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ABSTRACT 

The successive  stages of the f i r eba l l  due t o  a  nuclear  explosion in 

air   are  defined  (Sec. 2) . Tnis  paper is  chiefly concerned with Stage C, 

from tne, minimum in the  ap-parent f ireball  temperature t o   t h e  point where 

the  f i rebal l  becomes transparent . In the first part of this  stage ( C  I) , 
the shock (which previously was opaque) becomes transparent due t o  

decreasing  pressure. The radiation comes from a  region in which the 

temperature  distribution is given essentially by the  Taylor  solution;  the 

radiating  layer is given by the  condition  that the m e a n  free  path is 

about 1/50 of the  radius (Sec. 3) .  The radiating t q e r a t u r e  during this 
-1/4 stage  increases about as  p , where p is the  pressure. 

To supply the energy for the  radiation,  a  cooling wave proceeds from 
j 

the  outside  into  the  hot  interior (Sec. 5 ) .  When this wave reaches  the 

isothermal  sphere,  the  tenperature is close t o  its second maximum. There- 

after,   the character of the  solution changes; it is naw dominated  by the 

cooling wave (Stage C 11). m e  temperature would decrease s1mi.y (as 

P 'I6) if the problem  were one-dimensional, but in fact  it is  probably 

nearly constant for  the  three-dimensional  case (Sec. 6) The radiating 

surface shrinks slowly. The cooling wave eats  into  the  isothermal sphere 

until th i s  i s  completely used up. The inner  past of the  isothermal  sphere, 
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i.e., the  part  which has  not  yet been reached by the  cooling wave, con- 

t inues  to  expand adiabatically; it therefore cools very  slowly and 

remains opaque . 
Af'ter the  ent i re  isothermal  sphere is  used up, the  f i rebal l  becomes 

transparent and the  radiation drops  rapidly. The ball w i l l  therefore be 

left a t  a rather  high  temperature (Sec. 7 ) ,  about 5000'. 

The cooling wave reaches  the  isothermal  sphere  at  a  definite  pres- 

sure p, M 5(p1/po) 1/3 bars, where p is the ambient and po the  sea  level 1 
density. The radiating  temperature  at  this  time is about 10, OOOo . The 

s l ight  dependence of physical  properties on yield is exhibited in approx- 

m t e  formulae.. 
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1. INTRODUCTION 

Tile radiation- from t h e  f . i r ~ b ~ . - h a s ~ b ~ ~ s ~ ~ ~ ~ a - ~ ~ ~ ~ ~ ~ e l Y  .by._ x , .,, 

many authors.  Already in   the  Summer Study a t  Berkeley in  1942, Bethe 

and Teller found that   the  energy transmitt,ed by a nuclear  explosion 

in to   a i r  i s  m e d i a t e l y  converted into x-rays, and studied  the  qualita- 

1 

tive  features of the  transmission of these x-rays. At Los Alamos, 

Marsnak  and others showed that this  radiation propagates as a wave, 

175th a sharp front.  Hirschfelder and Magee gave the first comprehensive 

treatment of this  early phase of the   f i reba l l  development, and also 

studied some  of the later phases, especially  the  role of NO2. 

2 
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May optical  observations have been made in the numerous tests of 

atomic weapons. Some of tine results  are contained in "Effects of Nuclear 

Weapons,"' pp. 70-84 (see also pp. 316-368) A summary of the  spectro- 

scopic  observations up t o  1956 was compiled by DeWi t t  .5 Careful  scrutiny 

of the extensive  observational  material would undoubtedly give a wealth 

of further information. 

On the  theoretical  side,  there has been some analytical a d  a good 

deal of numerical work. Analytical work has  concentrated on the  early 

phases. One of the most recent  analytical  papers on the  early flow of 
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6 radiation  .(Stage A of Sec. 2) is by  Freeman.  Brode  and  Gilmore 7 t rea t  

also Stage B, the  rad$ation from the shock front,  with  particular emphasis 

on the dependence on alt i tude.  

The  most complete  numerical calculation has been done  by  Brode 8 on 

a  sea level  megaton explosion. We sha l l  use his results  extensively, 

but fo r  convenience we shall t ranslate  them t o  a yield of lmegaton. 

Wherever the phenomena are purely hydrodynamic, w e  may simply scale  the 

linear dimensions and the  time by the cube root of the  yield, and th i s  

is the principal. use we  sha l l  make of Brode 's results, e .g. Fn Sec. 3b. 

Where radiation is important, this  scaling w i l l  give  only  a rough guide. 

Brode calculates  pressures,  temperatures,  densities,  etc.,  as  functions 

of time and radius, fo r  scaled (1-megaton) times of about t o  10 

seconds. The calculations show clearly  the  stages in f i r eba l l  and  shock 

development, as  defined in Sec. 2, a t   l eas t  Stages A t o  C. 

Brode and Meyerott 9 have considered  the  physical phenomena involved 

in  the  optical. "opening" of the shock after  the minimum of radiation, 

Stage C I in  the nomenclature of Sec. 2, especiallythe decrease in  

opacity due t o  decreased  density and t o  the  dissociation of NO2. 

Zel'dovich, Kompaneets  and  Raizer''  have investigated haw the energy 

for  the  radiation is supplied after  the  radiation minimum  and have intro- 

duced the concept of a "cooling wave"  moving into  the hot f irebdll. The 

present  report is largely concerned with an extension of the  ideas of 
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Much effort has been devoted t o  the calculation of f i reba l l s   a t  

various altitudes. Brode'l  made such calculations in 1958, in connection 

with the  test   series of tha t  year. Gilmore12  made a prediction of the 

Bluegill explosion ' i n  1962. Since  then, many  more ref  bed  calculations 

of Bluegill  have been made. 

For any understanding of f i r eba l l  phenomena it is  essent ia l   to  have 

a good equation of s t a t e   f o r   a i r  and good tables of absorption  coeffi- 

cients. For the equation of state, we have used Gilmore's tables, 

although Hilsenrath's  give more de ta i l  in  some respects. The two cal- 

13 

14 

culations agree.  Gilmore's equation was approximated analytically by 

Brode 8 

For the absorption  coefficient we have used the  tables by Meyerott 

e t  al., 15'16 which extend t o  12,000°. These were supplemented by the 

18 work  of Kivel and Bai1eyl7 and more recent work by Taylor and Kivel on 

the free-free  electron  transitions in  the field of neutral atoms  and 

molecules. A t  higher  temperatures,  there are calculations by  Gilmore 

and Latter,I9 Karzas and LatterY2* and curves by  Gilmoregl  which are 

brought to date  periodically. The most recent  cdculation on the 

absorption of a i r   a t  about 18,000' and above have been done by Stuart 

and Pyatt.*2 This temperature  range is not of great importance for  the 

problem of t h i s  paper, but is important for   the expansion of the  iso- 

thermal sphere inside the shock wave before it is reached by the cooling 

wave . 
8 Brode has used the average of the absorption  coefficient over 



frequency, the  opacity, which is sufficient  for  treating the internal 

flaw of radiation. A r e a l i s t i c  treatment of the flow t o  the  outside 

requires the absorption  coefficient as a w c t i o n  of frequency; Brode 

merely wanted t o  obtain  reasonable  overall  results  for  this flow. He 

approximated the opacity by an analytic expression. Also in most of the 

ot'ner work cited above an average  opacity has been used. An exception 

is some of the recent work  on the radiation flow in  high alt i tude explo- 

sions  (Bluegill), where the frequency dependence must be, and has been, 

taken  into account.  Gilmore21  has calculated and made available curves 

of effective  opacity, in which the  radiation mean free  path was averaged 

(using a Rosseland weighting factor)  only over  those  frequencies f o r  

which it is  less  than 1 kilometer. 

This l ist  of references on work on the f i reba l l  dynamics and opac- 

i t y  is far from complete. 

The energy from a nuclear  explosion is  transmitted through the outer 

par ts  of the weapon, including its case, either by radiation  (x-rays)  or 

by shock o r  both. Whichever the mode of transmission inside the weapon, 

once the energy gets into  the surrounding air, the energy w i l l  be trans- 

ported by x-rays. This is because the a i r  w i l l  be heated t o  such a high 

temperature (a million  degrees  or more) that transport by x-rays is much 

f a s t e r  than by hydrodynamics. This stage of energy transport  (Stage A) 

has been extensively  studied by many authors (e.g., Hirschfelder and 
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Magee in  Report LA-2000) and w i l l  therefore not be further" consid,ered . .  

here . 
During Stage A, temperatures  are  very  high. The Pianck  spectrum of 

t the   a i r  is in  the  x-ray  or far ultraviolet region, and hence is irmnedf- 

ately absorbed by the surrounding a i r .  The very  hot a i r  is therefore 

surrounded by a  cooler  envelope, and only this envelope is v is ib le   to  

observers  at a distance. The observable  temperature  therefore  has l i t t l e  

physical  significance. It is observed that the size of the ltrminous 

sphere  lncreases  rapidly, and the t o t a l  emission also  .Increases, up t o  

a first maximum. - 

When the temperature of the  central sphere of air has fallen, by 

successive emission and re-absorption of x-rays, t o  about j0O,00O0, a 

-hydrodynamic shock forms, The shock now moves fas te r  than the tempera- 

t u re  could  propagate by radiation  transport, The shock therefore sepa- 

rates  fromthe very hot, nearly  isothenml sphere a t  the center.  This , 

i s  Stage 13 in the development. The shock mves by simple 

Its front obeys the Hugoniot relations, the density  being 

Behind the  front,  the  air expands adiabatically, and a t  a 

of the shock radius, .the  density is apt t o  have fallen.  by 

o r  m r e  compared t o  the shock density,  while  the  temperature  has  risen 

by a comparable factor, (3.16) Thus the  interior is a t  very low density, 

and hence the  pressure m u s t  be neasly  constant  (otherwise  there would be 

very  large  accelerations which soon would equalize  the  pressure) . This 
greatly  simplifies  the  structure of the shock, and leads t o  such  simple 

. .  
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relations  as (3.2) between shock radius and pressure. 

Well inside the shock, the "isothermal  spnere"  pursues i ts  separate 

history. It continues t o  engulf more material because radiation flow 

continues, though at  a  reduced rate.  H. Brode has kindly  calculated f o r  

me the temperature histories of several  material  points, based on his 

paper RM-2248. These histories  clearly  exhibit  the expansion of the i so-  

thermal  sphere in material  coordinates. Tne expansion can d s o  be treated 

by a semi-analytic method which I hope t o  discuss in a  subsequent  paper. 

The isothermal  sphere remains isolated from the  outside world un t i l  it 

i s  reached by the  cooling wave, Sec. 5 .  

The radiation  to  the  outside now comes from the shock. E a r l y  in 

Stage B, the  shock has a precursor of lower temperature, caused by ul t ra-  

violet  radiation from the shock, and the observable  temperature is st i l l  

below the shock temperature  (Stage B I) However, the observable  radius 

is very  near  the shock radius.  Later, as the shock front  cools d m ,  

t he  shock radiates  directly and its temperature becomes direct ly  observ- 

able. (Stage B 11) . The first maximum in visible  radiation probably 

OCCUTS between Stages B I a d  B 11. As the  shock cools d m ,  the radi- 

ation from the shock front  decreases, and the  observable  temperature 

decreases t o  a m i n i m u m  (Ref. 4, par. 2.lI.3, p. 75) of about 2000°. 

When the shock is  sufficiently cool, i t s  front becomes transparent, 

and one  can look into it to higher  temperatures  (Stage C )  . The central 

isothermal sphere, nmever, remains opaque  and, f o r  some time, invisible. 

