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The material below consists of a more elaborate analysis of

various topics discussed in Report LA-1862, “Taylor Instability and

Laminar Mixing”. These topics are covered in a series of eight .

appendices, as follows:
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APPENDIX A

REMARKS ON STJ41LARITY

1. Analytical Principles

The Similarity Principle described in Sec. 5 of LA-1862has

various bbvious

face tension is

M-1862) is the

extensions. l%us, it applies to liquids in which sur-

non-negligible,provided the Weber number (~. 7 of

same; it applies to viscous liquids if the Reynolds

number (l?q.8 of LA-1862) is

statement, it is, of course,

except the one specified are

the same, and so on. In the preceding

assumed that all non-inertial variables

negligible.

To prove the Similarity Principle of sec. 5, LA-1862, one

must also assume that the initial data uniquely determine the solution

of ~s. 3, 4, 6, and 6’. ‘Ibisassumption, though highly plausible, is

not trivial; see the discussion at the end of Sec. 22 of M-1862.

The @ukive Motion principle of sec. 6 of IA-1862 is also

hard to prove rigorously, but it can be made plausible as follows.

Since

seems

the “impulsivevelocity” V =
t

a(t) dt is assumed bounded, it
o

reasonable to surmose that the associated intermediate velocitv. .

fields VU(2; t) and VLJ’(Z; t) are also

the interface displacement should be O(T).

ation field %(?; t) = V(3U/i3t) should

.

uniformly bounded. Hence

Consequently, the acceler-

differ by O(T) a(t) from

that a(t)VA(?) due to an initial acceleration field of strength a(t).

-5-
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Integrating over the interval

h7U(~; T) -VVA(~)~s

O S t s T, we conclude

O(T) [a(t) dt = VO(T).
J

Passing to the limit as T + O, we get the Impulsive Motion Principle.

A third principle, valid for the infinitesimalperturbations

discussed in Part II of LA-1862, is the following:

Affine Similarity Principle. IA two initial fluid con-

figurations Z, ~’ depart initially from horizontal stratification

by infinitesimal perturbations Y(X, z; O) and c~(x, z; O). Further,

let the Atwood ratio (Eq. 1 of IA-1862) be the same. Then, for all

t > 0, the interface defining ~’ satisfies ~’(x, z; t) = c ~ (x,z; t).

This follows simply from the fact that the perturbation

equations of Part II are Iinear. Combined with the Similarity Principle

of Sec. 5, it gives a general principle of Froude modeling.

2. Wiping and Penetration Coefficients.

Very interesting applications of dimensional analysis can be

made to the case of an infinite interface, if it is assumed that per-

turbations on all scales are equally likely*. !IMeSimilarity Rinciple

has important implications,as regards the depth Y(t) of penetration

at time t. we use the notation of sec. 8 of LA-1826.

(i) In the case g . a = O of pure Helmholtz instability,we

‘A rigorous treatment of this idea requires statistical methods, and
will be deferred to the later report mentioned in the Abstract of
LA-1862.

?

w

●

.

1.

.
*

.
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should have

(Al) Y=7(u-u’)t,

where the “wiping coefficient” 7 depends only on the density ratio

~’/~ and the degree

(ii) Ih the

effective gravity a -

(A2) Y .n P

where the “penetration

of initial irregularity.

case u = u’ of pure !I%ylorinstability with

g . ng, we should have

gtz,

coefficient” ~ also depends only on ~’/~

and the initial irregularity.

The prediction (i) has been made by R. Ingraham and J. A.

Wheeler in LA-1593, and by E. Frieman in IA-1608, and empirical values

0.1< ~< 0.4 assigned for the case ~. y’. To the empirical evi-

dence given there, maybe added the fact* that the turbulent mixing

zone of a “half-jet” is well-known to be wedge-shaped, with a vertex

angle 20 of about 30°, corresponding to ~= 0.2s.

The prediction (ii) corresponds to formula (2s) of LA-1862,

where p = O.OG is deduced for the case p’ =0.

to ‘I%ylor’sformula Y1 = (ng/2)t2 for the case of

“spike into a vacuum.

It should be emphasized that Eqs. Al.and

It also corresponds

free fall of the

A2 were derived on

the assumption that there was inertial modeling and no characteristic

*
A brief review of the literature will be given in Ch. XIV of “Jets,
wakes and cavities”, by G. Birkhoff and E. Zarantonello, to appear
in 1956.

-7-



wave-length. !Ihus,they do not apply to the case of a periodic inter-

face of wave-length ~ .

It should also be noted that, for large t (specifically,

when at>> Iu - U’1),

Helmholtz instability.

A2 is quadratic.

‘Ikylorinstability will ultinmteIy dominate

This follows since Eq. Al is linear in t, while

-8-
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APPENDIX B

INITIAL ACCELERATION

.

1. hltroduction.

h sec. 6 of LA-1862, the concepts of initial and impulsive

acceleration were introduced, and reduced to the following boundary

value problem of potential theory, relative to the interface S.

To find functions U and U’, harmonic in the regions R and R’

separated by S, and satisfying on S

(Bl) pu- p’u’ = d(p), a knOW function

(B1’) 3U/2n = ~U’/l3n.

Further, U and U’ are regular at infinity (for a suitable reference

frame).

preceding

Kellogg’s

The present appendix gives a theoretical discussion of the

boundary value problem. It is intended to supplement O. D.

“Potential Theory” (Ref. 10 of LA-1862), and the 1955 Harvard

Doctoral ‘I%esis“Induced Potentials”,by James L. Howland*.

*
This will be referred to as (JH) in this Appendix. Mr. Howland has
also helped in the preparation of the present Appendix.

.
-9-
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2. Single Iayer Potentials.

We first show how to express any solution of the preceding

problem in terms of a single layer potential.

In the two-dimensional case of plane flows, this aim is

easily accomplished by representing the flow by a vortex layer on S.

Such a layer is mathematically equivalent to a single layer for the

stream function V(x,y) conjugate to U. Since E@. B1’ is equivalent

to 3V/2s . ~V’/~ s, we can make V . V’ on S if S is connected.

From Eq. Bl,

(B1*)

—

we get similarly

a known function. Evidently this is a single layer

10 Of M-1862, p. 287).

h three-dimensional space, it is obvious

potential (Ref.

(Ref. 10, p. 286)

that the combined potential field (U,U’) in RvR’ can be represented as

a double layer potential. Namely, because of the continuity in the

normal derivative of U, Eq. B1’, (U,U’) is the potential of a double

layer on S, consisting of a distribution of dipoles normal to S, whose

moment per unit area is proportional to U-U’, the Jump in (U,Ut) across

s.

We now consider the combined field (V,V’) = (pU, ~’U’) -

(U@,U#),where (U~,U~) is the field due to a known double layer of

intensity (p-f’)@(F). By Eq. Bl, (V,V’) is continuous across S;

hence it is the potential of a single layer, and

-1o-
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. .

(Bl++) ~’ i3V/~n - P~V;/3n = ~~U# n - p’2U#n = - ~,

a known function of position on S.

?. Inte~ral !?auation.

Equations B1* and B1** can be transformed into Fredholm

integral equations by classical methods. One starts with the Plemelj

formulas

(B2) 3V/3n - 3V’/2n = 2P

(B2‘)
J

~V/2n + 3V’/2n = 2 K(p,q)~(q)dSq

relating the intensity of a single layer ~(q), with the normal deriva-

tives of the associated potential v(p). Here K(p,q) = 2G(p,q)/2nq

is the Poincard-Neumannkernel of potential theory, G(p,q) being the

Green’s function for the pole p.

Thus, if RwR’ fills the infinite plane, G(p,q) =

(1/2fi)IA r(p,q). ~ infinite space, G(p,q) = l/L~r(p,q). For a

periodic interface with period 7r, in plane motion,

G(p,q) =(1/2W)Lnsin r(p,q), and so on. !Ihecase of two liquids with

interface S, enclosed in a rigidly accelerated container C, satisfies

*
similar formulas for a generalized Green’s function satisfying

~G/t3nq = O on C, and so on.

*
“Green’s function of the second kind’’,Ref.10 of LA-1862, or “Neumann
function” in the sense of Bergman-Schiffer, “Keqnel functions...”.
For a discussion of such more general cases, see Howland’s Thesis.

-11-



Adding (~+ ~’ ]/2 tius Eq. B2 to (fJ- ~’ )/2 times ~. B2’,

and substituting in l!lI.B1*, we get

(B3) P(P) + ~~K(p,q) ~(q)dq = ~l(P),

where d = (p - p’ )/(p + P’), as in IJL-1862. substituting ~ m. B1-~

we get

(333‘ ) A(P) - d~K(p,q)#(q)dq = V2 (P).

Finally, Eq. 6 of LA-1862reduces to another equation of the same form.

Thus, in all cases,we get a Fredholm integral equation, where

1 % CL 5 1 since ~ and p‘ are non-negative. We shall now exploit

this fact, giving relevant interpretationsof the formulas.

First, we recall Fredholm’s basic formula for solving 13q.

B3’,

(IA’) D(d)*(p) = J(Dp>q; ff)V2(q) dsq .

-
Here D(p,q;~) . ~ (-d)nCn(p,q) corresponds to the =trix of

o
minors (“adjoint”) of I-oLK(p,q),and is an entire function of the

complex variable a. ‘he Fredholm determinant D(d), which corresponds

to 11-ctKlin the matrix analog, is another entire function. Clearly,

the series @+*solves B3’ except when D(oL) . 0. me exceptional

eigenvalu~ 4= di for which D(d) = O should be considered as the

reciprocals cii = ‘Yi-L of the eigenvalues ‘Yiof K(p,q). Since D(d )

is an entire function, it has only a finite number of zeros inside any

.

.

.,

..

-12-
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circle ldl<R.

Identical formulas, but with -ci replaced by d, hold for

Eq. 3. mus,

(B4) D(-d)#(P) =~D(pjq; -@ Wl(q)dSq .

Finally, analogous formulas hold for the double layer rep-

resentation, but with K(p,q) replaced by K(q,p), and D(p,q; d)

replaced by its transpose D(q,p;d). The same D(d) occurs, whence

the integral equation for the intensity of the double layer has the

same eigenvalues.

4. Dirichlet Integral.

By the Dirichlet integral of the combined potential (V,V’)

due to a single layer p. on S, is meant the scalar

(B5)
f

Vv ● VVdR + rvu’ ● Vu’m’ .

R

By Green’s theorem*, this

(B5’)
f G%
s

J
R’

is also eqml to

J v, av’+ J-%rds= %%-+%-
s s

, this formula also holds For the case of(Since a+ (p,q) = O on C

finite container.) Hence, by Eqs. B2 and B2’, the integral equals

a

*
~ the plane, the integral (5) will not converge unless S#dS = O.

