of the first mode, 

and i t  can  therefore be understood that only  the  successive  excitation  of quantum 

states of the  lowest mode of vibration  gives  r ise  to  an  observable  absorption  of 

s ound . 
C.  Dissociation 

The dissociat ion  differs  from other  degrees  of freedom in tha t  i t  becomes 

appreciable a t  temperatures'at which kT is  s t i l l  very small compared with the  dis-  

sociation  energy D per  molecule, We have mentioned in   par  1 t h a t 2  = f o r  
kT T 

oxygen and 91,600/~ for  nitrogen. On the  other hand, we have shown i n  Table I1 

that  the  degree of dissociation i s  as much as 1.4 per  cent  for O2 a t  3000° K and 

for  N2 a t  !jOOOo K. A t  these  temperatures, .D/kT is  about 20 in  both  cases, and the 

Boltzmann f ac to r  e- -s D ,-2O 2 10-9. The f a c t  that an apprecTable dissociation is  

possible f o r  such a small Boltzmann factov is  due t o  the  large a pr ior i   probabi l i ty  
kT 

of the  dissociated  states.  

In   order   to  produce dissociation, two molecules nust col l ide which have 

a relative  kinetic  energy a t  least   equal  to D. Such molecules are  very rare because 

of  the small Boltzmann factor  . Dissociation w i l l  therefore  take a considerable 
e- E 

time a t  3000-5000° K even if  every  collision between molecules  of suf f ic ien t  energy 

is effect ive.  

The same conclusion can  be reached by considering  the  inverse  process, 

viz.  recombination.  In  order  that two atoms  recombine in to  a molecule, there must 

be a triple  coll ision'between  the two atoms and another  molecule which takes up 

the  excess  energy and momentum. Triple  coll isions,  however, a r e  rare events  espe- 

c i a l l y  if two  of the  coll iding  particles must  be atoms which a re   r e l a t ive ly   r a r e  

as long as the degree of dissociation remains low. 

We must now examine the  efficiency  of  collisions between two molecules 

of  sufficient.relative  velocity  in  causing  dissociation of one of the  molecules. 
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If two molecules have relative  kinetic  energy  equal  to D, i .e ,   several   electron 

volts,  they w i l l  penetrate  very  deeply  into  each  other.  In  this,case, we can  no 

longer  distinguish between f a s t  motions (of the  electrons) and slow  motions (of' 

the  molecules as a whole),.and we can  therefore no longer  conclude that  the  trans- 

fer of energy from the slow  molecular t ranslat ion t o  the fast electronic motion 

is  improbable. It i s  ve ry   d i f f i cu l t   t o  make any quantitative estimates but we be- 

l ieve  that   the  efficiency of col l is ions between molecules of energy  greater  than 

D will not be reduced by a factor  of the  type of ( 2 . 5 )  but w i l l  be determined  mainly 

by a geometrical  factor which may perhaps be somewhat smaller than f o r  the exci- 

t a t ion  of vibrations,  In  numerical  calculations, we shall assume an  eff ic iency 

Cd = 1/100 which may be wrong by 'a   factor  of 10 or  more e i ther  way. 

The probabili ty  that   the  relative  kinetic  energy of a pa i r  of molecules 

is  between kTx and kT (x + dx), is given by the Maxwell dis t r ibu t ion  

The velocity of the  molecules. in  question i s F  E times  thi'average r e l a t ive  ve- . 

l oc i ty  'i; of two molecules.  Therefore,  the  fraction of a l l  molecular collisions for  

2 

which the  relative  kinetic  energy of the  coll iding molecules l i e s   i n   t he   i n t e rva l  

mentioned, I s  approximately 

The f rac t ion  of col l is ions for which 

, x >  X o t  -I) - 
kT 

I s  then 



Therefore,  the number of  ordinary  molecular  collisions  required  per  dissociation, 

i s  

(2.28) 

where Cd i s  the  efficiency of the  col l is ions between molecules  of  sufficient 

energy i n  producing  dissociation. The reciprocal  relaxation time for   dissociat ion 

is 

W d  2 - N 
Zd 

where N i s  the number of coll isions  per second (cf.  2.18, 2.18a) The  mean free 

path for dissociation i s  ( c f .  2.24). 

= Y/Wd 

Because  of the  large  factor e % , the' number of col l is ions  required  for  

dissociat ion is very  large a t  temperatures of 3000-5000° R,gt rJhi,ch the  dissociation 

of air becomes important  (Tables I1 and 111). In Table VI1 (cf .  p.  52a) we give 

the  values of Z,, w d 7   m d A d  fors..oxygen and  nitrogen; it is seen  that  zd l i e s  

between 10 and IO1* and is  thus much higher  than  for  the  vibration. It is  obvious 

that impurities  cannot  greatly  affect  zd  because  the  decisive  factor i s  the Boltz- 

mann factor  rather  than  the  efficiency of the col l is ions.  

k 

6 

D. Conclusions on the  Excitation of A i r .  

Vibrations 

Neither  the  theory  nor  the  available  experimental  results  are  sufficiently 

accurate  to  permit  any  quantitative  predictions on the mean free  path f o r  the 

vibrations of the most important  gases, O2 and N2. It is cer ta in   that   these mean 

fre'e paths are rather long, and under ce r t a in  circumstances  they may  become  corn- 

parable  with the dimensions of a pro jec t i le .  

, 
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I.. 

Experimental.  information is available  table^ V) only on the effect of 
N and  of  water  vapor  on  the  vibration  of 02;  in  addition  an  upper  limit  is known 

for  the  effect  of O2 on the O2 vibration.  The  effect of N2 on O2 is  described  by 

an  effective  range s = 3*lO-?cxn  as  computed in (2.18a). In Table IV, we have cal- 

2 

culated Z as a function  of  temperature  with  this  value  of s .  These  calculated 

values  should  represent  the  temperature  dependence of the  effect  of Ng on  the 

vibrations of O2 fairly  accurately,  i.e,>  within a factor  of  perhaps 3 . '  

For  the  collisions  between  two O2 molecules,  the  experiments  give 

ZL fs00,OOO at  room  temperature,  Assuming Z = 10 , we  obtain s = 4.10-9 cm from 

(2.13, 15) The  values of'Z for O2 at  various  temperatures  with s = 4.10'9 are 

also  given  in  Table IV; the  actual Z for O2 - O2 collisions  may  be smaller than 

the  values  given  in  the  table  by  about a factor  of 2, but  greater  by any amount. 

6 

In any  case, in air  the  vibrations  of 0 will  be  excited  much  more  easily  by  col- 
2 

lisions  with N2 than  by  collisions  with  other O2 molecules,  both  because  of  the 

greater  abundance  of N2 and of the  smaller 2 .  

In Table VI we  give  the  estimated  times  and  distances  required  to  es- 

tablish  equilibrium of the  molecular  vibrations in air. In particular,  Table VI A 

gives  the  reciprocal  time  of  relaxation, Uo9 as a function  of  temperature  for 

various  assumptions. uJo has  been  calculated  from (2.18, 18a and 22), considering 

q as  independent of the  temperature.  The  values  of q were  obtained by comparing 

the  values  of Z and@, given  by  Kneser  and  Kunze  for  room  temperature;  these  q's 

seem  somewhat  low  but  the  errors  are  not  important  compared  with  the  uncertainties 

in  the  theory.  The  density of the  air  was  assumed  to  be 1.18'10-3, corresponding 

to  atmospheric  pressure  at 300"K. In the  first  row  of  Table VI A, & is  given 

for  the  vibrations of 02, taking  into  account only the  collisions  with N molecules. 

The  neglected  collisions  with O2 can  increasedo  by 10 per  cent  at  most. 