Because higher  temperatures are  now revealed, the total  radiation  increases 



toward a .second maximum. This stage  has been very l i t t l e  considered 

theoretically, except i n  numerical  calculations, and forms the  subject 

of t h i s  report. 

We shall show that f o r  some time In Stage C y  the  radiation comes 

fm the   a i r  between isothermal  sphere and  shock front  (Stage C I) . 
During this time, the  radiation can be  calculated  essentially from the 

temperature distribution which is set  up by the  adiabatic expansion of 

the  material behind the shock (Secs 3 and 5f ,g) The temperature and 

c 

t o t a l  intensity of the  radiation  increase  with time toward the larger, 

second maximum. 
The energy for the  radiat ion is  largely sqplied by a  cooling wave 

(Sec. 5 )  which gradually eats  into  the hot interior. When t h i s  coollng 

wave reaches the isothermal sphere, the  radiation  temperature  reaches 

its maximum (Sec. 5e); it then  declines  again  as  the  cooling wave eats 

more deeply in to  the  isothermal  sphere  (Stage C 11). This process ends 

by the  isothermal  sphere  being  comgletely  eaten away (Sec. 6) . 
m e r  th i s  has happened, the  entire  f ireball ,  isothermal  sphere and 

cooler envelope, is transparent t o  i t s  own thermal. radiation  (Stage D) . 
The molecular bands, which previously appeared in absorption, now appear 

i n  emission  (Stage D I) . Emission w i l l  lead  to  further  coollng of the 

f i rebal l ,  though more slowly than  before. Soon, when the  temperature 

falls below about 6000°, the emission becomes very weak, and stibsequent 

cooling is  almost entirely  adiabatic (Stage D 11) . A t  sea  level,  the 

pressure may go down t o  1 bar before the temperature falls belaw 6000~; 



in th is  case there is no Stage D 11.. A t  higher elevation,  there  usually 

is. 

The fireball w i l l  then remain hot, at about 6000~ or  a somewhat 

lower temperature due to   adiabat ic  expansion in Stage D I1 . The only 

process which can now lead  to   fur ther  cooling is the rise of t he   f i r e -  

bal l ,  which leads t o  further adiabatic expansion and, more important, t o  

turbulent m i x i n g  at  the  surface  with  the ambient a i r  (Stage E) . The 

time  required f o r   t h i s  is typically  10 seconds or  more, being  determined 

by buoyancy 

A t  very  high altitude, the shock wave never  plays an important part, 

but  radiation  transport  continues  until  the temperature gets  too low for 

effective emission. In other words, Stage A continues to   t he  end.' O f  

course, a shock does form, but it is, so to speak, an afterthought, and 

it plays l i t t l e  part  in the distribution of energy, A t  medium altitude, 

l e t  us say, 10 t o  30 kilometers, the stages  are much the same as  at  sea 

level  but the shock wave  becomes transparent  earlier, i.e., a t  a higher 

temperature,  because the density is later;  this means that the minimum 

emission comes earlier.  Stage C proceeds similarly  to sea level,  but 

a t   the  second maximum of radiation  the  pressure is s t i l l  much above 

ambient, therefore  Stage C I1 involves a greater  radial  expansion of the 

isothermal  sphere  than a t  sea level  which proceeds  simultaneously with 

the inward motion of  the  cooling wave.  Moreover, there is much adia- 

16 



We believe  that  the  theory developed i n   t h i s  paper w i l l  be  useful 

jn studying the dependence of phenomena  on alt i tude (ambient pressure), 

but we have not  yet  exploited it f o r  t h i s  purpose. 

3. RADIATION FRaM BEHDTD THE SHOCK (Stage C I) 

a., Role of NO2 

The diatomic species in equilibrium  air,  both  neutrals and ions, 

show very l i t t l e  absorption in  the  vis ible   a t  temperatures Up t o  about 
16 Iioooo~. This is shown clearly in the  tables by Meyerott e t  We 

define "the visible"  for  the purposes of t h i s  paper, arbi t rar i ly  and 

incorrectly,  as  the frequency  range 

hv = 1/2 t o  2-3/4 ev i 

= 4050 t o  22,300 an'' 

Then,  even a t  a density  as  high  as lopo  (p, = density of air a t  HIT 

= 1.29 x w/cm ), the mean free  path is never less  than 100 meters 

at k0OO0, 1000 meters a t  3000°, and st i l l  longer a t  luwer temperature. 

3 

Tnese values refer to hv = 2-5/8 ev; f o r  lawer frequencies, the mean 

free path is even longer. 

In -the sea-level shock wave from a megaton explosion, the  temper- 

atwe range. from 3000 t o  4000' occupies a distance of about 10 meters 

( see Sec. 3b). Thus t h i s  region is  definitely  transparent, even at the 



highest  possible  density of about l o p  For explosions a t  nigher a l t i -  

tude, t h i s  conclusion is even more true. 
0. 

Tne tables by Meyerott e t  al.. do not  include  absorption by triatomic 

(and more complicated)  molecules, O f  these, NO2 is known t o  have strong 

absorption bands i n  the  visible.   After  this paper was completed, I 

received new calculations by Gilmoreg3 which include the  effect  of U02. 

The effect  i s  very striking  as i s  shown by Table I, which gives  the 

absorption  coefficient  for  the  "typical" frequency hv = 2-1/8 ev, and 

f o r  several temperatures and densities  (the  absorption is strong from 

PIP. 

T 

Without 

With 

Table I. Absorption Coefficients a t  hv  = 2-l/8 ev 
with and without NO2 

about 1-314 t o  2-3/4 ev) . 

Note: For each value, the power of 10 is  indicated by a strperscript. 

10 10 10 10 1 

Because NO is triatomic, i ts  absorption depends strongly on density. 2 
As the  shocked gas expands, the NO2 dissociates and the gas becomes trans- 



I .  

b. Temperature Distribution behind the Shock 

We wish to  calculate the temperature distribution behind the  shock. 

We can do this  because the  material which has gone through the shock 

expands very nearly  adiabatically,  as long as it i s  not  engulfed by the 

internal, hot isothemal sphere. We are interested in  the  period when 

the shock temperature  goes from about 4000 t o  a few hundred degrees,  i.e., 

un t i l   the  strong  cooling wave (Sec. 5 )  s ta r t s .  For  a 1-megaton explosion, 

t h i s  corresponds roughly t o  t = 0.05 t o  0.25 second. 

A t  a  given time, the  pressure is nearly  constant  over most of the 

volume inside  the shock, except fo r   t he   Med ia t e  neighborhood of the 

shock; the shock pressure is roughly twice this constant, inside pressure. 

C o n r p a r i n g  two material elements in  the  inside"  region, we may calculate 

their   re la t ive temperatures if  we knm. t.heir . t q e r a t u r e s  when the she-ck . 

I1 

traversed them,  and  assume adiabatic. expansion from there on. 

A material element which i s  ini t ia l ly   a t   point  r w i l l  be shocked 

when the shock radius is r. The shock pressure a t  t h i s  time is* 

Ps( r) = 20( 7Av - lw3 

where 

Y = yield  in megatons 

r = radius in kilometers 

P pressure 
pE energy per  unit volume y '  - 1 z - z  ( 3 . 3 )  

~ - ~ 

?Notations fo r  themodpamic  quantities similar t o  those of  Gilmore 
(Report IN-1543) ., 
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and the average of y '  is taken  over the volume inside  the shock wave. 

Tne basis of (3.2) is tha t   the   to ta l  energy in the shocked  volume, Y, 

i s  the volume times the average  energy per unit volume, the   l a t te r  i s  

the  average pressure  divided by y r  - 1, and the average pressure i s  

c lose  to  one-half of the shock pressure. 

Tne density  at   the shock is 
.. - 

\ 

wnere the  subscript s refers to shock conditions. Now an examination of 

Gilmore's tables13 shows tha t  7' does hot  change very much along an adi- 

abat. As an example, 'we l ist  i n  Table I1 certain  quantities  referring 

t o  some adiabats which w i l l  be particularly important for  our  theory. 

Tnese are  the  adiabats  for which the  temperature T is between 4000 and 

12,000° a t  a density of O . l p o .  In  the second l ine  we list the temper- 

ature Ts for   the same entropy S a t  a density ps = lopo. This is close 

enough to the shock density (3.4) so w e  may consider Ts as  the temper- 

ature of the same material when the shock wave went through it. (Adia- 

\ 

bat ic  expansion, i.e., no radiation  transport, is assumed.)  The third 

line gives y r  - 1 for  the  'bresent"  conditions, p = 0 . 1 ~ ~  and T, the 

fourth line is the same quantity for the shock conditions. It i s  evident 

t'nat 7 '  - 1 is nearly  constant for T = 4000 and 6000°, not so constant 

f o r  8000 and 12,000°. On the average y ' - 1 M 0.18. The l a s t  two l ines  

i n  Table I1 give the number of particles ( atoms, ions,  electrons)  per 

original a i r  molecule under "present If and shock conditions. 
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Table 11. Adiabats 

( 'Present"  density, 0.  1-p shock density, lopo) 
0; 

T 4,000 6,000 8, ooo 12,000 

T 9,000 10,500 18,000 28,000 

y '  - 1 0 213 0.194 0.144 0 1-53 
S 

Y; - 1 0.208 0 190 0.190 0.20 

z 1-13 1.27 - 1.68 2.06 

=S 1-03 . 1.6 2.06 3 

Assming an adiabat of constant 7 = y ' ,  the  density of a mass 

element is 

P = P S ( k ) 1 / Y  (3.5) 

Now ps is  a constant, and a t  any given time, p is the s&e for a l l  mass 

elements except those  very  close t o  the shock, hence 

4 7  P - Ps 

(w means proportional- t o )  

If we now introduce the  abbreviation 

3 m = r  (3.7) 

which is proportional t o   t h e  mass inside  the mass element considered, 

and if we use ( 3.2), we find tha t   a t  any given  time 
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The radius R i s  given 

R3 = I"- P 

P 

J ;+ = m - Y - 1  - const. 
7 ( 3 . 9 )  

We shal l  set the constant  equal t o  zero which  amounts to the (incorrect) 

assmption  that ( 3.8) holds dam t o  m = 0. Actually,  the isot'nermal 

sphere  gives  the  constant a finite,   posit ive value. 

To find  the  temperature  distribution, we note that the  enthalpy 

H =  7' E 
Y 1 - l P  

We are using the enthalpy  rather  than  the  internal energy  because the 

inter ior  of the shock is a t  constant  pressure,  not  constant  density. 

The  thermodynamic eqmtion  for H is 

T d S = d H - ~ d p  

At given  pressure, i.e., given  time, (3.8) t o  (3.10) give 
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Now the approximate relation between internal energy and temperature i s  

given by  Gilmore,” Fig. 5 ,  viz.,* 

4 where T ’ is the temperature in   uni ts  of 10 degrees. 

using p = from (3 .3 )  and sett ing y ’  = 1.18, which is a reasonable * 
average (see Table 11) we may rewrite (3.13) : 

where p is the  pressure in bars. Since H is proportional t o  E, (3 .12)  

and (3.14) give 

%e thermodynamic relation 

@) = T (g) - P 
T V 

leads t o  a relation between y - 1 and the exponents in the  relation 

E = &  T -x y 

Since we have  chosen y = 1.18 and y = 1.5 this  relation  gives x = 0.09. 
This is i n  sufficient agreement with x = 0.1 as used in (3.13) . 



T-R -10 (3.16) 

8 
The numerical calculations of Brode a re   in  good agreement w i t h  t h i s   a t  

the  relevant  times, from about 0.05 t o  0.5 second. 