-13-



(B5”)
f

k #(p) G(p, q)#(q)d Spd Sq = 2 [~, PI ,

s

-1where k = 7T in the plane, and k . (277)-1 in space. Finally,

since G(p,q) is bilinear, symmetric, and positive definite, the “norm”

f~,~] defines a Hilbert space F of single layer distributions on S.

In summary, we have constructed a Hilbert space, the square

of whose norm equals the Dirichlet

special case of the inner product

integrals B5 and B5’. It is also a

(B6) [#Y~] = (PW) = OA,fl G)

1=—
2 J

(U~+U’~)dS

s

1=—
2 f

vu “ G’VdR+~
I

VU’* f7V’ dR’.

R

This inner product is very useful

The Dirichlet integral

terpretations. If ~. ~’, then

ii’

mathematically. .

2[~,~] has well-known physical in-

clearly [fi,fi]expresses the kinetic

energy associated with the flow with velocity potential (U,U’). W the

case of plane flow with stream function (V,V’), [p,~] also expresses

the kinetic energy of the flow associated with the vortex layer fl(p).

Again, in the electrostatic interpretation (see sec. 8 of LA-1862), con-

sideration of Eq. B5’ or B5° shows that CJ.L,#A] is proportional to the

potential energy of the given charge distribution. (In the case of a

-14-
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“container”’C, [~,~] is the potential energy in the presence of the

grounded conductor). Similarly [~,v] represents the interaction

energy of two charge distributions.

‘l%eDirichlet integral corresponds to two variational prin-

ciples for fluid motion. The first is due in principle to Kelvin*.

It asserts that, in the case of fluid of variable density filling an

accelerated container C, the actual fluid motion minimizes the total

kinetic energy, relative to all other volume-conserving flows. Un-

fortunately, in the most interesting case of an infinite fluid, it

seems difficult to formulate an analogous Minimum Principle.

However, one can formulate a dual Maximum Rinciple by re-

ferring the motion to moving axes, making the mean interfacial,acceler-

ation zero. (!l%iscorresponds to replacing acceleration by a virtual

gravity field.) Namely, one can show that the actual fluid motion

maximizes the conversion of potential into kinetic energy, relative to

all other flows which conserve both volume and energy. !Ihisresult can

be considered as an extension of Bertrand’s ‘Iheorem~ to the case of

Iagrangian systems with infinitely many degrees of freedom.

5. ‘IheOperator K.

The Hilbert space E defined in Sec. 3 greatly simplifies the

analysis of the linear operator K: *(P) +~K(p,q).#(q) dsq defined in

*see G. Birkhoff, Quar. Appl. Math. 10 (1952),81-6 and 11 (1953), 109-10.
**
E. T. Whittaker, “AnalyticalDynamics”, Cambridge University Press,
hth cd., 1$)37,Sec. 108.

-15-



sec. 2. !Rnls,if

the single layers

B2 and B2‘ imply

(B7) [P,~l

V and W are

~and V,

the potentials G @, and G U defined by

then, since a/i3n’ = - ~/~ n, Eqs.

Now applying Green’s identity to Eq. BT’, we get

(B8) @K,2] = ~(VV*v W) dR - ~ (VV’.VW’) dR’
R R’

=[~,~K],

which is also directly related to the Dirichlet integral.

Hence, we can

Moreover, Eq. B7 can be

regati K as a symmtric operator on h .

similarly rewritten

h VV.VW)dR+ .r (vV’.VW’)dR’.
1 ii’

Comparing with Eq. B8, and noting that both terms are positive if

V = W, we get

●

✎

.

.
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(B9) [AK,JL] ~

From this it follows that*

(B9*)

Kiss

[#K,#K ]

contraction of E ,

bApJ ●

~ [P, p] ;

in the usual sense.

Theorem 1. The bounded symmetric operator K has a discrete

spectrum. Hence ~ contains an orthonormal basis of eigenfunctions

pi, such that

(B1O)

l!

fiiK= itiAi (.1s Ais l).

Proof. For a suitable “resolution of the identity” into

permutable projections EA ,

1
K=

J AdEA ,
-1

by the basic theory of bounded symmetric operators. Again, the mth

power (iterate) I? of K is

From”this it follows that Khas a discrete spectrum if and only if #

.

‘M. H. Stone, “Linear transformations in Hilbert space”, New York, ‘he
American Mathematical Society, 1932, ‘lbm.2.21. ‘Ibeproof of ~m. 1
relies on results in this book.

-17-



has a discrete spectrum.

Again, if any @ is completely continuous, then @necessarily

has a discrete spectrum; hence so does K. But it is classic that if the

point-function I? (p,q) is continuous on a compact set, then the associ-

ated operator is completely continuous. Further, in two dimensions,

,

.

K(p,q) is itself continuous, while in space, ~ (p,q) is continuous

(*f. 10 d? LA-1862).

6. Eigenfunctions of K.

me eigenfunctions ~i of K> defined by Eq..B1O, have various

interesting properties. As usual for symmetric operators, eigenfunctions

having distinct eigenvalues are orthogonal.

Again, by Ms. B2 and B2’, rewritten as

(Bll) 2V/~n = P+ K#, av’/~nl . +- K/u ,

we see that, if Vi is the potential of the eigenfunction pi, with

ei.genvalueAi, then

(B12) 2Vi/an = (1 + Ai)# and 2V’i/2n’ = (1

are linearly dependent. Using Eqs. B2 and B2’, one can show

versely P, av</i3n= ~’g 3V’f/Z)n’ implies that ~, is. J. J. 84, .s.

function of K.

The preceding formulas refer to a vortex

of an induced acceleration potential in space, the

.

layer; in

ai)P

that, con-

an eigen-

the

signs of the

case

ai

.
n

v

.
.

-I.8-



are reversed. In either case, the Vi are Just the so-called Poincar4

fundamental functions. Mmeover, if any two of the four functions

P, K~, 21V/2n, 2V’/2n’

are proportional, then all four are proportional.

a sphere;

spherical

this

2n+l

A.

case

‘l%isis clearly one property of spherical harmonics, if S is

thus the Poincard fundamental functions for a sphere are the

harmonics. The fact that V is proportional to 2V/~n in

is clearly atypical. If S is a sphere, since there are

harmonics of order n, there are (n+l)2 of order S n; moreover

l/(2n+l). This shows that Ak = 0(~), in this case; this may

be typical for surfaces of general shape.

It follows by ‘l%m.1 that the fundamental functions Vi(p) on

S are a complete orthonormal set relative to the inner product [p,zJ]

of Eq. B7.

We next show that, if ~i # 1 is an eigenvalue of K in the

plane case, then so is -Ai. Namely, from ~. B12, if (V,V’) is a

Poincard fundamental function, then the conjugate functions (U,U’)

satisfy

au 2V 1+ A l+ai
i aV’ au’

~=x=~z’= l-al ~

by Eq.”B12. Hence, U and U’ can be made proportional to each other.

Moreover, since V = V’ on S, the combined field (U,U’) satisfies
. .

-19-



2u/2n = 2V/2S = aw~a s = 2 U’/d n, and so can be obtained from

a double layer potential on S. But the eigenvalues for the latter are

those of K(q,p), and hence are the same as those of K(p,q). !theresult

now follows.

7. Eigenvalues of K.

We now show that every eigenvalue of K satisfies -1 <Ai < 1,

except for a single degenerate eigenvalue A. = 1 of multiplicity one,

which does not correspond to a solution of the impulsive acceleration

problem.

me degenerate

of the conductor problem

eigenvalue ~. = 1 corresponds to the solution

U. = 1 in R, whence 2Uo/7n = O(~Uo/an’).

h the case of a vortex distribution, it corresponds similarly to pure

circulation around R. In either case, if #o is the density of the

corresponding single layer, then l~o~~] = O is equivalent to

(B13)

Because of the invariance of circulation, this condition is always

satisfied in the case of ~ylor instability with zero initial circula-

tion. (This is also true in the case of a periodic plane motion.)

Since -1 c ai < 1 if ~. B13 holds, it iS

B3 and B3’ can be solved by simple iteration in this

d=linEq. B3. In general, the convergence factor

clear that Eqs.

case, even if

will beil, d~ ~
A.

where ~i is the eigenvalue ~i ~ ~. of Khaving the largest magnitude,

●

✎

.

,

..
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and d= (p-p’ )/( P+ p’).

Estimates of Al can be made in the plane case, using quasi-

conf.ormalnu3pping*. Extensions of this technique to the case of a

periodic boundary would probably be fruitful; in the case of a plane

interface, Al = O.

~lal[=l - G is known, then one can speed up convergence

by using polynomials giving a “best possible” approximation to

recently by Stiefel~.

Iteration of Chebycheff

factory compromise.

@ince writing Appendix

discussion of this has been given

polynomials seems to provide a satis-

B, I have discovered a relevant

article by A. Hammerstein, Math. Zeits. 27 (1928), 269-311, in which

the completeness of the eigenfunctions of ~tential theory is also

proved bya different method~

*
See L. V. Ahlfors, Pac. J. Math. 2 (19s2), 2Y1-80.
**
E. Stiefel, “On solving Fredhol.mintegral equations”, unpublished MS.
submitted to the Journal of S.I.A.M.
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APPENDIX C

STABILITY OF HETEROGENEOUS FLUIDS

Much of the analysis originally intended for Appendix C

has appeared elsewhere:

S. Chandrasekhar, ‘“he character of the equilibrium of an incompres-

sible heavy viscous fluid of variable density”,

PI-OC. Carob.phil. SOC. 51 (1955), 162-78.

S. Chandrasekhar, “The character of the equilibrium of an incompres-

sible fluid sphere of variable density and viscosity,

subject to radial acceleration”, Quar. J. Mech. Appl.

%th. 8 (1955), 1-21.

‘I%erefore,Appendix C will be omitted.

.

.

●

✎

.

.
.

.

.“
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APPENDIX D

STEADY STATE BUBBLE RISE*

1. l%e Problem.

In Sec.

treating the rise

pendix deals with

15 of LA-1862, we reviewed the extensive literature

of a bubble in a cylindrical tube. ‘Ihepresent ap-

the analogous problem of plane bubble rise in a ver-

tical channel (Fig. la). We first treat the question theoretically.

. . ..

‘o

-. ...---*Y

q x

Fig. la

We assume steady state

constant velocity U. (the bubble

motion, relative

rise velocity).

..-> y

x
Fig. lb

to axes moving with

Further, we assume

that the vector velocity is parallel to a fixed vertical (x,y)-plane,

and independent of the third coordinate. We also assume the fluid to

Consequently,we can assume that there is a complexbe non-viscous.

