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DEVIATIONS FROM THERMAL EQUILIBRIUM IN SHOCK WAVES

SUMMARY

The various terms contributing to the energj content of a gas, viz.
translation, rotation, vibration, electronic excitation and dissociatibn, are
discussed (par.l). Tables are given of the energy' content and '_bhe épecific_
heat of a simple harmonic ‘oscillator (Teble I); of the energy content and jbhe
dissociation of nitrogen, oxygen _(T_ablé II) and air (Ta.‘ble III). The molecular
viE:z_-ation becomes important for air at about ‘600°K, the dissociation at a'bout'
3000°K. . |
| The theory of shock waves is géneralized to the cé;ée whén the spe-
cific heat changes with temperature (par, 3). General formulae are obtained for

the velocity, (3.10), density (3.8a), pressure (3.8b), and temperature (3.9) on

the high pressure side. It is shown that the asymptotic values of v, p, p ard

T on the high pressure side at sufficient distance from the front of the shock

wave are wiquely determined by the values of these 'qua.ntitie.s on the low pres-

sure side, and are independent of any intervening phenomenes connected with the

approach of statistical equilibrium between the various degrees of freedom of

the molecule. This we consider the most important result of thé present

investigations.
A table is given (Table VIII) of the asymptotic values of v, P, P

and T on the high pressure side as & function of the velocity v of the ghock
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_wvave, Ihe four quantities are calculated (a) using the actual specific heat
of air as a function of itemperature, as given by Table IIIX (quéntities are
pubscript in Table VIII), and (b) using a constant specific heat equal to that
at 300°K (subscript 2)., Iarge differences are found for the temperature in
the fwo calculations (Tp = 8000° when T3 = 5000°) and for the density
(p2 = 5.8, p3 = 9.1) but the pressure, which is the most important~guan£ity for
applications, is almost independent of the specific heat (ps = 155, pj a 168
" .atmospheres in the.example quoted). |
The sudden change of the temperéturé of é gas when péssing through

a shock wave destroys temporarily the staﬁistical equilibrium betﬁeen the various
forms of energy of.the gas molecules, The deérees'of freedom of & molecule can
conveniently be divided into two cla;séa, the aqtive ones and the inert ones
(par. 2). Thé "active" degrees of freedom are translation and rotation; they
‘come into thermsl equilibrium after one or a few colllsions (pawn 2A). The
‘most important "inert" degree of freedom is the vibrétion (par, 2B). Experiments
- on the abgorption of sound shoﬁ thatvbetween 20 and more than 500,0@0 collisions
are neéessary to establish thermal equiiiﬁrium between vibrations and the active
degrees of>freedom at‘room temperature (Table V). Thié result agreeé with the
expectatian from the theory of Landau ahd Teller, This tﬁeory allows‘one to
predict ﬁith moderafe accuracy thé femperature'dependénéé of‘Z, the.numbefvof
‘collisions‘necessary:to de-excite the firstivibrational quantum'stdte, when a
measuremeﬁt‘of Z af one temperature is available (Table iV). Unfortunately no\
accurate measurements have been made for oxygen and none at all forbnitrogen,
which makes.quantitative statéments almost'iméossible. Therefore -we have only
listed (Table VI) the values of the mean free path for vibration;‘kv whidh
follow ffom variqus‘assumption (par. D) about the efficlency of the collisions.
The resulting values of A\, for the cases which have preactical impbrtance for

shock waves lle between 3 and 0.0016'millimeters, depending on the vibrating

!



molecule (N, or 02), the assumption made about the efficlency of various
molecular céllisions, and the humidity of the air.

The dissociation also requires a bonsidérable time to come into
equilibrium. The theory (par- 2C) is somewhat more definite in this case than
for the vibrations because it depends on the Boltzmann factor rather than on
assumptions about the kinetics of collisions. Very large values (from 1 milli-
meter to 1 metef) are obtained (par.2D, Teble VII) for the meén free path for
dissociation, Ag, in practical cases. | | | :

The theory of par.2 is applied to shock wave in par. 4. It is shown
théf the shock wave hés a sharp front on the low pressure side while on the
>high Pressure side it exfends over a distance of the order of the mean free
path for vibration, Mys Or for diséociation, Ag- Immediatel& at the wave f?ont,
but on the high pressuie side, the-physical.quantities P, p, T, v can be_calcu;
lated assuming that oﬁly the aétive degrees of freedog exist (Table VIII, quan;
tities'with-aubscripts 2). Going away from the wave front into the high pres;
sure region, the energy E; of the inert degrees of freedom increases gradually
and approaches the value corresponding to thermal equilibrium. In simple
cases, E;, Py p, T and v will follow an exponential law (cf. %.10, 11). If
the shock wa§e is violent enough so that dissociation occurs on the high pres-
sure side, there is first a region of extension A, near the wave front in which
vibrational equilibrium is éstablished but in which the dissociation is hardly'

affecﬁed, and then a much more extended reglon (extension Ay) in which

dissociation takes place.

Two special cases of very soft shock waves are discussed in pars. 5
and 6, these discussions having mostly écademic interest. In par. 5,we consider
the caese where the velocitonf the shock wave vy 1s between the actual velocity
of sound &g and the sound velocity obtgined by considering only the active:

degrees of freedom, i.e.,
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' €y - SvalR _
al( vy Cag 1+ —2—5:,——.5:,? ) (&)

where Cy is the tota.i specific heat at constant volume end ¢y the specific
heat due to the active degz'ees of freedom only. It is shown that in this nar-
row velocity interval the shock wave is diffuse on the low pressure as well
aé on the high pressure side. These diffuse shock waves go over automatically
into shock waves with a sharp front when vy approeches the upper limit given
in (A). |

' In par. 6, slightly faster shock waves are considered, viz. waves

for which

(cy - cya)R | R \
87 (1 + ot ey < 1+ : B
1 ( 2cy ¢ 1<vi<ay ( o ) N (8)

For such waves, the temperature on the higﬁ pressure side increases with-
increasing distance from the wave front while for waves of higher velocity T
the temperature hes its maximm immediately at the wave front and decreases

from 'bheré .



NOTATION

Throughout this Report, the following notations will be used..

P
P
T
£
(-

w

i

it

density of gas

pressure (in atmospheres)

- temperature in degrees Kelvin

energy content of one gram of gas
degree of dissoclation, |
1 +or= p/(p BT)
5%5 + 1
specific heat at constant pressure per gram
specific heat at constant volume per gram
cp/ey
gas constant per gram .
gas cdnstant per mol
Boltzmenn's constant (gas constaanper molecule)
Planck;s constant
velocity of the gas
pVve= flow in grams per cm? pef sec

v+

Hio

velocity which the gas would have if streaming into vacuum
velocity of sound

mean free path forvvibrafions

mean free path for dissoclation

frequency of molecular vibrétions

dissociation energy of molecules
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for
for
for

for

for

for

for

for

SUBSCRIPTS

activg degrees of freedom
inert.degrees of freedom
vibration

dissociation

an arbitrary point on the high pressure side of a
shock wave .

an arbitrary point on the low pressure side

a point on the low pressure side where thermal equilibrium
exists between all degrees of freedom of the molecules

a point'on the high pressure side immediately at the front
of the shock wave :

a point on the high pressure side at sufficient distance
from the wave front so that thermal equilibrium exists



Par. 1. The Energy '/Con‘ten'b of Gases

Perfect gases obey the eqﬁation of state
p/p = BT | .‘ (1.1)
where p ,/ ps T are pressure, density and sbsolute temperature and where the
gas constant R is a characteristic of the gas- considered. If the ges d:-ts-w
sociates, (1.1) ceases to be valid; in the particular case of a diatomic gas

dissociating into atoms, we have instead:

p/p = RIL(1 +oX) (1-2)
vhere o( 1s the degree of dissociation,‘ i.e., the fraction of molecules dis-
,sociated.. Generally, p/p T is proportipnal to the ‘mnnber of separate particles
'(molecules or atoms) pér gram of the substance. | ' |

The energy content of a gas consists of five main parts, viz:
‘(l) the kinetic energy of the translation of the molecuies
(2) ,the energy of molecular rotation |

(3) the energy of vibration

(k) the energy of electronic excitatiun of the molecule

(5) the energy of dissociation into atoms (6r smaller groups of
atoms). :

We shall write the total energy content per gram in the form
E = (B-1) (p/p) (1.3)

The inclusion of the term -1 is qonvenien’c because the quantity occurring in
the theory of shock waves is E + p/p, where p/p is connected with the work
done by the pressure. Furthermore, we shall denote by By, Pry Bys Pes Bg the

energy of translation, rotation, vibration, excitation, and dissociation, each

divided by p/p, so that



B = By + B, +B,+B,+Bg t1 (1.%)

The various contributions will now be discussed in order:

1. The translationsl energy is 3/2 p/p for any ges, independent
of the number of atoms per molecule, the temperature, etc.

2. 'fhe rotational energy, for all gases except H,, and at all
temperatures at which the substance is gaseous, is given by the classida.l
kinetic theory of gé.seg without any important quantum correction. It is zérd
-for atoﬁs 5 1 RT per gram for diatomic molecules and all polyatomic ones whose
atoms lie on a straight line such as COp, and 5/2 RT for all other polyatomic
mole'culesf At high temperatures, there is & correction because the molécules
change their shape due to théir vibrations. This corfection, commonly called
the interaction of vibrations and rotations, lis usually not very great.

3. The vibrational energy can be approximated (at not too high
temperatures) by resolving the vibra..tbion into norma.i modes and treating each
mode as & harmonic oscillator. |

The number of normal modes is .l. for a dia.’comic molecules, 3n~5 for
a mol,egule cpntaining n atoms on & ‘straight line and 3n-6 fo;' a molecule with

n atoms not on & straight line. The energy contained in one mode is (per gram)

Ey = BT —7 (1.5)
where
' _ hv
2 = 'ﬁ“ ’ ‘ (1!53')

=/ is the frequency of the vibation, h Flanck's a.ﬁd k Boltzmenn's constant.

If 9 is given in wave numbers (cm"l) and T in degrees Kelvin,

z = lLW8vV/r (1.5b)



The frequencies of the various normal modes of molecules can be
obtained from ‘band spectra. A good survey of data can be found in H. Sponer,
Molekulspektren I (Sﬁringer 1935). The frequencies of simple light molecules’
are very high, e.g. for N, we have ¥ = 2345 enL, for 0s, 1570 cm™l. For
more éom_plic_:ated, and especlally for polyatomic molecules, the lowest frequen-
cies are much smaller, the highest ones of the same order as for diatomic ones.
E.g., COp has four modes of vibration with frequencies 7 = 667, 667,' 1336 and
2350 cm~t. |

. For low temperatures (z large), the vibrational energy is ncgligible.
E.g., for z = 5, 1t amounts only to 0.034 RT, i.e. 1 per cent of the value of
E + p/p for translation and ro"t':ation‘ of a diatomic molecule. 2z = 5 corresponds
to 680°K for No, 450° for Op but only 192° for the low frequency mode of Cop.

Thus the vibrations mey be neglected at room temperature for N, and 0o but

not for COp. .
At high temperatures (z small), the vibfationa.l energy is RT per

mode. This value is attained very slowly.
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<

0.05
0.1
0.15
0.2
0.25
0.3
0.4
0.6
0.8
1.0

1.5

" large

Energy Content

Ly
T

4,1-10°8
%.5.107%
0.0085
0.0339
0.0747
6.125
0.223
0.313
0.389
0.502 |
0.582
0,70k

0.771

2.
1-1 2z + j;z
2 12

TABLE I

of Harmonic Oscillator

1.k00
1-3995
1.391
1.375
1.357
1.3k42
1,381

1.3105

1.303
1.296
1.292
1.289
1.2875

1.2857
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In Table I, we give the vibrational energy of a harmonic oscillator as a

function of the temperature. We also give the contribution of the vibration
to the specific heat, viz.

DE,,
Cviv g (1.6)

which is seen to become appreci&blelat much smaller temperatures than Eg,
and td approach its asymptotic velue much faster. We have also included the

rati_o7 gr . of the specific heats at constant pressure and volume, for a diatomic

gas with harmonic oscillation, viz.

_ T/2 R + cyyy
7 5/2 R + Cgyy : (1.62)

At high temperatufes, the fibrations can no longer be regarded as
harmonic. The effect of the anhaymonicity is %o increase the energy pontent of
the gas. E.g., for No gt 5000°K. the hafmonic oscillator model would give
By = 0.699 while the correct value is 0.753, including the interaction of vi-
bration and rotation? and a small contribution from excitation. The influence
of the anharmoniclty 1s greater for molecules which are easily dilssociated.

4, fThe electronic excitation is usually rather unimportant,éompared
with vibration and dissociation.

5. The dissociation becomes important at temperatures above 2-3000°K.
if e is the degree of dissociation, p the total pressure, QA‘and Py the partial

pressures of atoms and (diatomic) molecules, we have

2 2
AT _i;f_;f._g _ g o eAF/RT
P (1.7)*

¥ pin (1.7) is considered & dimensionless quantity, viz. the ratio of the
pressure to one atmosphere.
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. 2o 1-o0 '
The first equality follows from p; = T+a PrPy=7171gP Kis the dis-

sociation constant, R, the gas constant per mole = 1.987 calories/degree,

AF = Fy - EA the difference of the free energies per mol of the molecularl
and the atomic gas, each taken at unit pressure. Fbr some gases, like N2 and
0o, tables of AF as a function of temperature have been published (cf. below).
Where they are not published, AF cen be calculated from the Stern-Tetfode |

formula, which reads for diatomic gases

3/2 L2  __D_
_ (ommpkT) 8% TR

nh3 Gy

(1.8)

where m, is the mass of>oné atom, n the number qf separate pérticles per cm5
of the gas at unit pressure and temperature T, and. D the dissociation energy
in calories per mol, According td spectfoscopic evidence (Spdner); D haa
the valuelll7,200 cal, for oxygen and l82,006'cal. for nitrogen, so that
D/Ro = 59,000 and 91,600 degrees, respectively.

gy and Gy are the statistical weights of the atom and the molecule.
‘In éeneral, gy may be put equal to the combined weight of éll‘states of fhe,

multiplet to which the ground state belongs, so that
g = (L +1) (85 +1) ' (1.9)

where L end S are Srbital angular momentum and spin of the atomic groqnd state.
N, having & hS'gi'ound stéte, has therefore gy =_(l)(h).= 4; oxygen, with a 3p
state, has a welght g = (3)(3) = 9. Gy consists of three factors referring
to the electronic state (gy) of the molecule, the vibration (g,) and the

rotation (g.) respectively,

Gy = &y By & (1.10)
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gy cen be calculated from spin S and orbital momentum A s viz,

gy=25+1 forz states (A = Q)

2(28 + 1) Tor all other states A\ £ 0) (1.11)

| 1
The ground state of Ny is a ~ 2, state (gM = 1), that of 0y a 32’,
state (gM = 3), g, is é.lways given with sufficient approximation by

classical kinetic theory

g = (1.12)

vhere B, is defined by the fact that the rotation levels of the molecule are

B,.j(J+1) if j is the rotational quantum number; B = 1.kk em™? for 0, and

xr

2.00 cm™l for Np. If B, is measured in el and T in degrees Kelvin,

gy = T/1.438 B.. The vibrational rart, g,5 is given by

1
l-e-2

& = (1.13)

with z defined as in (1.52). Ordinarily, dissociation ie only important at

high temperaturesj then g, 1s sufficiently nearly

g, = XT/ay B (1.132)

If there are several modes of vibration, there is one factor of the type (1.13)

for each mode.