It w i l l  be noted that  (3.16) was obtained  without  integration of 

the hydrodynamic equations; it follows simply from the  equation of state. 

The weakest assumptions are (1) the relation between E and T, (3.13), and 

(2) the  neglect of the  constant in (3.9) . B u t  in any case, T w i l l  be a 

very  hign power of R. 

C. Mean Free  Path and Radiating Temperature 

The emission of radiation from a sphere  of variable temperature i s  

governed by the  absorption  coefficient. For visible  l ight,   the absorption 

coefficient  increases  rapidly  with temperature. For any given wave 16 

length, tine emission w i l l  then come from a layer which is one optical 

mean free  path  inside  the  hot  material.* 

*Actually the maximum emission comes from deeper inside  the  fireball. 
To see t h i s  we compute the ernigsion normal t o   t he  surface, J = 
jdr@(R)e -D(R)dE? where e = - is the  emissivity, and the remain- 2hv3 e -hv@ 

C2.e 
ing  notation i s  as   in   the  text (below). The integrand has a maximum at 
R"/$* = a + cuhv/fl*. The optical  depth a t   the  maximum is D* = D(R*) = 

ncu + @nv'kir* which is  about 2, rather  than 1 in the  blue. By steepest a - 1  
descents and with  occasional use of 1/m = 0 it turns out that  J = 

4- B( v,T*), greater by about a factor 2 than  the J used in e 
the  text.  
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Assume that  the mean free  path is 

& = G I T  8 -n 

where the exponent n and the  coefficient 8 1 depend on the wave length. 

Then the optical. depth for  a given R i s  

= I .e(R') dR' 

R 

R 

R 

D(R) = 1 

we need 
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Since  the  interesting  values of R are of the  order of a few hundred 

meters, the  emitting  layer w i l l  be def ined by the  fact   that   the mean 

free  path is  about 5 t o  10 meters. 

Equations (3.18) t o  (3.21) hold f o r  emission in the  exactly  radial 

direction. A t  an angle 8 with  the  radius we get  instead 

The apparent  temperature of the emitting layer is then,  according t o  

where T(R,O)  i s  the emission  temperature for  forward  emission. The 

intensity of  emission is a known (Planck)  function of the wave length 

and the  temperature.  Since the apparent  temperature  decreases  (though 

slowly)  with 0 ,  according t o  (3.23) there w i l l  be limb darkening. On 

the many photographs of atomic explosions, it should  be possible t o  

observe t h i s  Limb darkening and thus check the  value of n. 

The relation (3.17) needs t o  hold only in the neighborhood of the 

value ( 3 -21) of 4 and is  therefore  quite  general  as long as 4, decreases 

with  increasing  temperature. The exponent n  should  be  determined a t  

constant  pressure.  For  certain wave lengths,  especially in the  ultra- 
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violet ,  (3.17) is not  valid; these wave lengths  are  strongly absorbed by 

cold or cool a i r  ( Sec . kc) . For example, a t  p = po and T = 2000°, the 

mean free  path is less  than 1 meter for  all light16 of hv > 4.7 ev 

(A < 0.26 p).  Since the emission of light of such short wave length from 

such  cool a i r  is negligible,  the  fireball w i l l  not emit such radiation  at 

all. 
A detailed  discussion of the  absorption  coefficient i n  the visible 

w i l l  be given in Sec. 4b. As can be seen from the  tables of  Meyerott 

e t  al. and from our Table VI, f o r  a density p = po the mean free  path 

is  of the  order of 5 meters a t  about 6000~. This corresponds t o  a pres- 

sure13 of about 25 bars. For p = O.lpo the requisite mean free  path of 

a few meters is obtained fo r  about 10,OOOo, with p M 7 bars. Thus for a 

relatively modest decrease in pressure, the  effective temperature of 

radiation  increases from 6000 t o  10,OOOo, corresponding t o  a very sub- 

16 

J 

s t an t i a l  increase in radiation  intensity. This i s  the mechanism of the 

increase in radiation tarard the second maximum. A more detailed dis- 

cussion w i l l  be  given in Sec. 5f. 

d. Energy Supply 

As long as  the  radiating  temperature is low, not much energy w i l l  

be emitted  as  radiation, and t h i s  emission w i l l  only  sl ight ly  modify the 

cooling of the material due to  adiabatic expansion. However,  when the 

radiating temperature increases, the radiation  cooling w i l l  exceed the 

adiabatic cooling t o  an increasing  extent. It then becomes necessary t o  

supply energy from the  interior  to  the  radiating  surface. 



Most of the  radiation comes from a tnickness of  one optical  mean 

free  patn  near  the  radius  at  which ( 3.21) is  satisfied.  Let J be the 

radiation  emitted  per  unit  area  per second (which w i l l  be of the  order 

of the  black body radiation;  see below  and Sec. 4c) ; tnen  the loss of 

enthalpy due to  radiation, per gram per second, w i l l  be 

- = .ep 
J 

Adizbatic  expansion, 

(%)adi - - 

A s  long as tne shock 

tne ambient pressure 

according t o  ( 3.11), w i l l  give an entnalpy change 

is strong,  i.e., 

pl, the  pressure 

as long as p i s   l a rge  compared t o  

behaves as 

vhere t is  the time from the  explosion;  therbfore, 

,.- @)adi - - p t 
1.2 p 

Tine rzdia-tion will be a re la t ively smail perturbat  ion  as long as 

( j. 2h.) -is smaller Clan (3.27) . This will stop be% the  case when 

J P = 1.2 ,c 
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- p - =  J 1.2 R 
50 t , 

(3.29) 

Because of the  steep dependence of ternperatwe on R, (3.16)~ the  radi- 

ating surface R w i l l  be close t o  the shock front Rs. NOW the Hugoniot 

relations  state  that  for  close to 1 

is = (?)I/* (3.30) 

where p is  the ambient density and p = 2p, tne shock' pressure.  Further- 

more, for  the strong shock case, 
1 S 

Rs - t 0.4 

4 
The black body radiation  at temperature LO T '  is 

= 5.7 X ~f~ erg/cm sec JO 
2 ( 3 . 3 3 )  

Actually, only tine radiation up t o  about hvo = 2.75 ev can be emitted t o  

large  distances because tne  absorption is too  great  for  radiation of 



higher  frequency (above, and Sec. LC).  The f r a c t i o n  of the  black body 

spectrum which can be emitted i s  given, in  sufficient approximation, by 

*. 

where 

U, 

0 

hV 

o w  
0 lJ = -  

(3.34) 1 

1 ( 3 . 3 5 )  ' 

In  (3.34) we have neglected  the  fact  that  the infrared, below about 

1/2 ev, a lso cannot be emitted  (Sec.  4a), and nave approximated ( eU - 1) 

in tjne Planck spectrum by  e-U; both  corrections  are  small. To = 8OWo 

has been chosen as a reasonable average  temperature ( see Sec. 5 ) .  Near 

this temperature, varies about as T , so that  tne  actual  radiation 

to  large  distances i s  about 

-1.5 

Solving (3.32) f o r  p, with po = 1-29 x (normal air density)  gives 



For p1 = po, T = 0.8, t h i s  i s  14 bars. 
t 

A t  higher  temperature ( T '  > 1) , the  ultraviolet  can be transported 

as easily  as  the  visible  although it w i l l  not  escape t o  large  distances 

(Sec. kc). Then it is reasonable t o  use the fu l l  black body radiation 

(3.33) for  the emission. Inserting  this  into (3.32) gives (,),, $8/3 

1 .O, t h i s  is 40 bars. 

(3.39) 

Thus for p greater  than 14 t o  40 bars,  the  radiation is  ' only a 

fraction of the  adiabatic  cooling,  for lower pressure  radiation  cooling 

is more important. A t  the lower pressures  then, energy m u s t  be supplied 

from the  inside  to maintain the  radiation.  This  gives  r ise  to  a "cooling 

wave" moving inwards as w i l l  be  discussed in Sec. 5.  

It i s  interesting  that  the  condition (3.38) refers to  the  pressure 

alone.  Neither the  local  density nor the  equation of state  enters.  The 

opacity of air   enters only  insofar  as it determines the  radiating temper- 

ature T ' through the  condition ( 3 *21) . 
A more accurate  expression  for  the  limiting  pressure w i l l  be derived 

in Sec. 5e. It w i l l  turn out t o  be considerably lower, about 5 bars. 



1 
I 

4. ABSORPTION coEFF1c1ms 

a.  Infrared / / .  

The  main absorption  in  the  infrared is  due to  free-free  electron 

t ransi t ions.  These are  treated  incorrectly i n  the paper by Meyerott e t  

al.,  i n  whicn it i s  assumed tha t  such transit ions occur  only in  the 

f i e l d  of ions. A t .  tke important  temperatures of 8000' or  less,   the degree 

of ionization is  o r  less .  Therefore, the  free-free  transit ions in 

t he   f i e ld  of neutral  atoms  and molecules are much  more important  than 

those  in   the  f ie ld  of ions, even though  each individual atom contributes 

far   less   than each ion. 

16 

The effectiveness of neutrals in inducing free-free  transit ions has 

18 been measured and interpreted by Taylor and Kivel a t  

laboratory. A s  compared t o  one' ion, the  effectiveness 

tant  neutral  species is  

N2 : 2.2 f 0.3 X 

N: 0.9 f 0.h x lo-=! 
0: O e 2  f 0.3 X lo-=! 

the  Avco-Everett 

of the most  impor- 

Thus nitrogen  gives about the same contribution wnether  molecular or  

atomic, and the  contribution of oxygen is  very  small. A s  a result ,  one 

atom of a i r  i s  equivalent t o  about a = 0.8 X ion (of unit  charge). 

The free-free  absorption  coefficient  in cm'l i s  then 

cLf f = 0.87 x 10 (%) 2(e-)(hv)-3 

= 7.0 T '-I/* (b) 2( e-)  (hv) -3 



where e -   i s   the  number of electrons  per  air  atom, the  quantity  tabulated 

in  Gilmore,l3 and hv is  the quantum energy in ev. Table I11 gives some 

numbers for  hv = 1 ev, four  temperatures and three  densities. A t  8000°7 

the  free-free  absorption is substantial ,   at  lawer temperatures  negligible . 
A t  12,000° the  transit ions  are mostly in   t he   f i e ld  of -7 ions  i.e., 

Meyerott's numbers need only slight  correction, and the  absorption i s  

large 

Table 111. 

T 

47 OOo 

6,000 

87 000 

12,000 

Free-Free  Absorption Coefficients (cm ) 
fo r  hv = 1 ev 

-1 

5.5-& 1.05'5 1.9-7 

Note: f o r  each value, the power of 10 is indicated by a superscript. 

Another cause of absorption in the  infrared is  the  vibrational bands 

of NO, which have an oscil lator  strength of and hv = l/k ev. 

The resulting  absorption  coefficient i s  about 

where (NO) i s  the 

percent a t  p/po = 

cm e While th i s  -1 

number of NO molecules per a i r  atom. Tnis is a few 

1 and T = 4000 t o  8000°, giving p = 2 X lom3 to 
i s  of the  order of magnitude relevant f o r  emission, 
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(3.21), it is  small compared to  the  free-free  absorption at' t h i s  low 

frequency,  except a t  T < 5000'. I t s  main effect  is therefore  to lower 

the  radiating temperature in  the  infrared somewhat. 