- 0  

2 

Collisions  with  water  molecules  are  very  effective  in  exciting  the  vib- 

rations of O2 (Table V) Fow: hundred  collisions  with %O are sufficient for de- 

excitation  of O2 at  room  temperature;,  therefore, as little  as  one  per  cent  of water 
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vapor w i l l  be three times t t s  effect ive  as  a l l  the  nitrogen  in  the a i r .  In   the 

second row of Table V I  A we have l isted  the  value of wo for   col l is ions of O2 

molecules  with H 0, assuming a conceritration of 1 per  cent  water  vapor by vol&e. 

On hot humid days, the  water  concentration may be eas i ly  3 per  cent. It i s  seen 
2 

that ,  a t  1 per  cent,  the  collisions wi th  H20 a r e  more effective  than  those  with N2 

a t  500" K, but   less   effect ive a t  700" and higher  temperatures.  This  behavior is  

due to   t he   f ac t   t ha t  wo rises  very  rapidly  with  temperature  for  collisions  with 

N2$ 
but  rather  slowly  for  'coll isions  with H20. (Table I V )  

While the  information  obtainable on O2 i s  f a i r ly   s a t i s f ac to ry ,   ve ry   l i t t l e  

can be said  about  the  excitation of the  vibrations of Ne. It is  reasonable  to 

expect  that  the  effect of O2 on the N vibrations can  be described by the same: 

effective  range, s = 3 e L O - 9  cm, as the  effect  of N on 0 although  this is by 

no means cer ta in .   In  Table I V  we have given  the  corresponding 2 f o r  N2; itl is 

muchhigller than  the 2 for  0 with  the same S because.  the  vibration  frequency  of 

N2 i s  about 30 per  cent  higher  than  for 0, The th i rd  row of Table V I  gives wo 

fo r  the  excitation of the  vibration of N i n  air ,  assuming that   only  col l is ions w 
2 , 

with 0 are effect ive,  These values  for cu can  therefore be regarded as lower 

limits a 

2 

2 2' 

2 

2 *  

2 0 

No experimental  results  are  available  concerning  the  effect of co l l i s ion  

with  the N molecules on the  vibration of N To obtain any theoretical  estimate, 

we must f ind  an  interpretat ion of the  difference between the  effective  range s fo r  
2 2 

' 0 - 0 and 0 - N coll isions,   viz.  sz4-lO-9 arid s = 3.10-9 cm, respectively. 
2 2  2 2  

There are two possible  interpretations: The first al ternat ive i s  t o  assume that 

general ly   col l is ions between different  molecules  are more effective  than between 

equal  ones.  Such a tendency seems to  exist   in  the  experimental  result (Table V) 

but  there  appears  to be  no theoret ical   jus t i f icat ion.  Moreover, i t  i s  t o  be re- 

membered that  the  experiments were mostly done with  polyatomic  molecules, f o r  



which there  are  ot.her recLsans f ~ r  a stronger  intersctioc ( c f .  point 2 i n  ,the sec- 

t ion on Experirnental B e a u l t s  of par. 28) e T h u s  we do no t  ge t  ttn explanation fop 

the  effectiveness of the  coll isions between O2 and N and we are’led to   the   sec- .  

ond al ternat ive.  This is  based on the fac t   tha t  N, is  a more compact mol.ecule 

than 0 having a greater  binding energy and smaller  distance between the at;or;?s. 

2’ 

- 
2’ 

From this   di f ference i n  s t ructure  we rnay expect a shorter  range of the forces f o r  

N which would explain  the  smaller  value of s for  O2 - N2 col l is ions as compared 

with O2 - 02 .  

2 

If t h i s  second a l te rna t ive  is  accepted, we should  expect an even  smaller 

s f o r  the  interaction between two N2 molecules  than for   the N2 - O2 interaction. 

We have therefore  included  in  Table I V  ths  values of 2 f o r  N2 obtained  with 

s = 2.5e10-9 cm. These values  are, of  course, considerably  smaller  than f o r  N2 

and s = 3 ‘LO-9 cm, and not much larger  than  for O2 and s = 37 10-9 cm. In  the 

f i f t h  row of Table V I  A we have given cd f o r  N i n  air, assuming s = Z?v5 * 10-9 cm 

for   the  interact ion Ne - N2; the  values  thus  obtained.  are  only  slightly  less  than 

those f o r  o2 (first  row) 

2 

On the  other hand, if the f i r s t  alternative  explanation above i s  assumed, 

the  interaction between two N2 molecules would have a large s, j u s t  as the  inter-  

action between two 0, molecules. In  t h i s  caseg  the Ne - Ng col l is ions would not 

contribute  appreciably  to  the  excitation of N2 vibrations, and Wo f o r  N2 would 

be given by the   th i rd   l ine   in  Table V I  A i n  which the N2 .. O2 collisions  alone 

2 

are  taken  into  account. 

Finally, as a compromi.ae, we have a l so  given  the  results when s = 3-  10-9 

cm i s  assumed t o  be val id   for   col l is ions between two N2 molecules as well as be- 

tween N2 and O2 (fourth row of Tsb1.e V I  A )  - 
The e f f ec t  of water  vapor on N2 is  also unlrnown. 3 0  is  extremely ef- 

fectlve  In  excit ing  the  vibrations of O2 and C02 (cf  Table V) as well as of N20, 

CS ’3 and COS (budsen  and Pricke,  loc e c i t  ) . By pure analogy we might therefore 
L 
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conclude t h a t  it would also  be  effective on N2, and we have therefore  included  in 

Table I V  a calculation of Z for   co l l i s ions  between N2 and H 0, assuming the same 9 

as for   co l l i s ions  between 0 and H20 but  taking  into  account  the  higher Y of N2. 

However, it must be remembered tha t  0 has a chemical a f f in i ty   t o  H20,while' N2 has 

very l i t t l e ;  therefore,  collisions wi th  water may be much less   e f fec t ive  on N2 

( Z  higher)  than i s  indicated by the last  l i n e  of  Table IV. 

2 

2 

2 

In  Table V I  A, l a s t  row, we have computed wo for col l is ions between 

N and H20; assuming 1 per  cent water vapor i n  a i r  of density 1.18*10-', and 

assuming the Z as  given  in  Table IV. Presumably, these  values of wo are on the 

high  side. Whether or  not  the  humidity-has an appreciable  influence on the  vibra- 

2 

t ions of N2, depends not  only on the temperatwe and on the  correctness of our 

assumption  about the  interaction between N2 and H 0, but a l s o  on the assumed in- 

teract ion between N and N2. If the 1at te . r  i s  strong ( s  = 2. 5.10-9), the humidity 

i s  rather  unimportant  even a t  low T.; if it i s  weak (coll isions  with O2 only),  the 

humidity i s  the  decisive  factor. T h i s  again  indicates  the extreme uncertainty of 

the  data  on the  excitation of the  vibration of N2. 

2 

2 

In  Table V I  B, we have calculated  the m e a n  free  path  for  vibration, hv, 

the  high  pressure  side of a shock wave produced i n  "standard air", i .e . ,  when 

the temperature and pressure on the low pressure  side  are 300 and 1 atmosphere 0 

respectively. A, i s  given i n  Table V I  as a function of the  temperature T which 

i s  obtained on the high  pressure  side  at   large  distance from the  front  of  the 
V 3 

shock wave (par .  3); T3 again is a known function of the  velocity v of the shock 

wave (Table VIII). Velocity and density on the high pressure side were also taken 

from  Table V I 1 1  (par. 3 ) ,  the asymptotic  values v , p being  used. The so defined 

h i s  r e l a t ed   t o   t he  wo given i n  Table V I  A by 

1 

3 3  

V 
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Table V I .  Relaxation Time and Mean Free  Path of Vibration  for 

O2 and N2 i n  A i r .  

