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AN ANALYSIS OF THE RAYLEIGH-TAYLOR
PROBLEM OF SUPERPOSED FLUIDS

by

George H. Pimbley, Jr.

ABSTRACT

The problem of the shape of the accelerated
interface between a light and a heavy fluid is
introduced using the velocity potential. It is
then shown that the problem admits steady-state
solutions that form continuous branches bifurcat-
ing from a trivial solution, quite a usual pic-
ture with nonlinear problems. With a fixed
periodicity, these branches of solutions are un-
gtable if rectilinear coordinates are used. How-
ever, 1f one of the variables is allowed to be
arc length along the interface, with a fixed
period in the arc length, there exists a branch
of stable steady-state solutions.

The corresponding interface shapes are
studied, and would seem to be of interest. When
stable they represent possible initial persist-
ing configurations.

It is difficult to state how this work re-
lates to previous work cited in the references
by other authors. The author has attempted an
approach that is more fundamental;-in his opin-
ion, than that of previous workers.

I. INTRODUCTION bu3 - - au. (1.3)
Consider the following ordinary differential
equation with the initial condition This is a very simple nonlinear eigenvalue problem
with eigenvalue parameter a. The trivial solution
u + au + bu3 =0, u(0) = u, (1.1) u = 0 exists, and a bifurcated nontrivial solution
emanating from the bifurcation point a = 0, which
where a and b are real parameters. This problem branches to the left if b > 0 (Fig. 1).
has the following unique solution By inspecting the solution [Eq.(1.2)] of Egs.
(1.1) we see that if a > 0, u(t) + 0 as t + », what-
u(t) = u, /a . (1.2) ever the initia}écondition u,- 3:, however, a < 0,
_buz + (a+bu2)ezat then u(t) -+ i\f%; . But u =+ < is the bifurcated

nontrivial branch of the steady-state problem in Eq.
(1.3). The solution tends to this branch whatever
the initial condition ug # 0, 1f a < 0.

We say that the trivial solution of Eq. (1.3)

If the only thing we want is the solution, we are
done. We proceed further, however, and consider the

steady state of the problem in Eq. (1.1) by assum-
is stable for a > O and unstable for a < 0; the

ing that u_ = 0O,
t bifurcated solution u = 33’:% of Eq. (1.3) is stable
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Fig. 1. Left bifurcating branch with exchange of

stability.
for a < 0. There is an interchange of stabilities
as one passes froma > 0 to a < 0.

Now if b < 0 in Eqs. (1.1), we have a different
state of affairs. Simply putting t + -t and a + -a
produces the rightward bifurcating branch shown in
Fig. 2. The direction of evolution of the solutions
18 reversed. For a < 0, u (t) + © whatever the
initial condition u # 0. For a > 0, u(t) + © yhat-
ever the initial condition ug such that a + buz <0,
whereas u(t) + 0 ags t > » yhatever the initial con-
dition with a + bu: > 0. Thus, the trivial solution
is unstable if a < 0, but stable if a > 0. However,
the right bifurcating solutions of Eq. (1.3), namely
u = i\j?—i- , are unstable .

The important role of the steady-state solu-
tions of Egqs. (1.1) should be appreciated. If they
are stable, the time-evolutionary solutions [Eq.

(1.2)] of Eqs. (l.1) tend to them for various values

b<o
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Fig. 2. Right bifurcating branch with no exchange

of stabilities.

of U whereas if they are unstable they still play
a part in defining regions of radically different
behavior of the solutions., We can expect steady-
state solutions to be important in general time evo-
lutionary problems. Because steady-state solutions
are more easily obtained, there is some justification
in obtaining them first. This is the viewpoint we
adopt here for the Rayleigh-Taylor problem of super-
posed fluids.

With the Rayleigh-Taylor problem, the objects
of interest are the interfaces between horizontally
stratified layers of fluid, where each layer has a
density differing from the density of neighboring
layers. In the most simple case, which we congider,
there are two layers and two fluids of densities Py
and pz.

There also is interest in spherically strati-
fied layers of fluid of differing densities.l For
now we regtrict this treatment to the planar case.
Success with the latter is a necessary prologue to
a consideration of the spherical case. Interest in
the spherical case does influence some choices we
must make in treating the planar case, however.

Our assembly of horizontally stratified layers
is subjected to a uniform acceleration g perpendicu-
lar to the horizontal interfaces of the fluids at
rest. The object of the theory is that of studying
how initially planar interfaces are perturbed when
we apply a uniform acceleration. Experiments have
shown that a plane interface is unstable when the
acceleration is applied in the direction from the
lighter fluid to the heavier fluid, whence the name
"Taylor Instability." 2,3

Actually, however, there may exist interfacial
configurations, or shapes, that are nonplanar and
that may be stable under such an acceleration. There
may be some stability in the problem and it may be a
misnomer to call it "Taylor Instability." The search
for such interfacial shapes does involve the steady-
state problem.

In Sec. II, we derive the form of this Taylor
problem which we shall use in the sequel. In Sec.
I1I, we prove the existence of steady-states and
study the resulting interfacial shapes. The author
believes these steady states to have been hitherto
unknown. In Sec. IV, we derive the perturbation

series for these solutions and prove that the series



converge. In Sec. V, we study stability and see that
with rectilinear coordinates the steady states we
have obtained are unstable, but not unconditionally
so. .

Then, in Sec. VI, we reformulate the problem in
terms of arc length of the linear interface, and
find that with a fixed arc-length period there is a
branch of stable steady-state solutions.

A Summary is included at the end of the report.

II. FORMULATION OF THE PROBLEM

We restrict our considerations to the case of
inviscid, incompressible fluids, and consider all
flows to be irrotational. Also we restrict to the
case of two layers of fluid, one heavy layer of
density pl and one light layer of density pz. in
Fig. 3 we illustrate the situation by placing the
heavy layer on top, the configuration in which one
expects instability of a plane interface if the ap-
plied acceleration (-)g is gravity. The equation
of the interface is given as y = n(x,t). Each
fluid is considered to extend to infinity in the
vertical direction, a mathematical abstraction, em-
ployed in Taylor's worka and by many subsequent
authors.

The situation can be regarded in another sense
(Fig. 4) with the heavy fluid beneath the light
fluid, and the entire assembly given a downward
acceleration -g. It seems more reasonable to many
people to portray the heavy infinite fluid on the
bottom.

Yet another abstraction we make, due to the

physicists Emmons, Chang, and Watson,2 is that of

y /

y = nix,t)

!

y

Heavy fluid over light f1luid under influ-
ence of gravity.

Fig. 3.

Fig. 4. Light fluid over heavy fluid accelerated

downwards,

setting p2 = 0. Thus we consider the light fluid as
being so light, compared with the heavy fluid, that
we can neglect its density. This enables the con-
sideration, with proper interface conditions, of the
hydrodynemics problem only in the heavy fluid.

In Eulerian variables, we have the hydrodynem-

ics equations

[
1
o=

R

u, + uu_ + vu
t X y

=

(2.1)

+
Py g

|
O =

v, +uv +wvv
t x y

in the two-dimensional region occupied by the heavy
fluid.

the incompressible case), p is considered known in

Since 6y =p = const (because we restrict to
the system given in Eqs. (2.1). These are equations
to be solved for horizontal and vertical components
of velocity (u,v). The pressure p in the fluid is
not known, however, so that Eqs. (2.1) have more un-
knowns than equations. To determine fully the flow,
we need the equation of mass conservation which,
under our assumption of incompressibility, assumes

the form
(2.2)

Then Eqs. (2.1) and (2.2) form a closed system for
the unknown quantities u, v, p to be solved with
initial conditions, and yet to be considered bound-

ary conditions.



Our treatment of the hydrodynamics of this prob-
lem closely follows that appearing in Chap. I of
Stoker's book Water Waves.5

We restate that we are considering the inviscid
case. Viscosity does not appear in Egs. (2.1). For
viscous fluids, we should need the full Navier-
Stokes system (Ref. 6, Chap. 6).

As fully explained by Stoker (Ref. 5, Chap. I),
an inviscid fluid, once at rest, flows irrotational-
ly, and we have made the assumption of irrotational
flow.

field vanishes throughout the fluid.

In three dimensions, the curl of the velocity
Our two-dimen-

sional analog of this is

(2.3)

which, together with Eq. (2.2) comprises the famil-
iar Cauchy-Riemann system. Then we are enabled to

define a velocity potential @(x,y,t) by the line

integral
A,y
¢(x,y,t) = f [“(ﬁ’?’t)dﬁ + V(ﬁ’?’t)d?]’ (2.4)
*0*Yo

which, by virtue of Eq. (2.3) and Green's Theorem
(Ref. 7, p. 252) in the plane, is independent of the
path of integration. By taking path segments par-
allel to the coordinate axes, one can become con-
vinced that

u = —¢x, and v = —¢y, (2.5)
i.e., (u,v) = -grad #. When Eqs. (2.5) are intro-
duced into Eq. (2.2), we obtain

6 +¢ =0

o vy (2.6)

Thus the velocity potential is a harmonic function
interior to the fluid flow domain.

Further consequences stem from the irrotational
Making use of Eqs. (2.1),
(2.3), and (2.5), and the fact that p = const, we

character of the flow.
see that

—grad¢t + % grad(u2 + v2) + grad;g = grad(gy),

3

3
grad = 3%’ 3y )

where of courge we use the differential operator
S A first integral of this latter

expression is Bernoulli's Law

9, + 307+ v + B gy =), 2.7
where C(t) is an arbitrary function of t that can be
taken as C(t) = O with no.loss of generality as is
geen below.

We had stated that the basic hydrodynamic equa-
tions [Eqs. (2.1) and (2.2)] were to be solved for u,
v, and p relative to initial conditions and yet to
be derived boundary conditions. We now see that we
are in a position to replace this basic problem with
that of solving Laplace's equation [Eq. (2.6)] for
the velocity potential @, finding the velocities
(u,v) from Eqs. (2.5), and using Bernoulli's Law
[Eq. (2.7)] to get the pressure p. Of course we
have yet to state what disposition is to be made
with the initial and boundary conditions.

In Eq. (2.7) we can take C(t) = O because we
are interested in the pressure gradient; it is the
latter which enters into Eqs. (2.1). The choice of
Cc(t) does not affect the pressure gradient or the
fluid flow.

Consider a boundary surface for the fluid, ex-
pressed by the equation &(x,y;t) = O. Taking the

total derivative with respect to t, we get

4¢ = uEx + vEy + Et = 0,

at ' (2.8)

which holds on the bounding surface. Now (Ex,ﬁy)
are the components of the vector normal to the sur-

face. Taking into account Eqs. (2.5), we get

30 uEx + VEY

an
L+ el

= —vn,(2.9)

3
+ t
L+ El

where %; , as usual, means differentiation along the
normal to the surface, and Vi denotes the common
velocity of fluid and boundary surface in the direc-
tion. normal to the surface.

In the case of a fixed boundary, this gives
the boundary condition

3., (2.10)

on the surface.




Most important for our problem is the case of a
free surface such as occurs in Figs. 3 or 4 if we
congsider the density of the light fluid to vanish:
p2 = 0. This is a surface where the pressure p is
prescribed, but the form of the surface is not speci-
fied a priori. If we say that

y = n(x,t) (2.11)
i1s the form of the free surface, then its equation
is written & = y - n(x,t) = 0, and we see from Eq.
(2.8) and Eqs. (2.5) that

e.n. - ¢y -n =0 (2.12)

on the surface. Because the pressure p is prescrib-
ed on the free surface, we must also have, from
Bernoulli's Law [Eq. (2.7)], where we take C(t) = O,

(2.13)

—on — 1 42 2y L P2
g -0 +5 @B +0) +2=0

on the surface.

If we agsume, as we do in this Taylor-Rayleigh
problem, that the pressure on the free surface is
directly proportional to the curvature K of the
surface, the constant of proportionality being T,

the surface tension, then Eq. (2.13) is written

1,2, 2 _T n _
-gn - ¢t + E(mx + ¢y) =35 xx2 ; y = n(x,t) (2.14)
(l+nx)2

on the surface.