*Written jointly with David Carter of Los Alamos Scientific Laboratory.

-23-



potential W = U + iV, depending analytically on complex position

z = x + iy, such that

.

.

.

(Dl) dW/dz =U - iV= ~(Z)

*
is the conjugate complex of the velocity vector ~ = u + iv.

We also assume constant pressure in the bubble. ‘his implies

that

(D2 )

where x’ is the vertical distance below the assumed unique stagnation

point, and g is the acceleration of gravity.

It is not obvious that this problem has a solution. Without

the extra assumption that the bubble is connected, it is clear that

the solution will not be unique: we could have a double bubble rising

instead, as in Fig. lb.

Assuming a single symmetric bubble, however, it may be hoped

on physical grounds that the problem just stated has a unique solution.

If R is the radius of curvature at the bubble vertex (stagnation

point) z = O, and D the diameter of the channel (tube), it will follow

by similarity considerations that the two dimensionless ratios

.

.

(D3) uo/ m and R/D

#
will be unique dimensionless constants. Their predicted values can

then be compared with experiment. ..
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.

t=i
Z=o

z=

.

.

.

Z=CDI

Fig. 2

2. The Function W(t).

Consider an unknown function t(z) which ~ps the Interior of

the fluid cohformally onto the interior of the unit semi-circle ~, as

in Fig. 2, so that COo goes onto t = (),the channel walls on the real

diameter, and the bubble vertex on t = i.

I& Wbe the complex potential, so that

(D4 )

is the conjugate velocity in the z-plane. If U. is

city at cw o in the z-plane (%ubble rise” velocity),

the fluid velo-

then the stream

function V(z) has a jump of UOD across OOo counter-clockwise,and

equal jumps of -uoD/2 across al, -2. Otherwise, V(z) is constant

on the boundary.

. .
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h the

the boundary of

of UOD at t = i.

t-plane, V is correspondingly piecewise constant on

r, except for Jumps of -uoD/2 at t =31, and a jump

But ,

only one function W(t)

and merely logarithmic

apart from a complex additive constant, there is

whose imaginary

singularities.

part V(t) has these properties

It iS

&

(DI+*) W=AIA~, where A = u-D/~ > 0.
l-t=

u

Indeed, on O~t<l,W is real andso V=O;on -l<t<O, v= fiA,

while on t = e‘c ( 01 and d2),

eio
(D5) W=ALn

~ e2io =
-A IA(2 sin a) + iA~/2.

Hence lkI.~*gives W(t).

3. !IheFunction A(t).

Next we consider the function ~(t). Clearly it is real on

the real axis, and continuous except at t = i 1, where it beccaes

infinite. Hence, by the Schwarz reflection principle, it can be

uniquely extended to an analfiic function in the unit circle ( r plus

its mirror image). In other words, ~(t) can be expanded in a power

series with real coefficients, convergent in the unit circle Itj< 1.

Physically, the extension by reflection corresponds to re-

flecting the configuration in ~he channel walls, so as to obtain an

.

.

,

..
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infinite periodic sequence of rising bubbles. !Ibefact that t = O is

.

.

a branch point for W(t)j with period 2fiA by M. M> corresponds to

the horizontal bubble spacing.

We have assumed that z = O, t = i is the only stagnation
.

point. S3ut,in general

(D6) l?=$g= A(l + t2) dt~ inr.
t(l - t2)

Hence letting z’(i) = -iB ~ O, we have

(D7) ~/(l+t2) ~ A/2B as t ~ i.

!Ihisdescribes the behavior of $ near t = 1. By reflection symmetry,

% will also have a simple zero at t = -i, and no other zero in

Itlslo

k. Asymptotic Jet Behavior.

We now try to determine the asymptotic behavior of & (t),

as t approaches ~ 1 along the descending jets, up to a bounded factor.

Since the fluid is in free fall near al and CCY2, dW/dz = & N=

asymptotically as t * *1. Hence W a Jr 2gz dz = ~ z3/2/3. But

again, by Eq. W*, since IA 2(1 ~ t) m Ln (1 ~ t) as t +*1, we have

1‘=Ahg&”A= ~’”
_-AIn (l+t).

I

Substitutingback, we get
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(D8a )

(D8b )

z -(3w/@@3-[flh (17 t)] */3

m

t - E - [-343 In (1 +t)] 1/3 .

Consequently, if O < C <0.5, then the ratio

f(t) = g (t)/(l+t2)[-In c(l-t*)]l/3

is bounded away from zero and infinity throughout ~ . We have already

discussed the behavior near t = Al,i; elsewhere, O < lC(l-t2)l $ 2C < 1.

It follows that we can write

(w) ~= (1 + t2) [-k C(l -t2)]1/3 e~ ‘t), if O < C <0.5,

where Q(t) = &?(t,C)is bounded and continuous in the closure of

r , and analytic in the interior.

(h solution of the mathematical problem stated in Sec. 1

will consist in the approximate calculation of Q(t,c).

5. ‘he Function J2(t,C).

Like ~(t), the function &?(t,C) defined by ~. Dg is, for

any fixed C, real and

analytic in Itl < 1,

fore, O(t,C) canbe

positive on the real diameter. Moreover it is

and continuous on the boundary It! = 1. ‘lbere-

expanded in a power series with real coefficients

.

.

.

.

.

.

.

.

.
-28-



.

.

4

.

(W*) L?(t,C) = so(C) +

which is certainly convergent for

vergent for ~tl ~ 1. If we can

for even one C, then we will have

@$, and the converse z . jt ‘ldW

To illustrate

apply this principle to

this, and

express u.

a2(C)t2 + a&(C)t4 + ... ,

It I < 1, and almost certainly con-

determine the aw (C) approximately,

determined the flow by Eqs. D9 and

of ~. D1.

for future reference, we shall now

,,D, g, and B in terms of A, C, and

the a~.

Att= O, clearly ~ =U o; hence by Eqs. D9 and D9*

.

(D1O) (-In C)llseao. ~
0.

~is expresses the rate of bubble rise.

We next consider the asymptotic behavior as t ~ 1 (that

as t a -1 follows by symmetry). Clearly

Ln c(l-t2)/M(l-t) = 1+ [Inc(l+t)hl (1-t)]+l.

Hence, by Eq. D8b, letting t -1,

lrw
z ~ (l+t2 )e ‘(t )

[ -3* Iz@t)]l/3 [3*]113
4+;’3 em) .

We therefore get the asymptotic relation

-29-



(Dll) a +a+ a+...
o 2 4 = $ h (3Ag/8).

Finally, near the bubble vertex, as t ~ i,

t/(l+t2) +

Comparing with Ms. D7 and

(D12) B = iZ’(i) = Lim

(-h2C)1/3ea0-a2*k- ””” “

D9, we get the relation

Q&h= A
2K

2(-Ire2C)1’3 e~(i~ “

‘he

(cf. ~. D3),

Eqs. ~, D1O,

(D13)

= (Ae
‘ao*2-a4+”””

)/2(-Iz12c)1/3 .

dimensionless ratio uo2/gD is especially interesting

because it is independent of the choice of units. By

and Dll, we get

Sao
uo2/gD=uo3/~gA= (-~c)e /~gA

3a2+3a4+...
= 3(-Is C)/8~e .

We shall now normalize to the case a. = O, A = 1 by choice

of space and velocity units. For each choice of C, O c C <0.~, we

will then have

(Dlha) by (D1O),

.

.

.

.

.

.

.

-30-



(D14b)

(D14c)

D = ~A/uO = 7r/(-Izl C)lis

3(a2+a4+...)
g = (8/3)e

by (D4*),

by (Dll),

(D14d) B
= ~a2-%+”””

/2(-1112c)1/3 by (D12).

Note that gA and a. cannot both be specified in advance for given C,

as they would determine U. by Eq. D1O, hence D by ~. W, and so the

dinx?nsionlessratio uo2/gD, of Eq. D13.

With the preceding normalization, we thus have

the constants a2,ak,a6,... . To do this, we must invoke

“free boundary” condition, which has not been invoked up

in asymptotic form.

6. Dimession: The Parameter C.

to compute

the exact

to now except

A more careful study of the asymptotic behavior of the “free

jet” near t = ●1, indicates that C should not be taken arbitrarily in

the interval 0< C <0.5. C corresponds asymptotically to a constant

addend WI (cf. m. D5) in the formula

(D15)

We shall now show that there is just one value of Wl which gives a

highest order of approximation in Eq. D9--i.e., makes ~ as smooth

possible.

as
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Reflecting in the fixed wall, and translating the origin so

as to make one branch of the jet fall along the real axis, we try the

expansion

(D16) bl b2
K= @Z’(1+~+~~+...), ai real,

noting the “free boundary” condition

(D16a) 1212 =2gxonz= x*inA/~.

Substituting from ~. D16 into D16a, we get

(D16b) 2glzl . l(l+2b1/za + ...)I=2gx

Pon z = x(1 i lTA/ 8gx .

But, on z = X(I ● ikx-3/2), 121 =lxl(l+ k2/2x3 +...).

Hence 11 + 2bl/za + ...1 = (1 +k2/2x3 + ...)-1, and

(D16*) & = ~(l+bl/z3 + ...).

Integrating

(D17) w= p dz = ~ 23/2 + W1 + 0(z-3/2),

for some constant WI. ‘his justifies Eq. Dl~.

If the right C is used, then

~/(W-@’3 z K + 0(z-3) + K + 0(W-2)

-uK + [~(1-t2) ] ‘2.

-32-
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.

1/3/~’3 . 1 + O(W-l), it would appear that theOtherwise, since (W-WI)

asymptotic approximation has a lower order of accuracy.

It would seem that, with care, condition (D18) could be con-

verted into an asymptotic equation at a = O,n (one equation by

symmetry) involving C, which could be used to determine C. Our numer-

ical experience suggests that 2C = l/e is not far from the correct

value. However, considerable formal analysis would be required to ob-

tain such a condition in its most elegant form.

It is not clear whether or not such a condition on C is

necessary or sufficient to make equally spaced interpolation converge*,

as n 4 co} using the method of Sec. 9. However, it would seem

help substantially in obtaining

7. Free Boundary Condition.

To interpret the free

accurate approximations for small

boundary condition, we write

to

n.

~ = veid, so that v . Ial is the

-d = -arc ~ its direction. (h the

free boundary condition is V2 = 2gx.