Vibra-  Collisions Abm- Temperature 
t ion with dance (lO-’cm) 300 500 TOO 1000 1500 2000 3000 5000 
of $ 

A. Reciprocal  Relaxation Time oo ( i n  10 See-’) 5 

N2 78 O2 

H2° 1 0.93 

N2 78 3  0.024  0.25 0.95 3.5 12 26 60 140 

*, .78 2.5 0.10 0.9 3.0 9 30 55 . 115 240 

3 0.35 2.3 7 19 50 80 140 260 

1.1 2.8 5 7.5 11 13 14 17 

16 37 
/ 

21 3 0.006 0.07 0.26 0.9 5.2 7 N2 O2 

L 

H2° 1 0.93 0.35 0.9 2.2 4  7 10 13 -18 

B. Mean Free  Path  of  Vibration hV (in  mill imeters) 

pl/e(meters/sec) 350 98 71 61 56  56 58  48 V3 
Vibra- Collisions wi th  
t i on  of 

O2 N2 only 10 0.43 0.10 0.032 0.011 O.OO7 0.004 0.0018 

N2 and H20(1$) 2.4 0.19  0.06  0.023  0.009 0.006 0.003 7 0.0017 

O2 only 550 14 2.7 0.7 0.18 0.08 0 .03~  0.013 

O2 and N2(s=3-10 em) -9 110 3.0 0.6 0.14 0.03 7 0.017 0.007 5 0.0027 

o and N ~ (  s=2.5..10 em) -9 33 1.0 0.22 0.06 oa.017 0.009 0.004~ 0.0017 

O2 and 1% H20 10 1.0 0.20 0.12 0.05 5 0.033 0.020 0.009 

2 

02,N2( ~ ~ 3 . 1 0  )and H20 -9 9.5 0.8 0.21 0.07 0.025 0.013 0.006 5 0.0025 

. 02,N2( ~=2.5.10 )and H20 -9 8 0.5 0.13 0.04 0.014 0.008 0.004 0.0016 
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The  quantity v ' p  /p is  given  in  the  first  row of the  Table VI' B, in  meters 

per  second.  Then X is  given  for  various  assumptions. 
3 1 3  

V 

The  value  of Xv for O2 in  dry  air  decreases  from 10 millimeters  at 300 0 

to 1/150 millimeter  at 2000' and 1/500 at 5000'. If the  initial  pressure  is  low-- 

let  us  say, 1/100 atmosphere--X  is  proportionally  greater (100 times)  and may  

therefore  easily  reach  considerable  values. In wet  air  containing 1 per  cent of 

water  vapor  by  volume,  Xv  for O2 is  reduced  to 2 mm at 300' but  is  almost  the 

same as for  dry  air  when T 3 1500°K. 

V 

For the  vibrations of nitrogen,  the  value of Xv is extremely  uncertain. 

If the  collisions  with N2 are  unimportant  (cf.  above)  and  if  the air is  dry,  only 

collisions  with O2 need  to  be  considered;  then Xv is  as  large  as  half a meter  at 

300°K. Since  the  vibrational  energy  of N2 becomes  important only for T 7 600' 

(Table 11), X, is  important  only  at  higher  temepratures;  but  even  at T = TOO we 

obtain Xv =YN 3 mm if  only  collisions  with O2 are effective. On the  other  hand,  if 

collisions  with N2 are  very  effective (s = 2.5.10-' cn), Xv  is  reduced  by  about a 

factor  of 12 at TOO0, and a factor o f  8 at 5000°. If  collisions  with E20 are  as 

effective  as  assumed in Table N and VI A, a water  vapor  content  of 1 per  cent 

reduces X, by  factors  varying  from 9 t o  1.05 when only temperatures > / T O O  are 

0 

0 

considered. 

Apart  from  the  uncertainties  in  the  assumptions,  there  is a lso  an un- 

certainty  in  the  Landau-Teller  theory  itself  which  makes  the  temperature  depend- 

ence  of X uncertain by a factor  of  about 3 even  if wo at  room  temperature  is 
V 

accurately known. 

The  unsatisfactory  state of our  knowledge  about  the  mean  free  path  for 

molecular  vibrations  in  air  could 5e improved  by  experiments on the  dispersion 

and absorption of sound  in  mixtures  of 0 and N of varying  composition  and  free 

from  impurities.  Such  experiments  should  be  done  at T ", TOO0 M or  higher  in  order 

to  ensure  sufficient  excitation of the  molecular  vibrations  of N2. Wtth auah 

experiments  available,  the  dependence  of Xv on the  temperature  at h$g&&w t;emperstl&$d' 

2 2 
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Nitrogen and oxygen are  prolably  almost unique in   their '   large  values  of' 

2,  and ,therefore of q. Other  molecules have much lower frequencies  or much greater  

chemical a c t i v i t y   ( c f ,  above)  Therefore f o r  most other  gases, and especially 

f o r  compl.icated plyatomic ones (explosives! ) p  A w i l l  l.n general be too  small t o  

be of any  practical  importance. 
v 

Dissociation.  In Table V I I ,  we give the number cf molecular  collisions 

2 requl.red for one dissociation  process,  the  reciprocal time of relaxation Wd3 d 

and the mean free p a t h h a  for  dissociation, These quantit ies were calculated from 

Eqns . (2.28, 29 and 293) The constants N m d  v were  assumed as in  Table VI ,  

naoe1.y N = >*LOg sec'l a t  300" &arid one atmosphere, and proportional  to T other- 

wise; v equal t o  .the  velocity v of a i r  on the 'high pressure  side of a shock wave 

produced i n  "standard afr";cxwas taken from Table 11, cd was arbi t rar i ly   put   equal  

t o   LOO. z IS, o f  course,  independent o . ~  tile pressure; U)d is calculated  for  a 

densityV of l .l&lO-3 as fn Table V I j  and% for  the  actual  conditions on the  high 

pressure side of a shock wave. It can be seen  that  the mean free  paths  obtained 

?Y 
3 

d 

d 

are very long indeed, decreasing for 02 from ;z l i t t l e  under one meter a t  2'jOOa t o  

a l i t t l e  over one mill5rveter. a t  3000". Therefore we should  expect  l.arge  effects 

from l.ack of dissocfatlon equfl.ibrf.urn in shock waves which are sufficiently  ,violent 

t o  produce dissociation, We must emphasize again the great uncertainty of the 

figures i n   abl le VI'I whfch is caused by the l a c k  of knowledge of cdo Here again 

experiments would be desira'ble but  they seem considerably more d i f f i c u l t  than i n  

the  case of vibrations. Possibly st6dies of the dissociation  equilibsi.tm c>f o ther  

'gases (e.$.) N2 04) would help. 
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!?able VII. Relax%tfon Time n.nd Mesn n e e .  Pzth for the Dissociation of Air 

T = 2500 5000 3500 4000 4500 5000 

o2 0~00205 0.0144 0 0568 0 152 0.308 4 0.500 

- - - -  - --- 0 0003 0 0014 0.0051 0 0139 
.---- 

85 600 2400 6800 16,600 35,200 

(see-1) 65 320 1080 2900 
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Par. 7. Theory of Shock,  Waves  In the  - Case of Variable  Specific  Heat, 

Notation: 

We shall denote by letters  without  subscripts  the  physical  quantities . 

at  any  pofnt in the shock wave,  by  letters  with  the  subscript 1 the  quantities  on 

the low pressure  side of the  wave, by the  subscript 2 those  on  the  high  pressure 

side  Immediately  at  the  front  on  the  waveg  and by the  subscript 3 those on the  high 

pressure  side  at  large  distance from the  wave  front, i+ee; where  equilibrium has 

been  established  for  vibrations  and  dissociation,  We shall also  use h and 1 for 

arbitrary  points  on  the  high  and low pressure  side,  respectively. We consider  the 

one-dfaensional  case  throughout. FOP further  notations,  see  the  end  of  the  intro- 

duct ion 

Fundamental  Equations: 