Equations (2.6), (2.12), and (2.14), together
with the vanishing of the velocities as y + - » in
Figs. 3 or 4, comprise a subgtitute initial value
problem for the problem consisting of Eqs. (2.1) and
(2.2).

by Emmons, Chang, and Watson2 and later by Kiang.8

This is the form of the problem considered

Moreover, it is the specialization of the equations
of Birkhoff9 to the case where the smaller density
is neglected.

Given initial conditions $#(x,y,0) harmonic, and
n(x,0) the initial value problem is thus specified.
As with most initial value problems, however, fur-
ther boundary conditions must be posed if we wish to

restrict the spatial domain.

With reference to the problem of the stability
of the interfaces between spherically stratified
layers of fluid of differing densities, where all
phenomena are periodic in the polar and azimuthal
coordinate variables, it is of interest in our
planar problem to consider the case where @$(x,y,t)
and n(x,t) are periodic in the variable x with
given base period A.

It might be desired to consider interface sta-
bility problems for stratified horizontal layers of
fluid in a tank of finite dimensions. Thus we must
devigse boundary conditions at a fixed wall. Equa-
tion (2.10) gives the proper boundary condition for
the velocity potential @#. Posing a condition at a
rigid wall for n(x,t) requires the presence of vis-
cosity in the problem, however. Thus with our in-
viscid assumption, we are prevented apparently from
considering interface problems in finite tanks.

The author has considered boundary conditions
of the form %% + an = 0 on rigid walls, but with
little physical justification in the inviscid case.
It will turn out that the periodic condition upon

n(x,t) is equivalent to having the condition %% 0

on vertical walls separated by a distance A.

III. BRANCHES OF STEADY-STATE SOLUTIONS
Let us put down in orderly fashion the initial-

boundary value problem derived in the previous

section,
D.E.: ¢xx + ¢yy =0, y<n(x,t) (3.1)
~
n-nd. + ¢y =0, y =n(x,t)
1,2, 2 T Mxx
b, - 5@, +0) +egn+t>——=0,
x y p 2.3
(14n )2
y = n(x,t)

BC's J ¢x,¢y +0asy > -
B(x + Ay,t) = B(x,y,t)
wx(x + /\,Y,t) = ¢x(x’y’t)

n(x + A,t) = n(x,t)

Ln (x+ A,t) =n_(x,t)




I.C.'s @(x,y,0) given harmonic

n(x,0) given

p= pl = density of heavy fluid

T = surface tension

-g = applied acceleration
See Fig. 5.

Because time does not occur explicity in Egs.

3.1, the periodicity behavior we seek in the solu-
tions can be found by posing thé following two-point
mixed boundary conditions.

8(0,y,t) = B(A,y,t),
8.0,y,t) =@ (A,y,t),
n(o,t) = n(A,t),

and

nx(O,t) = nx(l\,t).

We have here an unusual initial value problem.
Boundary conditions are imposed along the locus
y = n(x,t), which is unknown until the problem is
solved.

It is, however, possible to obtain some pre-
liminary information useful in solving the steady-
state case without knowing the form of y = n(x,t).
We ask: Does the initial value problem in Eq. (3.1)
have any steady-state solutions, i.e., solutions
such that all time derivatives vanish? If so, the
time-dependent problem [Eqs. (3.1)] will have solu-
tions tending to these steady-state solutions pro-
vided they are stable in some sense. There will be
time-dependent solutions tending away from the
steady-state solutions if they are at all unstable.

Thus unstable steady-state solutions can be useful

Fig. 5. Physical arrangement for problem described
by Egqs. (3.1).

in classifying the initial data.

In this report, therefore, we consider mainly
the problem [Eqs. (3.1)] with vanishing time deriva-
tives.

‘Restricting to this steady-state case, we prove
a result, obtained by K. Gustavson and J. Wolkowi-
sky at the Los Alamos Scientific Laboratory in 1971,
to the effect that the velocity potential @(x,y) =
const.
Theorem 1: In Eqs. (3.1), let ¢t =n, = 0. Then

#(x,y) = const.

Proof: The interface equation y = n(x) is repre-
sented in vector form as (x,n(x)), which has a
parameterization with respect to x. We refer to
Fig. 6 where the interface curve and the lines
y =0 and y = A form the boundary 3D of the flow
region D. The tangent to the interface curve is
the vector (l,nx(x)) again parameterized with x,
while the outward-going normal (out of the nontriv-
ial fluid) is then given by (—nx(x),l). Hence
Qg = —nxwx + ¢y = 0 along the interface curve by
gRe first interface condition [cf Egqs. (3.1)].
Using Green’s half-formula (Ref. 10, p.23),

we can write

/]grad 8| %da = !wa—j,"—ds- sz(bdA
D D 3

n D
L)
¢ — ds + [@dlgrad 9]-(0,-1)ds * ¢¢xds =0,
an " "
nter- top sides
ace

Fig. 6. Illustration in proof of Theorem 1,




since V2¢ =0 in D, ﬁg = 0 on the interface, grad
¢ = ¢y +0on a hori%gntal line truncating D, which
is moved to —® ( and which is designated "top"), and
by periodicity, [cf Eqs. (3.1)]. Thus grad § = 0 in
D, and #(x,y) = const in D. This proves the theorem.

Of course @#(x,y) = const implies that steady
states of Eqs. (3.1) will be quiescent states, that
is, the fluid does not move in the flow region. This
is natural because we have assumed the flow to be
irrotational.

The two-dimensional problem in the steady-state
case now reduces to a boundary value problem for a
nonlinear ordinary differential equation (see Eqs.

(3.1) with n. = ¢t = 0).

n(0) = n(A), and n_(0) =n_(A). (3.2)

This problem results from the second interface
condition, namely Bernoulli's law, and can be seen
to involve Euler's differential equation for the

buckled beamll’12

in a new setting (as was pointed
out by Dr. Norman Bazley).

One way to study a two-point boundary value

problem is to employ a "shooting method." Let us
put the differential equation in the form
Nx 2
——-——2—_%4' wn-=2o0, w =J,EE (3.3)
(1+n)

and consider the initial value problem: n(0), nx(O)
given.

To get a first integral, we multiply the dif-
ferential equation through by N, «

n_n
X XX 2 _
———23+wnnx—0,

(n) 2

whence by quadrature we have

(3.4)

Fig. 7.

where C is an arbitrary constant. Equation (3.4)
describes integral curves in the n, N, phase plane.
We portray these curves for different values of the
constant C in Fig. 7. Note that curves (d) and (e)
are symmetrically divided and are drawn as solid
lines. Drawn as dotted curves are the phase plane
characteristics for the differential equation
- ——Efg—y +w'n = o,

(10D ?

(3.5)

which will also be useful.
In each case in Fig. 7, the maximum of the
solution is giveh on the horizontal axis at the

right extremity. We have

nx? /é?‘l
/ 2 (1+€)
w
o ”
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(e)

Phase plane diagrams illustrating solutions
of Eq. (3.4).



n, = max n(x = f%(1+C). (3.6)
0<x <A w
We fix the phase of the interface function by using
n(0) = n, and nx(O) = 0 as initial conditions with
Eq. (3.3). Evolution of the curves in Fig. 7 is
clockwise in each case.

In Eq. (3.6) we can solve for C, and define a

new number h,

C=-1+ i w2n2 = -1 + 2h,

5 wng 0<hc<1.

Next we compute the period or x-spread (or

wavelength) of one cycle in the phase plane for the

integral curve. From Eq. (3.4) we can write

whence

Mx
)
0 n
/2(IOC)
\Q w?
- [l -1
c
-1<C <0
(a)
v ) SR
AN
° h g
" é}_l = Tt .‘Qd.
\QQQ» l x,
\\
N
‘\
v
' 0<cC<l

(b)

Fig. 8. Tllustration helpful in period computation:

N 2.2

“‘fO%-(n -n§)+l}dn
0

> 2
\/—[“2-’—(n2-n§)+l]

[




2]dy

2

with y = .
o
w2 2
1
~ b
= hno

put y = sin 8

o 2

e
1 - y®) - =2 (19D

with dy = cos 6 d6
z 2
2|11 - cos ©|cosede 2
’ = i w
\ﬂseo-iwncoso = % (C + 1)
n
L2 [1-2hcos0la0 K
= = — £(h) 0<h<%
w w ’
0 ‘6 2

J2n [on cos20-1]

dae
J{-h c0320

a9, ¥ <n <1

cos™l L
= _ b
T w
0
n
2
. _l_t_/ . [1-2h cos®0]
W
Jl=h Cos°0
cos™t

=-4 4
5 fl(h) +o fz(h),

Note that for 0 < h < 1

2

2°?

2

Llenen, (3.7)

f(h) € ¥, while for
1
5 <h<1, fl(h) € 4, and fz(h) € ¥. Of course

1
in 3 <h<1, ft) = —fl(h) + fz(h). Thus, over
0 <h < 1we have f(h) € + (see Fig. 9).

We wish to match periods.

We seek solutions

of the boundary value problem [Eqs. (3.2)] of

periods respectively

A
A’ _2"

A
—3' s etc.

27

|
|
|
' |
, i h
|
|
|

Fig. 9. 1Illustration suggesting shape of the
function f(h).

Thus we wish to solve the equation

3

A
- £(h)

for h, putting m =1, 2, 3, ... . This is done

graphically by noting intersections of wA with

4mf (h) (see Fig. 10).

4mt
)

o

|
|
|
|
l
h -*
|
|
|
|

Fig. 10. Intersections yielding solutions of the
boundary value problem in Egs. (3.2).

The resulting hi = % (Ci + 1) values are then

used in the initial data
) = - l‘hi - 2(C+1) ) =
n =N, w2 w2 » My

These initial data are then used with Eq. (3.3) to
yield branches of solutions of the boundary value

problem [Eqs. (3.2)].



The solution branches appear as suggested in

Fig. 11, where we plot the applied acceleration g

o
r etc

o 9% 1) Q3 stc ¢

Fig. 11. Bifurcation of solutions of problem in
Eqs, (3.2) and dependence of their norma
upon the paremeter g.

against the sup norm no =5 fégfi,ﬂ n(x) of the
solution. They form continuous loci in a function
space as g varies and thus as w = %2~varies in
Fig. 10, and as the intersections vary in Fig. 10.
The nontrivial solutions bifurcate from the trivial
solution n(x) = 0 at the g values (primary bifurca-

‘tion points).

2
T 2mm
gm-;(ﬁ%) m=1, 2,3, «u. .

E
Since n, o f?ifﬁ A n(x) = w , and since
for all intersections in Fig. 10, hi < 1, we have

no + ®© a8 w*+ 0, or as g * 0. Thus every branch
of solutions becomes infinite in norm as g + O,
g > 0.

The phase plane curves labeled (e) in Fig. 7,
defined for h > 1, result in loci of solutions for
W < 0. We may treat them later for completeness.

It is of interest to investigate the functions
that make up these branches of solutions of the
steady-state problem with a view to their shape in
n as a function of x € [0,A]. We can do this by
examining the curves of Fig. 7.

For -1 < C< 0, or 0 <h < %, Fig. 7b applies.
This oy%} phase plane characteristic pertains to
values of w that yield hi values with 0 < hi < % in
Fig. 10.
the first branch, is

s ot
P A g < p\ A >

The corresponding range of g values, for

10

where

ST

1-2h c0529

0 V 1-h c0529

is the function plotted in Fig. 9.

4E(h) = 4 de > 0

In this range the
function near g = 2 is almost proportional to
cos %E x, differing from it by what will be seen to
be the higher terms of a trigonometric series (see
Fig. 12a).

When

2
T [4£(9)
g'B( A )<31’

it is seen from Fig. 7c that zeros occur with infi-

nite slope (see Fig. 12b).

2
g <l <4f(%)) ’

the phase plane characteristic that pertains is Fig.