Since v = O when t = i, by

velocity magnitude, and
am

free streamline t = e’” , the

%. D9, this is equivalent to

iu
vdv/ds=~cos#ont =e . Again, since dW/ds = v, clearly

da/ds = vda/dW, and so the free streamline condition may be taken as

*
Cf. Dunham Jackson, “’l%eoryof approximation”, New York, ‘he American
Mathematical Society, 1930, p. 123, Cor. 2.
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2 dV dO
‘rum’ gco8$d.

.

.

.
io

But again, on t = e , by Eq. D5, dW/dU = -A

the preceding equation, we get (normalizingto

(D19) 1
~tano d(v3)/d0 = -g cos ~,

where the sign is determined by inspection.

We will now express Eq. D19 in terms

function 42(t,C). Writing

(D20) &?(t,c) = T(t,c) +iQ(t,c),

Coto . Substituting in

A= 1),

c = vei~ ,

of our basic unknown

.

.
.

or Q= T+ iO, and comparing with Eq. D9, we get the following

identities on t . ei0 in the quadrant 0< 0 < fi/2. (Note that, by

symmetry, it suffices to satisfy Eq. D19 on this interval.)

(1 + t2)
ic

.2cosoe ,

(1 - t2) = 2 sin ~ei(c ‘m/2),

Hence, introducing the convenient abbreviation

(D21a) L(u) = -In (2C sine), 0<2C

we get by complex trigonometry

(Cos a 7 o),

(sin C7>0).

<1,

.

..

.
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(D21b) M(u) = L*(u)+ (;-LT)2 .

QSince e = er e
ifa

and ~= veid, equating absolute values and argu-

ments in Eq. D9, we get

(D22a) v= 2[COS al. f/!!~ er, and

(D22b) #= O+ P(6), where

(D21c) P(C) . O+!jarctan [(~- cr)/L(u)] .

We are now ready to rewrite Eq. D19. On O < 0’< # ,

V3 =
3T

2(cos3@ ) ~~) e . Hence the left-hand side of ~. D19 is

(D23*) Q( a )e3T
{ [ }
-sins+ N(6)+ T’(6)] cos c ,

where

(D21d) N(a)= [-L(~) cot& (~- ~)]/3M( ~), and

(D21e) Q(d) = 4Y~)’sin2cT.

Similarly, the right-hand side is

(D23b)
8 3T(())

-gcos [e+ P(c)] , where g = – e
3“
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!Ihefree

D23b are

boundary condition D19 asserts that the functions

equal.

~terms of the single unknown function x(r) =

can express r(a) = ~A(f.T)andQ(~) =~~(~) by means

linear operators ~ and ~. Hence we can rewrite 4. D19

non-linear integral equation

D23a and
.

●

T’(d), we

of singular

as the

(D24) Q(a)e3~A
{

-sinr+ [N(c) + ~(a)] cos~
}

= -g cos (LJA +P(w), on O < d<~o

We shall not pursue this further here.

8. Discrete ~ uations.

Instead, we shall use the series expansions

(D25a) 7(~)=a2 cos 2@+/34C08bC +aGCo8 6C + . . .

(mm ) T’(a) = -2a2 sin 20 -4a4 sin4a - ...

(D25C) Q(C) =a2sin2U +a4sin40 +a6Sh6U + ... .

The identity between Eqs. D23a and D23b can also be expressed

in terms of the coefficients a2k, for any given C, by direct substitu-

tion. For every

At the

we replace it by

a, O < ~ C n/2, this gives an equation in the am.

bubble vertex cr= O, 4. D19 becom?s singular. Hence

the differentiated form of the equivalent equation

.
.

.

.
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Near t . i, the curvature K . d#/ds satisfies dv2 . gKds2. Hence, at

t.i

(dv/ds)2/(ds/da)2= (dv/ds)2 =gd~/ds =g(d~/d@/(ds/d(Y).

Simplifying, we get by Eq. DI.2,

(D26) (dv/d@2 = G(d~/dC$(ds/d@ = gB(d~/do).

But by Eq. D22a, since cos(~/2) . 0, we have

(D26a) ~~= 2[L(~)]1/3e7 (m/2) . 2[-~(2c)]l/3 e-a2+a4-”””o

Similarly,by I@. D22b,

(D26b)
d+ 1
d—d=

Q’(;) +1 - —
3L(~)

Substituting from Eqs. D26a and D26b into Eq. D26, we get an equation

‘n ‘he a2k corresponding to the “free boundary” condition at the vertex,

6=&2.

Since R/D = ds/Dd~ . (ds/D da )/(d4/dcT),and

ds/dw =ldz/dtl = B (cf. ~. DI.2),we also get from Eq. D26b the

relation

.

.
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(D26C )
RBl—=. —

[DD - 2a2+~ak - ... + ‘*I’

B1
where

D–== [
*,] l/~ ,’,-%+. ● . ,

by 4S. Dlhb and Dlkd.

9. Approximate Solution.

We have tried to solve for the

and interpolation. For any n, the free

a2k
approximately by truncation

boundary conditions D26, D26a,

and D26b at U1 = fl/2,combined with Eqs. IX?> and D23b with Eqs.

D25a and D25c at C. a2,..., an give a system of n transcendental

equations in the
n ‘inO*s a2’a4’”””’a2n’

which one can try to solve.

Mr.

first for n =

the equation

(D27)

James Howland, at our

1. He showed that no

-6a.

suggestion, tried this scheme

solution was possible. That is,

3 [-M(2C)]e z = 1 + [3 I,n(2C)] ‘1 - 2a2

has no real solution a2, for O < C <0.5.

‘I%enext simplest case n . 2, with al . fi/2and

02 = fi/4,gives the two equations

-6a2
3 [-Xn(2C)] e .l+&-2a2+4a4,

.

.
.

.

.

.

.

and
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(D28b)

where

Ke
.3a2-6a4 [H + 2a2] =

Cos ~,

K = (3@74) [(-IXI@)2 + 7r2/16]1/2,

H = 1 + [ -k(@] + (7r/4) ] /3[h2(@c) + 7r2/16] ,

#=~+~ arctan [
-2 ;2.2)] + ‘2”

Note that Eq. D28a can be easily solved for a4, given a2, and then the

error in Eq. D28b quickly estimated. By extrapolation and interpola-

tion, a value of a2 making this error negligible can soon be found, for

any given C, O < C < 0.5.

This procedure was followed, and the following numerical

values were obtained

c
a2 a4 uo/ia R/D

0.125 0.1891 0.2390 0.260 0.130

0.250 0.0965 0.2098 0.255 0.153

0.375 0.09965 0.2082 0.214 0.452

The values of uo/@so obtained are very consistent, but R/D is much

less so, especially for C = 0.375. This fact may be explained by the

discussion of Sec. 6; it would seem that the choice C . l/2e is not far

from the “best” value.

Note that the values of ah are larger than those of a .
2 m is
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explains why the case n = 1 did not work. Furthermore, a study of the

basic equation D23a = D23b, evaluated in terms of the a~, suggests

‘hat ‘he a4k
will generally be larger than the a4k+2. This suggests

that, if the preceding

further, the next case

‘3
=40°, a4 = 15.,

truncation-interpolationmethod is to be carried

to try might be n = 4, with al = 90°, Ce = 65°,

and C = l/2e.

10. More Accurate Solutions.

When the number n

desirable to use an iterative

of interpolation

scheme which can

points is large, it is

be carried out by a

digital computer. Two such methods have been investigated using the

IBM 701 computer at Ims Alamos.

The first was a gradient method. The equations derived in

Sec. 8 for the coefficients ao, ....
a2n

were written in the form

(D29) Fj(ao, )““”’ a2n = 0 j = 0,..., n

corresponding to the n + 1 points
‘J

= j7f/2n. Setting

F=~Fj2
j=o

V.j’ = ~F~a
2j

.

.

.

IIVF2 = ~ (V’F)2,
j=o
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the scheme was to add the increment

.

.

.

to each a
J

in order to find the succeeding coefficients. Prelimi-

nary calculations with this method using n =~andn= 10 did

not seem to converge accurately.

We considered replacing the preceding gradient methodby a

more accurate method of steepest descent*, but the rate of conver-

gence was too slow for the calculation to be practical on the IBM

701.

Our second ~thod applies directly to the exact problem,

and has an infinite variety of possible approximate discretizations.

Stated for the exact (continuous)case, let O(cr) be a trial value

for the imaginary part of Q on the boundary. Then the correspond-

ing real part ‘T(U) is provided by the pressure condition by inte-

grating Eq. D19 to give

(D30) v=

where $ is determinedly

is obtained directly from

J
lt@

3&? cOt 6 COs @ dr
6

e through Eq. D22b. Using Eq. D22a, Z

v. Then the iteration is completedby

finding the new function (3(&) by the transformation

*
A. E. Householder, “Principles of numerical analysis,” New York,
1953, P. 132.
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(D31)
[

72

e(cr) = $ sin 2~
7(P) dp

o
Cos 2p - Cos ZXr

which follows from the fact that 7(c) + i@C) is the boundary

value of an analytic functionfi, regular within the unit circle,

and satisfying the required symmetry conditions.

Preliminary calculations using this method were carried

out using a number of approximate forms of these equations. In most

cases the process converged to yield accurate solutions of the ap-

proximate equations. However, the results were quite sensitive to

the form of approximation, and none of the solutions ~ppeared to

converge with decreasing interval size.

To describe these methods, note that Eq. D24 may be written

as a differential equation for Z of the form

(D32) d’t/dU = Acos(Q+H)e -3Z + *

where A, B, and H are known functions of (Y. Solution of this

equation for Z, with the initial condition on % at u = T/2

provldedby Eq. D26 is equivalent to using Eqs. D30 and D22a. Al-

thou@ c = O is a singular point, it turns out that the solutions

have a node at c = (), ~ = T09

the equation preceding Eq. D1l.

In the first computation,

where TO = ~(l) is givenby

Eq. D32 was solved for T, USing

.

,

.

.

.

.

.
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the trapezoidal rule difference equations for n + 1 equally spaced

points. Then the new e was found using the formula

[

CJ z(c)) + ~
(D33)

~; Z(6J
e(lTj) = $ sin 2r o

j 2[1-$0s 2C. ~=1 cos ~k.cos 2~
J J

d z(g)
n

2[1+COS 26.
J

}

where

‘J = jr-a

~J

[

O when j - k is even
k ‘lwhenj-k is odd

This transformation

7(UJ )

e(c~)

corresponds to the interpolation

= 2 a~cos~rd
k=o

n
= s aak 6in 2k6 .

k=o J

The results for U. /~were:

c = .25 c= .125

n=25 .2382 . 404

n= 51 .2463 .2485

formulae

.

