LIRS

L CSIFIED.

APPROVED FOR PUBLI C RELEASE

VILLHOOITICY

Classification changed to UNCLASSIFIED

1c LY RELE ASABLE by authority ¢f the U. 8. Atomic Encrgy Commission,
PUBL
perfl $85.16 Date: _J-02- 4 e A LML T L 1> f11/)
, CIC-14 Date: £-2.9% By REPORT munmyﬁ)? % VAN //, /3 \(Z
iA=1TY ’

This is copy 2 of 18 copi&s

Covewber 1k, 19kL . ’I‘hie{ document contains ¢ pages

“HEORY OF MULTIPLICATIVE PROCESSES » 1o .

L g
,' E l‘lKDNQI.__&“IL_l_Sl E_l.EPO.'RT “RITTEN BY 4
' o Hawkins : T Do Hawkins
ﬂ . 4
L. isan P Lﬁ TE HSe Ulam
o VERIFIED UNCLASS\F\EDN - o
. o 2 = -

v ‘
g _ .
=2 \
=9l -
s o= 8== 0
EE(Y)
hegts °°3 03 2 o3 e
H H
1o -’ 8
. s ..
. ™ : .
[ ]
PJ ‘4Ve.0 o 188 .l. $ .l
.o
' APPI%S?ED.#(H



ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the 
original report at a 300 dpi resolution.  Original 
color illustrations appear as black and white images.

For additional information or comments, contact: 
Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov



APPROVED FOR PUBLI C RELEASE

UINVLAROOIT LY

ABSTRACT

General properties of statistics of multiplicatlve systems
sre Giscussed together with the study of Fluctuations in the number of
particles in such systems. A genaral method is indicated through which

one may study the fluctuations in the case where one takes into account the

factors of geometry and time-dependencs of c@%\‘_
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THEORY OF MULTIPLICATIVE PROCESSES, I»

The statistical theory of mnltiplicative chain processes does
not compare in completeness to date with the corresponding theory of addi.
tive processes. The present paper is intended primarily as an exposition of
& 81mple,%hoory of the statistics of multipiication, permitting appllcation
io a variety of special problems.

The simplest (the "Bernoulliai*) case mey be duscribed as

1
follaws: A particle can produce, with probzbilities p ., Py, Ppeeoe>vs
Ppecccc & number O, 1, 2, 3,00, D 0.0 of similar particles in one generation.
We assume that each particle produced hes again the same probabilities of
producing n offspringo. Vie alse assume that each particle dies at pro-
areaticn. Required is the probability law Pk(n) for any generation k.

We remark parenthetically thut this formulation makes the
muitiplicative process essentially discrete and finite. The statistics of
neutron multiplication involves a continuoue process as well, nemely a
random dictribution in energy, space and time., We disregard thls aspect
initially. later we shall show that the admission of such continuity leads
to a generalization of the methods described below. Thers are, in the
meantime, twe physically accurate interpretations of a discrete series:

{1) one can represent ;he chain process as a graphy the n particles in

the kth generation are the n 1lines connecting ths kth -~ and the k + ist «
bransh points in a chain or set of chains; (2) the n perticles are those
in existence at the kth unit of time, where the probability law p. (m) is the

distribution one unit ef tiqz o *er.thg jqrroductlon of a single partiocle,

oncLassiED R A e
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vistinction is in meny cases noi crucial. rruokel, and later Feynwan studied
e continuous process., We shall show later that their diifcrential equations
"..I' the random process correspond to the infinitesimal transrormations of' the
xiwup in wnich our iteration (see The I) may be imbedded,

“s The first problem to consider is this: We are given an amount and
srrangement of active material. In this system a neutron produces on the aver-