For

7d. Herethe inner part of the phase plane cycle 1is
not actually a solution of Eq. (3.3), but rather of
Eq. (3.5). Equation (3.5) would be the differential
equation derived from Eqs. (3.1) if Bernoulli's Law,
the second interface condition, possessed a curva-
ture term in which the root carries the minus sign.

Such is the case when the arc length

o

0

l+nx dx

of the curve y = n(x) evolves in a direction oppo-
site to that of x (Ref. 13, pp. 207-209). The
result is shown in Fig. 12¢, and the function n(x)
is double valued in places.

It should be possible to compute the value of
g < % ﬁfﬁﬁl ’ where the bubble pinches off (see
Fig. 12d). ith reference to Figs. 12d, 7d, and the
functions fz(h) and fl(h) defined by Eq. (3.7) and
which' represent, respectively, the x-length in
which n(x) 1is governed by Eq. (3.3) and the negative
x-length governed by Eq. (3.5) in a quarter cycle,
it seems clear that such a g value should give us an
h-intercept in Fig. 10 (lower curve), which is a
solution of the equation fz(h) = Zfl(h). Because in
the interval % < h < 1, fl(h) € 4+ 1s positive with

lim f(h) = © and f(%) = 0, whereas f_(h) € ¢+ is
h¥1 2




7%

7,

N

- X

<

Fig. 12.

N

n

Illustrations suggesting interface shapes along the first

branch of bifurcated solutions, as g decreases.

positive and bounded, the equation fz(h) = Zfl(h) is

uniquely solvable for an h-value in the interval.

If we let h* be this value, then the pinch-off occurs

at

* T [4f (h* 2
3

For g < g* the branch solutions have no evi-
dent meaning, the functions being multiple valued
wherever defined and are even defined outside of
the interval [0,A]. They may indicate a rising
bubble however.

If any interface forms were to correspond to
Fig. 7e, they must appear as in Fig. 13 with points
of complete discontinuity. This would be for w < O,

or g imaginary and could hardly be physical.

Theorem 2:

We summarize Sec. III as follows:

The steady-state problem of Superposed
Flow under inviscid, incompressible, irrotational
conditions, and with periodic boundary conditions,
and under the assumption that one density can be
neglected, (i.e., Eqs. (3.1) where we set ﬂt = ne =
0) reduces to Eqs. (3.2) for the interface shape

alone. There exists a sequence {gm}, m=1, 2, 3,

2
of primary bifurcation points, where &y = %Qz%ﬂé '
A being the assumed base period. Equations (3.2

have the trivial solution n = O whatever the value
of the acceleration g. At each bifurcation point
8y 4 continuous branch of nontrivial solutions

appears, bifurcating to the left. These branches
represent interface shapes for given values of g.

The evolution of these shapes is portrayed in Fi. 12.

11
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n

Fig. 13. Hypothetical interface corresponding

phase diagram in Fig. 7c.

IV. BRANCHES OF SOLUTIONS BY PERTURBATION

Mainly because we shall need perturbation
series solutions in our stability analyses, let us
undertake now to find perturbation solutions of the
boundary value problem [Eqs. (3.2)].

With a yet-to-be-determined parameter €, we
formally substitute the following series into Egs.
(3.2)

n(x) = snl(x) + sznz(x) + e3n3(x) + ee (4.1a)

and

2 3
g = gm + glms + gzms + g3ms + i

(4.1b)
Inserting the series into the differential
equation, equating the coefficients of the powers of
€ to zero, and attaching the boundary conditions at
each step we get the following succession of linear

problems, remembering that we fix the phase, i.e.,
n) =, <m§§§ A NG

Also, we employ the repre-
P
a+n) 1

sentation

_ 357 6
246 Ny Fee o

A. Sequence of Linear Perturbation Problems Solved

First=-Order Problem

12

Bmp
N xx +'—f— n= 0,

n,(0) = n,(A), and n,_(0) = nlx(A). (4.2)
T 2
This problem has the solution AV E nl(x)

=V f cos 2%2 x, where the normalized eigenfunction
nl(x) is unique.

We assume snl(x), yielded in the first-order
problem, to comprise the entire component of the
expansion [Eq. (4.la)] in the linear eigenspace Mm
associated with 8o That is, i1f we consider the
problem [Eqs. (4.2)] in the Hilbert Space L2(O,A)
(Ref. 14, pp. 57-73), the one-dimensional linear
eigenspace MmC L2(O,A) is spanned by the unique nor-
malized eigenfunction nl(x). Moreover, we have the
decomposition L2(O,A) = Mm @ Mm’ where ® indicates
the direct sum (Ref. 14, p. 183) and where ffr the
situation in Eqs. (4.2) and in the sequel, Mﬁ coin-
cides with the range of the operator (*) + EEE .
with the given boundary conditions. Then the Eemain—
ing terms in fq. (4.1a), after the first, are assum-
ed to be in Mm. There is no loss of generality in
making these assumptions.

Second-Order Problem

g P
i
Doxx T T M2 = Bip T M)
n,(0) = n,(A), and n, (©) =n, (A).  (4.3)
1

Since nl(x) € Mm’ the eigenspace, it is not in Mm
which is the range of the operator on the left in
Eq. (4.3).

therefore, fnless Bip 0.

No solution of Eq. (4.2) can exist,
Moreover, since we assume
that n, € Mm, we must infer that nz(x) = 0. We
refer the reader to the Fredholm alternative theoren
(Ref. 14, p. 161), which holds.in Eq. (4.3) and in
the sequel because these linear boundary value prob-
lems are readily converted into Fredholm integral
equations of the second kind.

Third-Order Problem

8P

o ey R + 3,2
n3xx + T n3 & T nl(x) 2 nlx(x)nlxx(x)




Ny(0) = ny(A), and ng (0) = ng (A). (4.4)

Again, we want the expression on the right in
Eqs. (4.4) to be in the range of the operator on
the left with boundary conditions. This is true

only if

. _31fzm) 2
&on 8p\ A A

which leaves the term on the right proportional to
cos E%E X. Thfn the only solution of Eqs. (4.4) in

the subspace Mm is
3

Gy = 3 (2)F (2mrY o bum
N3{x) = & \& R ) c°s T} *

Four th-Order Problem

8P
'm _ P 3 2
M ¥ 7T = B3n TN~ 8 T N2+ 3 Mo
+ 3nlanxnlxx
N, = n, (M, n, © =n, (®). @.5)

Because nz(x) = 0, we see that B3 = 0 is nec-
essary in order that the right side be in Mo rather
than Mm. lConsequently, na(x) = 0 is the only solu-
tion in M .

m
We have thus generated fourth-order perturba-

tion solutions

n(x) =‘/_7\T-scos?%ﬂx
3 _% 2
- %% .<%-) <—237\£) cos &‘Tﬂ x + O(Es),
and

4
2%+ oeh. 4.6

09
|
o3
Py
=5
N”
N
|
o{w
o3
oS
:4;
~

The expansions in Eqs. (4.6) represent the m'th
branch of eigenfunctions of Eqs. (3.2) as far as
they converge.

It is seen that the expansion paremeter € is
simply the norm of the projection of n(x) on Mm.
As such, the expansion parameter varies from branch

to branch.

B. Proof of Convergence of the Perturbation Series

Let us rewrite Eqs. (3.2) as follows.

8P _ _ 1
nxxan_nxx{l ( 2%}

1+nx)

3 2 35 4 357 6
= nxx {E.nx T 2% nx + 2:46 "x "'} ’

In,l <1, n(0) = n(A), and n_(0) = n (A), (4.7)

and set
nix,e) = snl(x) + eav(x,s)

ge) = g, + €'(e), 4.8)

where we recall the form arrived at in Eqs,,(4.6).
2mT T 2m
A €os —p— % and -2 B- e K We

also recall that snl(x) comprises the orthogonal
projection of n(x,e) € L (O A) into M . and that we

therefore seek V(x,e) € W .

Here nl(x) =

Here Mm was of course

the linear eigenspace spanned by nl(x) = % cos
1
Z%_ X, and M L the orthogonal complement, coincides

with the range of the operator [cf discussion below
Eqs. (4.2)].
Substituting Eqs. (4.8) into Eq. (4.7), we

obtain og
_my=_2 _e2p
vxx + T v T fnl €T £v

1 2 _
+ :2- (nl + € V)xx {l

V(0) = V(A), and V_(0)

1
[l+€2(nl+€2V)if% }’
= Vx(A), (4.9)

as a boundary value problem for the function V(x,€).
Equations (4.9) have a form that suggests the fol-
lowing sequence of iterative boundary value problems

as a means of solution.

Pg
o+l m ntl _ pontl 2 p
VotV FEon - e Rt

1 2.n 1
+ = V) 1
e2 m]..{"E xx{ {l+€ (n +EV) ]q'}

n+l 2p n
£ nl € T an

[
1
1o

13



2 n 3 2,n,2
+(nl+sv)xx)2(nl+sv)x

2 3¢5 20,4
- € m(nl+sv)x+... ‘,
vy = v ), and V¥ (0

- v:‘“l(/\) , (4.10)

n
where V', £® are the n'th iterates, and the process

is started with v° = 0, £° = 0.

At each step,

existence of a solution requires that the right-

handlaide be in Mm, and we seek the solution Vn+

in M .
m 1

to the limit function V(x,s)st, which solves the

problem of Eqs. (4.9), and which, substituted into

1

We wish to show that this process converges

Eqs. (4.8), provides the solution of Egs. (4.7).
Each iterate in Eq. (4.10) is given in terms
of the previous iterate by the mapping
{u,e} = TE{V,f}, (4.11)
1
where u is given as the solution, unique in Mm’ of

the problem

Pg
ki R ] _e2 P
u + T U Te nl € T fv

2
+n e v)xx;% (n, + e’n)?

2 3-5 2,4
—e g (np eV, + ...‘ ,

u(0) = u(A), and ux(O) = ux(A), (4.12)
and e(e) is determined from the condition for the
existencelof a solution u of Eqs. (4.12) for the
given VeM and f(e)

right side of Eqs. (4.12) T cos 2%3 x) =0,

using the inner product notation for L2(O,A). Thus,
2
e(e) = -e"£(e)(V,n,)
T 2 3 2.,,2
+3 ([nl+sv]xx{—2- Iy + vy
23 (4.13)

k) 2.4
e g Ing eVl o+ }, n; >,
where, of course, n,(x) n‘}% cos %x.

The mapping Ts given in Eqs. (4.11) through
(4.13) carries the space ﬁz of couples

14

g = [{v,£}|v e c*(0,A), £ € R]

into itself. Here C2(O,A) denotes the space of
twice ‘continuously differentiable functions defined
on the closed interval [0,A] with the norm

||V||2 = o B8%c p [vexy| + o0 28¢5 ]V&(x)]
* o p [Vl
I+ I+ I

and R denotes the real numbers. We define the fol-

lowing norm for 52.

v, = Nlvil, + Ig] (4.14)

Let us define the "improper" Green's function

G(x,£) satisfying the problem

g P
Gxx + -%— G = - 6(x-£) + % cos 2%1 x cos 3%1 £,

6(0,£) = G(A,8), G, (0,8) = G (A,8),

which can be expressed as follows,

2pn 2pm
®@ cos X cos £
cex,) =2 5 —2 i

p=0 {2pm 2_ 2mT 2
pm\ &) A

Then Eqs. (4.12) can be written in terms of an

1
integral operator in Mm .

A
u(x) -f G(x,&) {- -,% en, + e % fv
0

oy + et 3y + €2

233 (4.15)

- 233 () + n) + e,
The kernel G(x,£) is piecewise twice differentiable.

The iterations in Eqs. (4.10), defined in terms
of the mapping for Eq. (4.11), converge provided the
mapping of Eq. (4.11) is contracting on some set.
Below we give such a set.

Let 6, Ex, and Exx be, respectively, the norms
in L2(O,A) of the linear integral operators gener-
ated, respectively, by the kernels G(x,§), Gx(x,i),



and G (x,g). Then, let G = 6 + 6 + 6 .

xx X o XX

Let there be given a ball SR C 2" with radius
R such that

- 3, T 4 5
R > ” n1”2+ 6[G”n1”2+ E“nlllz +”n1“2]§
that is
Sg = [{u,e} € GZI Il {u,e}]]| < R].