I I
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The inconsistency of these results seemed to arise chiefly

from the singular behavior of the function Z(U) near 6= o,

where the solutions of Eq. D32 apparently behave like

(D34) ‘Z_%(o) + const./log u

Even if the numerical integration of Eq. D32 were accurate, the

transformation (D33) is bound to be a poor approximation to (D31).

This is evidenced in the calculation by a marked oscillation in the

successive values of e near cr = O, which grows worse with in-

creasing n.

To test whether an

more reasonable results, the

artificial smoothing of ‘Z would give

procedure was modified by replacing the

first three values Z(o), %(u’L),and 7(62) by the values of a

quadratic function &th vanishing slope at a = 0, which coincides

with Z at 63 in value and slope. As a result, smoth vslues of

0 were obtained. The values of uo/@ were

c , .25 c - .125

n= 25 .2244 .2269

n=~l .2239 .2261

However the convergence of the iterative procedure was very

slow, especially for larger n. There is evidence of convergence

with increasing n, at least near the btible tip, but the method of

smoothing seems to make the results depend on the choice of C.

-44-
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In view of the sensitivity of the solution to the numerical

method used, the internal consistency of the last results may not imP~Y

.

.

an equal absolute accuracy. This is borne out by a comparison

the results of the third calculation, which uses an apparently

rational treatment of the singularity at ~= Othan the ad

smoothing of the second method.

Consider the functions

u=Im
[~
l/L(s)

v=Im l/L2(u)

with

nmre

hoc

Since the behavior of Z near & = O is expected to have the form

(D34), and since x ~ l/logc near 0 = O, the integration of

Eq. D32 was carried out using the trapezoidal rule with respect to

the,variable x rather than cr, although the points were kept equally

spaced in a. Then a fit was made to the values of Z at ~ = O,

al 9 U29 in the form of a linear combination

70 = a+bx+cy.

Thus the function

T1 =7-T0

was smooth at cr = 0, and its transform 01 by (D33) was also

smooth. Thus (1 was found from the equation

.
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where

00 =bU+cV

The results gave better agreement for different values of

C, but were unsatisfactory as regards convergence with increasing

n. For n = 25 we found

But as n increased, the value of uo/~ decreased until the

procedure failed to converge to a solution for some n between 30

and 50. For C = .25, we found

n.2J+ n=so n=so

uo~ = .2218 .2151 no solution

To achieve a convincingly accurate solution in future

calculations it will probably be necessary to have a better knowledge

of the singularity at ~ = O, not only in the solution of Eq. D30

but also in the transformation (D31). Meanwhile, the restits of

these preliminary calculations indicate the value .225 + .005 for

uo/w
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11. Experimental Results..

.

.

.

.

Measure=nts of air bubbles rising

tubes have been performed by Russell Duff at

through water in

this laboratory.

vertical

The

tubes were closed at the top, and water was allowed to fall freely

from the bottom. The bubble rise was photographedby an Eastman High

Speed Camera operated at a calibrated frame rate.

The first tube (Tube A) was rectangular in

with width D = 4.0625” and thickness T = ~t!.

(Tube B) had a circular cross section with diameter

cross section,

The second tube

D = 4.0625”.

The bubble vertex height was plotted against time; the

plotted points fell on a nesrly straight line as long as the bubble

WLM welL removed from the tube ends. The slope of this line was

taken as the bubble rise velocity Uo. Again, the bubble tip radius

of curvature R was estimated by naking a least squares parabolic

fit to a set of four measured points

less below the bubble vertex. These

over 8 to 10 successive frames. The

on the bubble surface, 0.6’Ior

radii of curvature were averaged

resulting values were

uo/ti5 R/D

Rectangular TUbe 0.29 0.26

Circular Tube 0.35 0.35

It is interesting to compare the experimental data for the

rectangular tube with the theoretical predictions for ideal plane
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flow Summarized in Sec. 10. Evidently, the measured value

uJ@ = 0.29 is nearly 1.3 times the theoretical value of 0.225.

Since surface tension and viscosity tend to diminish Uo, this dis-

crepancy is probably due to the three-dimensional character of the

flow. It is somewhat surprising the T/D =1/4 should reduce

uo/~ only half-way from the circular case to the case of a slit,

but of course uo/@ should be larger for a square than a circle.

It would be interesting to ex~riment with tties with other T,D.

It is also interesting to compare the experimental data for

the circti~ tube with the mean of previous eICperimentd @ta s~-

rized in Eq. (19), p. 34of IA-1862. Evidently, the value R/D =

0.35agrees with that deduced from previous experiments, while the

value uo/fi = 0.35 is about 1~ higher than the mean of previous

values.

●

✎

.

.

.

.

.
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APPENDIX E

REM4RKS ON LAYZER’S MODEL

We start with the velocity fields

in the axially symmetric case, and

(Ela) x= ~ e-y sin x, Y = ~ e-y Cos x,

in the plane case. These correspond to velocity potentials of the form

-u= ~ e-z Jo(r) and -U = ~ e-y cos x, respectively.

from Eq. Ela, dy/dx = cot x, whence dy = d(sin x)/(sin x)

and the streamlines are

(I!Z?a) Y-K= In(sin x) or ey = C sin x.

Similarly, from m. El, dr/dz = J1(r)/Jo(r). Transposing, and writing

Jo = J1’ + J1/r , we get

(E2) z -K= k[r Jl(r)], or ez = Cr Jl(r).

We can now get a parametric expression for the interface.

From Eqs. Ela and E2a, dx/dq = l/C, so x = X. + (q/C). Hence
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d(ey)/dq = Cos x

If the interface

(E3a) x

= cos (x. + q/C), or ey = eyo + C sin (x. + q/C).

is at y = O for q = O, this gives

= a + q sin a, ey= [l+(sinx)/(sins)].

W the wall x = n, -d(ey) = dq; hence as q increases from O to 1,

y decreases from O to -00 . Ch the axis x = O, d(ey) = dq; hence the

y is +1, and y increases fromo to III2 = 0.693corresponding change in e

on the axis, when the interface reaches y = - = on the wall; relative

amplitude at blow-up is only 0.693/2 fis O.ll! In

case Eq. E2, d(ey) = Jo(~l)dq = -0.4028 dq on the

fromOto Ln[l + (.4028)-1] ~ 1.25; the relative

is about 0.2

the axially symmetric

wall, and increases

amplitude at blow-up

.

.

.

.
.

.

In Stage (l), the term VU . VU is neglected in Bernoulli’s

pressure equation; hence the pressure field associated with Eq. El

satisfies

P(~U/6t +gY) +p = const.,

where aU/~t . -q e-z Jo(r), and

condition of constant pressure on

in our dimensionless coofiinates.

~U/~t . -tie-y cos x, and y = q

z = q Jo(r) on the interface. ‘he

the interface is therefore q + gq = O,

Similarly, in the plane,

e-Y Cos x. Hence, when ~. 2 m

and k = 1, the condition of constant interface pressure is q + g k q = O,

which coincides with the result of Eqs. 12 and 12’ of LA-1862, for

a= ~’=T=O.

.

.-
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To calculate the curvature at the bubble vertex, we use the

.
.

.

stream functions

(E4) @ = r e-z Jl(r) - r2/2,

(li%a) @=e-ysinx-x. x[(l

which are easily deduced from Layzer’s

-y+ ...)(l - x2/6+...)

formulas, by superposing a

velocity along the axis, so as to get steady flow with a stagnation

- 1]

unit

point at (0,0). The corresponding streamlines ~. O through (0,0)

satisfy the equations, obtained by factoring out r and x in ~s.

E% and l?+a,

(5) e‘z = r/2J1(r) = 2/(r - r3/8 + ...).

or 1 - z + .,. = 1 +r2/8+ . . . . and

(E5a) o=-y- x2/6+ ...

This gives radii of curvature R = 4 and R = 3, respectively, in the

two cases, where d . 2@landd=2fl=A.
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APPENDIX F

CALCULATION OF INTERFACE M(YIION*

1. Periodic Vortex Layers.

We shall consider below the two-dimensional Helmholtz and
.

Taylor instability of a periodic interface, separating two ideal flulds

of densities p and pt. If V(x,y;t) and V’(x,y;t) are the stream

functions describing the nmtions of the two fluids, then the combined

potential (V,V’) is the potential of a single layer } on the inter-

f~ce S separating the fluids, just as in Appendix B, Sec. 2. Hydro-

dynamically, } is a “vortex layer” for the velocity field whose

potential (U,U”’) is conjugate to (V,V’).

The aim of this appendix is to show how the vortex density per

unit length Y = 2 d~/ds, and the geometry of the (periodic) interface,

can be taken as dependent variables, so as to calculate effectively the

evolution of an interface of arbitrary initial shape.

Specifically, we let the real independent variable a refer

.
.

to a “material point” on S; we let z(a,t) = x(a,t) + i y(a,t) denote

*
Written jointly with David Carter. James Howland also assisted in the
preparation of this appendix, and we have profited from discussions with
John Wheeler.

.“
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its complex position in the physical plane at time t; and we let @

denote the (periodic)vorticity density in terms of a, so that

2* = G)(a,t) da. For simplicity, we normalize units so that

(Fl) d(a+l) = d(a), z(a + 1) = z(a) + 77.

Thus any interval ~~ a & = + 1 constitutes a “complete period,”

and we use the synibol#
to denote integration over a complete period.

If the velocities of infinity in R and R’ are equal and

opposite, the complex potential (W,W’) is then

‘1 of R or R’ by

(1%!)

Conversely, any continuous d(a,t) and z(a,t)

possible flow, whose normal velocity-component

defined at any point

z(a,t)) d(a,t) da.

define a kine-tically

W/% = ~U’/~n is

continuous across S: z

velocity has a jump of

In the case of

= z(a,t). The tangential component of

i(a) = d(a)/l~z/~ al = 2}’(a) across S.

zero velocity at infinity (pure Taylor instabil-

ity), $(,)d a t da = O; this is the case in whichwe are primarily

interested. In the general case, ~~(a,t) ~ + 0, it iS convenient

to superpose a constant translation velocity on the whole system (i.e.,

to use moving axes), so that the relation pum + =Ois

satisfied.

We define the velocity of a point z(a,t) on the vortex layer

itself as the complex con~ugate of the Cauchy principal value
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(divergent) integral

(F3) ;*(a,t) = #m $( cot z - z(a’,t))d(at,t) da!.

This velocity ~(a,t) is the average of the vector velocities on the

two sides. The velocity component normal to S towards R is

(F3a) u = *cose+$sine
n

and the tangential component is

(F3b)
‘t =

~~sine+~cose.

As we have already seen, Un = W/~n = fMJ’~n, while 8u/’s =

Ut - ($/2), au’& = Ut + (//2).