When K has been calculated, and the total pressure pA is knowm, a

can be calculated immediately from (1.7), viz.

X
@ =Vx+Ip (1.1%)
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In the theory of shock waves, the density p on the high pressure side can be more

readily estimated than the pressure (par,3). Then, inserting (1.2) in (1.7), we

~

have

LRT p @ (1 + @) = K(1 -~ o) “ (1.1ka)
_ ﬁhichfgives
a=-1/2K + (k' +1/h x'2 : (1.15)
with 1= K .
| W K Rire | (1.15a)

If'pO is the density of the gas at temperature T, and unit pressure, we have

gt = K To o | (1.15b)

T o

-F—"Ib‘:

The dissociation o depends sfrongly on the temperature (increasing with
. increasing T) and slightly on the pressure or density (decreasing with increasing
P or p), The equation of state for a diésociated gas has already been given in

. (1.2); The energy content is given by -

=32 Bu+ S (E§+%M | - (1.26)
where Py and B, are theAcoefficients of energy contenf for the molecular and the
atomic gas at the given temperature. Disregarding the term D/ROT, (1.16) is simply
the weightéd average of By and By, the weights being given by the partial pressures.
The dissociation itself contributes an energy 0D per mol of the gas; to obtain B i
the energy per mol must be divided by Mp/p = (1 +'a)R§T (M the mplecular‘weight).’
BM can be calculated by édding the contributions 1 to k4 discussed above.
By 1s essentially due to translational energy only, and has therefore the value
5/2. (The energy of electronic excitation of the atoms is seldom important below -

5,000° and has therefore been neglected.)
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ps

At extremely high temperatures (above 5,000°) the ionization of atoms

and molecules must be considered. This can be done using similar calculations as

for dissociation.

Tables

Table II gives the energy constant B of nitrogen and oxygen at temper-
atures from 300 to 5000° Kelvin. The energy constant from 300° down.to the ligue-~
faction température rémains almost unchanged. The data for nitrogen were taken
from W. F. Giaugue and J. 0. Claytom, Journ. Am. Chem. Soc. 55, 4875 (1933), those
for oxygen from H. J. Johnéton and M. K. Walker, ibid.'55, 172 (1933). Both sets
of data were calculated by the respective authors taking into éccount ail correc~
tions such as anharmonicity of the vibrations, interaction befween fotation and
vibration, and electronic excitation;A The figures given in our table for nitrogen
are less accurate because Glauque énd.Clayton‘give only the free energy from which
the energf content had to be obtained by numerical differentiation, involving con-
siderable inaccuracy. A graphical method was used to smooth out‘the‘results of
the numerical differentiation. The energy content of O, could be read diréctly
from the tables of Johnston and Walker as the‘difference between T times the en-
tropy, and-the free energy.

| The dissociation was calculated for oxygen and nitrbgen in air of a
density equal to 8 times the demsity at 300°K and one atmosphere pressure. These
"conditions were chosen because in a shock wave in which the temperature is raised
to 3000-5000°, the density is increased about 8 fold (cf. 3; Table.VIII). ' Ob=
viously, the figures for oxygen would also be valid for pure oxygen of a density
of (3)(0.210)= 1.680 times that at 300° and one atmosphere, and the dissociation of
nitrogen would be the séme for pure nitrogen of a density of(8)(0.7805)= 6,24k times‘

the density of nitrogen at 300°K and one atmosphere.
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Teble II. Energy Content and Dissociation of Nitrogen and Oxygen

Nitrogen " Oxygen
T By X o £ Bu kK o B
300  3.493 3.493  3.493 393
Loo - 3.499 3.499  3.520 o 3.520
500 3.508 3.508 3.548 3,548
600 3.521 3.521  3.590 ~ 3.5%
700 3.541 3.541  3.636 3.636
800  3.564 3.564  3.684 - o os.és
900 3.59% 3.59%  3.751 | 3,751
1000  3.625 3.625  3.77h | 3,774
1250  3.702 | | 3702 3.871 ‘ 3,871
1500  3.780 | 3.780  3.950 o ) 3.950
1750  3.845 3,845  4.015 %.015

4

.aooo 3.900 h.o-lo'lh 1.55-10-8 3,900 L4.068 5,15»10‘7 1.07-10° 4.071‘

2500“ 3.992 h.9-1o'1° 1.53=1o'6 3,992  k.157 2.36-10'h 2.05.107°  4.199

3000 4.062 2.61.10°T 3.23:107  4.063 4223 0.01k2 0.01kk L. 45k
3500 b,127 2.,28-107° 2.86»10"” h.134 4,278  0.268 0.0568 L,982
:kooo  Lk.177 6,95#10'“ 1.84:1077 15,205 L.327 2.b5 | 6.1523- 5.79
4500 4.218  5.85.1073  5.12-1073 hosok  h.37h 13.8 0.38  6.58

5000 4.253 8.22.1072 1.39:°1072 . L.A57 k.12 55.4 0.500 7.07
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Itvis seen that for oxygen the increase of the enérgy content, both due
to vibrations and to dissociation, begins at much lower temperatures than for ni-
trogen. A£ 5000°, the values of B differ by more than 50 per cent. This is dué
mainly tq the smaller dissociation energy and vibrational frequeﬁcy of 02, end to a

small extent also to the smaller concentration of 02 in air (cf. 1.15a).

Table III gives the necessary date for ailr., We have assumed a compo-

sition of
78.05 per cent Nitrogen
21.00 per cent Oxygen
0.92 per cent Rare gases
0.03 per cent €Oy

all percentages being by volume, i.e. by number of molecules. The energy content
of the rare gases is B = 5/2 because they are monatomic. The B of COp was only -

guessed because of its small chcentration.

From the B's and a's of the constituent gases, the dissociation and the

energy content of a mixture are calculated as follows:

a=2c, o (1.17)
k
B = zkck Pr {1 + ax) | (1.18)
1+«

where Cy is the concentration (by volume) of the kEE component of the mixture
(E:k ¢ = 1), ak and ak its degree of dissociation and energy constant, respec-
tively, « is mainly important for the calculation of p/p, Eq (1.2).

Specific Heat

The specific heat can be obtained by differentiating the energy content.

As long as there 1s no dissociation, the specific heat per gram at constant pressure is
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¢y = 3p (m) =R(B+TPE) (1.19)

The velocity of sound, again in the absence of dissociatlon, is given by

a2 = 7 RT ' (1.26)

where is the ratio of the specific heats at constant pressure and constant

volume, viz.

Cy cp~R (1.21)

w
n
B8
n

=

(1.22)

R 9:_.3_'
as is comonly done iﬁ the theory of shock waves and other phenomena involving
gases in rapid motion. While this is approximately Justified for low'temperatures,
it is certainly not for air above 600°K."

We have not included the specific heat in our Tables II and III because
another numerical differentiation would have been necessary which would have made
the results very inacgurate. Morsover, wé believed that thére was at theAmoment
no pressing need for a table of the specific heat and of the velocity of sound at
very high temperatures but that the interest was centered around the shock waves.

. If there is dissociation, (1.19) is no longer correct because the energy
is RTIB(l + Q) énd & as well as B changes with temperature. Moreover, the deriv-.-
ative with respect to T must now be calcﬁlated at constant pressure. Furthermore,

the difference between cy and c¢_ is no longer R so that (1.21) is no longer valid.



300
%00
500
600
700
800

900

1000
1250

1500

1750
2000

2500

3000
3500
%000
4500

5000

2.726
2,751
2.738
2.7h85
2,764
2.7815

2;805 ,
' 2.8295

2.889;
2,950

3.001

3,044
3,115
3,171
3.2275
3,287
3.3765
3.527

Table ITT. ZEnergy Content and Dissociation of Air

cx By
0

0.733

0.739
0.745
0.754
0.764
0.7Th
0.7835
0.7925
- 0.813
0.8295
0,843
0.855

0.8835,

0.949
1.106
- 1.400
1.808

2.226

(1 +oxx)
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Finally, (1.20) ceases to be correct and is replaced by

22 =R (1+a+ [0C ] RT)
pl T

Cvy : oJTog (1.22)

2. The Approach of EQuilibrium between Various Degrees of Freedom of the Molecules,’

%uppose the energy content of a mass of gas 1is suddenly changed, as it
is when thé gas passes through a shock wave. Then it will take some time'until the
various degrees of freedom adapt themselves to the new conditions; and this "time"
of relaxation” will be different for the different degrees of freedom.

A, Translation and Rotation.

The equilibriﬁm will be attained most rapidly by the translation. TFor
this degree of freedom, one collision is in general sufficient to come close to
equilibrium, In order to have conditions similar to those in a shock wave we may
consi&er a gas of a certain tempefature T, into which streams a more dilute gas
1° Then the molecules of the cooler gas will (on the av-
erage) become accelerated as soon as_they make thelr first collision with those of

of a lower temperature T

the hotter gas. The average kinetié energy of a molecule of a cool gas will in-
crease from 3/2 kTy in oné collision to something of the'ordef(3/2 k)l/?(Tl+T2).

A shock wave can obviously never be quite discontinubus but the tran-
sition from temperature Tl to T2 takes place over a distance of at ;easﬁ one gas-
kinetic mean free path Ay (t for tramslation). For ordinary gases at room tem-
perature and atmospheric pressure, Ay is of the order of 10-5 cm; it is in first
approximation independent of the temperature and inversely proportional to the"

" density; therefore, even a very violent shock wave in which the density increases
by a factor 6 to 10 (cf.par,3Table:VIIi),mqst have an extension of at least about
10‘6 c¢m. The classical theory §f the physical structure of shock waves as given
by Becker (Zeits, f. Phys. 8, 321, 1922) gives extremely small extensions which
become of the order of 10-7 ecm for very violent waves., The theory of ﬁeckerbwhich

takes into account the heat conduction but neglects molecular effects can therefore
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correct, at least not for violent shock waves. Becker, himself, pointed

&

not
out that the probiem reguires a treatment based on the kinetic‘theory of gases.

In practice a spatial extension of the shock wave of the order of éne mean free
path is, of course, of no importance at all, even at rather low‘initial pressures.

The‘molecular rotatién may‘approach equilibrium as rapidly as the trans-

lation. This would be expected for strongly elongated molecules such as COp. If‘
the effective boundary of the molecule is nearly sphefiqal (e.g. N2 or SQ) the‘
' excitatiop of molecular rotations may bé estimated to take roughly 10 to 100
collisions, To show thaﬁ the rotation approaches equilibrium so quickly, we use
the results of Landau and Teller, Physik. Zeits. 4. SOWJefunion 19, 34(1936).
These authors have found that the effectiveness pf coilisions on a certain degree

of freedom is determined by the ratio

X =T/ (2.1)
where 7, is the effective duration of the collision and 75 the natural period of
the degree of freedom concerned. If 5% is of order unity or smaller, one or a few
collisions will be sufficient to establish equilibrium whereas a large number of

collisions is required if > 1 (cf. 2.5).

T . in (2.1) may generally be written

T = 5/v (2.2)

where v 1s the relative velocity of the two colliding molecules and s the range -
of the intermolecular forces, i.e. the distance over which the molecules intefact
strongly. We may expect s to be of the order of one half to one Bohr‘radius,

i.é} 2.5 to 5-10’9 cm, a range of values which seems confirmed by some experimental
. results on the approach of vibrational equilibrium (cf. Table IV). In the case of
rotafionvvb may be taken as the time required for one revolﬁtion, or rather this
time divided by 2x (cf, 2.4) so that T, = r/vy where r is the radius of the mol-

ecule (distance of an atom from the center of gravity) and vy is the velocity of
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the atoms in their revolution around the center of gravity. Now Ve is of the same
~order as v, the velocity of molecular translation (equipartition of energy!) and
r is of the same order as s. Thereforé'x:is of order unity fér rotation, and |
equilibrium between rotations and translation will be attained in a few collisions.
We shall find in the folloﬁing that all other degrees of freedom béhaver
quite differently in that,ﬁany collisions are necessary to establish equilibrium.
Therefore it will be convenient to group together translation and rotation on one
side, and all other degrees of freedom on the ofher. ‘The latter we shall call the
"inert" degrees of freedom while translation and rotation will be-denoﬁed as the
"active" degrees of freedom. For all practical purposes we may say that the energy
content of the active degrees of Treedom can change almost discontinuously, because
a‘distance of a few mean free paths may be considered negligible. We can‘then define

the temperature of a moving gas at each point by the energy content of the active

degrees of freedomywhich is

E, + p/p = B, p/p = B_RT _ (2.3)

(the last relation being only valld if there is no dissociation). In (2.3) B is
independent of the temperature and equal to 5/2 for monatomic,7/2 for diatomic
gases (cf. par,l). The energy content of the inert degrees of freedom, Ei’ on the
other hand, cannot change abruptly and is therefore not aiways in equilibrium with

that of the active ones; in other words, E; is not necessarily related to the local

temperature T in the way discussed in par, 1.