After much calculation it turns out that there
exists an € <Y - % + kq¢/1 + —5 such that for
0 < Is] < €os Ts{u,e} maps SRRinto itself; that is,
0< |e] < €, and {u,e} e sp = Ts{" e, e s,
Again, there exists an sl<v—lz + lz‘,l + =5
such that for 0 < |g| < €1» Ts{u,e} is contra%ting
Sgs that 15 0 <|e] < €, and {ul,el} € Sp» {uz,ez} [
SR implies that

”ITE(ul’el) = Ts(uz’ez)“lf_elll{ul’el} = {uz’ez}I“’

where 6 is some number with O < 6 < 1, independent
of € for 0 <|e|<e,.

The above facts can be shown by lengthy but
quite standard procedures. We can use the smallest
of €y €+

Then we have the estimate

| G2, &P - (u®,e™H ]|

p
<3 I {un+q’ ey L {urx*q-l, en+q-l} “I
q=1

k=

< O” ‘ {un+q-l’ en+q-l} - {un-i'q-Z’ en+q_-2} |”

1

0

< T Y0263 - el )
Q=1
-0 a5 p ~o, (4.16)
which is the Cauchy criterion for convergence of the
iterative sequence {un,en}. Hence by completeness
there exists a limit pair {u*,e*} which, by conti-
nuity, provides a solution of Eqs. (4.9) unique in
the neighborhood of the origin {V,f} = {0,0} pro-
vided by the ball SR’ and valid for 0 < ]EI < €,e
A solution of Egs. (4.9) leads to a solution of
Eqs. (4.7) by means of Eqs. (4.8).

In the iterative process,

ntl n+l n n
{fu™ e} = Te{u ,e 1,

where'em-1 is defined in terms of e" by Eq. (4.13)
(with e® for f), and where.un+l

n
of u by Eq. (4.15) (with u® for V), which process

is defined in terms

is shown above to converge in the norm [Eq. (4.14)],

each iterate is an analytic function of €. The

R n n
iteration starts with {0,0}, and each iterate {u ,e }

n-
has components expressed in terms of analytic u l,

en_l and € as analytic expressions.

Moreover, it
can be seen that the estimate of Eq. (4.16) can be
made uniform in € in any closed subset of the disk
0 5]6] <s°. Thus, the iterates {un,en} converge
uniformly to the limit function on any closed subset
of O §|s|<s° and so the limit pair {u*,e*} has com-
ponents analytic in the disk 0O §|s|<€°. Thus u*
and e* can each be developed in convergent € power
series in the disk.

The expressions for u* and e* are now inserted
in Eqs. (4.8) for V,f to give the convergent €
power series expansions for n(x,e) and g(€).

These a priori convergent power series expan-
sions in € are now used as the expansions [Egs.

(4.1 a,b)] and the first few coefficients are pro-
duced by the succession of linear problems in the
first part of this section.

We can summarize Sec. IV by stating the follow-
ing result.
Theorem 3: The solutions (g,n(x)) of the boundary
value problem [Eqs. (3.2)], belonging to the m'th
branch, m = 1, 2, 3, ... , which represent inter-
face shapes under steady-state conditions for given
g, are analytic in a parameter € = (n(x), nl(x)).
Here nl(x) is the normalized solution of the linear-
ized problem stated in Eqs. (4.2). Thus, € is the
magnitude of the projection of n(x) on the one-
dimensional space spanned by nl(x), which we have
called Mm.
small open neighborhood of the origin (the trivial

This analyticity holds in at least a
solution). Hence the solutions (g,n(x)) on the
m'th branch can be developed in the convergent
power series [Eqs. (4.1)] in which the first few
terms are given by Eqs. (4.6).

15



V. STABILITY PROPERTIES

In the preceding two sections we have proven
the existence of steady-state solutions of the
initial value problem [Eqs. (3.1)] that arises in
the theory of superposed fluids. We have assumed,
of course, that one of the densities is small
enough to be ignored, and that the viscosities are
zero.

These time-independent steady-state solutions
can be used as initial data for Eqs. (3.1)., i.e.,
#(x,y,0) = const, N(x,0) = no(x), where g, no(x) is
a given solution of Eqs. (3.2). Then quite triv-
ially, a steady=-state solution is a solution of
initial value problem in Eqs. (3.1) with these

initial conditions.

The interfaces in experimentally observed fluid

motions do bear some resemblance to the gteady-
state solutions of Sec. III, at least in the shape.
The two points of departure seem to be symmetry and
motion, Experimentally observed interface shapes
lack the symmetry about the horizontal axis pos-
sessed by our steady-state solutions. Moreover,
experimentally observed interfaces are in motion
and grow in emplitude. Presumably if experimental
fluid motion were to commence with a steady-state
solution as interface, this interface would persist.
This would depend, however, on what we can deter-
mine here about the stability of a steady-state
solution.

Steady-state solutions comprise a very partic-
ular sort of initial data to be used with the
time dependent problem [Eqs. (3.1)]. More general
initial data will function in a manner that must
depend on its relationships to the steady-state
solutions used as initial data. For example, for
the first mode of branch solutions (m = 1) charac-
terized in Secg. III and IV, how do general time
dependent solutions behave if the initial data are
pointwise less, or pointwise greater, than the
steady-state solution? Much remains to be learned
here.

In considering the stability of a steady-
state solution: @ = const, n = no(x), we seek to
study the behavior of the time-dependent solutions
of Eqs. (3.1) with initial data in some neighbor-
hood of the steady-state solution. The latter is
stable 1f all time-dependent solutions tend to it

that have the initial data lying in the neighbor-

16
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hood. It is unstable if in any neighborhood of the
steady-state solution, some initial data exist such
that the resulting time-dependent solution leaves
the neighborhood.

The type of stability analysis given below 1is
that which has been satisfying in engineering cir-
cles. It assumes that the neighborhood is suffi-
ciently small that with good approximation we can
regard the nearby time-dependent problem as a per-
turbation of the steady-state problem, and then we
linearize the former. It has been justified in the
case of the more general Navier-Stokes equations of
fluid flow.6 Our equations are derived from the
Navier-Stokes equations by assuming the viscosity,
and the rotation of the flow, to be zero. However,
our problem is complicated by a free interface, in
other words a moving boundary.

We proceed with the linear stability analysis
for steady-state solutions of Eqs. (3.1). Let no(x)
be a steady-state interface as determined in Secs.
III or IV, Of course the steady-state velocity
potential under our conditions is @ = const. We
write the linear perturbation or variational problem

as follows (see Fig. 1l4).

DE: k_+k =0,

<
% vy y <ng (x)

(b, = nggky +d = 00y =N ()

n_n h
T ox oxx T AX
k, +gh -3 — h + —
t e (1+n§x)§ xP (1+n2x)i

=0, y= no(x)

kx’ky +>0as y > =
BC's
k(t’o’)') = k(t,/\,)')

K, (£,0,9) = k_(£,A,)

h(t,0) = h(t,A) k(0,x,y) given harmonic

hx(t,o) = hx(t,A) h(0,x) given (5.1)

~

A. Stability of The Trivial Solutions
First we study the stability, or lack of sta-

bility, of the trivial solution or plane interface.
Setting no(x) Z 0 and #(x,y) = const in Egqs. (5.1),
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' Fig. l4. Physical arrangement for discussing sta-
bility of the first branch of bhifurcated

interface patterns.

we get the linear problem (see Fig. 15)

7

o \\ A

Yy = Mp(x)E0

|
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|
! |

Fig. 15. Physical arrangement for discussing sta-
bility of the plane interface.

( = =
ht + ky = 0, y=0
k, +gh+=h_=0,y=0
t P xx ’
BC's < kx’ ky +0as y+-w
k(t,0,Y) = k(t,A,y), h(t,0) = h(t,A)

ke (£:0,y) = k (t,A,y), h (t,0) = h (t,A)

k(0,x,y) given harmonic

\. h(0,x) given. (5.2)

Followinp standard procedure (Ref. 15, Chap. X)
we put k(t,x,y) = extk(x,y) and h(t,x) = exth(x),
and seek to determine A as an eigenvalue. If we
write ; = Ah for convenience, we get a linear eigen-

value problem with Az as eigenvalue

DE: kK _+k =0, y<o0
XX vy

, o~

h+k =0 =0
y s Y

~

2 ~ T _
Mk +gh+sh =0, y=0

with
2
' _ T (2mm
BC sﬁ g # A (7r)
kx’ky +0as y*+-o
k(O’Y) = k(A’Y)

kx(o’Y) = kx(A’Y)

h(0) = h(A), h (0) = h (A). (5.3)

If the harmonic function k(x,y) in Egs. (5.3)
exists, it possesses a Fourier expansion as follows,
o ivnx
k(x,y) =37 A (y)e v, = - (5.4)
n=—m
Then from the first interface condition in Eqs. (5.3)
(h+ k =0 at y =0), we get

-]

iv_x
n

hx) = - 2 Al (O)e . (5.5)

n=-—o

However, we can solve the differential equation in

the second interface condition by

-]
-~ ~ iv x
By-_NE n
h, +2 h T >, A_(0)e .
Assuming the Fourier expansion h(x) = . B e ,
we get by the substitution, n=—o
= 1v
x
- Z B (\)2 - E.Q.)e n
— D N T
> 1v
x
_ 12 P n
=% 823 a(oe ,
n=—
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whence, by equating coefficients [see Eq. (5.3)],
A2 2 a (o)
B = T n

n 2 _gp
vn TT

n=0, 41, 2, ... .

= _A'['\(O) H)
' (5.6)

If Eq. (5.4) represents a harmonic function, however,
and if it satisfies the conditions ky + 0 as y > ;my
and k(x,0) # O of Eqs. (5.3), then An(y) = conste” ,
from which we have A;(O) = vnAn(O). This is sub-

stituted on the right in Eq.(5.6). We observe, too,

that only positive indices can be used. From Eq.
(5.6),

2 2 T 2

SR RN &0 = p=1,2,3, .. (5.7)

i8 a necegsary condition that A (0) be nontrivial.
This gives a sequence {A:} of squared eigenvalues
for Eqs. (5.3) that are positive or negative accord-
ing to the g value. To each eigenvalue A: there

A, (0)

=0, cee s A1 (0) =0, A(O) =1, A, (0) =0,
An(O) = 0 for 3 ;+20 xThf correspond}sgxeigenelement

corresponds a set of Fourier coefficients:

ceey

is k =eP h =-ye P or in
p(x,)') ’ P(x) P ’

real terms,

vy

kp(x,y) =e P cos vpx,
- 2pT
hp(x) = —vp cos vpx, Vp = —%—:

p=1, 2, 3, ... . (5.8)
Except for the constant term, the latter set ig
complete on 0 < x < A and the former set is complete
with respect to harmonic functions that vanish as

y + -», Hence the Az—spectrum of Eqs. (5.3) con-
sists exactly of the sequence {A;},and the solution

of Eqs. (5.2) is
e A _t+v y
k(t,x,y) = E Ce cCO8 V_Xx
p=o P P
-2 +A t V_cos v x

- P

h(t,x) % Dpe 'L—h—r'L s (5.9)
P

Cp and Dp being the Fourier coefficients of expan-

sion for the initial disturbance in terms of the

eigenfunctions in Egs. (5.8).
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=22 a2 ey (W2 -8y
Forg<zgl T\z)l’ Al v, vy T)p<o, and
a fortiori AZ <0, A3 < 0, etc. This gives imaginary
(5.9) and bounded oscilla-
2 2
tory behavior. For 8, 8 < 8y Al > 0, but AZ =

- 2_gpy T 2 2
\Jz(v2 T ) o < 0 and of course A3 < 0, A& < 0, etc.

time nultipliers in Egs.