2. Continuity of Pressure.

The pressure in R is defined up to a function P(t) of time

alone, by Eq. F2 and the Bernoulli equation

(F4) p + p~ufit +: Pvu”vu+ pgy = P(t).

in R. It is defined up to a second function P’(t) inR’, by an

analogous equation involving p’, ~’ and U’. To be compatible with

pressure continuity across S (i.e., to be dynamically possible), a flow

defined by Eqs. F2 and F3 must therefore satisfy the condition

~pha = ap’/t3a.

To evaluate @U/Zlt in Eq. F4, we compute
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i(zl,t) = *
f{

●

(F5) (d ~ sin(zl. Z) . d; cot(zl- Z)1da.

This equation holds on both sides of S. If one evaluates 2/& +p’)

times the different terms of the equation ap/?3a = ~p’~a from

Eqs. Fk, F5”and F2, taking due care concerning continuity as S is

approached, one gets

(F6)
f

&(a,t) - ~ K(a,a’;t) d(a’,t) da’ = ~E(a,t)/~a,

where ~ = (P-p’ )/(P+ P’),

(F6a) K(a,a’) =
{

~ Im ~z/aa cot [z(a,t) - Z(a’,t)]1
as in IA-1862,Eqs. (33) - (33a), and

(F6b)
($

E(a,t) =~ # Q(a’,t) Im [;(a’,t) cot(z(a,t) - z(a’,t))]da’

-11 1;2-&dda/ds)2 - 2gy

where the Cauchy principal value of the integral is taken. If inter-

racial tension T is included, then the expression E(a,t) requires an

extra term of the form - 2T de/(p+$2?) ds, where e = arc ~z/~a is

tangential direction and so de/ds is the curvature.

To derive formulas F6, F6a, and F6b, we express the identity

tlp/aa = ap’/~a in terms of Eq. F4 and its analog in R’, and divide

by (P+~’)/2. Since ~P/~a = l$P’/~a = O in any case, we need

equate only the derivatives of the left side of Eq. Fk and its analog.
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To evaluate ~~2U@tia - ~’82U’/.&a, we consider first the term of

Eq. F5 involving the factor & . This is the same as in the case

u.; = O of initial acceleration, already treated in Appendix B;

thus it gives the left side of Eq. F6.

{}
When aU/Zlt = Re ~

{}
and ~U’/~t = Re ~’ are

.*
evaluated by Eq. F5, the terms in z contribute the first term on the

right side of Eq. F6b, partially expressing (~~U/& - ~l~U’@t)/

2(9+ p’)o

The term in G = gy also occurs in the case of initial

acceleration, and gives the term 2agy inEq. F6b.

The evaluation of ~~VU-WU- ~p’ VU’-VU’ is immediate

from Eqs. F3a and F3b. Indeed,

Vu”vu = u*+ut*-iut+#/4n

Vu’”vu’= un* + ut* + tut +i2/4

The last term gives the contribution - CK#2/8. The first two terms give

a lz?21/2,where G is

Finally, the

- 2(~+~’)-l T de/ds,

given by Eq. F3. The third term gives - fut/2.

surface tension makes the obvious contribution of

where de/ds is the curvature.

3. Physical Discussion.

It is interesting to give a physical interpretationto the

various terms of Eqs.F6, l%a, and F6b, in terms of the idea that S is a

.

.

I

.

.

.

.
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continuum of

We

the boundary

tend to zero

material vortex-points.

first show that ~(a,t) gives the limiting convection of

layer separating R and R’, 86 the Viscosities ~, )1’

-- regardless of their ratio. We consider the special case

of parallel motion and a straight interface, on the assumption that

normal motion and curvature do not affect the local boundary layer

behavior. In this case, the vorticity # per unit length is given by

(F7) Y=Ju/Y=u- -U=,

the Jump in tangential velocity across the

tangential convection of vorticity is

boundary layer. The rate of

(m”) J uuydy=
2

; (U2 - u12)”

Hence the effective tangential velocity is

as given by Eq. F3.

the mean velocity * (U2+ Q,

We next show that, in the absence of surface tension, the rate

of change of vorticity

b
(F8) 2

ra

over a section of S is given by

9= g(P-p’)(z(b) - z(a)).

To see this, we suppose the viscosity zero, but suppose a thin boundary

layer as in the preceding paragraph. We then apply the classic Helm-

holtz-Kelvin formula for the rate of change of circulation
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around a closed

(8/% )a denote

curve. We use Lagrangian

material differentiation.

coordinates,but let d/dt =

Then

But 82x~ati = 3~/8a, hence the second term is
f

ii*d~ = 0. Since

di?jdt = VP/P+ g, the first term is

f
%

f
~ p-&+ && . ($-$)

[P(z(b)~ - p(z(a))] ●

That is, in summary,

(m) rd /dt = (~-j$i) [p(z(b)~-p(z(a))] .

Differentiatingwith respect to a, we get finally

(Jw’) atipt . ($-$)*.

To justify the last step, we must show that, in

convection of the contour of integration does not affect

the limit, the

d~’dt. That

/

..:>...:..,. ,..s ..:::--.: ..%-...

.

.

.

4

. .

Fig. 1
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is, referring to Fig. 1, we must show that the net convection of

vorticity is zero. But this is the significance of Eqs. ~ and F’7’.

4. The Case cV = O.

Thecasem=O

simplifies Eq. F6. Indeed,

of pure Helmholtz insteibilitygreatly

if the surface tension T is neglected,

then Eq. F6 or Eq. F9’ is equivalent to

(F1O) d. GJ(a).

Hence, in this case, the problem is simply to integrate Eq. F3, which

we rewrite as

This problem has been treated numerically by L. Rosenhead* using desk

machines, in a well-known paper.

Specifically, assuming a unit vorticity for each of N equal

point vortices, and unit relative velocity, we have the systemof 2N

ordinary differential equations

(Flla)
u

z
SiIlh ~k(yi- Yk)/N

‘i=i
k~i

COS hrk(yl- yk)/N - cos ~k(x -
i %J

“L. Rosenhead, Proc. Roy. Sot. A134 (1931), 170 - 92. See also
E. C. daN. Andrade, Proc. Phys. Sot. London~ (1941), 329 - 55.

.
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(F1.lb) 7
sinfik(xi - Xk)

ki
same denominator “

(cf. Rosenhead, op. cit., Eq. 13).

This system was integrated numerically by Rosenhead for

8, 12, using desk machines. He used a secant integration formula,

N.

except

that when the curvature of S became extreme, he supposed the four

vortices nearest the center of maximum vorticity to rotate about that

center with constant angular velocity. The curves of the “rolling up of

the vortex sheet”

indeed classic.

so obtained have been frequently reproduced, and are

.

.
5. Extension of Rosenhead’s Analysis.

However, we believe that the usual literal

these curve~ represents an oversimplificationof the

shall now present the evidence for this belief.

interpretation of

true facts. We

In our attempt to extend Rosenhead’s method, we first repeated

the case of 12

“perturbation”

time steps t

vortices per wavelength ~, with the same initial

amplitude of 0.1 A , and a sinusoidal interface. With

~ 0.5 ~/U, our results were in fair agreement with those

of Rosenhead until t zO.35 A/U, when the vortex

over. Beyond this point, unsnmothed calculations

face.

sheet begins to

gave an erratic

curl

inter-
.

.-No improvement in the smoothness was obtainedby increasing
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the number N of vortices per wavelength, decreasing the time step 6t,

or by using a more accurate Runge-Kutta integration scheme. For example,

the case N = 48 exhibited the same type of instability with the much

smaller initial sinusoidal perturbation y = O.OIA sin x. In fact,

with this mre nearly infinitesimal InZtial perturbation, the wave

crest began to curl over at an amplitude of O.1~ (as contrasted with

0.152 in Rosenhead’s calculations).

A critical reconsideration of the problem led us to study the

relevance of the theoretical observations of M-1862, p. 50. These are

(i) that the evolution ofa vortex sheet (or other discontinuity) is

probably well-determinedmathematically only for a limited interval of

time, and (ii) that the calculations can be stabilized by assumimg an

interracial tension.

In order to give these views a careful test, by an otherwise

s’tablenumerical calculation,we used the method outlined in Sees. 1 -

2 above, but keeping the vortex centers equally spaced with respect to

arc-length along the interface. Figures 2 through 4 show the results

for 32 points per wavelength. Each figure shows the development of a

half-wavelength, for successive values of t. The vertical scales are

expanded by a factor 2 over the horizontal. Distances are measured in

Units Of l/k = a/2V, and time in units of l/kU. In all cases the

initial perturbation amplitude was O.01/k eo.0016~. Figure 2 is

for the case of zero surface tension T = O, with the expected in-

stability. Figures 3 and 4 are for kT/2F’# = 3/32ad 3/16,
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.

.

respectively. In the latter cases, the calculations were stopped when

the results had lost their quantitative significance. Although stability

required taking a short time step, inversely proportional to the number

of points per wavelength, no violent instability occurred with suffi-

ciently short steps.

It should be possible, therefore, to obtain unlimited ac-

curacy for T >0 by taking many points and correspondingly short time

steps.

It may be of interest to note that the use of a small number

of vortices exercises a stabilizing effect on interface waves, some-

what analogous to that of surface tension. Specifically, the exponential

growth factor for an infinitesimal sine wave of wavelength ~/n, with

N vortices, is

(FI.2) a= nk U(l-:) = 277_ ~n(l -~).

Comparing this with the growth factor for the “continuous” case N = z

with surface tension,

(F12’) a= nkU~l - (n kT/2pt?),

we see that for the fundamental node (n = 1), the two effects are

equal with

(F13) T= 4 ~ @/kN(l - l/2N).

For n >1, the “effective surface tension” is even more.
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The authors wish to thank Professor John Wheeler for discus-

sions of these calculations.
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TAYLOR INSTABILITY OF AN INCOMPRESSIBLE

by

Enrico Fermi
September 4, 1951

LIQUID

This is an attempt to discuss in a very simplified form the

problem of the growth of an initial ripple on the surface of an incom-

pressible liquid in presence of an acceleration, g, directed frcm the

outside into the liquid.

The model is that of a heavy liquid occupying at t = O the half

space above the plane z = O. It is well known that this is a state of

unstable equilibrium. Any tiny ripple on the surface at the initial

time

tude

tude

tude

grows in amplitude, first exponentially and later, when its ampli-

has become comparable to the wavelength, by a more complicated law.

The case will be considered that there is initially a small ampli-

sinusoidal ripple of wavelength ~. Ina first phase this ampli-

will increase exponentially like

2 ~g

(F)
exp —

at

This exponential law, however, will break down

has become comparable to A =a/27r. We propose to

in the subsequent phase.

