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ABSTRACT

Numerical computations have been performed to de-
termine the motion of a two-dimensional slab of initially-
cold gas accelerated by a hot gas. The cold-gas slab had
a sequence of holes, flanges, or other perturbations to its
otherwise straight, parallel, infinite bounding walls. In-
formation is also presented regarding pertinent charac-

teristics of the computing method.
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1. Introduction

.

.-,

The Particle-in-Cell Method* for numerical study of two-dimensional
hydrodynamics has been applied to a group of problems of the following
nature:

Initially, an infinite, two-dimensional slab of cold gas separates vacuum
on the right side from hot gas on the left, all at rest. One or the other of

the contact surfaces is not straight; the cold gas has a periodic set of flsnges,
holes, or other disturbances. The problems are those of determining the
subsequent development from the various initial configurations, with various
density ratios between the gases.

In deriving the solutions presented here, both gases were considered to
be nonviscous, polytropic and monatomic (specific heat ratio y = 5/3). The
cold gas was nonconducting of heat, while the hot one was isothermal in
space and time.

The calculations were performed in rectangular coordinates with all
characteristics being independent of z coordinate. The cold gas was aligned
in the y direction. In the actual calculations, only a finite region of the sys-
tem was studied, this being enclosed in a reflective two-dimensional box.
Each calculation was concluded when the left and right boundaries began to
perturb the results strongly. The top and bottom reflective walls ensured
periodicity in the y direction, with the basic section in the calculation being
one half of a period. Quantities such as energy, momentum, and mass are
measured per unit thickness in the z direction.

The method of calculation is described briefly as follows: The rectan-
gular region of study was divided into 1200 fixed, square cells, usually with
50 in the x direction and with 24 in the y direction. The gases were repre-
sented by mass points, initially 4 per cell, which moved according to a cell-
wise finite-difference approximate ion to the differential equations of motion.
The time-wise changes of the configuration proceeded by finite steps. In this
form of the equations, mass, energy, and momentum conservation were still
rigorously conserved, except for energy in the isothermal gas.

*F. H. Harlow, J. Assoc. Comp. Mach., ~ 137 (April, 1957); M. W. Evans
and F. H. Harlow, Los Alamos Scientific Laboratory, Report LA-2139 (June,
1957).
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Calculations were performed on the IBM Electronic Data Processing
Machine, Type 704. An average of about 9 hours of computing time was re-
quired for each case.

In this report we present the results of the calculations together with
discussions of some auxiliary calculations designed to show the limits of

accuracy of the results and some properties of the calculation method. The
results are, in a sense, preliminary; restrictions imposed by the computing
machines, both in memory and in running time, prevented certain desirable
explorations. Thus, it would have been useful to extend some of the calcu-
lations to an examination of the configurations at much later times. Besides
requiring more computing time, such extensions would require greater ma-
chine memory for the larger regions to allow for expansion. Such larger
regions can presently be obtained only at the expense of resolution. Another
extension of interest would be in the direction of increasing the density of
the cold gas in more of the calculations. This would greatly increase the
running time also, because the time increment per cycle is fixed by stability
requirements in the hot gas, while massiveness of the cold gas slows its
motion.

One other direction of extension of the calculation would be towards
more complicated equations of state (and the inclusion of viscosity) in the
cold gas. We chose the simple materials for these studies for several
reasons. First, the mixed-cell treatment in the computing method is more
satisfactorily understood. Second, certain stages of the motion could be cal-
culated by other methods and compared with the machine calculations. It iS

felt that the qualitative aspects of the motions of various other materials can
be inferred from the results presented here.

Units were scaled in the calculations so that the height of the region
studied was 24. In most cases there were 24 cells across this distance.
The time scaling was determined by the specific internal energy of the hot
(isothermal) gas, taken to be 0.9 units. Thus the sound speed was
c = d (y-1)(0.9) = ~ = 0.7746, and the unit of time was the time required
for a sound signal to go 0.7746 distance unit. The density of the hot gas

always had the initial value of 4 mass units per unit area (per unit z-direction
thickness). This corresponded to having 4 particles per cell, initially, each
of unit mass. The density of the cold gas was variable; the ratio of its
initial density to that of the hot gas is symbolized R.

IL Results of the Calculations

A. Succession of Rectangular Flanges on the Hot-Gas Side

In Fig. 1 is shown the initial and subsequent positions of the initially-cold

.

.
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gas. The hot gas is on the left and the vacuum is on the right. The density
ratio has R = 1. By t = 30 (just before collision with the right-hand wall of
the system) the slab shows no sign of rupture. The flanges, however, are
going to be pinched off, as there is a fairly large velocity gradient, with the
bulk of material in the flanges moving to the right with about half the speed
of the wall of gas.