Since  the  free-free  transitions  are  the main cause of infrared 

absorption,  the  electron  density governs the temperature and density 

dependence. For p/p, 2 10-1 and T 5 800o0, the ma& species of positive 

ions is  NO The ionization energy of NO is 9-22 ev; tnerefore,  the 
4- 

electron  density is roughly proportional t o  

(4.4) 

From 6000 t o  8000°, this   gives  a factor  of  about 10 in  the  electron 

density, in accord with Gilmore's tables. Near 8000°, we'  may write 

approximately 

(4.3) 

Writing p - pT , this   gives  -1.5 

The temperature dependence 

out about the same. 

b. Visible 

of the  absorption in the  visible w i l l  turn 

In the  vis ible  and f o r  temperatures below about 10,OOOo, the  main 
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causes of absorption are  the molecular bands of 

N (first positive) from about 1 t o  2-1/4 ev 

N: (first negative) " 2-1/2 t o  3-3/4 ev 

NO ( e  bands) 

2 

11 
" 2-1/2 t o  6 ev 

and the continuous absorption due t o  0- photodetachment from about 1-1/2 

ev up. The N2 second positive, and 0 Schumann-Runge, although  they con- 

tribute, are . .  usually weaker than  the combination of N+ f i r s t  negative and 

NO and cover the same region of the spectrum ( o r  less)  0- photodetach- 

ment is mostly important at the higher  density, p/p = 1. 

2 

2 

0 

There is comonly a %Window" of low absorption below 1 ev, between 

free-free absorption and N 2 ( l f ) ,  and another a t  about 2-1/2 ev, between 

N2 and the  other bands (Table IV) . The l a t t e r  window is f i l l e d  in  by 0- 

photodetachment. A t  higher  temperature, such as 12,000°, the  photoelectric 

effect on N and 0 becomes important and the.molecular bands almost dis-  

L .  -~ 

appear; the  absorption  coefficient is then almost uniform over the  entire 

spectrum. 

The table by Meyerott e t  al. should  be  consulted for   detai ls .  Apart 

from the  free-free  transitions,  this  table seems t o  be in error on the 

N2( 1') absorption a t  8000°, which should  be increased by a  factor of 4. 
J 

With these  corrections, Table IV gives  the  absorption  coefficients  at 

8000' f o r  a few frequencies and densities, mentioning in  each  case  only 

the most important species of absorbers. For p/po = 0.1 and 0.01, the 

contribution of NO and O2 in the wave length  region considered i s  negli- 

gible. The  windows at  1 and above  2 ev are  noticeable in the  table; beyond 

3 ev there i s  a  rapid  increase in  absorption. 
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Table N. Contributions  to Absorption Coefficients at 8000~ 

hv (ev) 

P/Po = 1 

ff 

N2 

0- 

d P 0  = 0.1 

ff 

N2 

0- 

Tot a1 

p/po = 0.01 

ff 

N2 
0- 

NZ 
Tot  a1 

1-1/8 1-5/8 

o -06 -3 '0  . 02-3 

0 . 6 r 3  1. 12-3 

o . o y 3  

o .6y3  1. 2-3 

2-1/8 

0. 04-2 

0.84'2 

0. 28'2 

1.16-2 

0.01-3 

0.46-3 

o . & - ~  

0 . 5 3 ~ ~  

0.02-5 

1.03'~ 

0 . 1 7 ~ ~  

0. 0 3 - ~  

1.25~~ 

2 -5/8 

0. 02-2 

0 04-2 

0 31-2 

0. 31m2 

0 .68'2 

o . o ~ - ~  
0.07'~ 

0. t55-3 

o .64'3 

0.01-5 

o . o ~ - ~  
0.2-5 

4.4-5 

4.7-5 

3 -1/8 

o.0c2 

0.56'~ 

0. 32'2 

2.2-2 

3 . 1-2 

0.30-~ 

o.oY3 
4. 

4 . c 3  

o .01-5 

0.2-? 

34-5 

34 -5 



The concentration of all the absorbing species depends strongly on 

temperature: The N first positive  absorption starts from the electronic 

level A, which has an excitation energy  of 5.7 ev; NO itself  requires 
2 

high temperature for  i t s  formation; and N2 and 0- are  ions whose concen- + 

t ra t ion behaves l ike the electron  concentration,  discussed above in 

See. 4a. Therefore, the  absorption depends strongly on temperature. 

first positive is the most important absorber, and i ts  temperature depend- 
N2 

(- KT ) 5.7 ev 

The concentration of N~ up t o  6000' is nearly independent of density, 

ence (relative  to  the ground s ta te  of N2) is about 

but a t  80Wo it is about proportional t o  p1l2 (per air atom) so that  near 
, .. 

3/2 ,8 
"N2 - 

which is nearly  the same dependence as derived i n  ( 4.4) for  the  free -f ree 

transitions.  In terms of pressure we get 

Table V gives the  absorption  coefficients  for  four temperatures, 

three densities, and -six wave lengths. In the visible (1-1/8 t o  2-5/8 ev) 

the  strong  increase in absorption with temperature i s  evident, a factor 
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w 
Q 

P/Po 

1 

0.1 

0.01 

T 

4,000 

6,000 

8,000 

4,000 

6,000 

8,000 

I.z',OOO 

4,000 

6,000 

8, ooo 
12,000 

Table V. Absorption Coefficients i n  Visible (cm ) 
-1 

7 . 8-7 4 .2-7 4 1.05-7 

4.3-5 ~ . 6 - ~  13 7.5-5 

3 .6'4 6.7-4 12-4 5 .3-4 

6 1.2-2 1.5-2 O K 2  

1.7-8 3.3-8 4 o.90-8 

5 .7-6 1o.T6 4 . 8-6 0.8 -6 

1.0-5 ~ 6 ' ~  2 . 8'5 1.25-~ 

~ 6 ' ~  0. 48'3 1 . 3 0 - ~  0. 7 S 3  

2-5/8 

52& 

~ 6 6 ~  

0. 68"2 

35 -7 
4 . 8'5 
6  .4-4 

0.85'~ 

16 '~ 

2. 8-6 

4.7-5 

0 .68-3 

3 -l/8 

8900 -6 

11-3 

3 1-2 

4x00'~ 

26 -5 

46 -4 

1. 42-2 

goo-8 

25-6 -, 

34-5 
\ 

0.91'~ 



of about 200 from 4000 t o  600o0, about 10 from 6000 t o  &looo except for 

the lowest density, and 10 t o  50 from 8000 t o  12,000°. In most cases, 

the dependence on  wave length is slight  until  the  rapid  increase of 

absorption in  the ultraviolet which sets  in a t  about 2.5 ev f o r  kOOOO, 

3 ev a t  6000 and 8000°, and not a t   a U  at 12,000'. Tne especially  strong 

increase  for 4000 is  due t o  the Schumam-Runge bands, which are  not  very 

sensit ive  to temperature*" see Sec. 4c) .' 
0 

In Sec. 5d we shall need the mean free  path  in @/cm , suitably 
2 

averaged over the  "transparent"  region. From Table V it appears that  a 

reasonable  estimate of th i s  region is  from hv = 1/2 t o  2-3/4 ev. We 

have averaged p/p as  calculated from Table V, with the weighting factor 

3 -u k X b o o o  u e  Y u =  hv (4.9) 

which does not  vary much (from 0.84 to 1.33) between 1-1/8 and 2-5/8 ev. 

The result is given . i n  Table VI. 

*After completion of th i s  paper, I received new absorption  coefficients 
by F . R . Gilmore , cf ref 23. Aside from including the absorption by 
NO2 ( see Sec. ha), Gilmore includes the free-f  ree  absorption in the 
field of neutrals,  ba ed on ref . 18, and also new data on f nmbers  for 
the important bands.2f; The  most important change is a reduction i n  the 
f nmber of the IT2 first positive system from 0.02 t o  0.0028, which w i l l  
substantially reduce the absorption in the visible . Unfortunately, this 
w i l l  further  raise  the  theoretical  radiating temperature ( Sec . 5d) , 
which , i s  already  higher  than observed. 

'Some recent Avco-Everett experiments may indicate that the  free-free 
electron  transitions  in  the  field of the I? atom q e  enhanced in the 
visible  as compared t o  the infrared.  This may compensate t o  some extent 
f o r  the reduction of the N2 first  positive bands (see  footnote above) 
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Table VI. Average Mean Free  Paths (gm/cm ) 2 

8,000 0 105 0.20 0.76 

12,000 I. 82’2 

A fair approximat ion t o  Table V I  i s  

Gilmore’s equation of state can  be approximated near T = 1, p/po = 0.1 

by 

t 

U s i n g  t h i s  i n  (4.10) gives 

c . Ultraviolet 

The absorption in  the  ultraviolet  i s  generally  high  at a l l  tempera- 

tures. A t  lcrw temperatures, the absorption i s  mainly  due t o  the Schumann- 
. .  

Runge bands; a t  higher  temperature (8000°) these  are replaced by NO and 

y ,  and a t  high  temperature (12,000°) by photoelectric  absorption in 0-, 

r 
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N, and 0. The  Schumann-Runge bands start from the  electronic ground state 

of 02, hence are available a t  law T; a t  higher T, the  spectral  region of 

strong  absorption  spreads due to  excitation of vibrational  states; but a t  

s t i l l  higher T, oxygen dissociates and therefore  the bands die out ( a t  

&looo, they  contribute less than lO$ of the  absorption). The photo- 

e lectr ic  absorption in N and 0 requires not  only the presence  of these 

atoms but also their  electronic  excitation, and therefore does not become 

importast until about 10,OOOo. 

JC. 

Table VI1 gives, for  density p = O.lpO, the spectral  regions of 

strong  absorption. In accord with Sec. 3b, we define t h i s  by p > lom3 
(mean free  path less than 10 meters) or  I-L > lom2 (4 1 meter). The 

table shows that  strong  absorption covers a particularly wide spectral 

region at 4000°, shrinking substantially at 6000~. Very strong  absorption, 

p > LOm2 m-', occurs in  quite a l w g e  spectral.  region fo r  T = 4000° but 

shrinks to  practically nothing at 6000~ and t o  nothing a t  8000°. A t  

12,000°, very  strong  absorption  occurs again but is now in the visible. 

The strong  absorption i n  the  ultraviolet  (hv > 3.5 w) means first 

of all that the W is not  emitted t o  large distances and can therefore 

not be observed; e.g., a t  T = 4000 and hv = 3.5 ev, we have 0 

%e should also add the  photoelectric  absorption from excited  states of 
NO, which should be especially  noticeable  at 8000°. 
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The fraction of the Planck s p e c t m  beyond u = 10 is  only about Y$, so 

t h a t   d s s i o n  of these  frequencies i s  negligible. 