B. Vibrations

Theory

The most important inert degree of freedom are the vibrations. For these,

we set in (2.1)

T, = 1/2 nv (2.%)
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where 7/ is the natural frequency of the molecular vibration. (In all formulae
like (2.1) 2x+ rather than =/ should be used as represénting the frequency because
the frequency 1s generally introduced into physical formulae by taking the time
derivative of experssions like sin 2xwt. If we toék v iﬁstead of 2x v in (2.4),
the onlylchange would be that the values of s deduced from experimental data #ould
: be‘multiplied by 2n). Since the frequencies ofimolecular vibrations are rather
high, 1t is plausible that 25 is rather large; this will be shown by direct cal-
culation and by discussion of experimentél results below. For the cgsé R 1,

Landau and Teller give the formula

Here P10 is the probability that a molecule 1in the first excited‘state of vibration
is de-excited by a collision With another ﬁolecule. C is a geometrical factor wﬁich
gives the probability that the coliision of the two molecules will take plgce in
- a direction suitable Tfor excitation or de-excitation of the vibration. There are
no experimental data sufficiently accurate to deduce C,so that qualitative arguments
must be used for its determination. Obviously, C must be less than unity, and
probably it will lie between 1/3 and i/3o in most cases, its value being higher for
diatomic and lower for polyatomic molecules because .it 1s less likely that a com~
A plicated molecule. 1s hit at the right place to induce a given mode»of vibration.
In our computations below, we shall use arbitrarily c=1/1o.

Presumably, a better approximation could be obtained by intreducing in
(2.5) another factor, viz. a certain poﬁér of 97 . Arguments-can be given for a
factbr ;{”2, However, these arguments are tob uncertain to just;fy at present the

inclusion of such fine points.

The most importent factor in (2.3) is the exponential ef?i where

(cf. 2.1, 2.2, 2.4) _
N =2r v s/v | (2.6)
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Let us investigate p:d for the case when the kinetic energy of the relative motion

of the colliding molecules is just kT, i.e.
1/2 Mv® = kT (2.7)

vhere M is the reduced mass of the two molecules; if they are equal, M is one half

the mass of one molecule. The value of X for the velocity detsdrmined by (2.7) is

%1 = 2tws V M/2KT | - (2.8)

This can be re-written as follows:

X, = Vh /2T . s Vlmi My (2.9)

For the collision of two equal diatomic molecules, each consisting of two equal

atoms, M 1s the mass of one atom; then the reciprocal of the last factor is (2.9) viz.

b= Vh/lmeM-u (2.10)

represents the amplitude of the molecular vibration in the lowest quantum state.

Generally, the b defined in (2.10) has the value

_ 8.2.1078

VTA_‘V—

. where M is the molecular weight of the molecule (assuming collision between equal

b cm ' (2.10a)

molecules) and 2 the vibrational frequency in cm~l. For Ny, 2 = 2345 and . = 28
so that b = 3.l.lO"lOcm. Thus we see that b is very small compared with the range
s of the forces. The factor \/E;;EEEF is (2.9) is also.in general greater than unity;
so that 5(1 is indeed very large compared with unity as we expected above. There-

fore (cf. 2.5) the probability of transfer of energy betwsen vibration and




25

trenslation is very smalls the vibration is an inert degree of freedom. It is

seen from the derivation that the reason for this result is not so much that the
-energy,pf.oﬂe-?ibrational quantyn hygr is large compared with the average energy
of translation, kT, but rather that the amplitude of the vibrations, by 1s very

small compared with the range s of the intermolecular forces. This in turn is

~
vy

due to the large elastic forces which govern the elastic vibrations.

‘The quantity oz (2.6) will be }educed, and therefore the probability of
energ&Atransfer'piQ (2.5) considersbly increased, if we take higher velocities v,
Thefefore a given molecule will lose and gain vibrational'energy mostly‘at the |
times When-its;kinetic_energy of translaticn 1s high compared with kT, i;e. when
it is in the tail of the Maxwell distribution. _If we average over all the mol- ~
ecules in the gas, the probability of energy transfer per collision becomgs

~

P10 ='2/\/ﬂ—f“’“’ Xodx Ce ™% ' (2.12)

where

(212a)

(2.12) represents the probability (2.5), averaged over the Maxwell distribution of
the relative velocities of the two colliding molecules.* With (2.6) for 4 , the

integration of (2.12) can be carried out by the saddle point methods,the integrand

having a steep maximum near

* It might be preferable to take into account the different collision probability
of fast and slow molecules, i.e. to replace (2.12) by
Plo'=vfé'x x dx C e"% " (a)

which would give instead of (2.13)
| | P1o = 2/9 X @3/2e-C (v)
The temperature dependence of Py would not be changed very much by this correction

because the difference between (b) and (2.13) would be largely compensated by a
different value of s deduced from the experiments.
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x, = 1/2 (ensw) 2/3 (ujur) 1/3 (2.12b)
The integration gives'
| p1g=Cloe 9 | (2.13)
where o= 3x, = 3/2 (8/b) 2/5 (np i) 1/3 (2‘.1l+) _
ct = l‘) 3/2 C  (2.1ka)

(b as defined in (2.10, 2.10a}, s the range of the molecular forces, s the fre-
quency of vibration). (Egs. (2.13, 14) are similar to the equations determining

the rate of nuclear reactions in stars).

Numerically, (2.1%) may be written

¢ = 0.090 (zs) 2/3 (;;/T) 1/3 (2.15)

where 3 is measured in cm~l, s in units of 10-9 cm, T in degrees Kelvin, and.}iis
the molecular ﬁeight per molecule (or twice the reduced molecular’weight,
M4/ 4y + Hp), if two unequal molecules collide).

We shall now try to get a more quantitative estimate of s. Experiments
are available (cf. below), among other gases, for puré CO,, and for’the action of
Na on the vibrations of 0o For CO,, Fricke (Journ. of the Acoust. Soc. of Am, 12,
- 245(194%0)) finds that 7 = 86,000 collisions.are necessary for de-excitation of the

first excited vibrational state, so thét

Pig =k = ot = 1.15°107°
10 7%~ 88,000 7o

Taking C' = 1/10, (2.13) gives ¢ = 11.5. Using this number in (2.15) with 2~

- 667 cm™L, we find,

5 = 5.6-10;9 cm. (CO5) | (2.16a)
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For‘the de-excitation of tﬁe vibrations of Op by collisions with N2, Kneser and
Knudsen find Pyq = 102, 1Imserting this figure in (2.13, 15) and taking ¥ = 1570
cm‘l, we obtain
| s = 31077 cm (0o/N,) . | (2.16b)
Both the results (2.16z) and (2.16b) are of the order of the Bohr radius
as we assumed above. Differences between the values of s for different molecules
are, of course, to be expected. We can therefore not predict the value of s fér

.a pair of molecules for which it has not been measured experimentally. This is

very unfortunate because Plo,'or

| Z =1/Pg , (2.17)
is very sensitive to s. This.can be seen directly from (2.13, 14) or from Table IV
in which we have calculated Z from (2.13, 1k) for 0, and N,, in each case for two

different values of s. A more detailed discussion of Table IV will be given in

par. 2D.
Influence of foreign gases, experimental difficulties.

Collisions Betweén two different molecules are often more effective in transfer-
ring energy to and from the vibrations than collisions between like molecules.

This is the casebespecially (1) if the two colliding molecules have a chemical
affinity and (2) if one molecule is fery light so tﬁat its velocity 1s great. in
case (2) which 1s realized for Hy, He, ete., phin (2.15)is very small. In case (1)
the interaction between the two molecules is much more intense than usually which
may perhaps result in more sudden changes of interaction and correspondingly shorter
effective fange, or even in a complete failure of the Landau-Teller theory when

the two molecules penetrate so deeply into each other that they can be said to

form a temporary compound. In the latter case, the temperature dependence may

be quite different from that indicated in (2.13).



Table IV. Theoretica: T=mperature Dazpendence of the Number of Collision N:cessar: for

De -excitation >f the First Vibrational State,

Temperature °K ) 300 500 700 1000 1500 200C 3000 5000

Vibrating o

Molecule -8
C0p 5.6°1677 o | 1i.2¢ 9.5 - 845 7.5  6.55 5.95 5.20  4.38
VA £5,000 13,500 3500 2500 1080 650 340 180
02 L i10-9 14,32 12.08 10;80 . 9.5€ 8.37 7.60 6.56 £.30
-z 1.1-10° 1.h5-1o5 46,000 15,000 5100 2600 1150 380

cq -0 : '
3°10 o | 11.8 9.97 8.91. 7.91  6.91 6.28  5.49 .62
‘ z | 1.1°10° 21,500 8100 3400 1450 850 140 220
N, 31079 o | 1%.78 12.48 11.1% - 9.89  8.64 7.85  6.75 5.77
7z | 1.710% 2.010° 62,000 20,000 6600 3200 1400 570
25107 & | 13.08 - 11.05 9.88 8.77T  7.66 6.96  6.08 5.11
z -| 3.720° 57,000 19,500 7500 2700 1500° 720 " 300
Collisions with Ho0

O 09371077 2 100 210 140 100 75 60 50 10
Np z 1300 650 320 200 130 100 75 50

82
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As will be‘seen from Table V, the foreign gases investigated are 3 to
4000 times more effective in de-exciting the vibration of 02 ﬁhan O itself, the
effect being greatest for complicated molecules such as C2H OH yhich has a chemicdl -
affinity to 02,‘and for Waterbwhich can probably form a tempof@ry compound with 02.
The effect of N2 on O, is almost as small as that of 02 itself because there is
vnot much chemical interaction; the.collisions between O2 and N2 will be dis-
cussed in more detail in par, 2D.

The large‘effect of water vapor on the variafion of oxygen makes it
extremely difficult to measure the small effect of collisions between 0y molecules
theﬁselves. Only a lower limit for Z was therefore obtained in the experiments
on "pure" 0,, viz. ;oo,oodf

For the problem of shock waves we must conclude that the establishing of
vibrational equilibrium-will depend sensitively on.the humidity of the air. On hot
humid days, the water vapor contenf of the air may easily reach 3 per cent (23 mm
vapor pressure) so that only MOO/0.0S = 13,000 coliisions would be necessary to
establish vibrational equilibrium for the oxygen. On the other hand, for complete-
ly dry alr the necessary number of collisions 1s about iO5 because then only the
collisions with nitrogen will be important. A more accurate discussion of the
humidity effect will be given in Table VI.

Excitation and De-excitation. Instead of -the probability Py, of de-

excitation per collision, it is convenient to introduce the probability klo of

de-excitation per second which is given by

Kig = Ppo" ¥ =8/2 (2.18)

where

N = ’(,%'v  (2.18a)

is the number of collisions per second,}#’the number of molecules per cm5, %/the

gas-kinetic collision cross section and VvV the average relative velocity of two
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colliding molecules, viz. KT | The quantity k) has two advantages compered

& kT
_ gr M

" with PlO’ viz. (1) that it is more directly related to the extension of the shock

wave and (2) that it is directly connected with observational data (cf. 2.22, 26)"
whereas the connectlon of P with these dafa involves the somewhat uncertain cross

section q.

Th?:probability of exbitation, kOl’ is connected with the probability of

de~excitation, klo’ by the statistical principle of detailed balancing according

to which

S

- - ny
kOl klO °” o (2.19)

fo

The time rate of change of the number Y, of molecules without vibration is then

dyo = k -k (2.19a)

20 v
at 0l Yo

10 V1
where ¥ is the number of molecules in the first excited viurstional state, Sim-
ilar equations hold for the other Yy, -where, according to quantum theory, ks n=l =

nklO and kn-l, n =k n’n“le‘h"/kT. " By adding the equations'for the various yh, en

equation for the total energy of vibration, -

By .m hv zﬂ nv

Ti~o n | (2.19p)
can be obtained, namely ’
ak - A -
v oo (1 ~ oW /KTy _w R
.aTE..: klo {1 e L L v Lv) e "O)
Here E',, 1s the vibrational energy in thermal equilibrium, viz.
LS v X (2.20a)

v ehv/RT_l
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Eq. (2.20) is valid no matter how large the deviation from thermal equilibrium.
The factor 1 - e - h /XT takes account of the fact that there occur transitions

awvay from equilibrium as well as towards equilibrium. The solution of (2.20) is

- = Ae=Wot
E', -~ E =Ae"%o _ (2.21)
where dJo'is the reciprocal of the time of relaxation and is given by (cf. 2.20).

It has been assumed in (2 21) that T remains constant. This not strictly correct
- in shock waves (cf par.5,h) where o’ being a functi&n of T, will change with
time so that the integral of (2.20) camnot be given in closed form.

In shock wavés, we are interested in the sgatial variation of Ev‘ If

the gas flows with a velocity v, we may write

aE, S L E,' -Ey ’ (2.23)
dx v —a* Ay ‘
where
A, = v, 0y (2.24)
defines the mean free path for vibration.
Evaluétion of Experiments . The experimental determination of w, is

based upon the absorption and dispersion of sound in gases. The théory of this

phenomendn has been given by H. 0. Kneser, Ann. 4. Phys. lé, 337 (1933) and Journ.
e

Acoust. Soc. Amer. 5, 122 (1933), and others. The absorption coefficientaper wave

(3%
length depends on the circular frequency,of the sound wave approximately* as

*.In order to obtain (2.25), Cp=Cpa must be assumed to be small in comparisdn with
. Since is the absorption coe%ficient per wave length, the absorption coeffi-

cient per centimeter willl behave as el and will therefore obtain its
I""maxz Y

maximum value for w =00,



w
Iu’ o W nax® + W< (2.25)

where ‘umax is the frequency of maximum absorption per wave length. u’max can be
determined experimentelly, andt, w2y be deduced Ifrom 1t using the relation

w, | ¢pa (Cpa - R) . | (2.26)

W x Cp (Cp -R)

Here c, is the ordinary spécific heat at constant pressure and cpa the specific

b
heat counting the "active" degrees of freedom only. In contrast to (2.25), (2.26)

is exact.