The same initial configuration was studied for various other density
ratios: R = 0.4, 2.5, and 10. In Fig. 2 are shown the configurations of the
slab at times chosen to show that they all pass through a very similar shape,
but at very different times. The problem with R = 2.5 was continued to much
later times; the resulting configuration at t = 52, just before collision with.
the right hand wall, is shown in Fig. 3. At the narrowest neck in the slab,
the density is about 3.5 times the original density, but the velocity gradient
there is such as to indicate eventual breakage.

The initial flange was then elongated, as shown for the initial time in
Fig. 4. Successive configurations show a greatly elongate flange, but little
difference in the rest of the slab from that shown in Fig. 1.

The energies for the initial configuration of Fig. 1 are shown in Figs.
5, 6, and 7 as functions of time for the various density ratios. Drops in

total internal energy result from expansion of the free surface after transit
of the initial shock, and from expansion of the flange after initial compres-
sion. Behavior of the vertical kinetic energies is a strong indicator of the
flange history. The first drop in this kinetic energy occurs when the shock
hits the reflective surface (i.e., when the two shocks collide in the middle
of the flange). This happens ezirlier than the time at which the total kinetic
energy begins to drop, because the half width of the flange is less than the
thinnest part of the slab thickness. The subsequent rise in vertical kinetic
energy occurs when the return shock reaches the new outer-surface position
of the flange wall.

Figure 8 shows the total internal and kinetic energies for the density
ratio R = 1 in the configurations of Fig. 4. The vertical kinetic energy
history is similar to those shown in Fig. 7, except that the initial rise is
relatively much higher and the subsequent drop much more acute. The effect
is shown in Fig. 8 where the first drop in kinetic energy is due to the loss
of vertical kinetic energy in the flange. The late-time spurs on the energy
curves arise because the slab has collided with the rigid wall on the right-
hand side of the system.

Another set of calculations was performed in which the rectangular
flanges were much wider than the intervening holes. Initial and subsequent
configurations are shown in Fig. 9 for the density ratio R = 1. This calcu-
lation was also done with coarser zoning in the finite-difference mesh of
cells in order that a much greater expansion could be calculated before the

1-

.J”
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slab collided with the right-hand wall. The results are shown, on the same
space and time scale, in Fig. 10. The results at t = 20 agree with those
shown in Fig. 9, except that some resolution of detail has been lost by the
mesh coarseness. The final configuration at late times shows, at least
qualitatively, that the slab could be expected to rupture. The energies for
the two calculations are shown in Figs. 11, 12, and 13. The comparison in
each case gives some indication of the accuracy of the results. Better com-
parisons with exact solutions are shown later in this report. The abrupt
changes in total internal and kinetic energies at t = 32 are caused by colli-

sion of the slab with the right hand boundary of the calculation region.

B. Succession of Flanges on the Vacuum Side

The density ratio was R = 1. Initial and successive configurations are
shown in Fig. 14. Effects of the flanges are not felt until relatively late
times, and so there is only a small lateral propagation of signal along the
slabs from the flanges; very little vertical kinetic energy is created. By
the last time shown (t = 46) the mean rightward speed of the slab in the
flange region is about 60% of the mean speed of the rest of the slab, and
eventual rupture is suggested. Energies of the system are shown in Fig. 15.
The problem can be solved exactly up to the time when the shock first breaks
through to the other side of the slab. The exact result for both internal and
kinetic energies is the same, also shown in Fig. 15. Further discussion of
the exact solution is given later in this report.

c. Succession of Holes Through the Slab

Again the density ratio was R = 1. The initial and successive configu-
rations are shown in Fig. 16. It is observed that the minimum width of the
holes increases very little. The free surface of the escaping hot gas is also
shown. (The finite size of the mass points does not allow the actual true
surface to be seen; rather, one sees the representation of a moving isopycnic
of appreciable density.)

D. Succession of Vacuum Pockets in the Hot Gas

The cold gas slab initially had perfectly plane, parallel boundaries.
The hot gas next to it, however, had a succession of rectangular pockets of
vacuum. Density ratio was R = 1. The results are shown in Fig. 17. Col-
lapse of the hot gas into the” vacuum pockets produced a jet into the gas slab,
resulting in a strong contortion thereof. Early rupture is not indicated, .

.
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however, as there is very little hot gas in the pocket formed in the slab,
and the slab materf.al is beginning to move inward on the left side of the
pocket. A small bubble of hot gas might eventually be able to break clear
through.

m. Discussion of the Results

A. The Configurations

Data from which the configurations were drawn were obtained by a
purely cell-wise examination of the presence or absence of material. The “
configurations could also be obtained more directly from a plot of the co-
ordinates of the particles. The results would be the same to within the ac-
curacy of the calculation. Nevertheless it is useful to examine the particle
prints for several reasons. First, they show the compressions of the gas.
Second, they show the nature of the irregularities of some of the boundaries.
Both of these features are well shown in Fig. 18, which corresponds to the
conf@uration at t = 38 shown in Fig. 17. Regions of high and low density
can be distinguished at once. (The particles were originally spaced 4 per
cell, one in the center of each quadrant.)