4J¢ N aeutrons with probability p (n) ;c‘f o®)= 1. p(0) is the average prob-
wbilivy of leakage or absorption, withouzzztzbsaquent production of neutrons.
._p(n) nermalized for n> 0 is a nuclear constant, so far purely empirical, known
«8 to its {irst moment und less accurately as to its second moment. Required
is the prohability of having n neutrons after k generations (or units of
“ime)e This problem ie solved, in principle, by:

fi‘heoigl‘x’”}“a Let £(x) be the generating function of the distributi-an of tho nume

Vi meus

sor of offspring, i.e:, {x) =°E p(ll;‘xmo’rhen the generating function for the
xth generation fk(x) = fk(x), xtll':xg kth iterate of f(x). [The lcth iterate is
aefined as follows; fl(x) = £(x), i’k(x) = f(:fk = 1) (x)j} The theorem asserts
that the probability pk(n) is given as the coefficient of x in the ascending
polynomial or power series exnression of fk(x) : The physicel multiplication
of the random variable is rsflected in the iterated substitution by whioh
nw(x) .o

froof: Starting with one neutron in the Oth 'generation we obtain, with
virobability pk(n), n neutrons in the kth generation, Beginring with »

neutrons, denote the corresponding prebubility by pk(g') (n) . Now assums thak
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& chain is started by one neutron. e have

o, (m) {E:Opk _10)p, ) ()

fow if £(x) is the generating function of the distribution p, (n), the

: . . . . . (r) r Lo
generating function of the distribution p, (n) 1a if(x)]". This follows
i'rom the assumption that contemporary neutrons are independent in precreative
powers, and from the theorem (of Laplase) that the generating function of
& sum ot independent random veriasbles is the procduot of their generating
funotions. The ubove proposition may also be vrrified for r = 0, since
pl(o) (n}) =0 for all n>0, Substituting generating function for probebility

i thz above ecuation, we have:

5,0 =p (@ [r@]%+p, _ @ @]+ N R EJCO] RS

Fre0= fkal \-_i‘ (/)} = f‘k(::) “

14

Two remarks mey te made at this point. (a) The simpl.e proof
ebove susta ins a more gensral theorem if the distribution generated by
£(x) is not constant, but time- or generation-dependent. Instead of the,
iterute £frfo. o .Q‘(x)), we will have some fgho o o(g(x))o By the mode of
argument estublished, the choin process may be analyzed one step furthers
iet y(y) =ay + b be the gencruting funciion for the probabilities b of loss
or absorption of a single nentron and a of producing fission, with
2 +b=1l. Let hix) = o x 4 <=2x2 + 03x3 +e.s0be the fenerating function of
distribution of neutrons per fission. Then if the two are combined by the

transforwetion y>h(x), wo heve that the dlstrlbution of neutrons per neutron

is generated by f(x) = g[h(x)] If on the other hand we start from & siugle

[ ]
“: the number of' firstogeneratmn

{ission, uad wish to lmow t; l...' ’ yuf‘(. .o
- -
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~isoions, tnis is given by ¥(y) = h(g(y)}o The iterates of f(x) und F(y) are
connected by simple and evident relations.

There remains the practical pirobviem of determining coefiicients and
other properties of fk(x), given £(x)o. To this end we first shall establish
some general properties of Itcration.

€. Let £(x) be a monotone function. Asaume eogo. £{x) increasing, i.e.,

if zx<y, £(x)<f{y). A fixed point for 7(r) is a wvalue x, such that
f(xo) = Xge The set of fixed points for & continuous function is closed,
Lo®., the points which are not fixed form & collection of disjoint intervals,
sfioee endpoints are fixed points. If we lorir the saquonce fk(x) f'o; a glven
% we obtain a sequence of points converging to a fixed point X, which forms
the erdpoint of the interval in which x is situated. In fuact, there are two
cuses possible, either £(x)< x or f(x)> x., From the monoten character of
¢{r) it follows thet we shall have corrsspondingly either £%ix) < £¥ = 1(x)

- fkl_x)>fk - 1(J\:) for all ko Unless these sequenses tend %0 weeor +oo,
they w11l kave limit points, If now 1im f£¥(x) = X » We must have

—-

k
_ o . k _ _ s . .
f.’(xo) =7 In Iactklin; £(e (xo)) =f(x,) = x o In acddition, it is easy

to seo that x is tho next fixed point to x{on the left or r:ght depending
on vwnether £(x)<=x or f£(x) > x. This follows from the fact that if £(x) is
monotone ard f(x ) =x_, £(xy) =%, , then for all x such that X < XLXq, WO
have £(x ) =x,<f(x) <f(x'1) =x .