1. Equation of continuity 

p v  = constant = m 

2. Conservation of momentum:  The  gain of' momentum of the  mass m of 

gas, d v ,  is equal  to  the  decrease  in  pressure, -spa Therefore* 

p + mv =' constant = mV (3.2) 

(definition of V) 

3 .  Conservation of energy 

E + 2 + L v2 + constant =L c2 
P 2  2 

(3.3) 

When  the  gas  flows  adiabatically  into vacumgq / ,  and  therefore  also E go to  zero 
so that v approaches 

has  been  extensively discussed  in  par. 1 and 2 ,  It has been  shown  in  par. 2 that @ 

depends  on  the  existence  or  non-existence of equilibrium  between  the  various  degrees 

* It I s  interesting that in our case p + p v2 is constant  while  in  the  imcompress- 
ible  fluid  it is p + (1/2) v2. In  both  conservation  laws,  the  elementary  law is 
dp + pvdv = 0, but  for  the  integration we must  assume p = constant in the in- 
compressfble  fluid , 6)" = constant  in  our  case 



48 

of  freedom  of  the  molecules. I f  thert. is  equilibrium, i s  a function of the tem- 

perature ( or ph ) alone;  tables of f o r  t h f s  case  are  given  in par, 1 for  nitrogen, 

oxygen  and air (Tables I1 and 111) a Equilibrium w i l l .  ex i s t  everywhere on. the low. 

pressure  side  of the shock wave ( p  .- p 1) and asymptotically a t  large  distance from 

the wave f ront  on the  high  pressure  side ( p  = P j e The value of @ on the  high  pres- 

sure s ide immediately a t  the wave front  (p2) can  be  calculated  easily from the 

f a c t  that the  energy  content of the  inert  degrees  of freedom (vibration,  .excitation 

3 

and dissociation) is the same as on the low pressure  side  (cf.  beginning  of par. 4) 

I n  the par t icular   case when the  temperature on the low pressure side is low enough 

so that there is no appreciable  energy in the inert  degrees of freedom ( f u l f i l l e d  

for  air below 400" K), we have simply@ = p1 ( = 7/2 for diatomic gases) In  the 

intermediate  region on the  high  pressure  side,pmust be considered.as  varying from 

g2 t o  p 3  i n  a way which w i l l  be discussed  in par. 4. For the moment, we shall con- 

siderpas given and determine  the  other  physical  quantities from it. 
I .  

The three  constants m, Y, and c def ined  in  (3.1, 2, 3) are given by the 

pressure,  density, and velocity of the incoming gas on the low pressure side: 

c 2 = v 2 + 2 f i  1 *1 

el 

It is often  convenient  to  introduce  the  velocity of sound by put t ing 

P/e = a*/r 
(Valid orily i n  the absence  of  dissociation) 

I n  most practical  applications,  the  temperature on the low pressure side is suf- 

f i c i e n t l y  low so that */dT = 0 and (c f .  1.19, 1,21) 

7 " p -  1 _B 



49 

If th is  is true, we may rewrite (3.4) : 

* .  (3.74 

P 
E =  ( v - v )  v (3.9) 

These,equations are important t o  ca l cu la t ep ,  p, and T once v has been  determined. 

#3 (v  - v)v + I v2 = 1, c2 
2 2 

and therefore 

If V and c a re  given, there  are, f o r  any value of p ,  two solutions 

fo r  v, , In  general,  these two solutions  are  real  (for  exception, cf. par. 5> 

p e  71); ff real, they are both  positive, It can eas i ly  be shown that the  larger 

vaiue of v b lus  sign i n  ( 3  i.tsg fh general ig &eater  than  the  corresponding 

velocity of sound, the smallei- $ siiidhfi thah the  corresponding a, 

To show this, we calculate from (3.9) 

(3.11) 
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where the  upper and lower sign  correspond to   the upper and 1owe.r sign  in  (3.10) e 

Now if we assume that  does not depend much on the  temperature, we may use (3.5, 

6) and have 

This gives 

i.e. v > a  for   the upper, v e a  fo r  the lower sign. 

In   r ea l i t y ,  does  depend, on T and therefore ( 3 . 6 )  is not  correct  but 

should  be  replaced by (cf 1.19) 

,,:;.,t .;,_ : 1 i i 

; v =  
+ d@/d log T 

- 1 + @,Id log T 

(assuming no dissociation) 

I n  all pract ical   cases  @ increases with temperature so that 7 (and therefore a ) 

i s  s l igh t ly   l ess   than  it would be i f  ( 3 . 6 )  were valid.  Therefore it remains  true 

2 

that for   the upper s ign   in  (3.10 - 12) v is greater  than ap but  for  the  lower  sign 

V i s  not  necessarily  less  than  a.  However, the  difference between (3.6) and (3.13) 

is only very  slight;  therefore  the  exceptional  case  that  the smaller v is greater 

than  the  corresponding a w i l l  be of minor importance. A more detailed  discussion 

w i l l  be given i n  par. 5, p. 80, 81. 

Discussion: 

On the low pressure  side of the shock wave, the  velocity w i l l  be given 

by (3.10) with the  plus  sign ( in  the  following  denoted by the  subscript 2 , for 
low), on the hfgh  pressure  side by the  solution with the minus sign  (subscript  h 

for hfgh) e We have pointed  out above that B w i l l  have the  equilibrium values, 
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"iner t"  and "active"  degrees of  freedom. Therefore, if the  dimensions  of  the ob- 

stacle  causing  the shock wave are  large compared'with  the mean free  path  for   vi-  

bration,  etc.  (par.2),  the  pressure,  resistance,  etc. w i l l  be the same a s - i f  all , 

degrees  of freedom were in  equilibrium a l l  the  time. 

We could  rewrite Eq.(3.lO) inser t ing the values (3.4a, b)  o r  (3.7a, b)  , 

for V and c .  This would in  general  lead  to  complicated  expressions  if @ f 

However, simple  results  are  obtained  in  the two cases (a) = p  1 and (b)  v,>) al0 

a )  For @ = p  and ( V / d  log  T)l = 0 our  theory  reduces to  the  usual  theory 

of shock waves9 and (3.10) becomes (use 3.7a, b!) 

28- 1 
which gives 

(3.15) is the f'undamental equation of the  usual  theory  in  an  especially  convenient 

=pl or  not.  In  th i s   case   (c f ,  3,4a, b) we have V =  c =: v1 and (3.10) gives 

- v1 
V h -  28- 1 

From (3.8, 9 )  we find  then 

(3.16) 

. 
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(3.16c)+ 

I 

.. r 

The re la t ive   e r ror  of these  formulae i s  about 2&al2/v; ( f o r  ph.  only a12/v12) 

In  the  approximation  used  here,  the  quantities on the  high  pressure  side are in- 

dependent o f g  and  depend only on the  local  value of on the  high  pressure  side. 

It is  seen  that  the  value of t h  increases   l inear ly   wi thp;   in   the   spec ia l   case  

@ = 7/2  (diatomic  gases  with  translation and rotation  only), (3.16a) gives  the 

well-known result that the  density  in a shock. wave can only increase  six-fold. 

Since  increases  considerably a t  high  temperatures,  the  actual  increase of p can 

be much greater  than s ix-f  old. ph depends only  sl ightly on ( for   l a rge  ) be- 

. cause, i n  our limit vl>> a we have  v << V and therefore ph is approximately 1, h 

mV (c f .  3.8b) which is a constant. 