Equations (5.9) have each a growing exponential.
G;nerally, ;f Bn-1 < gc«< gm,ki > g,ki >0, cee
Am—l >0, Am < 0, Am+l< 05 oee ’An < 0 for n > m.
Equations (5.9) have m-1 growing exponentials.
We can summarize Sec. V, so far, as follows,
Theorem 4: For 0 < g < 2] the trivial steady-state
solution @(x,y) = const, n(x) = 0 is "marginally
stable" in that Ap is pure imaginary, p = 1, 2, 3,
«es « For 8n-1 < gc«< g o= 2, 3, 4, ... , the
trivial solution is unstable, with "m-1 degrees of
instability" in that Al’ cee 5 A are positive
(5.9)

whereas only Am, Am+l’ etc., are pure imaginary. As

m-1
and furnish increasing exponentials in Eqgs.

g > O passes through the value 8o_1° the eigenvalues

iAm—l’ originally pure imaginary, vanish and then

become a + real pair (see Fig. 16).

ImA
*Amet A plone
Am
- - ~a — ReA
=N Ap Apo © Am—t A, A
-
“Ame®
Fig. 16. Illustration suggesting configuration of

eigenvalues in Theorem 4.

For 0 < g < g ve have stated the condition as
"marginal stability." Actually purely imaginary
eigenvalues A for Eqs. (5.3) constitute a necessary
condition for stability, but this has never been
shown to be generally sufficient in hydrodynamics.

At least with the solutions in Eqs. (5.9) it assures




no exponential growth, which seems to satisfy many
authors (Ref. 15, Chap. X).

It is commonly thought that viscosity has a de-
pressant effect on fluid motions and that, with vis-
cosity in the problem, the eigenvalues An would lie
somewhere in the open left half plane for 0 < g <gl
rather than on the borderline imaginary axis. Then
a sufficient condition for stability would be sat-
isfied.

If g = B then Am =0, m=1, 2, 3, ... .
This is a bifurcation situation. By the analysis of
Secs. III and IV, nontrivial branches of steady-
state solutions break away from the trivial solu-
tion at these values.

The initial interval 0 < g < By» where the
trivial solution is marginally stable, results from
the presence of surface tension T. Removal of surface
tension appears to cause the eigenvalue spectra
{gm} and {Am} to degenerate to continuous spectra.

B. Instability of the Branch Solutions

Next we study the stability of the nontrivial
continuous branches of steady-state solutions de-
III and IV. The m'th branch bifur-
cates from the trivial solution of Eqs. (3.1)

rived in Secs.

(nemely, # = const, n = 0) at g = Bp

We make use of the convergent perturbation ex-
(4.1) with
actual evaluations of coefficients given in Egs.
(4.6).

following linear variational problem.

pansions given symbolically in Egs.

We substitute these for g and no(x) in the

DE: kxx + kyy =0, y< no(x)

(~

h - noxkx + ky = 0, y = no(x)

~ n.n._. = h
3% + gh - 3 % XL p + %._Eig__37.= 0,
2
+n_) (1+n_)
y =N, ()

BC's{

kx, ky“*O as y + -

k(0,y) = k(A,y) h(0) = h(A)

k (0,y) =k (A,y),  h _(0) = h(h) (5.10)

9

which results when we set k(t X,y) = ex k(x,y) and
h(t,x) = e h(x), and then h(x) Ah(x) in Egs.
(5.1). We also substitute into Eqs. (5.10) the

perturbation series

2 _ .2 2
AT = AO + o€ + a,€ + cee
h=h +ech +eh +
= h, + €hy 2 cee s
and
k = ko + skl + szkz +oeee (5.11)

where the coefficients are to be determined, and €
has the same meaning as in Sec. IV in connection
(4.1).

To carry out a perturbation series solution of

with Eqgs.

Eqs. (5.10), it is convenient to expand the nonlinear
interface conditons (BC's) in Taylor series as

follows,

h + ky(x,O) - noxkx(x,o) + nokyy(x,o)

-nn_k (x,0) + L nzk

oNoxXxy 7 Ny yyy(x,O) + ...=0

2 2
A%k (x,0) + A no (x,0) + 3 A nokyy(x,o)

~

g A
n"h -3 z n__n

OX XX p ‘ox oxxhx + ... =0.

(5.12)

This is valid because k(x,y) can be extended as a

ol %

N
+ Sho -
gh )

Njw

harmonic function.

Substituting the series of Eqs. (4.1) and (5.11)
into Eqs. (5.10) with interface conditions [Egs.
(5.12)], and equating coefficients of the powers of
€ to zero, we get a succession of linear problems.

Zero'th-Order Problem

kxx + kyy =0, y<o
-
ho koy(x,O) =0 y=0
Azk (x,0) + ; + I ; =0 y=0
oo’ 8no P oxx 4
BC's<
kox’ ko +0as y +-»
ko(o’Y) = ko(A’Y) ho(o) = h(A)
k  (0,y) =k (Ay) h (0)=h_ (#"). (5.13)

.

This is the same problem solved above for the triv-

ial solution, namely Egs. (5.3), but with g = Bpe
Thgs we have A = 0, h =-A vy cos v x, ko =

Ae m cos vmx with v = gx— N and A is an arbitrary
constant.
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First-Order Problem

DE: g * Ky =05 ¥ <0
r
hl + kly(x,O) - nlxkox(x,o)
+ nl oy (x 0) = 0, y=0

2 2
alko(x,o) + Aonlkoy(x,o) + Aokl(x,o)
BC's <

~ T/\
+gh Bhlxx 0

k ) =k (hy), R =5k

klx(o,y) = klx(A’y)’ hlx(o) = hlx(A).(S.lQ)
From the two interface conditions we have, substitut-
ing from the zero'th order problem, and for nl(x)

= of/F cos v x
A m

o~ 2
hl + kly(x,O) + Anlxvm sin v X + Anlvm cos Vv x
2 2
ﬁ + k (x 0) - A TV sin v X
+Av—2-\)2 cosz\)x
A m
=B+ 1, x,0) + Ay 2 V2 cos 2v x (5.158)
1 1y *™? A "m m :
and
ayAcosvx+=vih +I8 =0 (5.15b)
oy 5 15 . .

The latter equation is a differential equation to be
solved subject to the periodicity conditions of Egs.
(5.14).
in Eqgs.

Because A cos VX solves the homogeneous case
(5.15b), it 1is necessary in order for a solu-
= 0.
1
tion L (O,A) = M ® Ml of Sec. IV where M is the

eigenspace associated with eigenvalue 80 and ML is

tion to exist that o Recalling the decomposi-

the orthogonal complement that cosncides with the

(which makes

T 2om

p A

cos V_x consti-
m

range of the operator (- ) + —K—"

its appearance in Eq. (S.le) because By =
T I
5 vm), we suppose that ho = - Avm

tutes the total component of the expansion in Egs.
A
(5.11) for h(x) in Mm.

and Mm is spanned by cos VX 1f we fix the phase as

A is an arbitrary constant
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in Eq. (3.6).
solution is ﬁl = 0.
To find kl’ we have from the first interface

condition Egs. (5.15a),

2 2
kly(x,o) = —A# X Vg cos vax,

which with the DE: k + k
1xx lyy

ity condition yields

1
Thus, we seek ﬁl in Mm, and the only

= 0 and the periodic-

2V y
A (2
kl(x,y) = - = Vv e

5 n cos vax + C(x),

where C(x) must be harmonic, periodic, and therefore
a constant,

Mainly we are interested in how Az behaves when
€ # 0. Witha

1
yet no information.

= 0 as determined above, we have as

Second-Order Problem

DE: k2xx + k2yy =0

~
h, + kzy(x,O) (x,0)

2 Nixkix X0 + ik o0

1 2

x,0) + &5
(x,0) + 5 njk oyyy

nlnlx oxy (x,0) =

azko(x,o) + alkl(x,o) +a (x,0)

lnl oy

2 2
+ Aokz(x,o) + Aonlkly(x,o)

Bo's { * Aonjk, (6,0) + Ak, (x,00 + 3 VIR
- %%72\-“:}:0 +%ﬁ2xx
- % % nixhoxx ) nlxnlxxgox =0
k, ,k, *0asy+-»

2x’ 2y

k) (0,3) = ky(A,y),  By(0) = hy(A)

k, (0,9) =k, (A,y), h, (0) = f, (N). (5.16)

AN

with Az = 0 and a = 0 as was determined from

the first-order problem, the interface conditions

~ 2 2
h2 + kzy(x,O) - nleJ T V2 sin 2vmx
2 .2
- anAJ 7\- v, cos vax

2 2.3
+ Anlnl o sin AR + = Aql

become

cos vx =0,
)



and

T .2» 3T.5 T2
uzl cos vmx + o vmhz + g5 va cos me + ° h2xx
3T 2.3 T 2, . o
75 nlxva cos vmx 3 ) nlxnlxxva sin vmx = 0.

It is the latter relationship that enables us to

determine o,. We rearrange it as follows,

h 2 L aal _3,425
h2xx + \Jmh2 azA T cos vmx ) A i Vm cos vmx
3.2 .3 2
+ 3 nlxva cos vmx + 3 nlxnlxxva sin vmx.

2
With nl(x) Gcos \me, this becomes

N 28 = qal 3,425
h2 + vmh2 azA T cos vmx ) A i vm cos vmx
+ 3 vsA 2 sinzv X cos Vx + 3 vsA 2 sinzv X cos V. X
2 ‘'m A m m m A m m
- p,.32.5 9,25
A(—a2 T + Y Vm) cos vmx 8 A n vm cos 3 vmx.

(5.17)

Equation (5.17) is a differential equation to be
solved for ; with the periodicity condition given
(5.16).
exist, of course, is that the right side will have

in Egs. The condition for a solution to

no component in the linear eigenspace corresponding

to eigenvalue v , (i,e., M ). This is the case pro-

=212 vs. Thus a2 > 0.

2 4pAm
With reference to the expansions in Eqs. (5.11),

1= 0 and a, > 0. Then for € #

0, but small, it is clear that Az = Ai > 0. The

vided that o
we have found that a

behavior of the eigenvalue Am’ which determines
timewise exponential growth along the m'th branch
and which indicates instability, is illustrated as
follows (see Fig. 17).

Thus for €= 0, the Avalues for n > m are on
the imaginary axis of the A plane with a double
eigenvalue at the origin. As soon ase# O, there
exists an eigenvalue Am in the right half plane.

The above arguments indicate that the branches
of nontrivial solutions [Eqs. (4.6)], m = 1, 2,

... 5 representing steady-state interface configura-
tions are unstable. We have Ai > 0, and a fortiori
Re A; >0, p=1, 2, ... , m-1, Thus, the m'th

branch has m degrees of instability, m =1, 2, ... .

“Amer?

(a) £€=0

A plane
*Amae

? 1 - Re)

(d) ErO

Illustration suggesting configuration of
eigenvalues in discussing stability of the
m'th branch interfaces.

Fig. 17.

These conclusions rest on our ability to show
that the expansions in Egqs. (5.11) are convergent.
Expansions [Eqs. (4.1)], as we have seen, are con-
vergent power series in € in a neighborhood of € = 0O,
and thus represent analytic functions. These are
the series used for the functionsru§x) and g in Egs.
(5.10). The question now asked is whether Az, ﬁ,
(5.10), are

also analytic functions in some neighborhood of

and k, appearing as unknowns in Eqs.

€ = 0, having been given that no(x) and g are ana-
lytic in e. If Az, h, and k are analytic functions
of € in a neighborhood of € = 0, then certainly we
may expand them in the convergent series of Egs.
(5.11).

We can reason as follows. The differential
equation and first interface condition, together
with boundfry conditions, in Eqs. (5.10) give
k(x,y) = Gh(x), where G is the integral operator
Then ﬁ(x) =
G_lk(x,no(x)), where G_l is unbounded but closed
(Ref. 14, p.300).

second interface condition of Eqs. (5.10) to give

formed with a Green's function.