Experimental Results. Experiments were made by H. O. Kneser and V. O,

Knudsen, Ann. d. Physik 21, 682 (1955) on the vibrations of Oy, by Fricke and by
Knudsen and Fricke, Journ. Acoust. Soc: Amer. 12, 2&5 and 255 (1940) on 002 and a
few other gases, and by Kuchler, Zeits. f. phys. Chemie B 41, 199 (1938), on the
temperature dependence of the time of relaﬁZ%ion. The latter experiments were pro-
Bably carried cut with somewhat impure gasesvbecause_Kﬁchler finds for CO, at

. room temperature Z = 50,000 whereas Fricke gives 86,000 .impurities reduce Z, cf.
above and i&ble V), and a similar decrepancy exists for NZO (7,500 vs, 11,800).
The experiments of Kneser and Knudsen were the first systematic ones carried‘out
and were therefore less accurate than the latér work of Knudsen and Fricke, but

~ the results of Kneser and Livsen are most Important for us because they were done
with oxygen. For N2 there are no experiments but only an estimate by P. S. H.
Henry, Nature 129, 200 (1932) based on the failure to detect the influence of the
vibrational specific ﬁeat on the velocity of sound in certain experiments. Henry
estimates w & 104 sec™l, i,e. 72100 for N2 which seems not implausible._

Table V gives some of the experimental results. They bear out the fea=-

tures discussed above and expected theoretically, viz.



Yable V. Experiméntal Results on the Excitation of Molecular Vibrations, Number of Collisions Required
for De-excitation, Z, and Reciprocal Time of Relaxation,cub (in sec'l), for Various Molecules Colliding

with other Molecules.

qulision with 05 No Hy Hx0 HoS CHBOH 02350H
Vibtration of O, - Z 500,000 100,000 20,000 25,000 400 4,200 --- 120
(Enudeen and Kneser) w < 8‘103 5'10lL 5-105 1.7°10° 1.1°107 1.3'106 -—- 6107
BRLS (o] : v
Vibration of CO, zZ ———— - : 215 86,000 17 1,200 , 56 ------
(Kneser and Fricke) . “’é B et 8.0°107 9.8°10 1.02°10° 1.11+‘1o7 5.1‘108 ------
The same quantities for some pure geses (Fricke)
Gas 0, | co, N0 cos cs, S0,
Z : > 500,000 86,000 11,800 9,600 ~ 8,70C 1,900
,(in 107 sec™h) < 7.08 0.98 6.9 11.5 1.3 55
Z for CO, at various temperatures (Kichler)
T(degrees.Kelvin) 29% 373 473 573 673
A 50,000 31,000 19,000 12,000 9,000
Ratio of 2293o/Z673° for various gases (Kﬁchler)
- Colliding gases - CO, - COp N0 - N0 COs - By COp - HpO
Zogze 50,000 7,500 300 105
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1. All the pure gases Investigated have rather highZ (small Wy long
relaxation times), the smallest being SO, with Z & 2,000, the largest Oy with
27 500,000. The large value for O2 is probably due mostly to 1ts high vibratioﬁ
frequency. The decrease of Z from cog‘tb Cos to 082 is also in the direction
of decfeasing v; on-the other hand, the small value for 802 is presumabiy due to
the greater chémical activity of that molecule.

2. The impurities investigated gave smaller Z than pure gases. It can-k
not be decided at present whether this 1s due to the selection of gases used in
‘the experiments, or to a general rule. Among diatomic molecules, H, is most
effective in de-exciting 02 and COQ; this is to be expected theoretically from
its smallimass (large velocity). Triatomic gases are on the whole more effective
fhan diatomié ones; this may be due to the fact that there will always be some
"gorner" of a triatomic molecule which has a chemical affinity or at least a strong
interaction with a given molecule. Among the triatomic gases, thére is again a-
decrease of Z with increasing chemical activity (CO, to H,S and H;0). Polyatomic
molecules are even more effective than triatomic ohes, for the same reason.

_ By collisions with the same molecule, the vibratiéns of COé‘are in general
more affected than those of 02, because of the smaller freguency of vibration.

3. The temperature dependence/of Z for COy is about as expected (cf.
Table IV)° ‘Generally, the decrease of Z with increasing temperature 1s most
pronounced 1f 2 is large, iq agreement with theoretical expectation. Whether the
gécrease of Z with the temperature as found by Kuchler for collisions between
COg-and HéO, is real cannot be decided‘at present; however, Z is very small in this
ins¥ahce so that the lLandau-Teller theéry can probably not be applied. A

Sevéral Degrees of Freedom. At first sight, it might be expected that

each mode of vibration has 1ts own relaxation time, this time being greater for

the modes with higher frequency. Experiments show, however, that this is not the
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case because all thé experimental curves show only one absorption maximum with the
absorption coefficient falling off on both sides according to {(2.25)., This be-
havior can easily be understood if we remember that the resolutioﬁ of the vibra-‘
tion into normal modes is only an approximation which is correct only for exactly
harmonic forces. The anharmonicity will mix the various normal modes in each
vibrational quantum state. An extreme case of mixihg is known in 002 where the
second excited state (vibrational quantum number* nl = 2) of the first mode of
vibration'(pl = 667cm’1) is degenerate with the first quantum state of the second
mode Gpé = 1336 cm™ 1) (ny = 1) (cf., e.g., Sponer, léc. cit.). The anharmonicity
causes an "interaction" of the two resonating quantum states with the result that
a splitting occurs into two sé&tes of considerably different frequency (1286 and
1388 cm~1). Tﬁe form of vibration in each of these states is a combination of
modes 1 and 2 with about equal amplitudes. ‘

In other molecules, the mixing of different modes is usually less strong
but it must;always exist to some exfent. Let us assume, e.g.,that there 1s a mode
of vibration with a high frequencyy/, which is between 3 and 4 times the fre-
quency )V, of anothér mode., Then the first excited state of mode 2 (n2 = 1) will
contain some.admixt#re of the fourth state of mode 1 (nl = 4). In this cése, the
excitation of the staté n, = 1 will not take blace-by direct trénsfer of energy
from the translation, but the translation will excite in successive collisions the
states n; =1, 2 and 3, and finally, in a féurth collision, the state n, = 1.
This mechanism avoids large energy transfers in one collision which are very im~
probable according to the Landau-Teller theory (cf. 2.15). The transition from
.nl = 3 to n, = 1 is somewhat less probable than a‘collision in which n, 1s raised
by one unit because the mixing between ny = 1 and n, = 4 is assumed small; on

the other hand, it is more probable because the energy difference“between n, = 1

* In order to avold confusion with the velocity v, we denote the vibrational
quantum number by n rather than the customary v.
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and n; = 3 is smaller than :/l. Thé Z for the transition n, = 3 to n2 = 1 1is there-
fore probably of the same order or smaller than for the excitation of the first mode,
- and 1t can therefore be understood that only the successive excitation of quantum'
states of the lowest mode of vibration gives rise to an observable absorption of

sound.

C. Dissociation

The ‘dissociation differs from other degrees of freedom in that_it becomes
appreciable at temperatures'at which kT 1s still very small coﬁpared with the dis-
‘sociation energy D per molecule. We have mentioned in.par'lthati% = 22%999 for
oxygen and 91,600/T for nitrogen. On the other hand; we have shown in Table II'
that the degree of dissociation is as much as 1.4 per cent for Oé.at 3000° K and
for N, at 5000° K. At these temperatures, D/kT is about 20 in both cases, and the

2

Boltzmann factor .- —Q-z e~20 4 10~9. The fact that an apprecfable dissociation 1is
possible for such a small Boltzmann factor 1s due to the large a priori probability

of the dissociated states.

In order to produce dissociatioﬁ, two molecules must collide whiéﬁ have
a relative kinetic energy at least equal to D. Such molecules are very rare because
of thé smail Boltzmann factor e~ E% . Dissociation will therefore take a considerable
time at 3060-5000° K even 1f every collision between molecules of sufficient energy
1s effective. ‘

The same conclusion can be reached by considering the inﬁerse process,
viz. recombination. In order that two atoms recombine into a molecule, there must
be a triple collision between the two atoms and another molecule which takes up
the excess energy and momentum. Triple éollisions, however, are rafe events espe-
cially if two of the colliding particles must be atoms which are relatively rare
as long as %he degree of dissociation remains low.

We must now examine the efficiency of collisions between two molecules

of sufficient relative velocity in causing dissociation of one of the molecules.
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If two molecules have relative kinetic energy equal to D, i.e. severgl electron
volts, they will penetrate very deeply into each other. 1In this case, ﬁe can no
longer distinguish between fast motions (of the electrons) and slow motions (of

the molecules as a whole), .and we can therefore no longer.conclude that the trans-
fer of energy from the slow molecular translation to the fast electronic motion

is improbable. It is very difficult to make any quantitﬁtive estimates but we be;
lieve that the efficiency of collisions between molecules of energy greater thaﬁ

D will not be reduced by a factor of the type of (2.5) but will be determined mainly
by a geometrical factor which may perhaps be somewhat smaller than for the exci-
tation of #ibrations. In numericel calculations, we shall assume an efficiency

Cq = l/lOO which may be wrong by a factor of 10 or more either way.

The probability that the relative kinetic energy of a pair of molecules

is between kTx and kT (x + dx), is given by the Maxwell distribution

yw e

The velocity of the molecules in question is“%? VX times the“average relative ve- -
locity ¥ of two molecules., Therefore, the fraction of all molecular collisions for

which the relative kinetic energy of the colliding molecules lies in the interval

mentioned, is approximately
f(x)ax = e x dx (2.27)
The fraction of collisions for which

° kT (2.27a)

= X}/}(x)dx = e %0 (x5 + 1) ® xoe'xo = i e " ' (2.27b)
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Therefore, the number of ordinary molecular collisions required per dissociation,

is
X
Zq = ..._.....J:.__.__.... = 1 £go
a Ca F(xo) Ca X, (2.28)

where Cd is-the efficiency of the collisions between molecules of sufficient

energy in producing dissocietion. The reciprocal relaxation time for dissociation

1is

w N
d = Ec-l—d (2.29)
where N 1s the number of collisions per second (cf. 2.18, 2.18a)., The mean free

path for dissociation is (cf. 2.2k).

o=yl - (2.29a)

Because of the large factor e %o, the number of collisions required for
dissoclation 1s very large at temperatures of 3000-5000° K.gt which the dissocia%ion
of air‘beéomes important (Tables II and III). In Table VII (cf. p. 52a) we give
the values of Z;‘;’ wd,-and 7‘:1 for; oxygen and nitrogen; it is seen that Zy lies
between 106 and 1012 and is thus much higher thén for the vibration. It is obvious
that Impurities cannot greatly affect Z5 5ecause the decisive faétor is the Boltz-

mann factor rather than the efficlency of the collisions.

D. Conclusions on the Excitation of Air.

Vibrations.

Neither the theory nor the available experimental results are sufficiently
accurate to permlt any quantitative predictions on the mean free path for the
vibrations of the most importent gases, O, and Ny. It is certain that these mean

free paths are rather long, and under certaln circumstances they may become com-

. parable with the dimensions of a projectile.
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Experimental information is available (Table V) only on the effect of

N2 and of water vapor on the vibration of 02; in addition an upper limit is known
for the effect of 0, on the 0p vibration. The effect Of N2 on‘O2 is described by
en effective range s = 3°10~%m as computed in (2.18a). In Table IV, we have cal-
culated Z as a function of temperature with this value of s. These calculated
values ehould represent the temperature dependence of the effect of N2 on the
vibrations of O2 fairly accurately,-i.e., within a factor of perhaps 3.’

For 'the collisions between two O2 molecules, the experiments give
ZX 500,000 at room temperature. Assuming Z = 106, we obtain s = 4°10"9 cm from
(2.13, 15). The values of Z for 0, at various temperatures with s = 4:10°7 are
also given in Table ;V; the ectual Z for O2 - O2 collisions may be smaller than
the values given In the table by about a factor of 2, but greater by any amount.
In any case, in air the vibrations of O2 will be eicited much more easily by col-
lisions with Ny than by collisioﬁs with other O2 molecules, both because of the
greater abundance of N, and of the smaller 7.

In Table VI we give the estimated times and distances required to es-
tablish equilibrium of the molecular vibrations in air. In pa;ticular, Table VI A
glves the reciprocal tiﬁe of relaxation, W, , as a function of temperature for
various assumptions. w, has been calculated from (2.18, 18a and 22), considering
q as independent of the temperature. The values of q were ebtained by comparing
the valﬁes of Z andu)o given by Kneser and Kunze for room temperature; these q's
seem somewhat low but the errors are not important compared with the uncertainties
in the theory. The density of the air was assumed to be 1.18'10’5, corresponding
to atmospherie pressure at 300°K. In the first row of‘Table VI A? a)o is given
for the vibrations of 02, taking into account only the collisions with N2 molecules.
The neglected collisions with O2 can increasecté by 10 per cent at most.

Cellisions‘with water molecules are very effective in exciting the vib-
rations of O2 (Table V). PFour hundred collisions with Hy0 are suffieient for de~

excitatien of O2 at room temperature; therefore, as little as one per cent of water
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vapor will be three times as.effective as all the nitrogen in the air. In the
second row of Table VI A we have listed the value of W for collisions of 0y

molecules with H, 0, assuming a concentration of 1 per cent water vapor by volume.

2
On hot humid days, the water concentration may be easily 3 per cent. It is seen
that, at 1 per cent, the collisions with HQO are more effective than those with NQ'
at 500° K, but less effective at 700° and higher temperatures. This behavior ié
due to the fact that w rises very rapidly with temperature for-collisions with
N2, but rather slowly for collisions with HEO' (Teble IV)

While the information obtainable on O2 1s feirly satisfactory, very little
can be said about the excitation of the vibrations of{NQ.' It is reasonable to
expect that the effect of O2 on the N2 vibrations can be described by the same

“effective range, s = 3-1079 cm, as the effect of N2 on 02, although this is by
no means certain., In Table IV we have given the corresponding Z for Ne; it is
muchhigher than the Z for O2 with the same S because the vibrafion frequency_bf

N, is about 50 per cent higher than for O The third row of Table VI gives W,

o

2
for the excitation of the vibration of N in ailr, assuming that only collisions w
2 |
with O2 are effective., These values for w can therefore be regarded as lower
o)
limits.