In our case f(x) is a power series with all coefiicients non-
negativeo, £(0) 20, £(1) = 1o This function is certainly monotoneand in-
creasing for all non-negative x. Let x, be the first (non-nogative} fixed

point, x certainly exists, ..‘re.. et of From
! L3 ®

i o - .
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these conditions it follows that lim fk(omwﬂe in a
z =00

genernting function iz set = 0, the 1ilue of the function is the probability
hat <the rendom variable tekes the v .jue O. Hence x gives us the iimit of
the probability of mortality in the iystem. The probability ot immortality
is tharei‘o.re aimply 1 - X where z_  is the smallest non-negative root of
the ejuation f{x) = x. It is easy td> see that if,'as in our case, all the
coefficients in the expansion of f( ) ure non-negative and f{1) = 1, then
from £'(1)> 1 it follows that ther is a root, and only one root x which

o

it non-negative and<l. If £'(1) -1, x, =1 is the smallest positive root.

o
%6 obtain immediately therefore t -3 familiar fact that neutrons in a sub-
critical gadget without souwrce i 1, with probability 1, die out in a finite
timec. For the supercritical gad; st the probability of indefinite productiocn
can bte obtained by solving the e uation f(x)

The kth iterate of e function can be obtained by a simple graphe
%oal or mechanical method which .8 based on the fact that along the diagonal,
£(x) =x. Thus we may for give x replace this argument by f(x), getting
£2(x) graphically, then repeatir ; fl‘(x) and so forth. In ths case of the
generating function under disc:ssion this snows that fk(x) very rapidly
approaches its asymptotic form: for the critical or subcritical case the
ssymptote in the interval 04 x <} is 1im. f'!"(x),:_:-.l; for the supercritical
cose in the interval 0<x €1 the asl;m;_)‘::te is lim fk(x)

k =90
implies that for all positive powers of x in fk(x) the coefficients

Xge This

approach O uniformly, i.e., the mass of probability is either absorbed

eltogether into the zero region (suboritiqal case), or is spreed out in an

ENgRR

infinitely long tail (supercu: g d, o

.\{I;}Eﬂ‘l_u region of criticality the

UNCLASSIHED

Pdsu:cs‘zﬁgLEASE



APPROVED FOR PUBLI C RELEASE

oo 0ad. poe o:o
[ L) .
. .
.
.

distribution has an infinitely lcng tail

probability of mortality aporoaches one.

%, Onc of the importent properties of generating functions is that they
permit the calculatior of womenta. %Thus if p, is the distribution itaelf,
£(x) =3 P, xD  its generating funmction, we have, becavse obwiously f(1) =1,
the i‘ur-l:azz moment or expected value of the rendom variable =3 n Py = £+(1)
= the firs: derivative of f(x) at x= 1. “irilarly the socond:)momont of the
number of neutrons car be found if we know the second derivative.