This is then inserted into the
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n._n
20 -1 T ox oxx d
VRGO =6 e T F &
(L+n )
T 1 d o
+ = —_ ¢ | h(x), (5.18)
e (1+n§x)§ dax?

where on the right, in consideration of boundary

conditions, we have a product of closed linear oper-
ators. We find, moreover, that the closed operator
on the right in Eq. (5.18) is analytic in € = 0O

with domain independent of €. Thus, we invoke the-
orems of Kato on holomorphic femilies of closed un-
There

exists a neighborhood of € = 0 in which eigenvalues

symmetric operators (Ref. 16, pp. 375-379].

Az and eigenfunctions ﬁ(x) are analytic in € (Ref.
16, p. 379, remark 2.9).
k(x,y) = Gﬁ(x) is analytic near € = 0. Thus we

Then one may see that

have at least an indication of proof that Az, ﬁ(x),
and k(x,y) are developable in convergent e-power
series in some neighborhood of € = O.

Then employing a priori convergent power series
as expansions of Eqs. (5.11), we calculate the first
few coefficients as needed, and as was done in the
stability analysis.

We can summarize as follows.

Theorem 5: The m'th branch of nontrivial steady-
state solutions of Egqs. (3.1), which bifurcates to
the left from the trivial solutions at g = gy =

% Yﬁ, and is represented ‘by the convergent expansion
[Eq. (4.6)], has m degrees of instability. Thus,
the variational problem of Eqs. (5.10), where we let
g Ny be the expansions of Eqs. (4.6), has m eigen-
values A with positive real parts, when € ¥ O.

If we knew enough about the total collection
of eigenvalues and eigenfunctions of Eqs. (5.10) to
be able to write the solution in a form similar to
Egqs. (5.9), these eigenvalues with positive real
parts would represent modes with emplitudes growing
exponentially with time.

The perturbation method, unfortunately,
doesn't yield any information about the variation of
the higher eigenvalues of Eqs. (5.10), nemely, Ap’

p >m. For € = 0 they are on the imaginary axis.
Because we have just shown that positive real parts
of Al’ AZ’ cee Am result in instability of the
m'th branch, we are not unduly worried here that we

have been unable to prove that Ap’ p > m do not
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develop positive real parts when € ¥ O. It appears
likely that Ap’ P > m, does remain imaginary, how-
ever, and that Ap’ p < m, remains real.

From general considerations relating to non-
linear operators, Am, once positive for small €
[i.e., for (g,n) near (gm,O)], remains positive
along the entire branch. This is because Am =0
would represent a bifurcation situation in which the
branch would either split or cease evolving to the
left. For this we can refer the reader to some of
the author's earlier papers.l7_20 We studied the
branches in some detail in Sec. III, however, and
found no such secondary bifurcations. Hence, once
these branches start out unstable, they remain un-
stable.

Putting Theorems 4 and 5 together we can draw
the following further conclusions. For 0 < g < 8
the trivial solution representing the plane inter-
face is stable. The trivial solution, on the other
hand, is unstable for 81 < g« gy since Al > 0 in
that interval. The first branch of nontrivial solu-
tions, Eq. (4.6) for m = 1, bifurcates to the left
at g = g; = .2

p 1
Here again we have Al > 0.

and exists in the interval O<g<gl.
The first branch of
nontrivial solutions seems to continue in O<g<gl,
the type of instability possessed by the trivial
solution in 81 <g<«< 8y¢ The stability possessed by
the trivial solution in 0 < g < g simply disappears
at g = gl.

Again for 8n-1 <g¢«< g the trivial solution
representing the plane interface has m-1 degrees of

instability, meaning that Al’ vee 5 A are posi-

m-1
<

In the next interval, By <8 <8, ve add Am

The m'th

branch [Eqs. (4.6)] of nontrivial solutions bifur-

cates to the left at g = &y = % vi and continues

tive.

to the collection of positive eigenvalues.

into Bo-1 <g¢« 80 and indeed for all g~<gm, the
stability properties possessed by the trivial solu-
tion in the interval 2 < g« - namely, Egs.
(5.10) have the m eigenvalues with positive real
parts when expansions [Eqs. (4.6)] are substituted
for g and Ng? and there are m degrees of instability.
This holds for m = 2, 3, 4, ... , etc. A consistent

picture emerges of the instability of these branches.



VI. ARC-LENGTH FORMULATION

Pursuant to a suggestion by Karl Gustafson
and J. Wolkowisky of the University of Colorado,
and Bergen R. Suydem, LASL Group, T-6, at a LASL
meeting, we reformulate the Taylor Problem of Super-
posed Fluids so that arc length s along the inter-
face curve is used instead of the horizontal abscis-
sa x as a space variable. The immediate motive for
doing this is the occurrence of multiple-valued
solutions of the steady-state problem as deduced in
Sec. III. These functions would be single-valued if
arc length were the independent variable.

Drawbacks of an arc-length formulation are the
need to restrict to the two-dimensional case, and
the fact that with arc length, if one desires a
domain of fixed length for the problem, the actual
linear dimension must shrink as more of the arc-
length fixed interval is used up in deviations from
the trivial solution. This last point, however, is
interesting from the standpoint of a clindrical or
spherical implosion geometry where the interface
does actually shrink in circumference.

First let us consider Eqs. (3.2). To convert

to arc-length form, we make the substitution

x
s =L/.J 1+ ni, dx'.
0

d
We have Ny = Ny ax N g 1+n
ds. ‘{ 2
(ns dx)s 1+ nx
2 d ds 2
Ngs @+ nx) + Mg ds dx 1+ Ny -

But for ni < 1 we can write

d_s.=( 2=‘[ ds,2
dx 1+ nx 1+ (ns dx)

1+ n2ad) Y1+ nd (1nZ (14n2))

'/ a1
= 2: ns B e——
=0 )

l—ns
n_n
80 thati-is-=i-—————l =58 .
ds dx ds 2 (1- 2)2
l—ns Ng?”

n n n.n
and nxx = _s; + —2_ .8 s;
1-ng "1-n2 1-n)
8
2
nSS nS nSS
= lv— |7 232 -
1-n 1-ng (1—ns)

Substituting into the differential equation of the

problem in Eqs. (3.2), we get

T nss a
2,2

° - n:)é-+
+(1-n))

Thus, Eqs. (3.2) become, in arc length form,

w-yE,

n
ss + w2n -0,

iv 1-n§

n@) =n(h)), and n_(0) = n (A, (6.1)
where of course Aa is such that
A
a
A= x(l\a) ='/. ‘/ l—n:, ds’', Aa fixed,
0
A= A(M). (6.2)

Proceeding in a manner similar to that in Sec.
III, we arrive at a family of closed curves in the

(n,n,) phase plane given by

= C, (6.3)
where C is a real paremeter. The curves of Fig. 18a
are for -1 < C < 0, and we choose the (-) sign in
Eq. (6.3) indicating that the arc length grows in
direct proportion to x. The curves of Fig. 18b are
for 0 < C < 1, and the (-) is chosen in Eq. (6.3)
for ]n] >Jz-6)while the (+) is the proper choice
when |n| < wC indicating that arc length grows
while x decreases. Figure 18b corresponds to a
multiple value function of x (Ref. 13, pp.207-209).

The expression for the period of the cycles
illustrated by Fig. 18 is

23



++1
(<) ()
1-c
- [2(C+1 ,/2_(%2'_5.%
w
/ -1

2(C+l)_
Twz

0<C<+l

Fig. 18.

Phase plane diagrams illustrating solution
of Eq. (6.3).

’2
= (C+1) T
w? 2

P-ﬁ/- dn =%./:___§L___
0 Jl _(w2n2 _c )2 0 1-h c0529
2 v

4 —
-Bf(h)sf,

where, as before, we have C = -1 + 2h with h
T YN,

To match periods, we solve graphically the
equation —% = %'E(h), or wAa = 4mf(h), so as to
obtain those values of h which, when used in the
initial data

24

n(o) = 20{5’

n (o) =0

for the differential equation in Eqs. (6.1), produce
solutions of Eqs. (6.1) periodic in s of period Aa
(see Fig. 19).

4amf |
etc |
107w :
8w I

6w | T wh,
1

aw /][ I I l
2w | I l
I |

} | s h

o LT hy 1
Fig. 19. Intersections yielding solutions of the

boundary value problem in Eqs. (6.1).

Letting w -d%—p- , or g itself, vary, by inspec-
tion we get rightward bifurcating branches of solu-
T (2am\2
o\ being the bifurcation points.

Because these brinches bifurcate from the trivial

tions, gy =

solution n(s) = 0, we see from Eq. (6.2) that A
= Aa,'and the bifurcation points are the same as
with the formulation of Sec. III.

We can also solve Eq. (6.1) (in the small) by
using the perturbation series method of Sec. IV.
The method proceeds analogously, and the convergence

proof is similar. There results

2 2moT
n(s) -‘, x € cos T
a a

3 3 2
. g—(ﬁ—) (;__) cos 2Tq 4 o(c%)

a a a
2 4
T { 2mm 1 T/(2mm 2 2 4
s 3(1) 330 G v o

which, in contrast to Eqs. (4.6), indicates bifurca-
tion to the right.

Evidently the rightward bifurcating solution
branches remain bounded and even fall back to zero
as g * ©. Indeed since n(0) = max n(x) =
2 I 0<x <A

— —_  a
< - 2 T and the appropriate values of h re-

8P
sulting from the graphical method of Fig. 19 are




positive and less than unity, we have

0) < ZJi: + 0 as + o,
n() < 20 8

Thus, in the limit, the initial data for the aif—
ferential equation in Egqs. (6.1) becomes trivial.
We infer the interface shapes from Fig. 18.
Points on the locus where ng = + 1 correspond to
points on the n vs x plot where nx =+», i.e,,

he For g
2mm\2

. I (4mEC))? . T
p A P

where, the curve haz a vertical tangent.
For yetagreater g, the n vs x plot be-

=8 the zeros have verti-
cal slop%s.
comes multiple valued, as in Fig. l2c[except that
the domain O < x < A of the problem shrinks with
constant hrc—length interval 0 < s < Aa in accord-
ance with Eq. (6.2)].

Apparently there is again a g-value where the
bubble pinches off similarly to Fig. 12d, but with
shrunken domain. The h intercept value where this
would happen would be a solution of the equation
Ez(h) = ZEi(h), where

-1 1
cos

- /2h de
E, () =f — ¢4,
1-h cos“@

. () = f .
= ’
2 -1 1 V/ 1-h cos2e

are defined on % < h < 1, ?l(h)-+w as h > 1, and
?é(h) is bounded. Letting h* be such a value
(h* > %),_Ehe g value is

= \2 —iy\2 2
T [ 4mE (h*) T (4mfC\* | T [4mm)" _
o3 () 1) -

It is to be noted that the preceding remarks
about infinite slopes, and a bubble pinching off,
relate to the n vs x plot,swhich is given parametri-
l—ng, ds'. The eigen-
(6.1), which is a

member of a rightward bifurcating continuous branch,

cally by n(s) and x(s) =

solution n(s) of Egs. 0

is a twice differentiable bounded single-valued
function of the arc-length s for all g > B For

g > g* it corresponds to a multiple-valued function
of x that probably is devoid of any physical mean-
ing. As a function of s, however, the branch func-

tions are decently defined.

In the above arc-length considerations, we
started directly with Eqs. (6.1), which is the arc-
length analog of problem in Egs. (3.2). It was re-
latively easy to convert Eqs. (3.2) to arc-length
form. Now we attempt to write the basic problem
[Eqs. (3.1)] in arc-length form with a view to line-
arization and stability analysis.