Finally, T, decreases**  strongly  with  increasing @ because  the  total 

energy E t 2 = RT is almost  independent of 8 when  vh <K c . (cf . 3.3) (only a very 

small amount of kinetic  energy i s  l e f t :  ) e As an example, we compare the asymp- 
e 

tot ic   values  of the  physical  quantities f o r  a i r   a t  ordinary  temperatwes (@ = 7/21 

and for   hot  a i r  with the vibrations f u l l y  excited  but no dissociation ( p  = 9 / 2 ) .  

~~~~~ ~ ~~ 

* In  case of dissociation, (3 .16~)  holds f o r  RT, (1 +orh) rather  than for RTh. 

** This statement  holds also in  case of dissociation because T is a  monotonic 
function of p/p . 

. 
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Table : 

Table VI11 gives  the  physical  characteristics on the high pressure side 

of a shock wave produced i n   a i r  of 300" Kelvin (27' Centigrade) by incident  streams 

of  various  velocities.  For the construction of 6uch.a table, it is convenient  to 

consider the temperatures T 1 and T as  given and to   calculate  vl and v3, ra ther  

than  to start from T1 and vl and calculate  T3, v3 from them. 3 is a tabulated 

function of T3 '( cf . Table 111) . Eqs (3.3) and (3.9) may be rewrit ten ' 

3 

Solving f o r  vl, v we obtain 
3 

and 

- = b +  v1 
v3 

where 

These  formulae are   sui table   for  compution. 

Table VI11 gives the important  physical  quantities as functions of v '/a 

the r a t i o  of the velocity of the incoming stream t o  the  corresponding  velocity of 

sound3 f o r  values of vl/al from 1.5 t o  11.6., Velocity,  density,  temperature and 

pressure on the high pressure side  are  given  both at large  distance from the wave 

f ront   (subscr ipt  3) and  immediately a t  the wave front   (subscr ipt  2). The l a t t e r  

1 1' 



Table VIII. Characteristics of Shock Wave8 in Air 

0.800 

0 7495 

0 747 

0 759 

0 9 779 

o . 803~ 
0.831 

0. goo 

0 970 

I. 041 

1.1035 

1. 2285 

1 350 

1.481 

1 6335 

400 

500 

600 

700 

800 

900 

1000 

1250 

1500 

1750 

2000 

2500 

3000 

3500 

4000 

400 

501 

604 

709 

816 

925 

1036 

1320 

1616 

1925 

2222 

2848 

3510 

4300 

5300 

2.538 

4.425 

6.415 

8.49 . 

10 . 62 
=*77 

15.01 

20,72 

26 -66 

32.7 

38 '75 

51.4 

64.6 

80.5 

100.6 

10.410 1.241~ 1,809 8.385 5.754 4500 6570 '134.40 126.2 

,11.595 1.269 1.997 9.136 5.804 5000 8030 168.38 155.6 



quant i t ies  were calculated assuming that  the  inert  degrees of freedom retain  the 

same energy  as on the low pressure  side.  Since t h i s  energy is pract ical ly  zero,, 

we can  putP2 = p1 = 3.483 ( c f .  Table 111), and  can therefore  calculate v from 

(3.15) (and  the  remaining  quantities from (3.8, 9) ) .  
2 

Comparing the  quantities  with  subscripts 2 and 3, we f ind approximate 

agreement up t o  about v /a = 3 .  A t  higher v /a we f ind thatp is considerably 

greater  than p2 ( c f .  3 . h )  and, correspondingly  (because of the  continuity  equation) 

v3 < v2. Thus the shock wave consists of  a  discontinuous  compression  followed bx 

a gradual  further compression  which  extends  over a distance  determined by the con- 

siderations of par. 2 and 4. Along with the  strong  increase of the  density  there 

1 1  1 1' 3 

is a small  increase of the  pressure from p t o  p ( l a s t  two columns, c f .   a l so  

3.16b), but  even if the  discontinuous change  of the  pressure is by as much as a 

fac tor  of 100, the  following  continuous one is only 5.4 per  cent.  Therefore, a6 

.2 3 

f a r  as the  pressure i s  concerned,  the change o f p  wi th  temperature is rather  un- 

important. The temperature  increases  discontinuously a t  the wave f ron t  from 

T1 = 300" t o  T and then  decreases*  gradually  to T due t o  a t ransfer  of  energy 2 3' 
from.the  "active"  degrees of freedom by  whose excitation  the  temperature i s  de-' 

f ined,  to  the  "inert"  degrees.  The temperature  decrease is greatest   for   the :, 

highest 'vl/al where it i s  from over 8000 to  5000 degrees. 

O f  some in t e re s t   a r e  perhaps  the c03umns v /a and v /a It is seen 2 1  3 1' 
that   for   re la t ively  small  v the  velocit ies v and v are  smaller  than  the  veloc- 

i t y  of sound  on the low pressure  side, a and that  they  decrease  with  increasing 

vl. Then a minimum is reached and a t  s t i l l  larger  values of vl, the  high  pressure 

ve loc i t ies  v2 and  v become greater  than  al. For v2, the  existence of a minimum 

can be seen  direct ly  from (3.15); the minimum i s  obtained  for 

1, 2 3 

1' 

3 J 

* For verg: "sof t"  shock waves (v  only  slightly  greater  than a ) there can be a 
s l ight   increase from T2 t o  T ch. par. 6. 1 

3' 
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I. 

and has  the  value 

For  very  high v 1 we obtain 

Par. 4, The Approach of Equilfbrium. 

We may assume that  the  energy of the  inert  degrees of freedom (vibration, 

a tc . )  does not  change, discontinuous~y a t  the  f ront  of the shock wave while that 

of the  actf-fe  degrees of freedom does. It w i l l  therefore be convenient t o  split 

t he   t o t a i  energy E into  the  par t  due to   t rans la t ion  and rotation, Ea (a = ac t ive) .  

and the  part  due to   vibrat ions,   e lectronic   exci ta t ion and dissociation, Ei 

( i' = i n e r t )  ., wa put 

where8 is practically  constant and equal   to  7/2 for diatomic  gases ( 5 / 2  f o r  

monatomic ones)  Further, we must  have 

Eil = Ei2 

foe.,  the  energy of the  inert  degrees of freedom is the same  on both sides of .the 

shock wave f ront ,  Then (3.3a) becomes: 



Instead of (3,ga) we have 

8 a ( V  - V ) V  + & 2 v2 = r 2 c2 - Ei 

and instead of (3.10): 

Equation ( 3 . 4 ~ ~ )  i s  unchanged: 

while  (3.6b) is replaced by 

c = v1 + 2paRT1 + ail 2 2 (4.6b) 

It can be seen  easily that the  physical  quantities p2, p2, v2, T2 on 

the  high  pressure  side immediately a t  the  front of the shock wave are  exactly a8 

if  the molecular  vibration were absent  entirely.  We may use Eq. (3.15) with@ a 

instead of to   calculate  v2, and then  obtain  the  other  quantities from (3.8, 9) 0. 

This has ac tua l ly  been done i n  Table V I I I .  

Farther  in  the  high  pressure  region,  the  inert  degrees of  freedom w i l l  

gradually come into  equilibrium. If we have only one such  degree,  e.g.,  the 

vibration  (subscript  v), we  may write (par, 2) 

where T is the  local  temperature  (defined as  p/e R), Ev' ( T )  = ,(T)p/p the  equi- 

librium  value of the  vibrational  energy  corresponding to T, Ev the  actual   local  

value of the  vibrational energy, x the  coordinate  perpendicular  to  the wave front  

counted from the low pressure  to  the  high  pressure  side,  andh,  the mean f r ee  

i 
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path for   vibrat ions (par. 2) which w i l l  depend on the local density and  temperature. 

Similar  equations,  but with a d i f fe ren tX,  w i l l  hold  for  dissociation and  excita- 

tion. 

To integrate (4.7) , it is more convenient to   calculate  x as a m c t i o n  

of  the  physical  variables  than  to do the  reverse. The integration must i n  

