unclassifieo

November 14, 1944

FORMULA FOR tHE CRITICAL RADIUS FOR ONE VELOCITY

WORK DONE BY
d. Asinacin
R. R.Davis

R。Ehrlioh
R. Po Feymman

F. Reinen
T. A. Welton

PUBLICLY RELEASABLE Pers Lugustscarss. 16 Date: $\frac{10-20-93}{512-96}$ Eindallegon: CIC-14 Date: 5-2-96

UNCLASSIFIED

By combining the results of various numerical computations.
a formula is obtained for the critical core radius when the mean free path differs in core and tamporo It is limited to ono neutron velocity, and the tamper is infinite。

FORMULA FOR THE CRITICAL RADIUS FOR ONE VELOCITY

An "empirioal" formula relating the radius of the core to the properties of the core and tamper has been obtained for the case in which the tamper is infinite and only one velocity is considered:

$$
\begin{equation*}
k(a-z)=3,1680 \frac{3.95}{10453+\lambda+4 a} \tag{1}
\end{equation*}
$$

where a is the radius of the core in units of the mean free path in the cores
$\lambda=\lambda_{t} / \lambda_{c}$. ratio of tamper mean frec peth to core mean free patho $k=\sqrt{3 f(1+08 f)}, f=\left[(v-1) \sigma_{f} \infty \sigma_{r}\right] / \sigma_{h}=$ net number of neutrons
liberated per collision in the coreo
$h \neq \sqrt{3 g\left(1-\rho B_{g}\right)} \quad g=$ ratio of absorption cross section to traneport cross seotion in the tamper。 (g wes formerly called $-\mathrm{f}^{\mathrm{o}}$)
$z=0149=.114 \lambda+.08 g^{\circ}$
In this form k can be calculated diroctly if a is giveno f can then be obtained from the formule, $f=\infty 0625+\sqrt{0390625+k / 24}$.

A formula from wich the radius can be obtaingd directly results from solving (1) 。

$$
\begin{aligned}
& G \neq 0 ; a=-G+\sqrt{G^{2}+H}, \text { where } G=(B-A) / 2, H=A B \circ C \text { and } \\
& A=3.168 / k+\varepsilon, C=3.95 / h k_{,} B=(1.453+\lambda) / h \\
& G=0 ; \quad a=\frac{3.168(1.0453+\lambda)-3.95}{k(1.453+\lambda)}+0149-0114 \lambda
\end{aligned}
$$

The data on which this formula is bssed were obtainod from the integral theory of Frankel and Nelson in the cases of equal mean free path
in core und tamper and of an untamped sphereo for other cases the polynomial method introduced by Marshak as calculated by Group T-IV and by Glauber fras used.

The ourves of radius vso tho varlous parameters can be used in tho following may: let us assume that it is desired to determine a value of the radius a for a sot of values of f, λ, and g with λ and g intermediate between thase on the given curves. Choose 2 families, ono for a λ on euch side of the givon λ_{0} Interpolate on g by sight, (or more accurately intero polate linearly in $\sqrt{B})_{9}$ in each family, obtaining 2 values of the radiuso Use linear interpolation in λ on these 2 numbers to get the radius correse ponding to the given f, λ, and go

Tho accuracy of the radius formula is 205 per oent or better. Despite the fact that over a wide rangs of the variables

$$
0.8>f>013 ; \quad 05>g>0_{i} \quad 2>\lambda>02 ;
$$

most of the radii cajculated fron the formula are 105 per cent or closer to the polynomial and integralmtheory data, it is not possible to givo any more favorable Ilmit for the accuracy of the formula because of the uncertainties associated with the polynomial methodo

Curves have been included for $g=o 7$ but they are outside the known range of validity of the formulaa The dotted curve for $g=1$ is not derived from the formala but is the essentially oxact result of the variational mathod and the extrapolated andapoint method for untamped spherese

Systems in which noutrons multiply as of can bo calculated by assuming an additional absorption cross section equal to a / v both in the core and in the tamper, where v is the neutron velocityo

明
 APPROVED FOR PUBLIC RELEASE

\qquad
\qquad+號

$\frac{87}{\mathrm{~F}_{7}}$

最

\#

3 P

 $\frac{0}{0}$
$\begin{array}{ccc}.2 & .3 & .4 \\ \text { APPROVED FOR PUFLIC RELEAS }\end{array}$

 み月井

 －

\＃1长

DOCUMENT ROGil
REC. FROM
DATE. NOV 161944.