First, a preliminary. In Fig. 6, the interface
shape n(x) is represented as the lower boundary of
the flow region D and is a function of the horizon-
tal coordinate x. In the proof of Theorem 1, the
vector form of the interface [x,n(x)] is a parame=-
terization by x. [l,nx(x)] is the paremeterized
tangent vector along the interface, and (—nx(x),l)

is the outward normal. The outward normal deriva-

tive of the potential @ is 9 -ng + 9 .
am F y

In arc-length form, Eqs.(3.1) become (see Fig.20)

DE: ¢xx + ¢yy =0, y<n(s),
r
n,(t,s)
n (t,s) - ———— @ (t,x(s), n(t,s))
1-n%(t,s)

+ ¢y(t,x(5), n{t,s)) =0

-t
8, (t,x(s), n(t,s)) - BIE2(e,x(s), n(t,s))

BC's{  + Pi(t,x(s), N(t,8))]

n__(t,s)
+ gn(t,x) +'_l‘_ss— =0

P
/1n2(t,8)
¢x’ Qy-)Oasy-)_m
n(t,s + Aa) = n(t’s)’ ¢(t,x(s+Aa),y)=¢(t,x(s),y)
@s(t’5+l\a) = ns(t’s)’ mx(t’x(5+l\a)’Y)=¢x(t’x(5)’)')-
(6.5)

Initial conditions: @(0,x,y) harmonic, and n(0,s)

both given,

k-
x(8) =fV1—n:, ds’
0
A
a
A= x(A) =/ Vl—nz. ds' .

0
The latter equation relates A, the variable period

in x, with Aa’ the fixed period in s.
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With the steady-state case we put n, = ¢t =0
where again, by the Gustafson-Wolkowisky reasoning
of Theorem 1, we have @(x,y) = const. The steady-
state problem thus reduces to Eq. (6.1) for a
single autonomous differential equation. Right bi-
furcating solutions n(s) are given by Eq. (6.3),
where € = (cos %El s, n(s)), where we use the
scalar product o} L2(O,Aa). The paremetric repre-
sentation of the intg{face ig given then by (x(s),
n(s)) where x(s) =

1- ni, ds'.
Stability Analgsis

We now linearize Eqs. (6.5) to produce the
variational problem centered at a steady-state solu-
tion: @(x,y) = const, n = no(s). We have (see
Fig. 21)

DE: k o+ kyy =0, y < no(s)
f n,g(s)
h (t,8) - = k (t,x(s), n_ (8))
1-n_.(8)

+ ky(t,x(s), no(s)) =0

or h (t,s) + gi k(t,x(s), n_(s)) = 0,

>
n = outward normal.

k_(t,x(s), n_(s)) + gh(t,s) + = Pas (£12)
t,x(8), n_ (s + gh(t,s) + =
t o P
/1-n%_(s)

hs(t,s) =0

BC' ¥
T nos(s)noss(s)
+_____—__—
P 2 3

(1-ng_(s))
kx’ ky +>0asy > =
h(t,0) = h(t,A)
hs(t,O) = hs(t,Aa)
k(t,0,y) = k(t’x(Aa)’Y)
kx(t,O,Y) = kx(t’x(Aa)’y)°

9

(6.6)

We propose to find out initially if the first
right=-bifurcating branch is stable. To this end we
expand the interface conditions of Eqs. (6.6) in

Taylor series

Nyg (8) .
2

l_nOS

ht + ky(t,x(s),O) - x(t’x(s)’o)

+ n, (8)ky (£,%(s),0)
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oV =X
ZEm v .

| |

y
Fig. 20. Illustration helpful in converting the
problem of Egs. 3.1 to arc-length form.
(x(s), n(s)) I
y
Fig. 21. Physical arrangement for discussing sta-

bility of the first branch interface in
arc-length form.

(s)

n
o8 Ky (£:(8),0)

- no(s)
1-n2
o8

+ %nz(s)kyyy(:,x(s),o) +...=0
k,(£,x(8),0) + gh(t,8) + 3 hy (t,8)
+ 0, (8)k,  (t,x(s),0)
+ a2 (0K, (£,x(62,0) + % £ N () (£,8)
+ % N, (I, (8B (£,8) + ... = O.

This is justified for a harmonic function
k(t,x,y) with a harmonic extension across the inter-
face y = n_(s).

° At At

Putting h(t,s) = e" h(s) and k(t,x,y) = e k(x,y)
as is standard procedure, and setting h(s) = Ah(s),
we get an eigenvalue problem for ﬁ(s), k(x,y), with .

eigenvalue paremeter Az.




DE: k _+k =0,

XX yy
~

h(s) + ky(x(S),O) = Nyg(8)k, (x(s),0)

y<©o

+ no(S)kyy(x(S),O)
2
-no(S)nos(S)kxy(x(S),O) + *mo(s)kyyy(x(S).,O)

-k, (x(8),0) - i (8)n) (8)k, (x(s),0)

BC'81 + ... =0

)\zk(x(s),o) + g}:(s) + —T-]: (s) + Azn (s)k (X(S),O)
P ss o y

#1222 () (x(8),0) + % & nZ (b, (o)

+ S N (®h (8) + ... =0

(6.7)

ka, ky +0asy *+-o,
with periodicity conditions
h(0) = h(Aa)’ k(0,y) = k(A’Y)’

hs(s) = hs(Aa)’ and kx(o’Y) = kx(A’Y)’

where
A
a.
_ 2
x(l\a) —f ‘}1 - Nogt ds' < I\a.
0

We propose to solve Eqs. (6.7) by means of a

A=

perturbagion method, but we must first express
x(s) = 1- nzs. ds' by means of a perturbation
series gased on the series already found for no(s),
(6.3).

5

nemely, Egs.

4 2 3 8
—%4-(%-) (12\—‘[) (%TL)/ sin%[s' sin%‘[s'ds'
. a a a 0 a a
_e (2t
8 \h_J\A sin R
. a a

2 4
=38 -€ xz(s) - € xa(s) = eee

with known or determinable coefficients xi(s). In

particular, we have
A=x(@) = A _52_ Zﬂz_ﬁ_l. 2_714_
a a2 \N 16 A \A tec
Then we can make the following expansion.
k_(x(s),0) = k_(5,0) - k__(s,0)x,(s)e> -
y 14 y ’ xy 14 2 e

again valid if ky is a harmonic function harmonically
extended across the interface.

We now take this linear variational expanded
boundary value problem, and substitute the perturba-

tion series

2,2 2
AT = Ao + o€ + o€ + ..,
S
o 1 2 e
and
k =k +ek, + ek, + (6.8)
o 1 gt e .

together with x(s) = s —szxz(s) - saxa(s) = eee

and the series in Eqs. (6.4 a,b), which we have prov-
ed to be convergent. Here € has the seme meaning as
before.

Because for the trivial solution the arc-length
formulation is the same as that in rectilinear co-
ordinate x, we can infer from Sec. V that Az =0
; .o 2T A cos 21 s, and

o A A2
a a Ty

k = Ae

2n
° cos Iy X.

a

We again get the following linear problems.
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First-Order Problem

DE: k + k = Q,

<
1xx lyy y<o

r

hy () + Ky (8,0) = N (8)ky, (5,0)

+ r11(93)1<oyy(s,0) =0

10
alko(s,o) + glh (s) +— 5 hlss(s) =0

(where we do not include terms multiplied by
A}
BC's < Az = 0)

k k, *0asy>-x

1x’> “ly
h (0 = hy(A), k(O =k (h,y)

(6.9)

hls(o) = h

\

1elhe)s K 0uy) =k, (A,y).

gw, k (s,0) = A cos A s. Hence since g =
%— N the condition that ﬁ (s8) exists is that
a
= 0. Using the convention of Sec. IV and V that

el
TR |

o
nent of expansion [Eqs. (6.8)] for S in the null

g
ss +-—%— (*)» Ve seik

= - %l A cos %l s constitute the entire compon-
a a ~

space M, of the operator (*)

A

h; in M}. Then since o, = O, the solution for h
1 1 ~ 1 1
unique in Mi is hl = 0.

We find kl from the first interface condition

of Eqs. (6.9) and Laplace's equation. We have

[2\“) sin %’L s:| [—A %’L sin 12\_1[ s:|
a a a a
5 .
< cos 2n s A 2n cos 2n
A A A
a a a

K_} cos %E s,
a a
and also
’f 2T 2 41
kly(x,O) = K: A (ﬁ;) cos K: X, (6.10)

using the same form. Then we solve the boundary
value problem for kl(x,y) using the Laplace equation
with boundary data [Eq. (6'10)]’kx’ ky* 0asy~+

-, and periodicity conditions in x.
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Second=Order Problem
DE: k2xx + k2yy =0, y<o0

r

kllz(s) + kzy(s,o) - N8k (s,0) + nl(s)klyy(s,o)

—koxy(s,o)xz(S) - nl(s)nls(s)koxy(s,o)

+3 02 (s)k (s,0) = 0
17 oyyy T’ )

BC' T2
o k (s,0) + glhz(s) + glzh (s8) + = 5 hZaa( s)

T 2 o

+ 3 5 nls(s)hoss(s)

+In (e, ()b (s) =0

p '1s 1ss os

k2x’k2y +0as y > = (6.11)

L
(where we have not included terms multiplied by

2
Ao -a - 0),
hy(0) = hy(A),
th(o) = th(Aa)’
k,(0,y) = ky(A,,¥),
and
ko (0,y) = k, (A ,¥).

It is the second interface condition that we
use to determine a,. Rearranging and substituting
the following previously determined expressions [see
Eqs. (6.4)]

g, = Iz : n,(s) = cos 21 8
SETUY R [ wh v

h = - %r_ A cos %r_ 8,
° a 2w y
4
1T /2 2T a 27
8, =53 (A—;)(Ka) , ko(x,y) Ae cos - X,

we have



(6.12)

to be solved with the periodic boundary conditions
(6.11).

with common trigonometric identities.,

of Eqgs. The last reduction is accomplished

The necessary and sufficient condition that h
exists is that the right side of Eq. (6.12) has no

2

component in Ml’ the null space of (')ss + (%E) (*).
a
This means that we must have a2 =
_;z(z_)(g:)s <o
4 p\Ag/ \ Ay 2 :

Thus, with Ao =0, a, =0, but a, < 0, we

infer from Eqs. (6.8) that, at least éor small
enough € # 0, Ai < 0. Ai is, of course, the lowest
(in magnitude) or first eigenvalue of the variation-
al problem [Eqs. (6.7)], with the first branch of
Eqs. (6.1) substituted for no(s), i.e., Eqs. (6.4)
withm = 1. A fortiori we should have Ai <0, k =
2, 3, ..., provided these numbers stay real.

How do we know that the higher-order eigen-
values Ai, k > 2, of the variational problem [Egs.
(6.7)] stay real when we pass from € = 0 to € # 07

We propose to find out by inserting, instead
of the first expansion in Eqs. (6.8) into Egs. (6.7)

the expansion

2.2 2
AT = Am + Bls + st + oo, (6.13)
8P
2 2 1 T . .
where Am = —\Jm(\)m ST ) e m > 2, is the m'th eigen-

value for the variational problem with n(s) = 0.
When we do this, and equate coefficients of the same
povers of € in all the expressions that make up
Eqs. (6.7), we sé; that the n'th order perturbation

problem has the following form.

DE: k
NnxXx

r

ﬁn(s) + kny(s,o) + F(s) = 0
gnko(s,o) + Aikn(s;o) + glﬁn(s)

ﬁnss(s) +G(s) =0

+

o |3

+*0asy»-»

A}
BC's < knx’ kny

0,9 =k (A,y), B (0) = h (A)

knx(O,y) = knx(l\,y), hns(O) = hns(l\a)

where A (6.14)

x(Aa).

S

Here F(s) and G(s) represent lower-order terms that
are supposedly known when we are studying the n'th
order problem. Also, we take as an induction assump-
tion that F(s) and G(s) contain only real terms. '
v -~
We know that k = Ae mycos v s, h (s) = -v__A cos
o m, [+ am
2mm 2mm

V_8, where V = —— | v =1— therefore we can
am ™ A am Ay

start such an induction. Because these are the
solutions of Egs. (5.3), we have Aa = A,

We wish to determine if the coefficients Bn as
determined by successive problems [Eqs. (6.14)] are
indeed real.