The configuration of mass points in Fig. 19 corresponds to that at
t = 30 in Fig. 9. In this case, the nature of the surface instabilities is
especially well exhibited.

B. Accuracy of the Energy Curves

A comparison between the exact and calculated energy curves for the
straight-line section of the interface has been shown in Fig. 15. The com-
parison is shown in more detail in Fig. 20. The datum points for energy
are shown as they come from the calculation; The minor fluctuations can
be traced to the discreteness of the mass points; such fluctuations have been
removed from all the other energy curves of this report. It is observed that
the energy errors can approximately be termed delays, with the f.nternal
energy being most affected.

These results are consistent with the results of fine and coarse zoning,
as shown in Figs. 11 and 12. The finer zoning results (presumably more
accurate) move the energy curves to the left (less delay), with the greater
effect being noticed with the internal energy.

-9-



c. Three Simplified Problems

Most of the initial configurations studied were constructed from three
basic elements: straight line, concave right-angle corner, and convex right-
angle corner (as viewed from the hot gas). Three machine calculations were
performed to study in isolated form the interactions at the two types of
corners; the interaction along the straight-line sections was discussed in the
preceding section.

First, a concave corner was put into a square calculation region 34
cells wide, with the configuration having diagonal symmetry. Gases were
the same as in all previous calculations; density ratio was R = 1. The
initial and a later configuration are shown in Fig. 21 (a). At t = 20, a sig-
nal has just reached the right-hand and bottom boundaries. The approach to

circular shape of the contact surface can be seen.
The same calculation was performed with a convex corner; results are

shown in Fig. 21 (b). Next, the convex corner was rotated by 90°. Sides

adj scent to the corner were represented by cell-wise steps -- see Fig. 21 (c).

This again represents a right-hand corner because of the reflective boundary
conditions along the edges of the region of calculation. The nature of the

corner spike and adjacent sides was in very close agreement with the results
shown in Fig. 21 (b). This serves greatly to increase confidence in the con-

figuration results presented in this report; it may be that configurations are
accurate in all cases, to within the width of a cell.

Energies calculated for these three problems are shown in Figs. 22,
23, and 24. The straight line, in each case, is the kinetic and internal
energy curve that has been calculated exactly as though the boundary between

the gases were one straight line with no corner, but of the same total length
as the initial one with corner.

e
.

-.

*

D. Pertinent Additional Information About the Computing Method

Previous reports have mentioned the fact that difficulties may arise in
the Particle-in-Cell Method whenever the mean material speed relative to
the computation mesh is small compared with the sound speed. Since that
situation occurs in the hot gas in the problems discussed in this report, it
was necessary to examine the matter in somewhat more detail than had been
attempted previously, For this purpose, two computations were performed.

In the first computation, the mesh was a square region with 15 cells
on a side. The same hot isothermal gas used in all the calculations was
put into the entire mesh with uniform distribution of 4 particles per cell,

except that one corner cell was initially empty and one of its neighbors had

-1o-
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8 particles. No cold gas was put in. The gas was initially at rest. Thus
there was created a region of ‘fPerturbed stagnation” which previously has
been considered to be too unstable to allow. The computing was then carried
out in usual fashion for enough elapsed time to allow a sound signal to propa-

gate about 3 times across the mesh. By this time (t = 67.5) the system had
nearly reached equilibrium. The resulting distribution of number of particles
per cell is shown in Fig. 25. The distributions of horizontal and vertical
velocity components are shown in Figs. 26 and 27. (The two cells originally
perturbed were aligned vertically.) The speed of sound in the gas is 0.7746,
so that it is very improbable that any cell would ever attain sound speed.

The total kinetic energy resulting from the calculation is shown as a
function of time in Fig. 28. The individual datum points are shown together
with an approximate mean. Scatter of the points is very much greater than
scatter of the energy points of the initially-cold gas in the other calculations.
By latest times (approximate equilibrium), the kinetic energy of this disordered
motion has become about 3% of the total energy of the gas. Horizontal mo-
mentum of the system as a function of time is shown in Fig. 29.

Exactly the same computation was again performed, except that the gas
was not restricted to be isothermal; instead, energy was perfectly conserved.
The computation was run about half as far as the other one, during which
time it was observed that the rise in kinetic energy was about half as fast,
and the horizontal-momentum fluctuations had about half the amplitude, as in
the isothermal calculation. .

One feature of the computation, which was different from procedure pre-
viously followed, had some effect in stabilizing these calculations. Particles
approaching the reflective boundary were allowed to reflect when they crossed
(as they could because there was no reflective Welocity weighting” at the
boundary). They then repartitioned as though entering from a reflective cell.
This avoided Wmundary catastrophes. M* There was not, however, any “arti-
ficial viscosit yt’ added beyond that which automatically arises as a consequence
of the computing method.**

*See LA-2139, page 17, for a further description.

** Ibid., page 16.
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