Table VII. Ultraviolet Absorption: Spectral Regions { hv in ev) with 
Large  Absorption as a  Function of Temperature for  p = O.lpo 

T I.L > 10-3 LL > m’l 

2,000 4.7 - 7.2 5.5 - 7.2 

3,000 3.9 .. 7.2 4.7 - 7.2 

4,000 3.5 - 7.2 4.6 - 7.2 

6,000 4.0 - 7.1 5.8 - 6.0 

8,000 2.7 - 6.3 None 

12,000 All 2.7 - 3.5 
The ultraviolet  can, hawever, be transported  quite  easily  at 8000~  

and even more eas i ly   a t  12,000° if there is a  temperature  gradient . Such 
a  gradient is always available, whether we have adiabatic  conditions 

(Secs. 3, 5f) or a  strong  cooling wave (Sec.  5d) Therefore,  there w i l l  

be a flow of ultraviolet  radiation  at  the  radiating  temperature,  defined 

in Sec. 5 ,  which w i l l  be shown (Secs. 5d, 5f )  t o  be about 10,OOOo or  

slightly less. To calculate  this flow, we should  determine the tempera- 

ture  gradient from considerations such as Sec. 5d or  5f, and then  insert 

this into the  radiation fluw equation. This is similar t o  (5.3) except 

that only the  ultraviolet  contribution to the flow should be taken into 

account. 
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When this is done in  a case of constant ( frequency-independent ) 

absorption  coefficient, the ultraviolet  transport w i l l  be related  to   the 

visible  radiation  transport as the  respective  intensities i n  the  Planck 

spectrum. This condition seems t o  be near ly   fu l f i l l ed   a t  12,000°. A t  

8000°, the  absorption in the  near  ultraviolet (2.75 t o  4.2 ev) is about 

three  t ines  that in  the  visible;  then the W transport w i l l  be one-third 

of tha t  corresponding t o  the Planck intensity.  Since the radiating 

temperature  near  the second radiation maximum is between 8000 t o  10,OOOo, 

the  actual W transport w i l l  be between one-third and the  full Planck 

value,  relative t o  the  visible  radiation. According t o  (3.36), the W 

contains about 43$ ,of the Planck in tens i ty   a t  8000'; hence t h e   t o t a l  

radiation  transport  at this temperature is about 

of the black body radiation. A t  12,000° we get the fu l l  black body value. 

For  simplicity we have  assumed the full black body radiation in Sec. 5 ,  
i 

even though the W is not  emitted to  large  distances. But t h i s  problem 

could,. and should, be treated more accurately. 

Having discussed the influence of t h e  W on the to ta l   rad ia t ion  flow, 

we nuw examine w h a t  happens t o  the W radiation after it has gone through 

the  "radiating layer, i.e., the  layer which emits the   v i s ib l e   l i gh t   t o  

large  distances. The very  near  ultraviolet, 2.75 t o  3.5 ev, w i U .  be 

partially absorbed a t  4000 t o  6000°, especially if the  layer of matter 

a t   these intermediate  temperatures becomes thick, 0.3 t o  0.5 gm/cm or SO. 

I f  

2 

43 
/ 



The W beyond 3.5 ev w i l l  be strongly absorbed a t  4000'. Thus the  layers 

of a i r   a t  intermediate  temperatures  get  additional  heat which counteracts 

and may even exceed the  adiabatic cooling.  This w i l l  tend t o  increase 

the  thickness of the medium-temperature layer.  This  in turn w i l l  (mod- 

erately) lower the  radiating temperature, but three-dimensional  effects 

act  the  opposite way (Sec. 6 )  . 

a . Theory of Z e l  'dovich et  al .  

Zelsdovich, Kompaneets,  and Raizer lo (quoted as Z )  have considered 

t h e  loss of radiation by hot material when the absorption  coefficient 

for  the  radiation  increases monotonically with temperature. They  have 

shown tha t  i n  this case a cooling wave proceeds into the hot material 

from the  outside.  Tnis is t o  say, the cool  temperature  outside  gradually 

eats i ts  way into the hot material,  while  the  material in the  center 

remains unaffected and merely expands adiabatically. 

For simplicity,  ZelPdovich e t  al. consider a one-dimensional  case. 

They further as,sume that  the  specific  heat i s  constant and express the i r  

theory in  terms of the temperature.  This i s  not  necessary; we shal l  

merely assume that both  the  enthalpy H and the  absorption  coefficient 

for  radiation  are  arbitrary but monotonically  increasing  functions of the 

temperature. Like 2, we shal l  assume, in t h i s  subsection only, that   the 

radiation  transport can be described by  an opacity (Rosseland mean) rather 

than  considering each wave length  separately. 
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The fundamental statement of 2 is that  the cooling wave keeps its 

shape, i.e.,  that  the  enthalpy  (and  other  functions of the temperatme) 

the cooling wave proceeds tmards smaller x, i. e. , inwards. H is, of 

is  given by 

H = H(x + 

Here t is the time, 

Lagrangian velocity 

x is the Lagrangian coordinate, and u is  the 

of the cooling wave. We have written x + ut so that  

course, a decreasiw  function of x + ut. The Lagrangian coordinate is 

best measured in gm/cm and is  defined by 2 

where X is the geometrical  (Eulerian)  coordinate.  For given pressure p, 

the density p is a function of H so that X ( x )  can be calculated from 

( 5 0 2 )  The Lagrangian velocity u, measured i n  gm/cm sec, is a'  constant. 2 

For any given If, we know the temperature T, hence the  opacity K and 

the  radiation flow 

where a is the Stefan-Boltzmann constant, 

2 4 a = 5.7 X lom5 erg/cm sec deg 
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The equation of continuity is  

a H  aJ 
= = - a x  ( 5  *4) 

The energy in radiation  has been neglected, which is justif ied in  

all practical  cases . Using (5.1), (5.4) can be  integrated  over x t o  

give 

u H + J = C  ( 5  * 5 )  

where C is a constant. This is the fundamental result of 2, 

If the  opacity  increases  monotonically w i t h  H, then in the  inter ior  

J w i l l  be  very  nearly  zero, and therefore 

c = uH* (5.6) 

where Ho is the  enthalpy. in the undisturbed  interior, hot region. 

Equation (5.5) becomes 

J = u(H0 - H) (5.7) 

which can be integrated t o  give x(T), since H(T) md K(T,p) are known 

functions. We have put in evidence the f ac t  that K depends on pressure 

in addition t o  T. Over  most of the range of T, K(T) i s  the most rapidly 



varying  (increasing)  function of T and the  variation of H - H is less 

important; therefore, T(x) becomes steeper  as T increases; but when H 

g e t s  very  close t o  II the  most rapidly  varying  function- in (5.8) is 

Ho - H, and H approaches Ho exponentially  as ea for  s m a l l  X. The qual- 

i t a t ive  behavior of T(x) is sham in Fig. 1, in accord with Z. To obtain 

this shape it i s  essential that K(T) increase much faster  than T . 

0 

0' 

3 

*O 

Fig. 1. Temperature distribution  in' Cooling wave. 

On the  outside, we f ina l ly  come t o  a point  xlwhere only one optical 

mean free path is  outside xlo  From this  point we get  black body emission, 

4 J(xl) 3 J1 = aTl ' (5 .9)  

Using this in (5.7) we find 
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J, 
U "  A 

Ho - H(T1) 

To determine u we therefore 

1. Find the temperature T 1 

have t o  proceed as follows: 

a t  which the  opacity K(T1) is such that there 

is one optical mean free  path  outside x i.e., 1' 

For t h i s  purpose we m u s t  haw, of course, the temperature  distribution 

T(x) for  T < T1. 

2. Determine J(Tl) from (5.9) and 

Knaring the  internal enthalpy 

H(T ) from the equation of state. 

'Ho then  gives  u frmn (5.10). Note 
1 

tha t  u is the Lagrangian velocity of the cooling wave. It has the cor- 

rect  dimension. 

To solve problem 1, Z assume that  the  material which has gone through 

the cooling wave w i l l  expand adiabatically. We shall f ind that this is a 

reasonable assumption in most conditions (Sec. 5d) but that   a t   ear ly  times 

(Sec. 5f)  and in  certain  late  stages  other  considerations apply  (Sec. 6b) 

b. Inside  Structure of Fireball, Blocking Layer 

In early stages (Stage B I), just  after  the shock wave is  formed, 

the  isothermal  sphere expands, by radiation diffusion,  into the material 

which has been heated by shock. This process, which w i l l  be treated in 

a  subsequent report, depends on the temperature and temperature  gradient 
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in t h e   i s o t h e m .  sphere. For i t s  occurrence it is important that   the 

opacity  actually  decreases  with  increasing T a t  higher  temperature. Many 

calculations of K(T) in this temperature  region have  been made. Curves 

have  been  compiled, especially by  Gilmore,21  and revised  as more m o r -  

mation  has become available. The most recent and most extensive  calcu- 

lation,  to my howledge, i s  by Stuart and m a t t .  22 

AU. calculations  agree  that T /K(T), which is the important  quantity 

according t o  ( 5.3), has  a pronounced minimum a t  about T ’ = 2, T = 20,000°. 

(The temperature of the minimum increases  slightly  with  increasing den- 

si ty.  ) Molecules are no longer  present  at  these  temperatures, and 

3 

absorption is mainly by bound-free electron  transitions in atoms and 

atomic  ions, with some contribution from broadened atomic l ines (bound- 

bound transitions) whose calculation is the most diff icul t  . Radiation 

transport, then, is most d i f f icu l t  around Tb = 20,00O0, - and temperatures 

around Tb constitute an effective  blocking layer for  radiation. 

Until about 0.5 second, the  central  temperature of a 1-megaton sea 

level explosion is greater  than T according to  the  calculations of b’ 

Brode. Radiation flm can then be considered as taking place  separately 0 

i n  an interior and an exterior region. The S t e r t o r  flaw is determined 

by the  central temperature Tc, and this flaw generally  decreases with ,, 

time  because Tc decreases and with it the  quantity T /K. The exterior 3 

flaw is dominated  by the  cooling wave  and increases  with  time because 

the decrease of density  causes  a  decrease of opacity  for any given T. 

The two flow regions are  separated by a blocking  layer in  which the 
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temperature is aromd Tb, and in which the  temperature  distribution is 

essent ia l ly   that   or iginmy  es tabl ishea by shock  and subsequent adiabatic 

expansion. It is t o  th i s  condition  that the t q e r a h t ? e  dis’t;ribukion 

The mean free  path  for  radiation in  the blocking  layer  (at 18,000°) 

according t o  Gilmore21 is about 

The radius €$., a t  

at sea  level, is 

which t h i s  temperature  occurs, fo r  a 1-megaton explosion 

% = 300 t o  400 meters. Using T - R-”, t h i s  gives 

This is  equivalent t o  black body emission at  the  effective  temperature 

Using the  equation of s t a t e   a t  18,00o0, 



where p is in bars. Equation (5.15) becomes 

Teff ,b = 20,000 

ature is higher  than Teff, 

P 
-0.36 

deserve i ts  name only if the   rad ia thg  temper- 

C. Velocity of Cooling Wave 

The velocity of the cooling wave is given by (5.10), where H i s  0 
the  enthalpy at  the  point  to which the  cooling wave has  proceeded. If 

inside this point  there is a  noticeable flaw of radiation, Jo, (5.10) 

should be generalized t o  

5. - 
U =  Ho - H(T1) 

Usually, the main dependence on the  internal  conditions is  through Ho, f 

the.   effect  of Jo being less important . 
As H increases, i.e., as the wave 

the  velocity of the wave w i l l  decrease. 
0 

the cooling wave penetrates the isothermal 

i n  that  sphere and Jo = 0. We now use the 

the emission of radiation at  the  radiating 

i 

progresses more into  the  interior, 

The limit w i l l  be  reached when 

sphere;  then Ho is 

black body formula 

surface T1, (3.14) 

the  enthalpy 

c 



internal energy 

in   that  sFhere; 

in  the  isothermal  sphere of temperature T and 7 ' = 1.15 

then (5.18) becomes 
C 

Typically, p = 5 ,  TI = 1, Tc = 3; then u = 0.15 gm/cm sec. The expres- 

sion (3.33) includes all the  black body radiation. If only  the  radiation 

actually  emitted t o  large  distances is t o  be  included (which is reasonable 

a t  lower  temperatures, Ti < 0.8) (3.37) should  be used; then u will be 

smaller, 0.1 gm/cm sec  or  less. 

t I 2 

2 

Before the cooling wave reacnes  the  isothermal sphere, Ho is smaller. 