general be done numerically  becauseh and Evt a r e  given  only  by  numerical  tables 

(Tables I1 t o  VII) and depend i n  a complicated way on the  variable T. A depend- 

ence  of Ev' and% on the  density does not  present  any  additional  difficulty be- 

cause e is, by (3.83) and (3 .9) )  a unique function of p/e = RT. Assuining again 

V 

that vibration is the only i ne r t  degree  of freedom* ( t r u e   f o r  a i r  below 2500° IC), 

E, can be calculated  in  terms  of T from (4.31, eliminating v by use of (3.8b): 

This is a f a i r l y  complicated  dependence, It seems hardly  worth while to   ca r ry  out 

numerical  integrations  of  (4.7), (4.8) for   special   cases .  

However, i t  is easy  to  estimate  the  distance  required  to  establish 

equilibrium. It must be of .the  order of a,, more precisely of  the  largest  value 

of& occurring,  fee,, the one corresponding  to  the  lowest  temperature  (par.2) 

exfsting on the  high  pressure  side of the shock wave. Ordinarily  ( ieeo,  with 

the  exception  of  the  case  dfscussed i n  par. 6 ) ,  t h i s  lowest  temperature i s  reached 

* If there  are  seperal   inert   degrees of freedom (vibration,  excitation,  dissoci- 
atfoxi, possibly o f  several  gases),  there is one equatlon of the type (4,7) fo r  
each  of them, The unknams a re  the enel'gies El('), E (2), e t c   i n  the various 
ine r t  degrees of freedom, and T, the  temperature as &fined by the energy in   the 
active  degrees  of freedom. From the  temperature, v,pl and p can'be  determined 
and also  the  equilibrium values of the El's, v i z ,  El( )', Ei(*)', etc . ,   andh(  f ), 
h(2)$ etc.  The  number of d i f f e ren t i a l  equations' (4.7) i s  obviously one less   than 
the number of unknowns The system i s  completed  by Eq (4.8) , with E, replaced by 
Ei = E p ( l )  + Ei(2) + d o  
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i n  the  equilibrium  state  (highest f i 3  c f .  3 . 1 6 ~ ) ~  Therefore it is only  necessary 

,' to  read from Tables VI, VI11 the h for the  temperature T and pressure p 3 3. 
The integration is  simple i f  T2, . are   suff ic ient ly   c lose  to   the  values  

T3, ?3 . Then we may consider X as constant and T kccording  to (4.81 and  there- 

fore  Evf (according t o  par, 1) as depending l i nea r ly  on Ev, v iz ,  

' - -  
% 

- - p constant 

is posi t ive because T, and therefore Ev', decreases  with  increasing Ev ( c f ?  4.8) 

Using (4.9), (4.7) integrates immediately t o  

(4.10) 

Eemembering (4.2)j . Thus the  deviation from equilibriwl  decreases exponen- 

t i a l l y  as we go away from the wave front.   Since a l l  physical   quantit ies  are ex- 

pected t o  change very l i t t l e  (T2 E= T etc .  ), T, e , p, v, e ta .   a re   suf f ic ien t ly  

nearly  l inear  functions of Eva - Ev, so that 
3' 

L I  

(4.11) 

and s imilar ly   for   the remaining quantit ies.  

It need hardly be pointed  out that the  gradual change of the  physical 

quantities  occurs  only on the  high  pressure  side  because the gas  streams from the 

low pressure  to  the  high  pressure  side if  we consider  the wave f ron t  as fixed. 

Increasing x means therefore a -later  time, On the low pressure side, the wave 

f ron t  is sharp (except in  the  case of par. 5 )  because  any  molecules which may 

cross  the.wave  front  against  the  stream,  foe., from high  pressure  to low pres- 

sure side, w i l l  soon revert  to  the  high  pressure side because of col l is ions.  

There w i l l  therefore be no perturbation of the s t a t e  on the low pressure  side 

* 

outside of a distance of a few times the  ordinary mean f ree  path from the wave front. 



phenomena which occur only.  for very  "sofL" ajhock waves, f o e .  when the  velocity 

vl of the shock wave 18 only sP i&t ly  greater than  the  velocity of sound, ale 

These two sections are in no w&y iuiportant f o r  the general problem of shock waves 

i n  a raedfm of variab1.e specif ic  heat which has been solved in pal; 3 and 4. 

Especially for a substance l i k e  a i rB whose i n e r t  degrees of freedom are vepy' 

l i t t l e   e x c i t e d  a t  room temperatwe, the  effects  discussed  in par, 5 and 6 have 

no prac t ica l  sfgnif%ca.nco but only academic interegt ,  In  the two sections, we 

sol,ve some mathematical d i f f i c u l t i e s  which might o e c w  if the  fomulae of par, 3 



when only the specif ic  heat of the  active degrees of freedom is consfhered, Such 

shock waves are possible  bacause  the '*active veloqity of' sound"s aa13 is greater 

than  the  ordinary  velocity of sound; we have 

where cvl is the total specific  heat a t  constant volume on the low pressure 

s ide of the shock wave while cvaP is  the specific heat of the  active  degrees of 

freedom alone  Since cv * e,,, we have a > a and therefore  there  are 

values of vp  such tha t  
a1 .la 

These values of vl s h a l l  be 

The d i f f i cu l ty  is 

shock wave must e x i s t  if v 1 
wave behaves as if only the 

the  subject of" the  investigations of t h i s  section, 

the foKLswing: according t o  the  general  theory, a 

9 a On the  other hand, the _front of the shock 

active devees  of freedom existed (par- 4), there- 
lo 

fore  the wave f ront  



terval  (5.2)' is exceedingly narrow. 

The solution of the  diff icul ty  which we %om& above for the velocity 

in t e rva l  (5,2) is as follows : th&e ex i s t s  a shock wave which is propagated 

without change of shape, but in which the  velocity goes  continuously  through  the 

velocity of sound, The extension of this shock wave i n  space is again of the 

order of the mean free  path  for  vfbratfon,,X ( c f ,  par. 4); and the  variation of 

the  physical   quantit ies with x is again  determined by (bo?) in  conjunction  with 

I 

sure  side,  Coming from t he   l a t t e r ,  we have a gradual  increase of temperature, 

density and psesswe tOg8thelp with a gradual  increase of the  vibrational  energy. 

Eva The connection between  v  and E, is, gfven by the  positive sign i n  (40,5)0 The 

change of the  temperature is such that the vibrational energy fa138 more and more 

short  of i t s  equilibrium value, or mat&ematically,  the  difference E$T) - E, 
(or)?? g '  -1) increases (,ef.. 5,21) Thereby the  square  root fn (4.5) is peduced 

un t f l  i t  vanishes. From then ong the  negative sign m u s t  be taken with the 

square  root;  there is a fur ther  gradual increase of T,? and p but now' the 

vibrational  energy  "catches up'' again with its eguilibriwn  value Ey3(T)  which 

it reaches a t  large distance from the  shock wave. 

For  the  quantitative  treatment, we introduce that value Po of 6 a t  

which the square root in (3.10) vanishes when V and c are kept eonstant. Po is. 
thus a function of the initial conditions of the shock yaw?. The temperatwee, 

pressure,  etc., which are  obtained by se t t i ng  Q =Go in (3.10), w i l l  be 'denoted 
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which has the  solution* 

bo is thus  uniquely  determined by the  ini t ia l   condi t ions v19 p1 , p1 and 

(cyp, 3.4a, b ) ,  