(1)

when the amplitude

discuss what happens
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This will be done by grossly schematizing the shape 02 the wave as

indicated in Fig. 1.

Instead of a wave profile like the curve, a profile like ABCDEFGHIJ

will be assumed.

It is clear from the symmetry of the problem that the points at the

maximum and the minimum of the wave move in vertical directions. In

Fig. 2 a half wave, from a maximum to the successive mintium is repre-

sented with the notations adopted. 00’ “is the initial level of the

liquid. On account of the incompressibility,the amount of liquid below

the plane 00’, namely CO’DE must be equal to the amount of liquid ABC!O

missing from above. This condition leads immediately to the relationship

ax
b=ci (2)

.

Our schematic wave profile is then characterized by the two param-

eters a, x. The problem is to determine how they vary with time.

In principle the problem so simplified could be solved by express-

ing the kinetic energy T and the potential energy U of the liquid

contained between the two boundaries OA, O’E as functions of a, x,

?5,i.

T= T(a, x, ~, ~)

u= U(a, x)

One can then write the Lagrange equations

.

(3)
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Fig. 2
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which describe the law of variation of the two wave parameters ~, ~.

The potential energy U can be written down immediately. It is

due to having moved the liquid originally contained in ABOC (weight per

unit length perpendicular to the plane of the

height of the center of gravity = b/2) to the

the center of gravity at a height -a/2.

In what follows the following unit will

drawing = Fg ~

lower position

be used: unit

~; unit of acceleration, g; unit of density, P.

b(l - X),

CDEO’ with

of length,

One finds, then, the potential energy

1 a2x
u=-–— 2 l-x

The calculation of the kinetic energy is more difficult. In

(4)

principle it could be carried out for a prescribed motion of the profile

of the liquid by solving a Dirichlet problem. Instead of doing this, a

much cruder method was followed in keeping with the crude a~roximation

chosen for the

When the

kinetic energy

profile of the wave.

amplitude of the wave is very large, it is evident that the

is due primarily to the vertical component of the liquid

velocity inside the domain BDEB’. The corresponding kinetic energy can

be computed easily on the assumption that the vertical component of the

velocity is constant on each horizontal section of BDEB’. One finds

that this part of the kinetic energy is given by

a322
. ‘1=- (5)

--p

.



.

.

.

For small and moderate amplitudes of the wave,

the kinetic energy become important. One of them is

due to the horizontal component of

This term of the kinetic energy is

‘2 =

the motion of the

additional terms in

the kinetic energy

liquid BDEB?.

given approximately by

.2

m?%
(6)

Finally, the kinetic energy due to the motion of the liquid above

the line AB’ should be estimated. An approximate expression for this

term of the kinetic energy yields

(7)

The kinetic energy is the sum of the three terms (5), (6), (7)

T =T1+T2+T3 (8)

As pointed out, the leading term at high amplitude is the first.

For low amplitude all the three terms need to be considered.

Using the expressions (~) and (8)for potential and kinetic energy,

one can write the Lagrange equations (3).That enables one to express

the second time derivatives x and a in terms of x, a, ~, 6. One

finds

ED-FB
“x=—

AF-EC
AB-BC ‘

a=—
AD-BC (9)

where

(10)
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1 (4x-l )a2i2J@-~-G ai%.— -

Y2
Y

and

y = X(l-x)

These equations have been integrated numerically

Initial conditions corresponding to a wave of very low

chosen as follows: a = .01, 6 = .0177, x = .5, * = o.

the numerical integration are given in Table I.

t

o
.5
1.0
1.5
2.0
2.5
3.0

The four columns of the

~

a

.0100

.0243

.0628

.192

.584
1.218
2.195

Table

b

.0100

.0228

.0468

.083

.115

.144

.170

I

table give, respectively:

i
“ the two amplitudes of the wave, a and b,$’

original surface of the liquid expressed in units

x that measures the asymmetry of the wave (x = .5

symmetrical wave). x < .5 corresponds to a wave

below the original liquid surface is narrower than

From an inspection of the table one will recognize

T axfc2—— -
2y

7rkA

(11)

x

.500

.484

.427

.303

.165

.106

.072

(12)

by Miriam Caldwell.

amplitude were

The results of

the time in units

below and above the

~2; and the quantity

corresponding to a

in which the half wave

the half wave above.

that up to about

.

.

.

.-
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t = 1, the two amplitudes, ~ and Q, have rather close values and they

grow approximately exponentially with a period not far from the one com-

puted from the correct hydrodynamical theory of small amplitude waves

/
T= — =—= .56 (in our units)

Z$g ;
(13)

Already, at t = 1, an appreciable asymmetry of

This becomes more and more noticeable for later

example, b is less than l/10th of a.

The asymptotic behavior of a, b, and x--

time is obtained from a discussion of equations

increases proportionally to the s’quareof the time, b increases pro-

the wave has developed.

times. At t = 3,for

for large values of the

(9). One finds that ~

portionally to the square root of the time, and x is inversely pro-

~rtional

following

to the 3/2 power of the time. More precisely, one finds the

limiting expressions

a-~(t - 1.04)2 (14)

ba.12 (t- 1.04)1/2 (15)

x+.21 (t- 1.04)-3/2 (16)

In other words, the lower tip of the wave falls with uniformly accelerated

motion and with acceleration equal to 8g/7. The upper

much slowly and its velocity decreases with time.

It is interesting to compare the results of this

tion with the experimental results obtained by D. J. Lewis,A as well as

half wave grows

crude approxima-
.

1 PRS 202A 81, 1950
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2
with the results of G. I. Taylor and of Taylor and Mvies. 3 The present

theory seems to represent correctly one feature of expertiental results,

namely the fact that the half wave of the heavy liquid into the vacuum

becomes rapidly narrower, whereas the half wave pushing into the heavy

liquid becomes more and more blunt. On the other hand, the present

theory fails to account for the experimental results according to which

the front of the wave pushing into the heavy liquid moves with constant

velocity. According to the present theory the displacement is expected

instead to be proportional to the square root of the time.

2 PRS 201A 192, 1950

3 PRS 200A 375, 1950

.

●

✎

.

,
.

.
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APPENDIX G

MOTION OF POLYGONAL INTERFACE

1. Introduction.

(FERMI MODEL)

.
.

IIIsees.28-29of LA-1862,a general discussion was given of

Fermi’s idea that one might approximate actual !l%ylorinstabilityby

constraining the interface to be polygonal. For convenient reference,

Fermi’s original memorandum is reproduced at the end of Appendix G.

The present appendix is intended to give so= formulas which

would be useful if calculations were made based on as. 36 through 46

of L&~862. It was originally intended to make such calculations, but

the other two methods described in

The formulas given below

the notation used there. They are

were derived by R. L. Sngraham and

2. me ~xi/~q~ and 8yi/~qA.

RLrtIVofIA-1862seem more promising.

refer to Sec. 29 of LA-1862, ~d to

taken from Ref. 4 of LA-1862, and

the present author.

.

\

The partial derivatives in 4s. 45a and 45b of LA-1862 canbe

expressed as definite integrals. lh view of Eqs. 44c and hbd, it suf-

fices to evaluate the ~#i/aqh and ~~i/~qh .

Again, in view of I!@.4ha, the ~@i/~qA are trivial.

Clearly, ~@l/~aj .0, 8@i/~~j . 0 if is j, and ~@i/O#~ =r

ifi>j. Therefore, it remains to evaluate the ~li/@qA . Again,
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by Eqs. 44b and 43,we have

(Cl) d~i= AdIi + A21i (Ii sin@i d@i - cos @i dIi).

To evaluate the ~~i/~qA, since we know the 8@i/~qA, It there-

fore remains to evaluate the @Ii/@ q In view of llq.42, these
A“

are given by the following formulas:

(G2a)

(G2b)

(G2c)

(G2d)

a

.

.

.

..
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*

It is not guaranteed that the singularities at CYi have been treated

in the preceding formulas, so as to give absolute convergence under

the most general circumstances. However, as the 81i@lA are

closely related to the Schliiflideterminant, a study of the literature

on this* should enable one to get formulas having the most desirable

convergence properties.

3. lCLneticEnergy Tensor.

@ the other hand, some numerical work

tive calculation of the T~ ~ (?). To calculate

convenient to replace ~. (46) of LA-1862 by the

was done on the effec-

(:), it is
‘he ‘K A
equivalent formula

(G3) TKA = -m-~
[aiKa~~

IiJ+ (aiKnJA
+ aiAb~g

) #J

~ ij
‘biKbjA 19

‘Phragmm, Acta Math. 14 (1890), p. 230; A. W?instein, Math. Zeits.
21 (192k), p. 72; J. Nampd de F&iet, Ann. Sot. Sci. Bruxelles 49
(1927), p. 55.
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(G4c)

~i.1*J-I

Here Si measures distance along the ith edge of the polygon. Thus,

after three double qudratures over OS $, ~’ S1, and 4n4 multi-

plications, one can compute all the T
KA “

4. Calculation of the Ii.

The approximate evaluation of the Ii is a non-trivial problem,

because the integrand l/lR(~)! has algebraic singularities at the in-

terval endpoints O1o, .... CYn. If the ith segment of the ~-axis is

divided into ~ (say 40 or 80) subintervals of length h) then the

following approximate forxulas are recommended.

2h

where
1 4 4—-

‘O=WJ (2-#)(3-@ ’kl=(2-@(3 -/.f~

‘Z=a-if%’

k4 are analogous expressions.where k~, k3, These formulas are exact

●

✎

.

.
.

.
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if f($) is a quadratic

0(h3-@ ).

Somewhat more

polynomial; thus their relative error is

tedious is the evaluation of the ~1~/&y,.
&– d

We have here 2(n - 1)2 indefinite single integrals to be taken over

one segment. Here a somewhat less fine subdivision of each segment

(into 20 or 40 subintervals) is required. The formulas of ssc. 2 re-

duce the singularities to those of the type treated in 4s. G5 and (%.

5. Calculation of the Iij. #j. 1#.

The bulk of the computation concerns the 2n(n - 1) coefficients

Iij, Jij, I&j, used in evaluating the T I%ch of these is a double
u A“

integral over a product of two segments. We recommend that these be

evaluated with somewhat coarser subdivisions into, say, 20 intervals on

each segment. We have tried the integration, using iterated integrals.

l%us we have defined

%-1
so that

The second

Rule.

d
i-1 ‘j-1

integration is

‘j-l
quite smooth, and can be done using Simpson’s

.
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When i . j, the first integral involves a logarithmic singu-

larity, combined with the algebraic singularity already discussed; the

same difficulty occurs with the Jii and Kii. ‘lhuswe may distinguish

several cases.