This is  partly compensated  by the  fact   that  Jo > 0. An interesting  inter- 

mediate s ta te  is when the cooling wave has just reached the blocking 

layer. Tnen, using Tb 
t 

J1 - Jb, 
"b = 1% - H1 

= 1.8 and (5.14), 

Clearly  this m a k e s  sense  only if  the subtracted term in  the numerator is  



smaller than the   f i rs t  term, i .e  , when the  pressure is sufficiently 

high. A s  the  pressure  decreases below about 10 bars,  the  blocking  layer 

"opens up" and ceases t o  block t'ne flow of radiation. 

In  the very  beginning, when  t'ne cooling wave just   starts,  t'ne top 

temperature of the  cooling wave, i s  close to  the  radiating tempera- 

ture T "hen (5.18) becomes 
TO' 

1' 

"1 = - (EX 
1 

If we use (5.12) for J, assume d log T/d log R and R t o  be  constant, wd 

use (3.14), tinen 

For further discussion,  see Sec. 5f. 

A s  T increases, u decreases from (5.23) via (5.21) to (5.19). Af'ter 

the cooling wave has penetrated t o   t h e  isothermal sphere, u is apt t o  

increase  again because T in   the denominator of (5.19) w i l l  decrease due 

t o  adiabatic expansion of the  isothermal  sphere. Thus the  velocity u is  

apt t o  be a m i n i m w n  vhen the cooling wave has just reached the  isothermal 

sphere 

C 

The variation of u with time is  not  very  great. Likewise, the shape 

of the cooling wave changes only  slowly  with  time. Tne shape is obtained 
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by integrating (5.8); it depends on time  because K i s  a (rather slowly 

variable)  function of the  pressure, and H i s  a (slow) function of time. 

This justifies approximately the  basic assumption ( 3  .l) of 2: While the 
0 

cooling wave does not preserve i t s  shape exactly, it does so approximately. 

The picture i s  then  that   at  any given time t there  are up t o  five 

regions behind the shock. In  Fig. 2 the temperature i s  plotted schemat- 

ically  against  the  Lerange  coordinate r. Starting from the  center, 

there is  f i r s t   t h e  isothermal  sphere (I  i n  Fig. 2 )  . 

Fig. 2. Schematic temperature  distribution. I, isothermal 
sphere; 111, cooling wave; VI, undisturbed  'air; E, 
shock front 11, IY, and V are expanding adiabat - 
ically. 

This may be followed by a region I1 i n  which the temperature distribu- 

t ion  is  essentially  that  established by adiabatic expansion behind the 



shock, Eq. (3.15) . Next  comes  t'ne cooling wave I11 in whicn t e  temper- 

ature falls more steeply,  according t o  (3.8) . ( A t  l a t e  times,  region I1 

is wiped out and I11 follows immediately upon I . ) Region IV includes 

the  material which has gone through tne cooling wave,  and now cools adi- 

abatically; nence the temperature f a l l s  slowly with r (Sec . 'jd) D is 

the  material  point from whicn the  cooling wave started  originally; region 

V, outside  that  point, i s  also expanding adiabatically,  but from snock 

conditions;  thus it is the  continuation of region 11. Finally  region VI 

is  t h e   a i r  not yet shocked. A s  time goes on, the cooling wave I11 moves 

inward, wiping out region I1 and then  eating  into  region I. Region IV 

accordingly grows toward the  inside,  but i t s  outer end D stays  fixed. 

Region V expands into V I  by shock. 

We note once more that  u i s  the  velocity in Lagrange coordinates, 

and i n  gm/cm sec. The problem is  xnade  somewhat  more complicated by the 2 

three dimensions and the  adiabatic expansion, cf. Sec. 6, but  tne prin- 

cipal  features remain the same 

d. Adiabatic Expansion a f t e r  Cooling. Radiating Temperature 

When a given material element has gone through the cooling wave, it 

is  left  at  the  radiating temperature T1. Thereaf'ter, it w i l l  expand 

adiabatically. Equation (3.25) shows that  f o r  adiabatic expansion 

or, using (3.10) 
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a log I1 - y' - 1 a log p 
at - y '  a t  

A s  long as the snoek is strong, (3.26) holds md therefore 

GiI-more'sl3 Tables 1.1 and 13 shoy that  f o r  T = 5000 to 8000°, and p = 

1 t o 1 0  bars, y '  varies from about, 1.13 t o  1.20, so 

a log 1-1 = - 0.lh t o  - 0.20 

A t  la te  tjm-es, p no longer  decreases as fast as t , so H nlso decreases 

more s lo~ ,~ l -y  but ( 5.25) remains valid. 

-1.2 

We use now the approximate equation of s ta te  ( 3 o l k )  (together with 

B = y 'E) and find 

= P  
s 

w L t h  

= 0.136 t o  0.167 



using (5.25) m d  y = 1.13 t o  1.20. A given material element vllich went 

through the cooling wave at temperature T '  and pressure p T r i l l  now (a t  

pressure p) have the temperature 

I 

m m 

T t  = oe pm 

If w e  assume Tm t o  be independent of time, then  at a given tfme in Cne 

adiabatic  region (Tv, of Fig. 2) 

... 

as defined in  Sec. l;b. Since we  now use material  coordinates i n  gm/cm , 
we should use mean free  paths  in  the same unit. Table V I  and (4.10) md 

(lk.12) give tine required  information. We m i t e  (4.12) in the form 

2 
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2 vitn A = 0.1G q/cm and n = 6.3. 

The opt ical  depth is, according t o  (5.32) and (7.33) 

x1 

1 4  *n 
1 ut Y * P -  1 

0 

(5.34) 

Setting D = 1, y = 1.15, A = 0.10, and n = 6.5 gives 1 

Tnis i s  m explicit  expression f o r  'tne radicting  temperature i n  terms of 

tne  velocity of the cooling wave.  Tae l a t t e r  depends i n  turn on the 

radiating  temperature, increasing with T p 4  so t na t  T ' occurs  altogether 

in tne 10.2 power and t'nus can be determined very  accurately. 
1' 1 

Equation (3.s) can be  further reduced by using  tne  relation between 

pressure and time wIxLch is, for a strong shock, approximately 



where t i s  i n  seconds, p in  bars, a d  Y in  megatons, a d  pl i s  the den- 

s i t y  of tine mbient,  undisturbed aLr. Then (> 3 6 )  becomes 

Tne right hand side of (5.38) gives  the co&plete dependence  on Y and p1 

since,  deriving (5.36), we have only used tne  opacity 'law ( 3 . 3 3 )  and 

the  adisbatic cooling of a i r ,  (5 .32) ,  both of which zre independent of 

the  explosive  yield Y and of t n e  ambient density of t he   a i r .  

iY0r.r insek-t u  from ( 5 .  X,9) ; then we obtain 

(5.39) 

Tnis equation  gives  the  radiating  temperature i n  t e a s  of t ne  central  

temperature T and of the  quantities on the  r ight hand side. The radi-  

a t  in2 temperature is proportional t o  a low power of the  central  temper- 

e t u r e  ( about tne 1/6 ' pover); tnus as the  inside coo1s, tne  radiation 

decreases  (see Sec. 5e f o r  de ta i l s ) .  It also  decreases slowly with time 

C 

due t o   t h e  pressure  factor on tile  right nand side, T 1 - P  For given 

p and T the  radiation  temperature is  higher for lower yield, T ' - Y 

and for  nigher  altitude, Ti - p, 

-0.032 
C' 1 9 

-1./21 . 
For sea  level,  for Y = 1, and f o r  p = 5 bars  (cf.  Sec. >e for this 

choice)  Brode's  calculations  give T' M 3.6; then (5 .39)  yields Ti = 1.08, 
C 

c 
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o r  a radiating  temperature of 10,800°. Tnis i s  a reasonable  result, 

thowh  appreciably  higher  than  the  teqeratures  usually observed. How- 

ever, as we sha l l  show in Secs.  5e md f ,  our calculation  gives  the max- 

imum temperature reached, md is  l i ke ly   t o  be somewhat too  high due t o  

OUT approxinmtions . 
e. Bewinning of S t r o w  Coolim Wave 

2 Equation ( 5  -19) gives  the inward speed of the cooling wave in  @/a 

sec.  Precisely, this i s  the speed a t  which the  point of t e q e r z h r e  T 

(radiating  temperature) moves relative  to  the  material, once fne cooling 
1 

wave i s  fully  established. But even i f  there i s  no cooling wave, i.e., 

if we have simply adiabatic expansion  behind the shock, a point of given 

temperature T1 w i l l  move intrzrd. This  "adiabatic motion'' i s  the minimum 

velocity vlnich the  point T can nave. Therefore, if  tne  adiabatic speed 

is  greater  than (5.19) , it w i l l  be  tne  correct  velocity. O f  course, there 
1 

w i l l  s t i l l  be a. cooling wave because t h i s  i s  needed t o  supply the energy 

for the  radiation; tills 'be&< cooling wave" will be  described in  Sec 5 g .  

But i ts  inward motion, more accurately  the  velocity of its foot  (point C 

i n  Fig. 2 ) ,  w i l l  not  be determined by the requirement of sufficient energy 

flow, (3.19) , but by the  "adiabatic speed" which we shall  derive from 

(3.17) Region I V  of Fig. 2 w i l l  nar be absent, Tnus, outside  the 

cooling wave, at  point C y  region V will begin Mediately,  with  the 

temperature  distribution given by (3.15). 

It i s  therefore important t o  determine the time ta (and pressme p ) a 
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a t  which u of (5  .IS) becomes larger  than t'le adiabatic speed of temper- 

ature T Before th i s  time ta, we 'have a weak cooling wave . We ca l l  

t h i s  Stage C I; afterwards, the cooling wave is strong, and the radiation 

is  essentially described  by the  theory of Sec. 5d (Stage C 11) . To 

determine tine point of separation p between these two stages i s  a refine- 

ment of the  considerations of Sec. 3d. 

1' 

a 

Tne temperature in  the  adiiibatically expanding material behind the 

shock i s  a function of time and position, given by nydrodynamics and 

equation of state. The imrard motion of a point of given  temperature 

rel-ative t o  the  material i s  given by 

tfnere the subscript r means tha t  the partial   derivative must be talcen at 

given material point r, not a t  given geometrical radius R. We have from 

(3.15) 
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assuming the  strong shock relation p - t -1 -2 . The r a t io  (5.40) is tnen 

I-Iere we use  the  relation (3.10) 

P -  -yI y t - 1  e EE 

and find 

(5 945 

where H has been labeled 3 because it refers   to   the  radiat ing tempera- 

ture.  %re we may inser t  ( 3.30) and (3.31-), viz., 

We may then compare the  result   with ( 5  .IS), the velocity of t h e  cooling 

vave (set t ing J = 0) 0 

u =  
Ho - 5. 