No experimental results are available concerning the effect of collision
with the N2 molecules on the vibration of Ng' To obtain any theoretical estimate,
we must find an interpretation of the difference between the effective range s for
02 - 02 and O2 - N2 collisions, viz. sz 4-10"9 and s = 3.10°9 cm, respectively.
There arevtwo‘possible interpretations: The first alternative is to assume that
generally collisions between different molecules are more effective than between
equeal ones. Such a tendency seems to exist in the experimental result (Table V)
but there aﬁpears‘to be no theoretical justification. Moreover, it is to be re-

membered that the experiments were mostly done with polyatomic molecules, for
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which there are other reasons for a stronger inte:action (cf. point 2 in the sec-
tion on Experimental Results of par 28). Tﬁus we do not get an explanation fop
the effectiveness of the collisions between 0, and Ng, and we are led to the sec-.
ond alternative. This is based on the fact that No is a nmore compact molecule
than 02, having a greater binding energy and smaller distance between ﬁhe atoms.
From this difference in structure we may expect a shorter range of the forces for
N2 which would explain the smaller value of s for 05 - Np collisions as compared
with Op - On.

If this second alternative is accepted, we should expect an even smaller
s for the interaction between two N2 molecules than for the NE - O2 interacﬁion.
We have therefore iIncluded iIn Table IV the values of Z for N2 obtained with
5 = 2.5~L0'9 cm. These Valﬁes are,'of course, considerably smaller than for N,
and s = 5'LO“9'cm, and not much larger than for O2 and 5 = 5eLO‘9 cm. In the
fifth row of Table VI A we have given.ogo for N2 in air, assuming s = 2.5-10“9 cm
for the interaction N2 - NQ; the values thus obtalned are only slightly less than
those for O, (first row).

On the other hand; if the first alternative explanatioh above is assumed,
the interaction between two N2 molecules would have a large s, just as the inter-
action between two 02 molecules. In this case, the N2 ‘.NE collisions would not

contribute appreciably to the excitation of N2 vibrations, and W, for N2 would

be given by the third line in Table VI A in which the N2 - O2 collisions alone

are taken into account.

Finally, as a compromise, we have also given the results when s = *.10"9

cm is assumed to be valid for collisions between two Ny molecules as well as be-

tween N, and 0O, (fourth row of Table VI A).

The effect of water vapor on N2 is also unknown. HEO is extremely ef-
fective in exciting the vibrations of O, and CO, (cf. Table V) as well as of Nogs

Cs , and CO8 (Knudsen and Fricke, loc. cit.). By pure analogy we might therefore

s
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conclude that it would also be effective on N2, and we have therefore included in
Table IV a calculation of Z for collisions between N2 and HEO,’assuming the same.s
as for collisions between O2 and H2O but taking into account the higher v of N2.
However, it must be remembere@ that O2 has a chemical affinity to H20fwhile'N2 has
very little; therefore, collisions with water may be much less effective on N2

(Z higher) than is indicated by the last line of Table IV.

In Teble VI A, last row, we have computed R for collisions between

N, and HEO’ assuming 1 per cent water vapor in air of density 1.18-10—5, and

2

assuming the Z as given in Table IV. Presumably, thése values of w, are on the
high side. Whether or pot the humidity has an appreciasble influence on the vibra-
‘tions of N2’ depends not only on the temperature and on the éorrectness of our
assumption about the interaction between N2 and H20, but also on the assumed in-
teraction between N2 and N2. If the latter is strong (s = 2.5-10;9), the humidity
is rather unimportant even at low T; if it is weak (collisions with O2 only), the
humidity is the decisive factor. This again indicates the extreme uncertainty of
the data on the excitation of the vibration of N2'

In Table VI B, we have calculatéd the mean free path for vibration, Xv’
the high pressure side of a shock wave produced in "standard air", i.e., when
the temperature and pressure on the low pressure side are 500O and 1 atmosphere
respectively. xv is given'in Table VI as a function of the temperature T5 which
is obtained on the high pressure side at large distance from the front of the
shock wave (par. 3); T3 again is a‘known function of the velocity vy of the shock
wave (Téble VIII). Velocity and density on the high pressure side were also taken
from Taeble VIII (par. 3), the asymptotic values V35 pj being used. The so defined

XV is related to the Wy given in Table VI A by

p
(2.20)

oeluf
QP'H
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Table VI. Relaxation Time and Meén Free Path of Vibration for

02 and N2 in Air.

Vibra-  Collisions  Abun- Temperature

02,N2(s=2.5-1o'9)and H,0 8 0.5 0.13 0.04 0.01L 0.008

t;on with dence (107cm) 300 500 700 1000 1500 2000 3000 5000
O ‘ )
A. Reciprocal Relaxation Time w_ (in 10° sec™)

0, } N, 8 3 .0.35 2.3 7 19 50 8 140 260

H0 1 0.95 1.1 2.8 5 7.5 11 13 1k 17

N, 0, 21 3 0.006 0.07 0.26 0.9 5.2 7 16 37

N, 78 3 0.02k 0.25 0.95 3.5 12 26 60 140

N, 78 2.5  0.10 0.9 30 9 30 55 - 115 240

B,0 1 0.95 0.35 0.9 2.2 4 7 10 13 18

B. Mean Free Path of Vibration A (in millimeters)
v, py/pp(meters/sec) 35 98 71 6l 56 56 58 48
Vibra- Collisions with
tion of

o, N, only 10 0.k, 0.10 0.032 0.011 0.007 0.004 0.0018
N, and Hzo(l%) 2.4 0.19 0.06 0.023 0.009 0.006 o..0037 0.0017

N, 0, only : 550 14 2.7 0.7 0.18  0.08 0.056’ 0.013
0, and Nz(s=5-10-9cm) 110 3.0 0.6 0.1k 0.05, 0.017 0.007, 0.0027
0, and Nz(s=2.sglo'9cm) 55 1.0 0.22 0.06 0,017 0.009 0.00l 5 0.0017

0, and 1% H,0 10 1.0 0.20 0.12 0.05, 0.053 0.020 0.009
02,N2(s=5-10—9)and H,0 9.5 0.8 0.21 0.07 0.025 0.0l 0.0065 0.0025

0.004 0.0016
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The quantity v5-pl/p5 is given in the first row of the Table VI.B, in meters
per second. Then Xv is given for various assumptions.

The value of XV for 02 in dry air decreases from 10 millimeters at 500O
to 1/150 millimeter at 2000° and 1/500 at 5000°. If the initial pressure is low--
let us say, l/lOO atmosphere-—xv is proportionally greater (100 times) and may
therefore easily reach considerable values. In wet air contalning i per cent of
water vapor by Volume,).v for 02 is reduced to 2 mm at 500o but is almost the
same as for dry air when T 2 1500°K.

’ For the vibrations of nitrogen, the value of Xv is extremely uncertain,
If the collisions with N2 a?e unimporta?t (cf. above) and if the air is dry, only
collisions with O2 need to be considered; then XV is as large as half a meter at |
5OOOK. Since the vibrational energy of Né becomes important only for T 7 600°
(Table II),,A,V is important only at higher temepratures; but even at T = T00° we
obtain - x3 mn if only collisions with O2 are effective. On the other hand, if
collisions with N, are very effective (s = 2.5-10—9 cm), A, is reduced by about a
factor of 12 at 7000, and a facto; of 8 at SOOOO. If collisions with H20 are as
effective as assumed in Table IV and VI A, a water vapor cohtent of 1 per cent
_reduces XV by factors varying from 9 to 1.05 when only temperaturesv3—7000 are
considered. | |

Apart from the uncertainties in the assumptions, there is also an un-
certainty in the Landau-Teller theory itself which makes the temperature depend-
ence of XV uncertain by a factpr of about 3 even if ®, at room temperature is
accurately known.

The unsatisfactory state of our knowledge about the mean free path for
molecular vibratione in air could be improved by experiments on the dispersion
and absorption of sound in mixtures of 02 and N2 of varying composition and free
from impurities. Such experiments should be done at T ::7000 K or higher in order

to ensure sufficient excitation of the molecular vibrations of Né. With such

experiments available, the dependence of A, on the temperature at hignhar temperaturds



could probably.be calculated from the [andau-Teller theory with fair accuracyot
The influence of huwidity should also be investigated experimentally.

Nitrogen and oxygen are probably slmost unique in their large values of .
Z, and therefore of)gvo Other molecules have much lower frequencies or much greater
chemical activity (cf. above) . Therefore for most other gases, and especially
for complicated po}yatomic ones (explosives!), }Wrwill in general be too small to

be of any practical importance.

Dissociation. In Table VII, we give the number cf molecular collisions

Zd'required for one dlssociation process, the reciprocal time of reléxation Lud,
end the mean free path ld for dissociétion; These quantities were calcul_a’ted.»from
Eqns. (2.28, 29 and 29a). The constants N and v were assumed as in Table VI,
namely N = 5«109 sec”l at 300° K.and one atmosphere, and proportional . to PVE-otherw
wige; v equal to the velocity v3 of air on the'high pressure side of a shock wave
@roduced in "standard air";ofwas teken from Table II, Cy was arbitrarily put equal
to l/lOO, Zd is, Qf course, Independent of the pressure; wyis calculated for a
density* of 1.18:10°2 as in Table Vi, and?kd for the actual copditions on the high
pressure side of a shock wave. It can be seen that the mean free paths obtained
‘are very long inaeedy decreasing for 0o from a little under one meter at 2500° to
a little over one millimeter at 5000°. Therefore we should expect large effects
from lack of dissoclation eguilibrium in shock waves which are sufficiently violent
to produce dissociation. We must emphasize again the great uncertainty of the
figures_in Table VII which is caused by theilack of knowledge of Cdu Here again
experiments would be desirable but they seem considerably more difficult than in

the case of vibratious. Possibly stﬁdies of the dilssocistion equilibrium of other

‘gases (e.g., N, Oh) would help.

* This is not guite consisteﬁt sinceeg, which occurs in (2.29); was calculated
for an 8 times larger density, but p = 1.18°10"3 was chosen for comparison with

the u’o in Table VI.
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Table VII. Relaxation Time and Mesn Free Path for the Dissociation of Air

T = 2500 3000 3500 ~kooo 4500 5000
O,  0.00205  0.01k4 0.0568 0.152 0,308 0.500
o<
N, e p— 0,0003 0.0014 0.0051 0.0139
N 0o 23,60 19,67 16.86 14,76 13.12 11.81
R - 26.17 22.90 20.36 18.32
| 10 9 8 107 3 6 6
0, T.5°10 1.85.10 1.27-10 1.76-10 3.8-10 1.16-10
A
N, 9.2-101%  4,0.1010 3.5-109  5.1.108
Wit 0o 85 600 2400 6800 16,600 35,200
(sec™1) | W . 65 320 1080 2900
v3:P1/P3 57 58 57 55 52 18

3 (02 670 98 a2y 8.1 3.1 1.4
| %5 80 - 170 48 16
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Par, 3, Theory of Shock Waves in the Case of Variable Specific Heat.

Notation:

We shall denote by letters without subscripts the physical Quantitieé
at any point in the shock wave, by letters with the subscript 1 the quantities on
the low pressure side of the wave, by the subscript 2 those on the high pressure
side immediately at the front on the wave; and by the subscript 3 those on the high
pressure side at large distance from the wave front, i.e.; where equilibrium has
been established for vibrations and dissociation. We shall also use h and 1 for
arbitrary points on the high and low pressure side, respectively. We consider the
one-dimensional case throughout. For further notations, see the end of the intro-
duction.

Fundamental Equations:

1. Equa%ion of cbntinuity v
PV = constant = m (3.1)
| 2. Conservation of momentum: The gain of momentum of the mass m of
gas, mdv, is equal to the decrease in pressure, -3p. Therefore*
p + mv = constant = mV (3.2)
(definition of V)

3. Conservation of energy

E+2 + % v© + constant =

P

When the gas flows adiabatically into vacuum,v)Ao and therefore also E go to zero

2 (3.3)

i

so that v approaches c¢. Introducing@defined in (1.3), (3.3) becomes

2 1 : N
v = -§c \).,38.)

i~

2

has been extensively discussed in par, 1l and 2. 1t has been shown in par.2 that ﬁ

depends on the existence or non-existence of equilibrium between the various degrees

* It is interesting that in our case p + v2 is constant while in the imcompress~
ible fluid it is p + (1/2) v2. 1In both conservation laws, the elementary law is
dp + pvdv = 0, but for the integration we must assume P = constant in the in-
compressible fluid, PV’= constant in our case.
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of freedom of the molecules, If there is equilibrium, ﬁ is a function of the tem-
perature (or p/p) alone; tables ofﬁfor this case are given in par,1l for nitrogen,
oxygen and air (Tables IT and III). Equilibrium will exist everywhere on the léw.
pressure side of the shock wave (B =B 1) and asymptotically at large distance from
the wave front on the high préssure side (B = ﬁ3 ). The valﬁe of 8 on the high pres- .

sure side immediately at the wave front (ﬁg) can be calculated easily from the

fact.that the énergy content of the inert degregs of freedom (vibration, excitation
and dissociation) is the same as on the low pressure side (cf. beginning of par. k).
Ih _the particular case when the temperature on the low pressure side is low enough
so that there is no appreciabble energy in the inert degrees of freedom (fulfilled
for air below 400° K), we have simplyﬁg =ﬁl ( = 7/2 for diatomic gases). In t_he
| intermediate region on the high pressure side ,p must be considered as varying from
ﬁg to 53 in a way which will be discussed in par. 4. For the moment, we shall con-
siderﬁas given and determine tlra.e_'other physical quantities from it.

The three constants m, V, and c¢ defined in (3.1, 2, 3) are given by the

pressure, density, and velocity of the incoming gas on thé low pressure side:

P
v
Pll

V =

+ vy (3.k4a)

2 = vlg + 2p; _I_)i | (3.b)
P1

It is often convenient to introduce the velocity of sound by putting

vp =a?/y (3.5)

~(Velid only in the absence of dissociation)

‘In most practical épplications s the temperature on the low pressure side is suf-
ficiently low so that 48/4T = O and (cf. 1.19, 1.21)

kS 55 (5.6)
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If this is true, we may rewrite (3.4):

= | ' ' (3.72)

O
]

2ovi2r 2@, - 1) o) (3.70):

Solution of Fundamental Equations:

(3.1) end (3.2) may be used to eliminate p and p , viz.