The square  root  in (3,10), divided by V, may  now be writ ten 

Neglecting all higher  terns i n P - 8  this   gives  
0 

Inser t ing t h i s  in to  ( 3  .lo) and neglecting  agafn a l l  higher powers of - 
than  the  square  root (for more a c c d a t e  formula,  see (6.9a)) , we get  

0 .  

v 1 - =  v 2 4  - I ( 5 4  

Denoting  the  velocity f o r  = @  by v this  gives 
0 0 

Similarly, we get  from (3,ll) for  the  temperature (assuming no disssciat icn) :  
I 

- T = L +  
- 

T 
0 

c 

* The negative  sign  before @- 3 would lead t o  a value of 4 smaller t h m  
uni ty  which, cannot be at ta ined by the  physical  quantityg (6  = 5 /89  c f  par., 1) a 

I_-. 
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where To is the temperature  corresponding top which is given by (cf 3e9,  5,6)  
0 

Introduciw' the abbreviation 

' ' B O - 1  . 2  
RT = 

O 80 vO 

y = - -  * 1  
T 

0 

. .  

and' from ( 5  d6a) . 

- 0  

We consider  three  velocities  of sound, viz 

(1) the  velocity of sound with the  active degrees of freedom alone, 

where (cf 1 , l g )  

. .  

Iff3 changes not too rapidly with T, this may be written: 
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From. (5.7a) and ( 5 J l )  we see that, 

v = aoo 
0 

Since a varies as vj we have therefore from (5,8a) 

Therefore the value of y a t  which v' Ts equal t o  the actual   veloci ty  of sound, 

is (cf, 5a2b) 

The value 0f.y a t  which v i s  equal to tza4 38 (cf, 5.,12a) 



c 

It is convenient t o  fntroduce the abibrevfatfon 

Diffuse r;hock  waves w9.11 be obtained for z bekween O and 1, 

Since  the local value of /3 is given by (5.8) for  a l l  ys we may write 

On the  other hand, the  equilibrfug  value of whfch we denote b y p  as in ( k 0 7 ) >  

may be regarded a8 a l i nea r  function of y f.n the small temperature  Interval 

considered,  and s i n c e b l  = pip we have : 
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This  means tha t  .the temperature a t  which v i s  equal  to  the  velocity of sound 

(cf e 5.15) is the  average of the i n i t i a l  and f i n a l  temperature ., For the final 

temperature, we have  always v <  a as we m i g h t  expect;. 

We can now discuss the actual  equation (4,”) describing the change of 

the  physical   quantit ies  in  the shock wave ., ’ Eq (,4u.7) may be pe-mftten 

Using (5 .8) ,  (5.18), (3a19j and neglecting higher powers of -eoB this   gives  

With (5.15) 16, 20) t h i s  bec0me.s 

Ushg again (5.20) and (!j017)2 this may be wri t t en  

The temperatwe  approaches T l aeymptot,i.caLly for  large  negative xg T3 

for   l a rge   pos i t ive  xe The approach i n  each case is axponentjul, v%zo 



Thus, f o r  z f 0, the  approach of the  asymptotic  ,value i s  more rapid on the low 

temperature  side (T1) than on the  high  temperatweone (T ) *  In  the limit 2-1 1, 

f o e ,  when v approaches  the  "active"  valocity of soundj a the  diffuse shock 

wave automatically goes  over i n to  a wave with a discontinuous  front as we might 

3 

a1' 

expect 

In  the  other  l imiting  case z + 0, feeo, v, + a, the shock wave becomes 

symnetlpical  and more extended; ( 3 0 2 3 )  is  then 

T = - (Tl + Ti) + 1 1 
2 

A. L 

equivalent  to 

foe.   the  extension of the shock wave is  of the  order A/z .  

The formulae of this   sect ion  can  a lso be applied  to  the  approach  of  rota- 

t ional  equilibrium i f  vl is smaller than  the  velocity of sound, atlB which would be 

obtained if  the  translation  alone is considered in   the  specif ic   heat .   In  this case9 

(5.23) gives  the  distribution'  of temperature  (def  ined by the  translational  energy) 

where i s  the mean free  path  f ,or  rotation which, of  courseB is very small (par. 2A) 

Aside  from giv ing  the  solut ion  for  shock wave veloci t ies  between a and 
1' 

sal, th i s   s ec t ion  completes two proofs which were l e f t  incomplete i n  pw.3: 

1. On the  high  pressure  side of a shock wave,? the g3s velocity vx i,s-aL- 

ways smaller than the  veloci ty  of  sound a3" To  show this ,  we calculate,  instead  of 

(3.12), the ,value of a*/, with the  correct  va.lue (3.13) If we use (5.10a) 

(in which higher powers of  d@/d log T have  been  neglcc  ted) , we obtain  for  the low- 

./ 

e r  sign 

Subtracting t h i s  from (3.10) (again with the  lower sign),  we find 



In   o rde r   t ha t   t h i s  be negat ive  ( foe,  v3 < a3)) we must have (c f .  5.5a, 5.4) 

The value  of - p on the r igh t  hand s ide i s  suf f ic ien t ly  small s o  that ( 5 0 6 a ) 9  

(5.7) and a l l  subsequent  formulae  are  valid  (cf e 6.18) If - P o  i s  equal  to  the 

r i g h t  hand side  of (5.28), it follows from (5.7ls (5.15) tha t  y is just   equal   to  Bo 

This  result  coincides  with (5.13) where we have shown tha t  v is  Just  equal 

to   the   ve loc i ty  of sound 5 f o r  Y = B. Thus, as we have already  pointed  out,  there 

is a cer ta in   interval ,   v iz  0 < y < BB i n  which the  lower sign i n  ( 3 J O ) ,  e tc  0 9  

corresponds t o  v > a,  In  this  interval.,  the  lower sign solution  corresponds  to 

the - low pressure  side  rather  than  the  high  pressure  side of the shock wave, the 

veloci ty  v1 being between al -and ala, ( c f ,  5.11 ) For  any vl,  yl in t h i s  

interval,  the  high  pressure  solution' v , y can  be  found  immediately  ,from (5.20), 

and for   this   high  pressure  solut ion we have ( c f .  5.20, yl<B1) y > B and therefore 

v c a I' This  proves  the  underscored  statement  above, 

3 . 3  

3 

3 3" 
2, In par.3 we have shown tha t   there  is, f o r  any ini t ia l   condi t ions,  

one and  only one solution of  the  shock wave equations (3010)3 (3.11) provided 

on  the  high  pressure  side, Here Ts is the  temperature  xhich  belongs t o  a cer ta in  @ 

according  to  the  shock wave theory, Te t ha t  which corresponds to   the  %ame @ in 

thermal equilibrium,  In  the  notation  of  the  present  section, (5,291 is equivalent 

t o  



Comparing (5.18) with (5.19)9 it can eas i ly  be seen that (5.30) is fulfi l led when 

1 

y', B;i,e, always on the  high  pressure  side of a  shock wave, q,e,d. 

Par. 6. The Temperature on the High Pressure  Side, 

In  par.5 we have found that  the  temperature  increases  continuously from 

the low pressure  to  the  high  pressure  side i f  v is only sl ight ly   greater   than alP 

and t h i s  remains true if vl  becomes equal  to a so that s h a r p  shock wave f ront  is 

formed. In  the  case v1 = aa lp  we have T2 = T i 9  and a gradual  increase from T2 t o  

1 

a1  

T on the  high  pressure.side of the wave front.  On the other hand, for   v io len t  shock 
3 

waves (VI >> al) we have  proved i n  (3 .16~)  that the  temperature  decreases from 

the wave front  into  the  high  pressure  region  as  the  inert  degrees of  freedom  be- 

come excited,   In this section we want to  investigate where t h e   l f n i t  between these 

two types  of  behavior is t o  be expected. 

For t h i s  purpose we have t o  examine the dependence of T on  on the  high 

pressure  side. We know t ha tp   i nc reases  from the wave front  into  the  high  pressure 