The comparison gives 
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Inserting (3.33) f o r  JIJ and changing the  unit of p from  dynes/cm 2 t o  

bars = LO dpes/cm we get 6 2 

Setting  nar p1 = po and C ~ O O S ~ ~ ,  as in Sec. 5d, Tc 1 = 3.6 and T1 r = 1.08 

yields 

p1 = 5.0 bars 

Thus the  critical  pressure is  5 bars, which was tne reason fo r  the choice 

of th i s ,  number a t  t'ne end of Sec. 5d. Tnere it vas shown tha t  5 bars and 

T '  = 3.6 leads t o  Ti = 1.08 so tha t  our numbers are  consistent. 
C 

We had to   re ly  on Brode ' s  solution  to f ind  Tc for a given p; t h i s  

could only be avoided by obtaining an analytic  solution for  the i s o t n e m l  

sphere which w i l l  be discussed i n  a subsequent paper. Apart from t h i s  

our treatment i s  analytical, making use of the  equation of s t a t e  and the 

absorption  characteristics of air. 



pressure is larger  than pa, (5.50) . Then the  radiating  surface i s  i n  

the  adiabatic  region  described  in Sec. 3c. The condition  for i t s  posi- 

tion is, (3.21), t = R/5O. From Brode's curves, the  position of a point 

of temperature T ' near 1 is given  approximately by 

R = 0.78 Y T P 
1/3 r-0.10 -1/4 

This  expression comes purely from the numerical calculation, except thct  

the  correct dependence on yield is inserted. Y is i n  megatons, p in  bars, 

R in kilometers. Equation (5.51) holds from p = 5 t o  100 bars within 

about 5%. The absorption  coefficient is given in  (4.10), which yields 

using t'ne equation of s t a t e  (4.11). Equating t h i s  t o  1/50 of (5.51) 

gives 

Tr408 = 4.5 y -1/3 P -1.20 

Thus the  radiating  temperature  increases as the  pressure decreases. 

b 
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Since p - C, 
-1 02 

9 

entirely due t o  tihe "opening up" of the shock, i.e., the  decrease in  

absorption  with  decreasing  density  (pressure) . 
For given pressure, the radiating  temperature (5.54) is sl ight ly  

higher f o r  smaller  yield, an effect  which has been observed. A factor 

of 1000 i n  yield corresponds t o  a factor 1.6 in  temperature, hence a 

factor 7 i n  radiation  per unit area. The total  radiated' power  (assuming 

black body) a t  given p is proportional t o  

The relatively law power of the  yield is  remarkable i n   t h i s  formula, 

vnich  describes Stage C I. Since the   t o t a l  energy radiated should  be 

approximately proportional t o  Y, the  duration of Stage C I is  then  pro- 

portional  to Yo*6o. The observed time t o   t h e  second radiation maximum 

i s  abotrt proportional t o  Y . O u r  theoretical dependence of T on yield 0.7 1 

i s  therefore sornewnat too strone;. The time dependence of (3.56) i s  quite 

strong, about as t 2 

A s  ve nave snam in  Sec. 5e, Stage C I ends when the pressure  reaches 

5 bars. For t h i s  value of p, and f o r  Y = 1, (7  . S & )  gives T = 0.92. 

Tnis is  sl izhtly  less than the T '  = 1.08 deduced i n  Sec. 5d for the same 

1 

p md Y from the cooling ??me. The discrepancy must be due to a small 



inconsistency  in our apyroximations . 
In  our one-diniensional  tneoqy, tne end of Stage C I  narks -the m a x -  

Snrrm. of radiation,  both  in temperature and t o t a l  emission. In  Stage C I 

because the  material becomes  more transparent. In  Stage C I1 the  reverse 

i s  the case, (5.39), because the  material which has gone through the 

cooling wave  becomes thicker  with time,  (5,.32).  Tnis material provides 

opacity  for  the  visible  l ight from the  fireball;  since it becomes  more 

opaque, the  radiation must now  come from a layer of smaller  absorption 

coefficient, (5.35), and therefore of lower temperature. A s  (5.36) s h a ~ s ,  

the  increase of thickness (t  2n the  denominator) i s  more important than 

the continued  decrease of density  (factor p 1/3 ). Tnese results w i l l  be 

modified in   t he  three-dimensional  theory, Sec. 6. 

k 

The maximum temperature  has been calculated  as T = 0.92 or 1.08, 
1 

from o m  two calculations; it is  clearly  close to 1, i.e., ~ O , O O O ~ .  

This number i s  not too mucn out of l i n e  with  observation  considering 

tnat  we have calculated a maximum. In  fact ,   tne  transit ion from Stage 

C I t o  C I1 cannot be sudden as we have assumed; the cooling wave  must 

begin  gradually, and tnerefore  the temperature peak which we have calcu- 

lated will actually be cut  off  (Fig. 3 ) .  The observable maximum may 

easily be 1000° lower than  our  calculation. 
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f 

CALCULATED 

LOG t 

Fig. 3. The calculated  increase  in  temperature i n  Stage C I, 
and decrease in Stage C I1 (s t ra ight   l ines) ,  and the 
estimated actual  behavior. 

The radius of the  radiating  surface  increases w i t h  time i n  Stage 

C I. Inserting (5 .?4) in to  (5.51) gives 

R - Y  P 
0.34 -0.225 t0.27 ( 5  057) 

In  Stage C 11, Yne surface moves rather  rapidly inward re la t ive   to . the  

material, due t o  the  cooling wave. In  addition, for  sea  level  explosions 

at  least,  the  pressure i s  no longer much above ambient, so that   the  out- 

ward motion of the  material slows d m .  Thus the geometric  radius of the 

radiating  surface no longer  increases much, and soon begins t o  decrease. 

Tnerefore,  the total   radiat ion w i l l  reach i t s  maximum a t   t he  same time 

as, o r  very soon after,  the maximum of the temperature. 



G.  We& Cool-ing Wave 

In Stage C I1 tne  cooling wave dominates the  radiation (Sec. 5d) . 
In Stage C I the  cooling mme also  exists,  because the energy of the 

radiztj-on m u s t  be provided. Hovever, the speed a t  wnich the trave proceeds 

inward is  nov governed by tne  adiabatic expansion, (3 .LO) a I n  order t o  

obtain  the  correct flux of radiation J a t  the  radiating  surface, we 

must therefore use (5.18) i n  reverse: Tine temperature T at   the  inner 

edge of Cne cooling 77ave (point B in Fig. 2) will regulate   i tself   in  such 

a vay that  (5*18) i s  satisfied,  with u  given by (5.lJr5). Using (5.461, 

w e  thus get  the  condition 

1 

0 

or solving  for To and inserting numbers: 

13 
y '  - 0.9 P -3/2 T i 4  ( 5  059) 

PlTeglecting Jo, we f ind  that  Ho increases  rapidly as p decreases. 

We  may inser t  (5.31!-); then  the  right nand side  varies  as p 

Thus  the  cooling wave s t a r t s  very weak and then  rapidly  increases in  

strengtn. Its "head" (point B in  Fig.' 2) is a t  f irst  close t o  i t s  foot 

(point C). As time goes on, it moves  more deeply into t'ne hot  material, 

eating up region I1 of  Fig. 2. The energy which is made available f o r  

-5/2 - t3* 
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radiation is essentially  the  difference H : Tne material drops 

suddenly in  temperature from T t o  T as  the  cooling wave  sweeps over 
0 - 

0 1 

it, and the energy difference i s  se t   f ree  f o r  radiation. 

The term J depends on H on p, and on the temperature  gradient 

i n  the region  inside the cooling wave (region 11). If t h i s  region is 

adiabatic,  the temperature  gradient can be calculated from (3.15). Since 

0 0' 

J1 is also  related t o  the temperature  gradient  in  the  adiabatic  region 

IV, the  ratio J /J tends to  unity  as Ho -.) H1. Thus the left  hand side 

of (7.39) will have a certain m i n i m w n  value.  Tnis seems to   indicate  

that  there is no cooling wave a t  all until the  pressure has fa l len below 

0 1  

a cer ta in   cr i t ical  value. We have not investigated  thi's point in detail .  

It i s  possible  that it i s  simply re la ted   to  tne break-away of the lumi- 

nous front from the shock wave, i. e., the beginning of Stage C . 
Equation (5.99) describes  the weak cooling wave in Stage C I no 

matter what the  distribution of tempe,rature i n  region 11. me  s tage  

comes t o  an end  when H reaches  the maximum possible  value, Hc . There- 

af ter ,   the  wave described by (5.39) becomes inadequate t o  supply the 
0 

radiation energy: Since the  enthalpy  cm no longer  increase,  the speed 

of the cdoling wave has t o  increase. Tnis speed is  tnen given by (5  .l9), 

and Stage C I1 has begun. 



6. EFFECT OF THREE DDENSIOUS 

a. I n i t i a l  Conditions and Assumptions 

The fac t   tna t   the   f i reba l l  i s  spherical causes some deviations from 

the  one-dimensional tiieory of Sec. 5 .  In  this  section we shall discuss 

Stage C 11, tine penetration of the  cooling wave into  the isothermal 

sphere, in   th ree  dimensions. In i t ia l ly ,  we assume tnat  the cooling wme 

has just reached the  isotnermal  sphere; we ca l l   the  corresponding t ine 

t = ta, and the  pressure i s  the  cr i t icd  pressure p a = 5 bars  derived i n  

Sec. 5do Subsequently, the mass of tne  isothermal sphere decreases due 

t o  tine cooling wave. 

We assume that  the  material, tfnich i s  a t  temperature T > Tm = !+OCOo 

a t   t h e   i n i t i a l  time t w i l l  stay in t h i s  temperature  range t'hroughout 

Stage C 11. Tnis i s  reasonable because this  material w i l l  be  heated by 

the ultraviolet  radiation coming from the  inside, because of tne strong 

absorption of a i r  of medium temperature (3000 t o  6 0 0 0 ~ )  for  W (Sec.  4c) 

The W heating i s  expected t o  compensate approximately the cooling due 

t o  adiabatic expansion  of this  material;   tnis i s  confirmed by rough 

estimates of the  heating and cooling. We do not know how tine temperature 

is  distributed  in  the '%arm layer" between the  radiating temperature T 1 

and Yne temperature Tm = 4000'; t n i s  could on ly  be  determined by a detailed 

calculation of the UV radiation flow i n  th i s  region. We assume that  the 

distribution is smooth, as it is  i n  Stage C 1, and that  therefore  the 

thickness of the 'harm layer" in gm/cm i s   d i r ec t ly  proportional t o  the 

a' 

2 

. .  



required mean free  path of visible  lignt  at  the  radiating temperature 

(also  in gm/cm ) which in  turn determines T~ itself. 2 

8 We take  the i n i t i a l  conditions from  Brode, using h i s   e rnes  a t  a 

time when the  inside  pressure is  4.1 bars, t h i s  being closest   to p = 5 

bars of all the curves he nas  published.  This  corresponds t o  a scaled 

(1-megaton) time tc = Oo32> sec. A t  th i s  time,  important  p'hysical guan- 

tit ies  are as given in  Table V I 1 1  ( dimensions scaled t o  1 megaton) o The 

l a s t  column of the  table i s  not  given by  Brode but w i l l  be  explained i n  

Sec. 6c.  In the  table, we have defined a quantity  proportional to   the  

a 

mass, 

0 
J 

where R is measured in hundreds of meters. It is  interesting  that  the mass 

of the warm layer is  much (4.6 times) larger  than  that of the  isothermal 

sphere. Its volwne is  about 2.4 tfmes larger  in Brode 's calculations. 