P = m/v \ (3.8a)
p = n(V -v) (3.8b)
g =(V=-v) v (3.9)

These equations are important to calculatep, p, and T once v has been determined.

Inserting now (3.9) into (3.3a), we find:

- 1 2.1.°2
g (v v)v+§v 5 © (3.92)

and therefore

L. B8Vz Ve2v@ - (28- 1)c2
28- 1

(3.10)

If V and ¢ are given, there are, for any value ofﬁ s two solutions
for v, In general, these two solutions are real (for exception, cf. par. 5,
p. 71); if real, they are both positive. It can easily be shown that the larger
value of v [plus sign in (3.lbﬂ in é’g‘neral 1B ghteater than the corresponding
velocity of sound, the smaller v stidiiet thafl the corresponding a.

To show this, we calculate from (3.9)

) 2
£ 'é'"g?’l’ [(ﬁ"’ Vv F Vﬁeve - (28-1)c (3.11)
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where the upper and lower sign correspond to the upper and lower sign in (3.10).

Now if we assume that B8 does not depend much on the temperature, we may use (3.5,

6) and have

2

A ESV*,JI 8- <eﬁ-l>c'=] (3.22)

This gives

vl gty \ﬁﬁ‘vé‘ - (28 - 1) (3.12a)

i.e. v>»a for the upper, v<a for the lower sign.

In reality, B does depend on T and therefore (3.6) is not correct but

should be replaced by (cf. 1.19)

y - 8+ df/d log T '
B-1+dB/dlogT (3.13)

-(assuming no dissociation).

In all practical cases ﬁ increases with temperature so that 7 (and therefore 5,2)

is slightly less than it would be if (3.6) weré valid. Therefore it remainé true
that for the uppér sign.in (3.0 - 12} v is greater than a, but for the lower sign
v is not necessarily less than a. However, the difference between (3.6) and (3.13)
is only very slight; therefore the exceptionsl case that the smaller v 1s greater

than the corresponding a will be of minor importance., A more detailed discussion

will be given in par.5, p. 80, 81.

Discussion:

On the low pressure side of the shock wave, the velocity will be given
by (3.10) with the plus syign (in the following denoted by the subscript £ , for
low), on the high pressure side by the solution with the minus sign (subscript h

for high). We have pointed out above that 8 will have the equilibrium values,
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Bl and ;5’ 23 both on ths low pressure side and on the high‘px‘”essuxfe sig’ie at large
distance from the wave front. The seguilibrivim valus ofﬁ isv a unique function of
the temperature so tha‘tp”’ 1 end @ 3 &reé completsly determined by T, and TB; Let
us deriote by/Te (ﬁ) the temperature which belongs to a given ﬁ in<thermal equi-
librium ; it is the function tabulated in Tables II and IIT and it increases mon-
tonically with@. On the othe:‘r hand,; the theory of shock waves (Egq. 3.10) giveé

x uniquely in terms of B 3 since V and c‘are given by the initisl conditions

3
(cf. 3.ka, b) and the sign of the square root is also determined (negative).

v

From v3 in turn ‘I‘5 is determined through (3.9)% so that T is, by the shock wave
theory, & given function of 8 which we shall denote by Ts(ﬂ) . The temperature ‘1’3,

and the energy contentﬁ.§, are determined by solving the equation
T,. @) = T_@) : (3.14)

It can e€asily be shown that this eguation has only one solution for which the
velocity v is smaller than the corresponding velocity of sound, i.e., only one
“high pressure" solution. In most cases, this follqws‘ from the fact that Ts(ﬁ)
decreases with lucreasing 5 over almost the whole range of 3 (cf. 3.16c and
especially par, 6) whereas Te(ﬁ) increases monotonically. In the small range of
g in which Ts(ﬁ) incxlea.ses (cf. par. 6), this increase 1s slower than that of T;

in fact, the condition v< a is equivalent with de -
— T e
ag 4ag

We may conclude, then, that @3, T3 and of course also the other physical
quantities (p59 PB’ V5) are uniquely detsrmined by the initial conditions P1s Py

In other words, all the physical quantities (v, p,@ , T, etc.) on the high

vy
pressure slde at sufficient distance from the shock wave are independent of all

intervening processes connected with the establishment cf equilibrium bhetween

# If there is dissociation, (1.2) must be used tcgether with (3.9).
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"inert" and "active" degrees of freedom. Therefore, if the dimensions of the ob-

stacle causing the shock wave are large compared.with the mean free path for vi-

bration, etc. (par.2), the pressure, resistance, etc. will be the seme as-if all

degrees of freedom were in equilibrium all the time.

We could rewrite Eq,(3.10) inserting the values (3.k4a, b) or (3.7a, b)

for V and c¢c. This would in general lead to complicated expressions if B #pl

However, simple results are obtained in the two cases (a) B =pl and (b) MREIE

a) For B =Bl and (dp/d log T)l = 0 our theory reduces to the usual theory

of shock waves, and (3.10) becomes (use 3.7a, b')

2

81

v="1*(ﬁ"1)"ﬁ Te-1) ("1"%)

2p - 1

‘which gives

"N
- 1
T ozpoT |t el

— (3.15)

(3.15) 1s the fundamental equation of the usual theory in an especially convenient

form.

b) Simple expreséions can also be obtained if vy >>'al no matter whether

ﬁ ."—‘ﬂl or not. In this case (cf. 3.4%a, b) we have V= ¢ = vy and (3.10) gives

v
S
b 28 -1

From (3.8, 9) we f£ind then

Pn = Py (28-1)

= 2 - 1

28 -

(3.16)

(3.16a)

(3.16b)
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(RTy=) —gﬁ- - v,? 3%2?%%11)2 (3.160)%

The relative error of these formulaé is about Eﬁlale/vle (for py only ale/vlz).
In the approximation used here, the quantities on the high pressufe side are in-
dependent off 1 and depend only on the local value of 8 on the high pressure side.
It is seen.that the value of Pn increases linearly withﬁ; in the special case
g = 7/2 (diatomic gases with translation and rotation only), (3.16a) giveé the
wéll-known result that the density in a shock wave can only increase six-fold.
Since ﬂ increases considerabiy at high. temperatures, the actual increase ofP can
be ;nuch greater than six-fold. p, depends only slightly onf8 (for lé.rgeﬁ) be-
| cause, in our limit vl>> al ) Ve have. vh << V and therefore Py is epproximately
nV (cf. 3.8b) which is a constant. |

' Finally, Th decreases*¥ strongly with 1ncrea.singﬁ because the total
energy E + fI;. = RT is almost independent of 8 when vp<< c. (cf. 3.3) (Only a very
small amount of kinetic energy is left!). As an example » We compare the asymp-
totic values of thé physical quantities for air at ordinary temperatures (B = 7‘/2)

and for hot air with the vibrations fully excited but no dissociation (ﬁ = 9/2).

B =1/ B =9/2
/v, 1/6 1/8
Ph/Pl 6 8
Py/Pv. % 5/6 =0.833 7/8 = 0.875
RT, /v,2 5/36 = 0.139 7/64 = 0.109

* 1In case of dissociation, (3.16c) holds for RT (1 '+°rh) rather than for RT).

** This statement holdé also in case of dissociation because T is a monotonic
function of p/p.
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Table:

Table VIII gives the physical‘characteristics on the high pressﬁre side
of a shock wave produced in éir of 300° Kelvin (27° Centigrade) by inci&ent streémé
of various velocities. For the construction of such'a table, it is convenient to
consider the temperatures Tl and T3 as given and to calculate vy and v5, rathef A
than to start from Tl and vy and calculaté T}’ v3 frqm them. p 3 is & tabulated

function of T, (cf. Table III). Eqs (3.3) end (3.9) may be rewritten

22 L= 1 R R (3.17a)

2,v2 - (3.17b)

o
o
w b
+
<
o
1
)
o
|
+
<

Solving for v, v5 we obtain

) :
1 ,
e . (3.18)
3
and - o b2 |
—‘3_139 = (3.18a)
where y .
g _1_P/f _1
'b ﬁ: 3 5;75-3-_ (B, 2) (3.18b)

These formulae are suitable for compution.

_Table VIII gives the important physical qgahtities as functions of vi/al,
the ratio qf the velocity of the incoming stream to the corresponding velbcity of
sound,‘for values of vi/&l from 1.5 to 11,6. Velocity, density, temperature and
Pressure on.tﬁe high pressure side are givén both at largg distance from the wave

front (subscript 3) and immediately at the wave front (subscript 2). The latter



Table VIII, Characteristics of Shock Waves in Air

vifey vsfay  voley s/ 1 o/1 Tz T2 ps/m1 /P
1.525 0.798  0.800  1.907 1.90k k00 koo - 2.543 2,538
1.98  0.746 0,795 2.659 2.6k7 500 501 W.k3@ kg
2.577 0.737 0.4  3.225 3.189 600 60k  6.450 6.1
2,725 0.7+ 0,759  3.663 3.591 700 709 8.547  8.k9 .
3,041 0.7575 0.779  h.015 3.90s 800 816  10.707 10.62
3.331 0.7725  0.8035  k.31h 4,146 900 925 12,94 12,77
3,611 0.7955 0.851  b.Sko k.36 1000 1036  15.23  15.01
4,235 0.8555 0.900  5.069 k4,706 1é50 1320 21.12  20.72
4,797 0.880 0,970 5.454  k.,945 1500 1616  27.27  26.66
5.507 0.9255 1.0M  5.746 5.008 1750 1925  33.52 3.7
5.718  0.966s 1.1035 5.978  5.236 2000 2222  39.85  38.75
6.643  1.045 1.2285 6.359 5.4h09 2500 2848  53.01  51.4
7455 1115 1350  6.685 5.521 3000 3510  67.05  6h.6
8.315 1.1675 1.481 7.122 5.6;5\ 3500 4300 84,09 80.5
9.297  1.208 16335 7.697 5.691 L4000 5300 106.02 100.6
10.410 1.2415 1.809 | 8.385 5.754 L4500 6570 '13h.h0  126.2
11.595 1.269 1,997 9.136 5.80% 5000 8030 168.38 155.6

55
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quantities were calculated assuming that the inert degrees of freedom retain the
same energy as on the low pressure side. Since this energy is practically zero,
we can putB£?==ﬁl = 3,483 (cf. Table III), and can therefore calculate ;2 from
(3.15) (and the remaining quantities from (3.8, 9) ).

Comparing the quantities with subscripts 2 and 3, we find approximate
agreement up to about vl/al = 3, At higher vl/al, we find thatfp5 is considerably
greater than p, (cf. 5.16a)land, correspondingly (because of the continuity equation)

v5 < Voo Thus the shock wave consists of a discontinuous compression followed by

a_gradual further compression which extends over a distance determined by the con-

slderations §f par, 2 and 4. Along‘with the strong increase of the density there
is a smali increase of the presgure from 32 to p5 (last two columns, cf., also
3,16b), but even if the disconﬁinuous change of the pressure is by as much as a
- factor of 100, the followihg continuous one is only 5.4 per cent. Therefore, as
far as the pressure is concermned, the change cﬁ‘ﬂ with temperature is rather un-
important. The temperature increases discontinuously at the wave front from
Tl‘= 300° to T2 and then decreases* gradually to T3,_due to a transfer of energy
from. the "active" degrees of freedom by whose excitation the temperature is de-
fined, to the "inert" degrees. The temperature decrease 1is gréatest for the
highes‘_t'vl/al vhere 1t is from over 8060 tq 5000 degrees.

Of some interest are perhaps the columns v2/al and v5/al. It is seen

2 3.
ity of sound on the low pressure side, ai, and that they decrease with increasing

that for relatively small vl, the velocities v and v_ are smaller than the veloc-

vy- Then a minimum is reached-and at still larger values of Vys the high pressure
velocities V5 and v5 become greater than a,. For \ZY, the existence of a minimum

can be seen directly from (3.15); the minimum is obtained for

*# For very "soft" shock waves (v only slightly greater than a, } there can be a
slight increase from T, to T5, ct. par. 6.
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&

L= 2(f) - 1) =2.23 (forB = 3.483) | (3.19)

and has the value

V2 min _ 2 \/2(@1 - 1) - o.747 (for B = 5.483) " ‘ (3,193)

a8y 2ﬂl -1

For very high’vl we obtain

Vor L © (3.19v)
231 -1 B '
37 35 -1 o - (3:19¢)

Par. 4. The Approach of Equilibrium.

We mﬁy assume that the ehergy of the inert degfees of"freedbm (vibratioA,
etc.) does not change‘discontinuously at the front of the shock wave while that
of the .active degreeé of fréedom does. It ﬁill therefore be convenient to'split
the total eﬁergy E.into the part due to translation and rotation, Ea (a = active).
and the part due to vibrations, electfonic excitation and dissoc;ation, Ei

(1 = inert). We put

B +g. =B, 2 (4.1)

0

.w'hereﬁa is practically constant and equal to 7/2 for diatomic gases (5/2 for

monatomic ones). Further, we must have

Egy = Byp - (k2)

i.e., the energy of the inert degrees of freedom is the same on both sides of the

shock wave front. Then (3.3a) becomes:

Paf tBur v =22 (4.3)
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Instead of (3.9a) we have
1.2 1.2
Ba(V - v)v + FVi =50 - Ey (k.%)

and instead of (3.10):

v =Pal 2 W& " (2Ba - 1) (c? - 2Ey) (4.5)
, 28, - 1

Equation (3.4%a) 1s unchanged:

v - Pp*lfl s vy - (k.6a)

while (3.6b) is replaced by

®=v?. 25;RT1 + 2E (4.6p)

1 i1

It can be seen easily that the physical quantities Pos Por Vos T on

the high pressure side immediately at the front of the shock wave are exactly as

.if the molecular vibration were absent entirely We may use Eq, (3.15) withﬂ
instead of B to calculate vz, and then obtain the other quantities from (3.8, 9).
This has actually been done in Table VIII.