~

Assume that hn(s) above is known. For example,
we could let it be —vm cos vams. We can then solve

the boundary value problem

k + k

XX =0,y<0,

nyy

kny = - hn(s) - F(s), kx’ ky + 0, as y +*-

and periodicity with period A. The result is

VY A

kn(x,y) = - % e hn(s) + k(x,y),

where E(x,y) is a known harmonic function with

E&(S,O) = F(x) and

1 7 -
kn(s,O) =-5 hn(s) + k(s,0).
am
We now have the D.E. and the first interface condi-
tion satisfied. For the second interface condition,

substituting we get
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2 8P r, 1
am T [JAY

- hn(s) + Bnko(s,o)

+ v (v
em

+ glhn(s) + % hnss(s) + X:E(S,O) + G(s) = 0

ho(8) + g (8) = -B k (5,00 - A%K(s,0) - G(s).

©i3

A solution of the homogeneous equation is then

~

hn(s) = A cos Vam® = ko(s,o).

~

The necessary conditon for hn(s) to exist then gives

-0\ %(s,0) + G(s), k (s,0))
B - m [+]
n (ko, ko) ’

which is a real number.

We thus see that the coefficients in the ex-
pansion of Eq. (6.13) must be real, so that the
higher-order eigenvalues of Eqs. (6.7) do stay real
in the perturbation process. Then since Ai < 0 for
m > 2, i}m are pure imaginary.

We can summarize the results of this section
as follows,
Theorem 6: Equations (6.5), which are Eqs. (3.1)
but with arc length along the interface n(x) used
as an independent variable instead of x, and with
fixed periodicity Aa along this arc-length variable,
has continuous branches of nontrivial solutions bi-
furcating from the trivial solution at the discrete
g values g, = % (%EI) ,m=1,2,3, ... . Them'th
branch bifurcates at g = g The bifurcation of
The first branch,

which starts at g = 81» is stable to small pertur-

the branche; is to the right.
bations. The trivial solution is stable in the in=-
terval (O,gl), and the first branch continues the
seme stability into the region g > 81 The shapes
of the interface are as indicated in Fig. 12 except
that the periodicity is A= x(Aa). All solutions
are single valued, however, as a function of the
arc-length variable s. The branches return to the
trivial solution as g +> .

The stability of the first branch, as mentioned
in the theorem, 18 in the sense that, with the
solution of the variational problem given as sums

of terms of the type
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K(t,x,y) = e %k(x,y), h(t,s) = e h(s),

the constants A are conjugate imaginary numbers.
This is "marginal stability" for which see the com-

ment in connection with Fig. 16. (See Fig. 22)

ImA

ReA

Fig. 22. Suggested eigenvalue configuration in the

case of marginal stability.

We worked out these rightward-facing branches by
using the curves of Fig. 19, and we know there is no
secondary bifurcation, i.e., splitting or dividing.
Thus, there can be no point on the branches where
Eqs. (6.7) have a vanishing eigenvalue Az = 0.
(Otherwise we should have a bifurcation situation.)}
Hence on the first branch, since we start with
Ai < 0, tﬁls condition persists and the branch
remains stable (see Fig. 23).

o
STABLE B
etc
—q
° 9 92 93 etc
Fig. 23. Illustration of branches of suggested

interface solutions for the arc-length
paremetrized problem in Eqs. (6.1).
It can be shown that the second branch is

stable except for one positive eigenvalue; thus Al
> 0, but AZ <o, A3 < 0, and so on. Thus, the

second branch has the same stability properties for




g > g, as the trivial solution does in 81 <g<«< 8y:
Similarly, this is true for the m'th branch.

This stability is with respect to perturbations
of the seme base period I\a of arc length, or some
quotient thereof by an integer. In other words, all
considerations are with respect to the Hilbert space
LZ(O’Aa)‘

In a cylindrically or spherically symmetric
assembly, we have a base period I\a imposed on any
shell-like interface by the periodicity of the polar
angle. Any perturbation is therefore in L2(O,Aa).
This is a strictly geometrical consideration.

Thus does the arc-length formulation, with a
fixed length Aa of arc in a period, differ from the
formulation in terms of a rectilinear coordinate x
with a fixed x-length A as period. We have branches
of nontrivial solutions going to the right rather
than to the left, and we have branches that are
altogether more stable, as has been described. 1In
fact, for the arc-length formulation, the first
branch is actually stable to perturbations of period
Aa’ while for the rectilinear coordinate formula-
tions, one already has one degree of instability to
such perturbations on the first branch.

Similar, but easier, arguments could be used in
Sec. V to show that Ai, for k > m, stay real and
negative when one passes (up the m'th branch) from
€ =0to € #% 0. This is a point about which we ex-
messed doubts in Sec. V, but which we were able to
resolve in Sec. VI by using Eqs. (6.14).

Sattingeer has shown by topological methods
for a certain type of nonlinear operator equation
that nontrivial solutions bifurcating above criti-
cality, i.e., g = gy» are stable, whereas nontrivial
solutions bifurcating below criticality are unstable.
Sattinger's operator equation is not sufficiently
general to cover our problems where compactness
seems to be lacking. Yet it is interesting to
observe that we have the seme result with our x-
formulation vs our s-formulation.

VII. SUMMARY

It seems appropriate now to collect the results
produced in this report for the Taylor Problem of
Superposed Fluids, and then to discourse on further
results that are needed and the possibility of
getting them.

Theorem 1:

Theorem 2:

The results have been stated in the text as
Theorems. These will be restated, with references
to equations in the text where needed.

In Egs. (3.1), let ¢t =n,=0so0 that
Then @(x,y) =
const in the flow region of the heavy fluid. (We

recall that the light fluid has vanishingly small

we have the steady-state problem.

density, as assumed in Sec. II, and the flow is in-
viscid, incompressible, and irrotational.)

The steady-state problem, with periodic
boundary conditons, reduces to Egqs. (3.2) for the
interface shape alone. There exists a sequence of
primary bifurcation points {gm}, m=1,2,3, ...,
% (2%3 , A being the assumed base period.
Equations (3.2) have the trivial solution whatever

where gy =
the applied acceleration ge At each bifurcation
point g, 2 continuous branch of nontrivial solu-
tions appears, bifurcating to the left. These
branches of solutions represent interface shapes
for given values of g.

The evolution of these interface shapes on' the
first branch is portrayed in Fig. 12. The other
branches evolve similarly except that the periods
are integral divisors of the base period A.

The term "bifurcation" used in Theorem 2 is

standard. See the

The usage goes back to Poincare.
heuristic Sec. V in the author's Lecture Notes (Ref.
20, p. 43). See also the rich bibliography provided
in those notes (Ref. 20, p. 114-119), and the refer-
ences in certain other papers of the author (Refs.
17 through 19).

Continuing, we have
Theorem 3: The bifurcated nontrivial solutions
(g,n(x)) of Eqs. (3.2), belonging to the m'th branch
m=1l, 2, 3, ... , and which represent interface
shapes under steady-state conditons for given g, are
analytic in terms of parameter € = (n(x),nl(x)).
Here nl(x) is the normalized solution of linearized
Eqs. (4.2), and (*,*) 1is the inner product of the
space L2(O,A). This parameter € is the magnitude of
the projection of n(x) on the one-dimensional sub-
space spanned by nl(x). The analyticity in € holds
in some small neighborhood of the trivial solution.
Then the solutions (g,n(x)) on the m'th branch can
be developed in the convergent power series [Eqs.
(4.1)] in which the first few coefficients are

given by Eqs. (4.6).
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Theorem 4: For 0 < g < g1» the trivial steady-state

solution, #(x,y) = const, n(x) = 0, is "marginally

stable" in that Ap is pure imaginary, p = 1, 2, ... .

Here {Ap} is the discrete eigenvalue sequence of the
linear variational problem [Eqs. (5.3)]. For Bp-1
< g« Bpo @™ 2, 3, 4, ... , the trivial solution is
unstable with "m-1 degrees of instability" in that
Al’ cee s Am_
exponential terms in Ejs. (5.9). Only Am’ A

] are positive and furnish increasing

’
etc., are pure imaginary. As g passes throu::lthe
value B 1° the eigenvalues i)m—l’ originally a
conjugate imaginary pair, becomes a + real pair.
Theorem 5: The m'th branch of nontrivial, leftward
bifurcating steady-state solutions, which starts at
g =g = % vi, and is represented by the convergent
expansions [Eqs. (4.6)], has "m degrees of insta-

bility." Thus, linear variational Egs. (5.10), in

which we let g and n, be the expansions [Eqs. (4.6)],

__have m positive eigenvalues Al’ AZ’ cee s Am when
€ ¥ 0, whereas the remaining eigenvalues Ap are
pure imaginary.

Section V gives the meaning of "marginally
stable" in Theorem 4. In the same theorem, we note

that the initial interval 0 < g < g; of stability

for the trivial solution (the plane interface) is

caused by the presence of surface tension T.

In Theorem 5, we have indicated real or pure
imaginary eigenvalues {Ap} as contrasted with the
statement in Sec. V. We can get this refinement by
appealing to the arguments of Sec. VI relative to
Egs. (6.14).

The last theorem summarizes Sec. VI in which
all of the previous considerations are recast in
terms of an arc-length variable. We use arc length
along the one-dimensional interface as one of the
space variables, replacing x. This enables us to
evolve branches of eigenfunctions that will repre-
sent interface shapes which are single-valued
functions. With x as independent variable, the
double-valued functions, which eventually appear in
the branches, are shown in Fig. 12. With arc
length as variable, these can be gspecified as
single-valued functions. If we specify a fixed
periodicity in the arc-length variable, nemely Aa’
we find, however, that the x-periodicity, namely A,
shrinks as we evolve the branches; we have A ex-
pressed by Eq. (6.2). Yet this situation may be

analogous to that which arises in a spherically
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Theorem 6:

gsymmetric or cylindrically symmetric geometry. Here
a space period Aa is actually imposed by the geometry
along the arc length of the interface.

With the arc-length formulation, we have the
following.
The problem in Eqs. (6.5), which are Egs.
(3.1) reformulated in terms of arc length and with
fixed periodicity along this arc-length variable, has
continuous branches of nontrivial solutions bifurca-
ting from the trivial solution at the discrete values
E.(Zmﬂ 2

g=8g, =3 K__) ,m=1, 2, 3, ... . The m'th

branch bifurcites at & = 8y In contrast with
Theorem 2, the bifurcation of these branches is to
the right. The first branch that starts at g = -2
is stable to small perturbations of period Aa’ or
integer division thereof, Aa being the base period.
The trivial solution is stable in the interval
(O,gl), and the first branch assumes and continues
this stability into the region g > 3} (there is an
"exchange of stabilities"). As functions of x, the
shapes of the interfaces are as indicated in Fig.
12a through d, except that the periodicity is A =
x(Aa). All solutions are single valued in terms of
the arc-length variables. The branches return to
the trivial solution as g + <,

One can envisage two main lines in which this
work will be extended: steady state and time evolu-
tionary. We have herein treated the steady-state
problem of Superposed Flow under the assumptions of
no viscosity, no compressibility, and no rotational
flow. The steady-state problem should be treated
with viscosity. Further, the problem should be
treated with rigid wall boundary conditions, as is
possible with viscosity. Multiple interface prob-
lems could be considered in the steady state. The
steady-state cylindrically and spherically symmetric
problems should certainly merit attention.

Again, the time evolutionary problem is of
prime importance, and though we dealt with the
steady-state case in this report, we did not do so
apart from the time-evolutionary problem. In the
introduction we tried to show how the steady state
is a part of the time evolutionary problem by a
simple exemple. When we studied stability, we were
taking up the time-evolutionary problem, if in a
special way. We have found solution branches which
the time-varying solution is either attracted to, or

is repelled from, as the case may be. Even a




solution branch with "m degrees of instability"
is attractive for initial data in subspaces of co-
dimension m.

Our chief ambition is to solve and describe the
solutions of the time-evolutionary problem, and to
do so in a satisfying way. Several avenues present
themselves. We shall ultimately handle this problem.

With reference to this report, we must decide
which formulation is worth extending in the time-
wise sense: the rectilinear variable formulation,
or the arc-length variable, fixed arc-length period,
formulation. This may await the study of the spher-

cally symmetric steady-state case.
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