Table V I I I .  Conditions When Cooling Wave Reaches Isothermal 
Sphere, According t o  Brode 

1 

Isothermal Warm Layer 
Sphere Brode Sec. 6c 

Outer radius, meters 38.5 517 438 

Mean temperature T '  3.0 0.70 



6 .  Sinrinkage of I so tnemal  Sphere 

We denote the 'tmass'' of the  isothermal  sphere, as defined  by (6.1)~ 

by 5, Then this mass w i l l  decrease, due t o   t h e  progress of tne coding 

wave inward, according t o  

d"l 
d t =  - PO Rf 

Note the po 5n the denominator and the absence of the  factor & f l y  both 

due to   the   def in i t ion  (6.1) The density of the isothermal  sphere is  

nearly uniform and vi11 be  denoted by p I n i t i a l  values a t  time tar 

w i l l  be  denoted  by a subscript a. The isothermal sphere expands adia- 

bat ically, hence 

is 

and therefore  at  any time t 

The speed of t he  cooling wave is  given by ( 5  .LO), thus 

5 u =  - Hl 

(6.4) 

where J has been set equal t o  zero because there is  no appreciable flow 0 



of radiation  inside  the sphere. H i s  the enthalpy inside  tne sphere, 0 
which decreases adiabatically 

H is the enthalpy at  the  radiating  surface. It w i l l  be shown i n  See. 6c 

that  the temperature T is nearly  constant  with tlme, so tnat  in good 

approximation 5 and J in (6.5) are constant. We shall also make the 

poorer approximation that  3 Ho. Then (6.5) and (6.6) give 

1 

1 

1 

We define 

x = E -  
t 
a 

. .. 
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Pa f (x )  = - 
P 

and obtain  the simple d i f fe ren t ia l  equation 

ay - - Af(x) l - l / 3 Y  
, dx- 

vnich  yields,  together  witn  the boundary conditions, 

v 

(6.10) 

(6.11) 

1 

The constant A can be  determined from Sec. ?e. Tne condition  there 

i s  

dr u = - p E  a (6.12) 

where p is the  density  outside t'ne cooling wzve. According t o  ( 3  .!&) 

Tnen u s i n g  (5.43) 

R a 
E- a 

(6.14) 
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which is a pure number, and small: The calculation could be improved  by 

not  neglecting 5 compared with H . a 
According t o  (6.11) t'ne f i reba l l  i s  used up at the time x defined 

X 

(6.16) 

r 

This  relation is valid  (granted  the approximations we have made) what- 

ever  the  relation between pressure and time, f ( x )  * This generality is 

useful f o r  sea  level explosions, where p i s  only 5 times ambient pressure: 

The relation between p and t c m  then be taken from a machine calculation 

( o r  observation) . 
a 

For  higher alt i tude,   let  us say h > LO b, pa = 5( p /p )1/3 is 
1 0  

sufficiently above, the ambient pressure, pl/po, so tha t   the  shock is 

s t i l l  strong and we  may use 

f (x )  = x 1.2 

Tnen (6.11) becomes 
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X 
2.2-0.4/y 

y = l - A  - 1  
2.2 - 0*4/y 

From y = 1.18, 

12.2 - x 
11.2 

1-85 
Y =  

and the  isothermal  sphere  disappears fo r  

l/1 . e6 x = 12.2 = 3.811- 2 

( 6  -18) 

(6.20) 

For these  higher  altitudes,  then,  the time when the  isothermal  sphere 

disappears is a fixed  multiple of the time when it is f irst  reached by 

the cooling wave. This multiple depends only on y ,  and  on the  ratio 

Hc/Hl of internal  to  external ent'nalpy a t  time ta. Tne pressure  at  the 

time x is 2 

1/3 
-1.2 

P2 = PaX2 .= 1.0 ($) (6.21) 

For sea  level, f (x)  increases more slovly  (the  pressure  decreases 

more slovly) with time; hence it takes somewhat longer t o  use q the iso- 

tnemal  sphere.  Conversely, t'ne pressure at the time t = t x w i l l  have 

decreased by a smaller  factor from pa. 
2 a a  

For the simple  case of nigher  altitude, we can use (6.19) t o  calcu- 

la te   the  f ract ion of the mass y which w i l l  s t i l l  be in the  isothermal 3 -  



sphere, its radius R /R and other  physical  data. Some  of these  are 

given in Table M. It i s  seen from the  table  that   the mass decreases, 

first fairly uniformly and rapidly (as if  it would go t o  zero a t  x = 2.8), 

then more slowly (because it is proportional t o  y 3 ), while  the radius 

first expands slightly,  then shrinks slowly and a t   the  end very  rapidly. 

1 c’ 

*.. 

The l a t t e r  phenomenon, the  rapid  shrinking of the apparent f ireball ,  may 

not  be observable  because the bomb debris becomes visible and is l a e Q r  

-to be s t i l l  opaque.  But some shrinkage of the  f i rebal l  should  be open . 

t o  observation. 

Table M. Development of Isothermal Sphere and W a r m  Layer 
due t o  Cooling Wave 

x = t/ta 1.0 1.2 1.5 2.0 2 -5 3.0 3.5  3.84 

C. The W a r m  Laver 

We w a n t  t o  assume that  the  outer edge  of the warm layer,  the 4000° 

temperature  level,  stays  fixed i n  tine material (Sec. 6a). We wish t o  

calculate  the thickness of the warm layer i n  gm/m , 2 
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where Re i s  the  outer edge of the  layer. The original mass  of the warm 

layer m i s  much larger  than  that  of the  isothermal  spnere 
W 

A t  a l a t e r  time, t he  mass of the warm layer is then 

(6.24) 

It does not change much. 

Tne tepperature in t'ne warn layer goes from 10,000 t o  l;OOOo, For 

simplicity we assume that  the  density corresponds t o  the average temper- 

ature of 7O0Oo. Then, a t   the   in i t ia l   p ressure  used i n  Table V I 1 1  Y Pa - - 
4.1 bars,  the  density of the warm layer is p = 11 X 

This is much higher t'nan i n  Brode's calculations, Table V I I I :  In   his  
W Po = 14Pa. 

calculations,  the cooling wave has  not  reached tne  isothermal  sphere; 

with our assumptions it has, The difference is due to   the  different  

opacities assumed; it has the consequence that  our warm layer i s  geo- 

metrically much thinner  than  his  (Table VIII, l a s t  column) Subsequently 

the  density  decreases  with  pressure,  not  adiabatically  but  isothermally; 

in accord with Gilmore * s  fornula (3.131, we assume 



with C = 14. 

On this  basis we calculate the outer  radius R of the warm layer 2 

and find 

Using (6.17) we can then  calculate €$/Rae We give t'nis quantity in  the 

second last l ine of Table IX. I n  Yne las t   l ine ,  we nave given the mate- 

rial thickness of the warm layer,  in  relative units, 

L' = p2 - R2 - R1 
'a Ra 

.. . 

. .. 

It is seen from the  table  that  R increases  only sluwly; the  main 2 

change i n  R - R1 a t   l a te r  times is therefore due to   t he  decrease of R 

The material  thickness L' first decreases  very  slightly;  this continues 

about as long as R increases, and i s  due to   the   fac t   tha t  about the same 

mass of warm material  gets  distributed over a larger area.  Later on, L' 

increases while R decreases.  Until x = 2.5 the chaage of L' remains 

less  than lo%, and af ter  x = 2.5 the  calculation is probably  meaningless 

because the bomb debris comes into view. Therefore, we  'may assume L' 

constant, and thus  the  optical mass slbsorption coefficient  (in cm 2 /gm) 

at the  radiating  layer w i l l  also be constant. In  contrast  with  this 

2 I' 
- .  

1 

1 
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result of the three-dimensional  considerations, the one-dimensional for- 
.. 

mda ( 5  -35 yields a  decrease of p/p as t -'. 
Using (5.33), a  constant mass absorption  coefficient  requires 

-1/3n 4 /20  T; - P " P  (6.28) 

Thus in  three dimensions, the temperature  continues t o  increase slowly 

af te r   the  cooling wave reaches the isothermal sphere. If we assume tinat 

times up t o  x = 2.5 in  Table IX are  significant,  tne  pressure  decreases 

by  about a factor of 3 in Stage C 11, and the temperature of the  radiating 

layer  increases by about 513 according t o  (6.28). The radiated power, 

being  proportional t o  R1 T1 , may increase by about 10:'. up t o  x = 2, 

and then  decreases due t o   t h e  shrinkage of the  radiating  surface. 

d 

2 14 

One prediction of this  theory i s  that  the temperature,as  well  as 

the  radiated power. has a ra ther   f la t  second maximum while  the  isothermal 

sphere  radiates 

treatment of J1 

I - 
away i t s  energy. The slaw vwiation of T justif ies  the 

as  constant i n  Sec. 6b . 1 

7. TRANSPARENT FIREBALL ( Stage D) 

After  the  isothermal  sphere  has been eliminated by the cooling wave, 

the f i reba l l  i s  transparent if  we neglect  the  effect of toe bomb debris. 

A t  t h i s  time  the  pressure is given by (6.21), the average  temperature of 

the  'barn"  region is  about 70Oo0, and the corresponding density is about 
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If we assume that  the  radius Ra of the  isothermal  sphere  scales  with 

4 3  
p1 (which may be wrong) the radius of the warm sphere is  now 

where Y is i n  megatons. Therefore,  along  a radius,  the mount of warn 

material is about 

almost independent of ambient a i r  density. 
Taking pb/po = 10 -2 (which corresponds t o  pl/po = 10") and an 

average  temperature of 7000°, Meyerott's tables  give  for the  visible: 

so that  the radius  represents 0.7 optical mean free  path at 1 megaton. 

Tnis i s  nearly  transparent, and t h e  fireball becomes rapidly more trans- 

parent  as it cools dawn by further emission of radiation. The emission 

of radiation is then proportional t o   t he  opacity; for each material 

element, 
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4 dF: = - 4KaT at (7.5) 

where a is the Stefan-Boltzmann cons t a t  and K tne  opacity i n  cm /gm, 
i.e., the absorption  coefficient averaged  over  a PlaJnck spectrum (d is -  

regarding  spectral  regions which are s t i l l  black) . Since K increases 

rapidly  with temperature, the  hottest  region  near the  center w i l l  cool 

2 

fastest, so that tne temperature  tends t o  become  more uniform. 

For the  same reason, the  radiative  coolhg w i l l  effectively  stop  at 

a temperature of about 5000°. A t  t‘nis temperature and p = O.Olpo, it 

takes about 5 seconds t o  cool   the  f i rebal l  by LO$. A t  4000°, this  takes 

about 200 seconds. Gilmore2’ ‘has  calculated curves of cooling times for  

transparent  bodies  at  various  densities  as a function of tine f ina l  temper- 

ature. 

Depending  on the ambient density,  tne  pressure may o r  may not have 

decreased t o  ambient pressure when the temperature  has  decreased t o  ‘OOOo. 

Even i f  it has not, the subsequent adiabatic expansion t r i l l  not lower the 

temperature much further. ( O u r  theory i s  not applicable t o  very lar~ 

ambient densities because there  the  isolation of isotnermal  sphere from 

t’ne outside never takes  place. Probably the  limit of appl icabi l i ty   is  

about pl/po = 10 . Therefore, and because of the small value of y - 1, 

expansion cannot be large.) Therefore, af ter  both  radiation and hydro- 

-2 

.-- 

dynamics have effectively stopped, the  f i rebal l  i s  l e f t   a t  a  temperature 

not much belov 5000°. 

Any furt‘ner  cooling can only be achieved by the   r i se  of the  f i rebal l  
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due t o  i t s  bouyancy,  and the  turbulent mixing associated  with this   r ise .  

Tnis is a slow process,  taking  tens of 'seconds. 

Since tine emission is  now proportional t o   t he  absorption  coefficient, 

the molecular bands w i l l  now appear i n  emission while in  earlier  stages 

they appear i n  absorption.  This  has been observed. 

The debris, at  the  center of tne  f ireball ,  contains  metals and 

therefore is  l ike ly   to  be opaque a t  lower  temperatures.  Therefore the 

debris may well be opaque af te r  all t h e   a i r  has become transparent. The 

debris usualTy has a ragged shape due t o  Taylor- instabil i ty.  Recently, 

Longmire has given a tentative,  quantitative  theory of th i s   ins tab i l i ty  

in debris expansion. Because of i ts  higher  opacity,  the  debris m y  cool 

t o  a lower  temperature than  tne  surrounding air .  
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