Farther in the high pressure region, the inert dégrees of freedom will
gradually come into equilibrium. If we have only one such degree, e.g., the
#ibration (sﬁbscript v), we may wriﬁe (par, 2)

dE | E '(T) - E

V= ¥ v b
el W (1.7)

where T is the local temperature (defined as p/pR), '(T) =8 (T)P/p the equi-
librium value of the vibrational energy corresponding to T, Ev the actual local
value of the vibrational energy, x the coordinate perpendicular to the wave front

counted from the low pressure to the high pressure side, and }w,the mean free
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path for vibrations (par, 2) which will depend on the local density and temperature.
Similar equations, but with a different A, will hold for dissociation and excita=
" tion.

To integrate (4.7); if is ﬁore convenient to calculate x as a function
of the physical variables than to do the reverse. The integration must iﬁ
general be done numericaily becausezkv_and Ev' are given on}y by numerical tables
(Tables IT to VII) and depend in a complicated way on the variable T.“ A depend-
ence of EV'l and.&v.on the density does'not present any additional difficulty be-
cause p 1s, by (3.8a) and (3.9), a unique function of pAo = RT. Assuming again
that vibration is tﬁe only inert degree of freedom* (true for air Eelow 2500° X),

E. can be calculated in terms of T from (4.3), eliminating v by use of (3.8b):

,
B, =22 1. (g, - e+ fv |2 - ume (+.8)

This is a fairly complicated dependence. It seems hardlj worth while to carry out

numerical integrafions of (4.7), (4.8) for special cases.

However, 1t is easy to estimate the distance required to establish
equilibrium. It must be of the order Of”kv, more precisely of the largest value
of?gv-occurring, i.e., the one corresponding to the lowsest temperature (par, 2)
existing oﬂ the high pressure.side of the shock wave. Ordinariiy (i.e., with

the exception of the case discussed in par. 6), this lowest temperature is reached

. % If there are several inert degrees of freedom (vibration, excitation, dissoci-
ation, possibly of several gases), there is one equation of the type (4.7) for
each of them. The unknowns are the energies Ei(l), E (<), etc., in the various
inert degrees of freedom; and T, the temperature as adfined by the energy in the
active degrees of freedom. From the temperature, v,p and p can be determinedi
and also the equilibrium values of the E, 's, viz. Ei(l)', Ei(z)‘, etc., and A(L),
A(2), etc. The number of differential efuations' (4.7) is obviously one less than
the number of unknowns. The system is completed by Eq (4.8), with E, replaced by

Ey = E{(l) + E4(8) + oaen



60

in ﬁhé equilibrium state (highest B, cf. 3.16c). Therefore it 1s only necessary

‘to read from Tables VI, VIII the z.for‘the teméerature T5 and pressure p3. |
The integration is simple if TE’(’Q are sufficiently close to the valueé

T3’ FB. Then we may consider A as constant and T |according to (h.é] and there-

fore E;' (according to par.l) as depending linearly on Ev’ viz,

-
aE -
v

= - p = constent ‘ _ (4.9)

P is positive because T, and therefore E ', decreases with increasing E_ (cf, 4.8).

Using (4.9), (4.7) integrates immediately to

E(T) - E, = E‘v'(Te) - EVJJ e=x(1 +p ) /n(T5) (%.10)

Eemembering (h.2)ﬂ . Thus the deviation from equilibrium'decreases exponen-
tialiy as we go away from the wave front. Since all physical quantities are ex-
pected to change very little (TQ:: Tj’ ete.), T’F 5 Dy v, etc. are sufficiently

neéfly linear functions of Evi - E,, 80 that
Tx) - T = (1 - Ty) &7 )/ (4.1)

and similarly for the remaining quantities.
It need hardly be pointed out that the gradual change of thevphysical

A quantities occurs only on the high pressure side because the gas streams from the
low pressure to the high pressure side if we consider the wave front as f;ked,
Increasing x means therefore a later time. On the low pressure side, the wave
fronﬁ is shafp (except in the case of par.5).because any molecules which may
cross the wave front against the stream, i.e., from high pressure to low Pres-
sure side, ﬁili soon revert to the high pressure side because of collisioﬁs.
There will therefore be no perturbation of the state on the low pressure side

outside of a distance of a few times the ordinary mean free path from the wave front.
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The stabiiity‘of the shock wave ageinst diffusion is insured by the
fact that the gas velocity reletive to the shock weve is greater than the velocity
of sound on the low pressure side, lsss on the high pressure side. if there
should at any time be & splitting of the shock wave into two parts (due to a
small obstacle or so), these two parts will soon reunite: supﬁose a small dis-
turbance runs before the main shock wave; then its velocity will be the veiocity.
of sound, &,, and it will be overtaken by the shock wave of velocity v,. If the
small disturbance runs bshind, its velocity (relative to the gas) will be a.3 and
it will therefore catch up with the main shock wave which moves only with the
veloc'ity'v5 relative to the high pressure gas.

Par, 5, Diffuse Shock Waves.

In this and the fellowing section, we shall discuss some peculiar -
phenomena which occur only for very "soft" shock waves, i.e., when the velocity
vy of the shock wave.is only slightly gmeater than the velocity of sound, a,.
These two sections are in no way'important for the general problem of shock ﬁaves
in a medium of variable specific heat which has been solved in par, 3 énd L,
Especially for & substance like air, whose inert degrees of freedom are very
little excited at room éemperaturej the effects discussed in par.5 and 6 have
no practical significance but only academic interest. In the two sectionms, we
solve some mathematical difficulties which might occur if the formulag of par.,3
and 4 were applied indiécriminately, and complete some proofs which were left
incomplete in par.? and L, he most important of these is the proof (end of
par.5) that for any initial conditions p13919T1’ A there is always exactlz oL
solution of the shock wave eyuations in thermal equilibrium for which v is less
than the velocity of sound a (high pressure solution) and one for which v a,

the latter beihg identical with the initial conditions.



€a

In particular, in par.S we sbhall discuss the case when the velocity
vy of the shock wave 1is less thsn that veloeity of sound, G, 15 which 1s obtained
when only the specific heat of the active degrees of freedom is consiaeredo. Such
shock waves are possible because the "active velocity of sound"; a,y, is greater

than the ordinary velocity of sound; we have

P1 ‘R
2 F1 B .
%l ~p, (1+ Cyal ) (5.1)
a 12 =Pl (1+ Z%I (5.1a)
1

where Cy1 is the total specific heat at constant volume o the low pressure
side of the shock wave while Cyal is the specific heat of the active degrees of
freedom alone, Since Cy® Cygs WE have‘aal>' &5 and therefore there gre

values of vy such that
8 <€ V. < & .2)
1 -1 al (5.2)
These values of vy shall be the subject of the investigations of this section.
The difficulty is the following: according to the general theory, a

shock wave must exist if v, > 8. On the other hand, the front of the shock

" wave behaves as if only the active degrees of freedom existed (par.l), there=

fore the wave front camnot exist if v, < & 1° Mathematically, this difficulty
a .

appeérs'in:the form that the square root in (4.5) becomes imaginary if the con-
stants c, V and E,; are inserted which correspond to the initial conditions.
Practically, the region determined by (5.2) is very mnarrow. If évl

and Coal 2T not too differents we have

8al . 1 , R (cv1 - Sva1) (5.3)

&l Ecv.al (ch + R)




63
Taking Gy,3 =.§ K (diatomic molecule) and even assuming ¢y1 to be as large as
3R, this gives only 1.025., For eir at 300°K, cv1 ~ Conl® i.e.; the specific
heat of the vibrafion; is about 0006735 then a&l/al = 1,0004 so that the in-

terval (5.2) is exceedingly narrow.
The solution of the difficultj which we found sbove for the velocity
interval (5.2) is as follows: there exists a shock wave which is propagated

without change of shape; but in which the velocity goes continuouély through the

velocity of sound. The extension of this shock wave in space is again of th?
order of the mean free path for vibration,).v (cf. par. 4); and the variatioh of
the physical quantities with x is agaih determined by (4.7) in conjunction with
(4.5), (3.8), (3.9). However, instead of having a continuous variation only on
the high pressure side (lower sign in (4.5)), we now have it also on the low pres;
sure sidef Coming from the latter, ﬁe have & gra@ual increase of temperature, .
density and pressure togefher with a gradual increase of the vibrational enefgy-
E,. The éonneétion between v and E, is given by the positivé sign in (4.5). The
change of the temperature is such that the vibrational energy falls more and more
short of its gquilibrium value, or mathematically, the difference E%(T) - E,
(orf?{ -/?)vinbreases (cf. 5.21). Thereby the square root in (4.5) is reduced
until it vanishes. From then on, the negative sign must be takenlwith the
square root; there is a further gradual incféase of T,p and p but.nOW‘the
vibrational energy "catches up" again with its equilibrium value Ev5(T) which
it reaches at large distance from the shock wave. |
For the quantitative treatmernt, we introduce that value @, of_B at’
which the sQuare root_in (3010) vanishes when V and ¢ are kept consta.n';c,c (30 is.
thus a function of the initial conditions éf the shock wave. The temperaturs,
pressure, etc., "which are obtained by setting ¢ =6° in A(quo), will be denoted
by Tos P,s etec.

Obviously, 60 is defined by
292 2
B, %= (26 -1)c (5.4)



6k
which has the solution*
B = (c+ ¢ - Vo) (5.4a)
"80 is thus uniquely determined by the initial conditions Vys Pys Py q.nd B 1

(cf. 3.4, b).

The square root in (3.10), divided by V, may now be written

2By - 1 28 -1

\/ﬁ2= PP (2p-1) - \/(p B (B-—=E)  (53)

Neglecting all higher terms ing -8 , this gives ‘
o

ﬁo(po - 1) ‘ ( )
ﬁ “’BO a ﬁo n“g: . 505&
2
| Inserting this into (3.10) and neglecting again all higher powers of - o
than the square root (for more accurate formula, see (6.9a)) , we get
oo +
y._ 2 _ |8, % |B-B, |8 (B -1 -
= 0
V2B -1 | 77-»-1-»” (5.6)
°©" 3
Denoting the velocity for 8 =ﬂo by Vs this gives
7 - (5.6a)

 Similarly, we get from (3.11) for the temperature (assuming no dissociaticn):

To.13 F-fo (5.7)
To \/‘Bo(ﬁo < %’) (po = l) '

* The negative sign before \/02 - v would lead to a value of 8  smaller than
unity which cannot be attained by the physical quantitypB (ﬁ = 5/48, cf. par.l).
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where T 1s the temperature corresponding to /] o» vhich is given by (cf. 3.9, 5.6)

-1, -
RT_ = 5 A | N (5.79.)..
Introducing the abbreviation
T4 E . V‘
g = T— 1 ) v (5°7b)
o
we have from (5.7)
6-8, -, ﬁ=§> B-v# (58
end from (5.6a)
L-1=-@, -1y | o (5.8a)

o

We consider th.ree velocities of sound, wviz,

(1) the velocity of sound with the active degrees of freedom a.lone°

J_— ‘/ -1 o (509’)

(2) the true velocity of sound : L
a = \/7RT o (5.9a)

. /a log T -
7 =B 1T+ ap/a log T | (5.10)

where (cf. 1.19)

If B changes not too rapidly with T, this may be writtex_l‘:

7 = ﬂﬁ - dﬁ/d log T - (5.10a)



(3) the expression

(‘5,11) .

which would result if df/d log T wers neglected in (5.102). Ordinarin,:the;
three velocities of sound are quite close to each other so that we may write,

neglecting higher powers of dB/d log T and of B »ﬁéﬁ

-~ (5.12a)
a _ ¢ _ dB/d log T .
& = 1 %ﬁ (5.12p)

v =g ! (5.13)

Since &' varies as VES we have therefore from (5.8a)

Yio1--(8 -}y (5.18)

Therefore the value of y at which v is equal to the éctual velocity of sound,

is (cf. 5.12b)

y = df/d log T = g (5.15)
" BB, -3 B |

LR

The value of 'y at which v is equal to & , is (cf. 5.12a)

B -Ba 2 A {5.16)
28,(8, - 2) (B - 1)
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For MY < Tys there will be an ordinary shock wave with wave front. Only for
Ya< V1< ¥, there will be a diffuse shock wave (yl = initial value of y on

Llow pressure side). From (5.14) and (5.15), we have ¥

Tel=(p, -2 (8- (5.16a)

It is convenient to introduce the abbhreviation

v, a B =~
7= —21L- 71 (5.17)
. a = g B+ A :
al 1

Diffuse shock waves will be obtained for z between O and 1.
Since the local value of 8 is given by (5.8) for all y, we may write
. 1 ¥ 2 |
B-By=BBo-3 B, -1 P-1n") (5.18)

On the other hand, the equilibrium value ofﬁ which we denote byB ", as in (4.7),

may be regarded as a linear function of 3y in the small temperature intervel

considered,and since,Bl‘ ='Bl’ we have:
B’ “'5.1 = 4f/d log To(y - ¥1) (5.19)

Asymptotically on the high pressure side we must have equilibrium again so that

185” =ﬂ5° Comparing (5.18) and (5.19), we find
Botbo =3 (Bo = 1) (v = 7,%) = (aB/a 108 ) (v5 - 1) (5.198)
Therefore {(cf. 5.15)

yx = 2B - ¥, {5.20)

o

* Eq, (5.16a) contains the solution of the problem discussed after Eq (3.13), The

vanishing of the square root (Boj 1’()_9 ‘vq) actually does not represent the point
(&

where v = &, but this point lies at slightly higher temperature and lower velo-
city (i.e. in the region described by the lower sign of the sguare root in (3.20}).
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This means that the temperature at which v is equal to the velocity of sound
(cf. 5.15) 1s the average of the initial and final temperaf,ureo For the final
temperature, we have always v< & as we might expect. |

We can how digcuss the actual equation (4.7) describing the cha.nge of

the physical quantities in the shock wave , " Eq (lh-;?)' maey be re-written

d M .1, "
L [mp-8a] =2 -pim (5.21)
Using (5.8); (5.18), (5.19) and neglecting higher powers of g “B o this gives

l,‘ .
B =B BB BB -1 ey L

- 7_\1_ 2B o) By B m B By - 1) (57 - 7P (5.21)

With (5.15, 16, 20) this becomes

(A + y) dy = 9x (5.22)

(y ~71) (y3 -5) 24

Elementary integration gives

A+y A+ vy
1 . 3 _ X .
- log {y = ¥1:) = =eemmie log (¥, = ¥) = 2=
Y3 - ¥, Y ys ey 3 A (5.228)

Using again (5.20) and (5.17), this may be written

(1 = z) log (y'_c‘ Yl) - (1 +.Z) jlog.(y5 -y) = %?- . (5.23)

The temperature approaches Tl asymptotically for large negative x, T5

for large positive x. The approach in each case is exponential, viz.