region;  therefore dT/d@ w i l l  ,be the  quantity de teminfng whether T increases   or  

decreases,  This  derivative must, of coursep be taken  with  the  inftial 'conditfons 

( f e e .  V and c)  kept  ffxed, The value of a t  which aT/d@ is t o  be calculated, 

must be chosen in  the  range of values  occurring on the  high  pressure  side. The low- 

e s t  value  of in  that   region, p2> can be calculated from (4,2) and is given by 

The highest  value, @ is i n   su f f i c i en t  approximation 3 )  

t 

(6.2) is just i f   fed because, in   the whole region  in  which dT/d@ > O8 the  temperature 

change T - TI i s  small compared with T1 i t se l f  (cf  6.11a, b) e Therefore we can 

a l so  rewrite (601): 
3 



(6.la) 

Both (6.2) and (6,la) a re   ra ther   c lose   top l  because p1 -ea and @/d log T are  

small in 'practical   cases;   therefore i t  w i l l  be suff ic ient   to   calculate  dT/dp fod 

= p  on the  high  pressure  side. 

More convenient  that  the  explicit  calculation of the  derivative clT/dF 

w i l l  be an  investigation of the  behavior of T i t s e l f  as a function of far  given 

in i t ia l   condi t ions  V, c. It w i l l  turn  out  that  for  given V and c ,  the  temperature 

T1; increases  with p fo r  'values: of I .:@ close to  Po as  defined  in (5.4) reaches a 

m a x i m u m  f o r B ,  * (cf  6.8) and then  decreases fpr larger  @ . ' If 
then,P  l ies  betweenPo and pm, the  temperature w i l l  increase from T t o  T .;'if 

p, is greater  than ,8 mj the  temperature w i l l  d&crease on the  high  pressure  side. 

- 4 0  + 4( Bo - 3' 1 

2 3 

Bm is uniquely  determined by V and c, therefore  the  conditionpl is equivalent 

t o  a condition for vl/al which w i l l  be given in  (6 .14~) .  

For  the  calculation, we inser t  v from  (3.10) in to  (3*11) and obtain 

IC 1 

Bere ' w e  express c2 *in terms of 6 by (504);  and introduce  instead of @ and Po 
0 

b = @ - F  1 b =Bo - 1 
0 

Then we obtain 

As uswl, the lower s ign is f o r  the high pressure  side of the shock wave. Putting 

p,(a = RT, and neglecting a l l  powem of b - bo higher  than  the  square  root, we obtain 

(5.7) 
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For  our  present  purpose, we vhal l   carry powers of b - b u p  to  the  3/2th,  but we 

sha l l  simplify  the  calculation by neglecting 1/4b0 compared with boo Since  the 

interesting  values of bo a re  a t  l e a s t  39 we have 1/4b2 e 1/36. . t ' 

i? 
Then (6.5) sfmplfffes  for  the high pressure  side  to 

(high  pressure  side) The maximum of the  r ight  hand side is  ob tahed   fo r  

In suf f ic ien t  approximation, th fs  equation is solved  by 

( 60 6b) 

1 

If the  small terms of order l/bo2 i n  (6.5) are  taken  into  account, (6.6b) 'is re- 

placed by 

For bo = 3) this gives b - bo = k = 0.086. phe maximum temperature is thus  obtained 

a t  a value of 6 which i s  only s l i ih t ly   g rea te r   than  B For larger   the factor 

l/b i n  (6.3) has a stronger influence than the increase of the square root3 BO 

the  temperature (6.5) decreases  again. 

on ly  i f  

Thus we find that the temperature  can  Increase on the  high  pressure  side 



Since go is determined by V and c (cf. 5.4), (6,8) is  equivalent  to a  condition 

for  v1/al0 To derive  this  condition,  we  determine  the  dependence of v  on 6 for 
fixed V and c We  have (cf e 3.10) 

Introducing b, this  gives 

t 

For the  negative sign (high  pressure  side), (6.9a) gives  a  monotonic  decrease of v 

with  increasing b. Inserting  in (6,pa) the valuepm (cf. 6,8) for p =  b + $, we 

f ind on  the  high  pressure  side 

V& - - - 1  
2 v  (6.10a) 

on the low pressure  side 

( 6 lob) 

Similarly,  inserting 6, into  the  expression (6 .5)  fo r  the  temperature,  we 

obtain  on  the  high  pressure  side 

RTma = E v* 

on  the low pressure  side 

(6.U.a) 

, 

V 

(6.11b 
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c 

Thus, a t  the  value @ =pm a t  which Th reaches its maximum for  given V and  c, we 

have the  simple  relation  (cf 6,10a, l l a )  

vmh =Jm, = v A 

and  from (3.8b) 

1 1 = - m V = - P  pmh 2 2 max 

(6.12) 

(6,128) 

where pmax is 'the  pressure  corresponding  to  v = 0, 

The velocity  of  ,sound a'  as defined  in (5.11) is then fo r  @ =f (cf 

It can eas i ly  be seen  (cf. 5,12b) that in a l l  practical  cases atm - is small 

compared with vm - a o  m on both  sides 

(6 1% , b) with  the  actual  velocity 

of the shock wavee Therefore we can  identify 

of sound a and  obtain.: > 

vmh 
e_- 

a mh 
(6.148) 

Therefore we f ind that the  temperature w i l l  increase on the high  pressure.' s i b  if 

(6,14c) 
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For @ = 7 /2 ,  the right hand side is 1,173. This shows that  a  temperature  increase 

from T t o  T i s  rest r ic ted  to   very  sof t  shock  wavese 2 3 
. The temperature change T - T2 i t s e l f  can be calculated from (6,2), (6'.1a): 3 

Here we have denoted, a s   i n  par. 3> by Ts the  temperature  corresponding  to .a given 

accordihg  to  the shock wave theory,  and by 'Te that corresponding t o  the same fl i n  

thermal  equilibrium. T2 - T1 i n   ( 6 , i a )  has  been replaced by T - T because it  
3 1  

will be shown (cf 6.17) tha t  T - T is small of a higher  order. From (6,6) we 
3 2  

have i n   s u f f i c i e n t  approximation 

I 

Likewise from (6,6), we can calculate  the  difference between the  high  pressure and 

the low pressure  value of T for   the same value of 6 viz ,  @ l; ' th i s  i s  f 

(6.16a) 

Inser t ing in (6a16)3 (6,16a)  into (6,15) and using  the  abbreviations A and B 

(c f .  5.15, 16) we obtain 

which may a l so  be wr i t ten   (c f ,  1.19) 



s' 

where ci i s  the  specific  heat  of '   the  inert   degrees of  freedom. From (6.17) +it 

follows that the temperature change T3 - T2 is greatest  whenpl = P o ,  i .e.,   for 

the  sof tes t  shock waves; of course, this  holds  only when an ac tua l  wave f ront  

shock waves, i .e. ,   greater v /a  andB1 - B,, the  square  bracket  decreases and reaches 

zero  for  p, = p m  ( cf e 6 , 8 )  as must  be expected.  For air of i n i t i a l  temperature 

T1 = 300°, we have c = 0.007.R; then from (6 17a) the maximum possible  value of 

T3 - T2 is 0 .OOO25 T3 = 0,08* The temperature  increase T . - if  it occurs a t  

all,  is therefore  extremely small i n   a i r  a t  normal temperature. The temperature 

difference Tmh - Tm , on the  other hand, is appreciable,  viz.  (cf. 6.11) 1/9 T 1  = 33") 

1 1  

il . 

3 T2, 

Finally, the developments  of th i s   sec t ion  can be  used to   jus t i fy   those  

of par.7. I n  that section, we have neglected in  (6.5) and similar equations all 

powers of b - bo higher  than  the  square  root.  This is ju s t i f i ed  as long as' - Bo 
is small compared with pm - P o  as given by ( 6.8) Now the  largest   value of @ - 8, 
which we have used i n  par, 5 is obtained  for y = .2E! + A (cf e 5-15> 16) . Using 

(5 .8) ,  (6-8) and  neglecting  quantities of re la t ive  order  1/fi2 we have, 

( 6.18) 

For a i r  a t  300°, this is about 0.00~. 
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