(i) Ch the square of an interior interval, a simple logarith-

mic singularity occurs.

(ii) On the square of an end-interval, both logarithmic and

an algebraic singularity occur.

(iii) (h the prcduct of an end-interval with a non-adjacent

interior interval, where a purely algebraic singularity occurs, use

Eq. G5.

(iv) On the product of an end-interval with an adjacent in-

terior interval, a weaker singularity occurs.

We have not decided on a final integration formula for these

cases, but elementary functions will commonly suffice. Thus, consider

2h

JIn X f(x) dx

o

Solving from the equations

HO+H1+H2

Hl + 2H2

= h[Hof(0) + Hlf(h) + H2f(2h)] .

=2h(I.a2h-1),

2h

=
[

xLnxdx,

Jo
2h

=

[

x21axdx,
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one gets elementary expressions for Ho, ~, and ~.

However, this work has not been completed.

6. Case P’ > 0.

Using the preceding”formulas, we have estimated that about

108 multiplication times would be required to carry one problem for

100 time intervals, in the case P’ = O. Due to the artificiality of

the constraints, no great accuracy could be hoped for. (The modifica-

tion of Sec. 30 of LA-1862 has not been thoroughly explored.)

The case P’ >0 would involve even more time. It is, how-

ever, perhaps of interest to sketch a possible treatment of it, obtained

by embedding the system in one having 3n-3 degrees of freedom, subject

to n-1 workless constraints.

The original independent variables fall into three categories.

First, we have the “turning angles” rlli of the case p’ = O for the

upper liquid. The corresponding angles for the lower liquid will then

be

(G7) IL = -Jfn-i “

Second, we have the parameters ui of *c. 10 of LA-1862. And lastly,

we have correspondingparameters O < ~’1 < ... < ~’n ~ < 1 for the

lower liquid; evidently, ~i and #’n ~ are associated with the s~e

vertex Zi = xi + iyi = Z’n i.

For given U’i, #’i, variables h’ and A’ corresponding to

the h, A of Sees. 1 to 5 can be calculated by ~s. 43 and 43’ of LA-1862,
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in primed variables. From these, lengths Z’i can be calculated by

@. 42, using primed variables. Our (n-1) constraints are then expressed

by

(G8) Ot’i = ~n+l-j-$ (i =1, ....n) ;

the nth condition is redundant, and can be used as a check on the cal-

culation of A and h.

For given ~’i, ~’i, and hence @i, A’, h:, li, and result-

ing xi and yi, one can compute matrices a’iA and “iA~
using analogs

of formula$ for the case ~’ . 0, in primed variables. Having these,

one can compute the kinetic energy tensor ~ T’
2 KA (~) ~K~~ for the

lower liquid, by using analogs of the formulas of Sec. 3, and then

multiplying by c = p’/p , the relative density of the lower liquid.

The sum

(G9)

then represents the kinetic energy of our system.

It remains to obtain an analog of the system of differential

equations(2%)of LA-1862, for the Lagrangian system defined by Eq. Gg,

the potential energy

(G1O) v=v(~) - av’(q’) ,

and the (n-1) workless constraints (G8). As the procedure for computing

such an analog explicitly is hard to find in the literature, we shall

sketch a non-rigorous derivation of the formulas in question. In doing
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1.

.

this, we shall change notation, lumping together all coordinates in the

vector q.

The differentiated form of the constraint equations (G8) gives

where repeated indices indicate summation. For “initial conditions”

satisfying Eq. Gil, the constraint conditions are equivalent to

(G12)

(Note that the nth of these is redundant, and a linear combination of

the others.) ‘Iheway to satisfy 4. G12 is to introduce workless “con-

straint forces”. ‘he problem is to determine, in configuration space,

,.*
the acceleration q perpendicular to the “constrainthypersurface”

which would arise from Eqs. ~ and G1O, if the constraint forces were

ignored. Writing

..*
the condition that the q be “workless” is that

(G13)
.

..*
Gikdk = O imply ~ T = o.

K K~qA

That 1s, not only must the ;* do no work, but they cannot affect
“.
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.

d(T 6 q )/dt for any motion tangent to the
K~KA

(We have not checked this non-rigorous argument

seems very plausible.)

constraint surface.

critically, but it

Clearly, Eq. G13 means that T “6* is a linear combination
KA A

. .w; =c.G. of the G
1 lK

“ there is only one such linear combination
il(‘

which will imply Eq. Gil; to determine this is a straight-forwardprob-

lem in linear algebra. ‘Ihefinal equations are then

(G14)

.

●

w

.

..
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APPENDXX H

GLOBULE ACCELERATION

.

.

Report LA-1862 dealt primarily with plane interfaces, and with

spherical and cylindrical cavities. A few observations will be made

here about the acceleration of “globules,” i.e., of density inhomoge-

neities of finite extent.

The general theory of the initial acceleration of such “globules”

has been given in Appendix B. The method of Appendix G can be extended

to this case, provided the periodic singularity W = Ln sin z is re-

placed by W = Ln z, and the effects of this change followed up.

However, some other procedures can also be used.

As remsrked in LA-1862(Sec. 6), the initial acceleration of

ellipsoidal globules is rigid, and so can be treated by the known*

“virtual mass” methods for treating the inertial motion of solid

ellipsoids in an ideal fluid. The formulas can also be extended to

elliptic cylinders (Ref. 11 of LA-1862,Sec. 71), and presumably to

parabolic cylinders and paraboloids.

Let an ellipsoidal globule R of density P and volume V, in a

fluid of density p’, be accelerated from rest by a gravity field of

intensity g, parallel to one of the axes of the ellipsoid. The initial

*Ref. ).3.of LA-1862, Chs. V and XII. See also the article by Max M. Munk
in Vol. 1 of W. F. Durand, “Aerodynamic theory,” Berlin, J. Springer,
1934-36(reprinted,Durand, 1943).
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rigid acceleration a of R will be parallel to the axis, and deter-

mined from the induced mass p’M of R as follows.

The gain in potential energy after time t is ~ at2g(p- pt) V,

while the kinetic energy is * @V+ P14) a2t2. This gives the energy

equation

(Hi) ar=—=
‘-p’ ‘-*g ‘~

Thus, for fixed R, ~ is a linear fractional function of P’/, and

~, in the case of ellipsoidal globules.

From Eq. Hl, and known formulae for the virtual mass of elliptic

cylinders and ellipsoids, one can easily determine a/g for such

globules. ‘l!husfor an ellipse (Ref. 11 of IA-1862,pp. 84-5), M = lra2y

where a is the transverse semi-axis, and V = Vab. Hence if ~= b/a

is the ratio of axes, we get for the initial acceleration,

(H2) a = g(P - P’)/(PB+ P’).

As ~+ O, thus a + O; as ~ -me, a -+ g(l - P’/p). Hence a long,

light elliptic cylinder can be given an arbitrarily large initial

acceleration, provided the density ratio ~/P’ is sufficiently small.

(This corresponds to the very intense field inside a long, slender

paramagnetic rod.)

For a spheroid or ellipsoid, similar qualitative results are valid,

but the formula for M is more canplicated. It is, for spheroids (Ref.

11 of LA-1862, P. 153).

.

.
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.

a 00

(H3) M/P’V = ~ -ow , where ~. = ab2 !
da

o 0 (a2+X)3/2(b2+~) “

From Eqs. Hl and H3,

A nomogram of r as

for spheriods with a

semi-axes b = c.

we get directly

a (2 - QO)(P’ -p)
r =-=

6 {2 - QO)P+ mop’ “

a function of P’/(p

semi-axis of symmetry

and a/b is shown as Fig. 1

of length ~, and transverse

In applying this nomogram, it should be remembered that the ac-

celeration is ng(r - 1) in the laboratory frame.

For ellipsoids, it is known that

a 00

(H3 ‘ ) M/VP’= z
d~

-o&o ‘ ‘here % “ abc f
O (ia2+3)kx

.

>.

and k~ =

Some numerical values

(a2 +3) (b2+~) (c*+ 2) .

for M/VP’ are shown in the following tables:

a=l

1 3/4 1/2 l/4cb

7

0.5 0.42 0.31 0.18
374 0.42 0.35 0.27 0.16
1/2 0.31 0.27 0.21 0.13
1/4 0.18 o.~6 0.13 0.04

.
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a= 1/2

Sec. 4 of

maximizes

c
1 3/4 1/2 1/4

1.11 1.00 0.71 0.41
3;4 1.00 0.80 0.63 0.38
1/2 0.71 0.63 0.50 0.31
1/4 0.41 0.36 0.31 0.21

a= 1/4

1
c 3/4 1/2 1/4

2.39 0.87
3;4 1.74 0.82
1/2 1.11 0.71
1/4 0.87 0.82 0.71 0.50

For other globule shapes, the principle stated at the end of

Appendix B applies. Namely, the initial acceleration

the rate of conversion of potential energy into kinetic energy*.

It is corollary that the acceleration of the globule C. G. is greater

than that which would be predicted by virtual mass calculations. It is

another corollary that the initial acceleration can

predicted by applying the Rayleigh-Ritz method to a

set of “trial” acceleration potentials.

be approximately

judiciously chosen

Finally, it is interesting to make a rough analysis of the

observed behavior of a continuously accelerated spherical globule of

*
For extensions of this principle, see G. Birkhoff, “Induced potentials,”
von Mises Anniversary volume, Academic Press, 1954.
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b

density ~’ in a fluid of

served that an oil globule

few diameters of travel; a

density ~. Experimentally* it has been ob-

in water will flatten and “dish out” after a

cross section is sketched in Fig. 2.

0

Fig. 2

The flattening is a case of Helmholtz instability, and due to

the underpressure at the equator. If a is the acceleration at infin-

ity, then the initial relative acceleration of the globule is

al
= 2(~-Jl’)a/(P+2P’) a= 4~a/(3-@)

After a short time t, the globule will have a relative velocity alt

and an associated underpressure on the equator (relative to the stagna-

tion pressure at the poles) of ~pa12 t2 = pals, where s Is the

distance travelled. The term corresponding to Taylor instability, i.e.,

the hydrostatic pressure difference between the poles associated with

“See G. Birkhoff and T. E. Caywood, “Fluid flow patterns,” J. Appl.
~J%e 20 (1949) p. 659, Fig. 15. Unpublished photographs show the
effect much more clearly.

.

.’
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a

the virtual gravity, is (~-p’) ~S The ratio of the tw is there-

fore

(H4)
Helmholtz = 2PS 2P g 2s
Taylor (P + 2jY)d = : p+2p’

—.
d

We do not know, even

dish out.

qualitatively, why the globule should

,

.
●
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