- e: Xz - - ‘
T -1 XE.TJ_ - Z‘T) for X+ =0oo (5.2ka)

T3 ~ T exp (=~ -Y%ZT-;)) for x4 +0C0 (5.24D)
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Thus, for 2z % O,)the approach of the asymptotic value is more rapid on the low
temperature side (Tl) than on the high temperature one (T3)° In the limit z-> 1,
i.e. when_v-appréaches the "active" velocity of sound, 8 17 the diffuse shock
wave automatically goes over into a wave with a discontinuous front as we might
expect.

In the other limiting case z 3 Q, i.e., vlib 8.9 the shock wave becomes

symmetrical and more extended; (5.23) is then equivalent to

1 1 X2/ _
T == (T, +T,) +5 (T - T7) &7 -1
2 et rz - m Jz/A + 1 (5.25)

i.e.;, the extension of the shock wave is of the order Az

The formulae of this section can also’bé applied to the approach of rota-
tional equilibrium if vy is smaller than the velocity of sound, Biqs which would Be
obtained if the translation alone is considered in the specific heat. In this case;
(5.23) gives the distribution of temperature (defineq by the translational energ&)
where A is the mean free path for rotation which, of course; is very small (par, 24).

Aside from giving the solution for shock yave velocities between al, and
ag1s this section completes two proofs which were léft'incomplete in par, 3:

l. On the high pfessure side of a shock watve, the gas velocity ﬁz is al-

ways smaller than the velocity of sound az. To show this, we calculate, instead of

(3.12), the value of a2/v with the correct value (5015)-of7/, If we use (5.10a)

(in which higher powers of dp/d log T have been neglected), we obtain for the low~

er sign

a2 1 .w ag/d log T 8 \/ 2.2 a2 5
& ___:l._[:p_v TV 4 el V2 - (2B- 1)c - (5.26)

B- 1

Subtracting this from (3.10) (again with the lower sign); we find

-V dB/d log T _ 2 _ (oRa. c2
2-1 !:z'gw;g \/ﬁ (2p-1) ve:' (5.27)

<
]
<%
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In order that this be negative (i.e. V3 < aB), we must have (cf. 5.5a, 5.4)

o .
B-p, > (48/a log T) ~ (5.28)
° lhBo(Po - j—2’) Bs - |

The value of B - 18 o On the right hand side is sufficiently small so that (5.6a),
(5.7) and all subsequent formulae are valid (cf. 6.18). Ir B ’po is equal to the
right hand side of (5.28), it follows from (5.7), (5.15) that y is Jjust eqﬁal to B.

This result coincides with (5.15) where we have shown that v is Jus(t eqﬁal
to the velocity of sound a for ¥ = B. Thus; as we have already pointed out, the:r_-e
is a certain interval, viz. 0 < y < B, in which the lower sign in (3.10), etc., |
corresponds to v> a. In this interval, the lower sign solution corresponds to
the low pressuré side rather than the high pressure side of the shock wave, the
velocity vy being between ay and al‘ (cf. 5.11 ). For any Vys yl in this
interval, the high Pressure solution V3s Y5 can be found immediately from (5.20);
and for this high pressure solution we have (cf. 5.20, y;<B!) y5> B and therefqre
'\r3 < a5°_" This »prov_es the underscqred statement above.

2? In par, 3 we have shown that there is, for any initial conditions,

one and only one solution of the shock wave equations (3.10), (3.11) provided -

-2 > 8 (5.29)

on the high pressure side. Here Ts is the temperature which belongs to a certain ﬁ
according to the shock wave theory, T, that which corresponds to the same B8 in

thermal equilibrium. In the notation of the present section, (5.29) is equivalent

to

ag’ _ ap (5.30)
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Comparing (5.18) with (5.19), it can easily be seen that (5.30) is fulfilled when
y» B, i.e. always on the high rressure side of & shock wave, q.e.d.

Par, 6. The Temperature on the High Pressure Side. .

In par, 5 we have found that the temperature .increa.ses continuously from
the low pressure to the high pressure side if vl is only slightly greater thgn ay,
and this remains true if vy becomes equal to aal 80 that sharp shock wave front is
formed. In the case vy = ag7, wé have T2 = Ti, and a gradual increase from T2 to
T5 on the high pressure side of the wave front. On the other hand, for violent shock
waves (v >> a;), we have proved in (3.16¢c) that the temperature decreases from
the wave front into the high pressure region as the inert degrees of freedom bé‘-

;:ome excited. In this section we ﬁant to investigate where the limit between these
two types of behavior is to be expected. |

For this purpose we have to examine _the dependence of T on ﬁ on the high
pressure side. We know that ﬁ increases from the wave front into the high pressure
region; therefore dT/dB will ,be the quantity determining whether T increases or
decreases. This derivative must, of course; be taken with the initial conditions
(i.e. V and c) kept fixed. The value of B at which 'dT/dp is to be calculated;

must be chosen in the range of values occurring on the high pressure side. The low-

est value of B in that region, Bos cen be calculated from (4.2) and is given by
-8, =L B -8 6
2 a '1'1'5 1l a (6.1)

The highest value, ﬁ}" is in sufficient approximation

) ag_ T-T 6.2
33"p1+dlogT Ty (6.2)

(6.2) is Justified because, in the whole region in which dT/df > 0, the temperature

~ Ty is small compared with T, itself. (cf. 6.11a, b). Therefore we can

change T 1

5
also rewrite (6.1):



T2,

F,=p- & -/‘{‘a> 2 oh T; 1 (6.1a)

Both (6.2) and (6.1a) are rather close tof, because B, -B, and aB/a log T are

small in practical cases; therefore it will be sufficilent to calculate dT/dﬁ foﬁ

B =ﬁl on the high pressure side. ..
More convenient that the explicit calculation of the derivative dT./dﬂ

will be an investigation of the behavior of T itself as a functioh of for given

initial conditions V, ¢. It will turn out that for given V and c, the tem’pera.ture

Ty, increases with § for ‘values: of.:f3 close toﬁ as defined in (5.4), reache; a

maximum forﬂn1 ~ﬁ —H-(B—vj-y— (cf. 6.8) and then decreases for larger § . " If,

then,'B 1 lies betweenﬁ and ﬁ 3 the temperature will increase from T to ']:'3 if

' Pl is greater than me’ the temperature will d‘écrease on the high pressure side.

3 is uniquely determined by V and ¢ ,7 therefore‘the conditiohﬂl < ﬂm is equivalent
| to & condition for vl/a. which will be given in (6.1kc).

For the calculation, we insert v from (3.10) into (3.11) and obte,in

EI;. er _ll)d Ee_p - 1)c?‘ -V iV \/ﬁ 2 . (28- 1)ca (6.3)

fiere we express c 'in terms of B by (5.4), and introduce instead of 8 and ﬁo
o
-g-1 b =g -1 : |
b= 2 . 5 o 2 (6.1)
Then we 6bta.in

bp 1 1 1 =
;b [eoe ok

As usual, the lower sign is for the high pressure side of the shock wave. Putting

o'i-

\/(b - 5) (b - ) (6.5)

p,f: = RT, and neglecting all powers of b - b, higher than the square root, we obtain

(5.7).
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For our present purpose,'we vhall carry powers of b = houp to the 5/2th, but we
shall simplify the calculation by neglecting l/hbo compared with bo° Since the
interesting values of b_ are at least 3, we have 1/bb2 £ 1/36.

Then (6.5) simplifies for the high pressure side to

%J A C(6.6)
PV | |

_0
b b572

(high pressure side). The maximum of the right hand side is obtained for

1 3(b =~ by), _ by ' .
T (- ) =2 2 (¢.6a)

'In sufficient approximation, this equation is solved by

b~Db, = S _ (6.6b)
Yo o+ 2
o b

‘ Yo

If the small terms of order l/bo2 in (6.5) are taken into account, (6.6b) is re=-

placed by
g .1 o
1 - —2 B | (6.7)
3 3 _
b, - B 4B,(By - 1)

b-b, =f- Bo=

For b, = 3, this gives b - bo = %g = 0,086. The maximum temperature is thus obtained

at a value of B which is only slightly greater than ﬁo" For larger B, the factor
l/b in (6.5) has a stronger influence than the increase of the sqQuare root, so

the temperature (6.5) decreases again.

Thus we find that the temperature can increase on the high pressure side
only if
B -2
pl pm":ﬁo-l‘ (")
B.(B -1)
o 'o
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Since ﬁo is determined by V and ¢ (cf. 5.4), (6.8) is equivalent to a condition

for vl/a.l° To derive this condition, we determine the dependence of v on 8 for

fixed V and c. We have (cf. 3.10)

¥omoT Ef\/ﬁg‘éﬁ:ﬁ ﬁoe:l (6.9)

Introducing b, this gives

n

2voieloal \/<b “F) (o v) (6.92)

For the negative sign (high pressure side), (6.9a) gives a monotonic decrease of v
with increasing b. Inserting in (6.9a) the value ﬁm (cf. 6.8) for B=1b + -]é'-, we

find on the high pressure side

v (6.10a)

!
ol
<

on the low pressure side

v =
ml V(l+ﬂ-

(6.10p)

ol

Similarly, inSerthugﬁ#linto the expression (6.5) for the temperature, we

obtain on the high pressure side

RT . = [5] 1 y2 (6.11a)
on the low pressure side

RT =[§ "y =3V -y V(1 L) (6.11p
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Thus', at the valueﬂ =ﬁm at which Ty reaches its maximum for given V and ¢, we

have the simple relation {cf. 6.10a, 1lla)

, 1 . ) :
Voh =JR53mh =5V | (6.12)
and from (3.8b)
A 1
Ppn =5 T = 5 Pray (6.12a)

vhere Ppax is the pressure corresponding to v = O,

The velocity of sound a' as defined in (5.11) is then for ﬂ "')Bm (cf.

6.,11a, b)
1 o '
a'lyy =3V —-Bdi—l— . (6.13a)
2 . ;].: _.é__t_.l_
a ml - 2 V | ﬂ ‘ (6al5b)

It can easily be seen (cf. 5.12b) that in all practicel cases a', - a, is small’

compéred with VLT a.‘m on both sides of the shock wave. Therefore we can ideritify

(6.13a , b) with the actual velocity of sound a and obtain:

Tmh . JB- 1 Sl Loy, :
E_m.; 2 o~ 1 T EE§+ (6.1ha)
Vm .
= 1.3 +-Z_+§%2.+ (6:1kb)
1 .

b R R R E- E (6.1kc)
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For ﬁ = 7/2, the right hand side 1s 1.173. This shows that a temperature increase

from T2 to T3 is restricted to very soft shock waves.

The temperature change T5 - T, itself can be calculated from (6.2), (6.1a):

| ar : ar. T, - T | .
T3-T2=-&75a(ﬁ3-p2)=a-§s-, :3T11"E1286Te+p1-‘6;] (6.15) "

Here we have denoted, as in par.3, by Ts the temperature corresponding to.a given ﬁ
according to the shock wave theory, and by'Te that corresponding to the same B in

thermal equilibriuin° T2 - Tl in (6.la) has been replaced by 'I‘5 - Tl because it

will be shown (cf. 6,17) that T3 - T2 is small of a higher order. From (6.6) we

have in sufficient approximation

d log Tg 'y - 1 '
dg. 3
b3 2,6, -,

Likewise from (6.6), we can calculate the difference between the high pressure and

ﬁ (6.16)

the 1ow,préssure value of T for the same value of B, viz.ﬁ]j‘this is

T, - T b -
37 71,01 7 P (6.16a)

Inserting in (6.16), (6.16a) into (6.15) and using the abbreviations A and B

(cf. 5.15, 16) we obtain

T, - T .
2—2 -2 +B) E-Jubo(bl - bo)] (6.17) ‘

which may also be written (cf. 1.19)
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T -T c . |
3 2. E M, - 2) (B, - B ] (6.178)
Tj R(Bl - %) 3 J 1 2 1 o |

where c, is the specific heat of the inert degrees of freedom. From (6.'17)»11;
follows. that the temperature change '.L‘3 - T, is greatest whenﬁl =ﬁo, i.e., for

the séftest shock waves; of course, this holds only when an actual wave front

exists (1i.e., for v > aal) 'bec_eiuée otherwise T, cannot be defined. For "handef"
shock waves, i.e.,r greater vl/al an@ﬁl - the square brack'et.d..ecreases and reaches
zero for ﬁl =ﬂm (cf. 6.8) as must be expected. For air of 1nitia._i temperature

T, = 300°, we have 4. = 0.007R; then from (6.17a) the maximum possible va.ltie of

Ty - T, 1s 0.00025 T3 = 0.08°. The temperature increase TB'- T2, if it occurs at

dll, is therefore extremely small in air at normal temperature. The temperature

difference T.h - Ty » on the other hand, is appreciable, viz. (cf. 6.11) 1/9 Ty = 33°).,

Finally, the developments of this section can be used to Justify those
of par,5. In that section, we have neglected in (6.5) and similer equb.ti9ns all
powers of b - bo higher than the square root. This 1s Justified as long as\ﬁ - ﬁo
is small compared with ﬁm -8, @8 glven by (6.8). Now the largest value of B - 50
which we have used in par,5 is obtained for y = 2B + A (cf. 5.15, 16). Using k

(5.8), (6.8) and neglecting quantities of relative order 1/82 we have.

(.B-'ﬁo)n;ax - 2b,2(2B + A) = 23p/a 1o T + B -8, (6.18)
Bn "~ fo 8, -1 - |
B, -1

Army--APG, Md.--D
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