In fact

[~ -3
.’lap =% mn - 1)p, +3 np = £"(1) + £°(1)
n=0} n=0 n=0

Similarly the rth moment can be found easily from the values of
the first r derivatives of f(x) at x=l. {Yhe rth derivative at x =1 is

sometimes called the rth combinatorial moment o)

Our gcnerating function is the kth iterate fk(x). It turns out

that its first m dorivatives depend only on the first m derivatives of £(x)

itself in a rather simple vay. e have, in fact:

t
k N
Theorem IJ. {a) [ (x =f£'(1) =
@ @] =00
(i.e. the proof of thz intuitively obvious result that the expecihed number

. =R
of neutrons after n penerations is 3 7)o

(v) [fk(x)]"x IR T [(f'(l))k slera)E e o) 1]

The proof is imnediate by induction:

- St - k - 1 §
Y_f (¢x l(x))] = o1k - 1(x) )[f (x)]
But for x =1, £% = 1(x) = x = 1; therefore since by assumption

?
Lfk - 1(1)] x=1 = [f’(l)] =1 e obtein our formula (a) o By differentistinpg

twice we obtain (Db). bome\?! :J.L : U):»f
UNCLASSIFIED i i s o vig o
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derivetivea:
Their derivutionbis through recursive reclations as follows:
by differeatizting the identical equation
fe(x) = f(fk - l(xD
ropeatedly, aid in all places substituting x, for £k - 1(xo),, we cbtaein a

sequence of linear fiirst-order difference equutions. Representing

af ok _ oy
o= 4 (x) = hlk’r (1‘51”. = h{r) we obtain

M1 =My oM g 9
'“k,2=‘“2°m2k-1+’41 cMyg_1,2

M3 =¥ 0 W o, T3 el oo 2t s

each is of the form

whose generel solution is

x—g'ﬂik"BA +M1k"1x
k= -
oo 1 § - 1 1

Sclutions, for the first three derivatives are

¥ 1 = " T o UNCLASS[HED
Mo = Mp * Wy X - F_:_%J
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Since in the funotion under disoussion x, =1 is a fixed point, thesze
derivatives are the combinatorial moments of the distribution. We mey now .
consider the three ceses where Iy (= V of common use) i8 »>1, <1, or = 1.
a) In the superoritical case where ¥ >1, it iz clear from the
method of der.ving these factorial moments that if the randow variabie n
is measure¢ in units of i,y all moments approach & finite asymptotic form.
Computation of moments for this asymptotic distribution may he greatly
simplified as follows: Let us define a funotion § (x) = xl/Ml the kth
iterate being & k(x) = :(1/ bl]) . The generating function fk@ )1f‘ expanded
in powers of xl/ul has the same coefficlieonts as fk(x) but these are now
probebilities assoviated with the number of particles measured as fractions
of the expeoted number. This is to say that the distribution is scaled in

units of l‘.ak = '\Tk, end its first moment = 1. Since for the supercritical

case all moments approach a constant value ee k -»°° when scaled in this way,
and since the generating function is monotonic in ths region (0,o¢), there
exists a common limiting value, g(x) of both fkwk (x)] and £k - lfﬁk - 1(*()]
Since fk[d (x)] [ k - I[dk(gf (x)) J] » Wo may write in the limit:

g(x) = fkgzd (x)]]’ ; B(=) ==xl‘l/Ml » £(x) given, and from this funotionmal

oquation for g, its moments may be obtained from the second, third, etc.

oL 00
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b) In the exactly oritical case, M, =1, the moments are

=1
e,1
o=k M
K, . 2
M 5 =k Mg+ 3 () M
This is a distribution in which P Z1 - L,kM,, and such that if the system
»

nas not died in the kth generation, the expected number of neutrons is
= kb0
o) In the suboritical case all moments converge to zero, but are
approximately sroportionsl to the first moment.
Lo .We may consider here briefly & simple special case, in which the
jteration problem may be solved exactlyo
Let £(x) = (ax + D) /(cx + 4) ; we huve here a three-parameter
family of functions (one of the four constants a, b, ¢, d, is imuaterial).
We can adjust them so that £(1) =1, and £'(1) =V - We can then impose
another condition, either on f"(l), or so thet r(xo) =X, where x_ is the
"true™ probability of mortalityo Punctions of the above sort form e group
under substitution. This oan be verified directly by substituting. (They

form the so-called projective group of the lines) A fortiori the iterated

funoction
k =
£59(x) = (akx + bk)/@kx + dk)
By expanding fk(x) in a power series in x, we obtain the exact

golution of our problem in this fairly general caseo We determine the con-

stants by the following three relations:

(1) Because £(1) =1, we have for every k: fk(l) = 1 which gives
UNCLASSIFIED

&k+bk=0k+dk e o

(2) Similarly, for the second feged s

L qolps .:ie o8 $(x), i.e., the root

ST P
. oo .o.,_a.o ;

[
°
° ¢ ~o. =0
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x, 21 of £(x) = x, we have f(xo) =x_, and therefore for ali k: i‘k(xo) ==z,
or ayx, + by T opx, +d, and x = - b/o, from ‘ex, +b = xo(oxo +d)c
(3). From the results of section 3, we know that
Kk ! _ k_ =k
L@ , =y =(er)E =3
vhis gives

2(ox + d)=(c ax + b)

, =V
{cx + d)< x=1

or taking acocount of (1)
(& -c)/(c +d) =7
ané therefore for all k '

(a, - ck)/ (o - 4) = vk

From the avove three relations it is easy to ocalculate the con-
stents a,, by, oy, 4, in terms of vV and one'arbitrary paramoter, By
eliminating L bk and developing into & power series, we get, noting that

‘k/dk = l/hv'k - 1, assuming e.go v>1, the result in the form

£K () =[(Ax +B)/Sk* 1]{1 +(1-1/Y9x + (1 - /5552 4
ooo(l - l/Vk)nxn“"ooo

This constitutes a complete solution of our probleme. It is interesting to

note that the probability of having n neutrons decrcases geomstrically

with ny the ratio of the successive terms is in the case ¥>1, k large

extremely close to 1o The distribution has the form of an exponential,

decreasingly very slowly. Asymptotically the probability of having
exactly n neutrons is independent of nl This result shows also the possibility

of enormous fluctuations in mult'ﬁf_)lg&v?;lvtes'a AR B
UNCLASSIFIED o s
:.. o0 .. [ X ] . cts EN o
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in its ordinary formulation is not true for multiplicative processes. In
inot the probability of having moro (or less) than R times the expected value
o7 neutrone tends to a positive constant (dependent on £ ). The following
form of the law of large numbers is valid, &6 the examipation of the dis-
tribution ehows at once:
Theorem III. Given an &> 0, there exists an N such tha: for all >N, the
probability of the number n of neutrons in the kth generation beling such
that (V - )%cn <« (v + e)* is greater than 1 = &3
P{(V» %< n<l(v + e)k}>1 - €

It remeins to discuss the most general form of the distribution. We hope
%o do this in part II of the paper through two methods, one consisting of the
consideration of functions of the foxm h f h-l (x), where f is of the pro=
jeotive linear form discussed above, and h(x) is an arbitrary monotonic Function.
The kth iterate then is simply h £ h™ (x). The funotion h(x) will give us
more arbitrary parameters for our real distribution. The second method con.
sists in developing f(x) into a series of functions whose terms have the
"pro jective” formo

Finally it mey be remarked that the limiting distribution obtained
above is formally identical to those obtained by Frankel (LAMS=%6) and
Feynman who used @ continuous time parameter instead of our discrete-generations
model. Their physical model is somewhat different and leads to the finding of
the infinitesimal trensformation of the continuous, ebelian, one-parameter
group into which the group of iterates of a function can be imbedded.

5. There are many other problems besides the juestion of the probable

number of neutrons after k gener.*??it%fssml‘cih Wonal methods.
[ o0 L 2

o ¢ ——————,
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The first wo shall consider is that of a suboritical system
(V<1) with a source. We suppose that the distribution of neutrons entering
the system in a given generation has the generating function B(x)e £(x) being
the generating function of the system itself as before, we shall have

Theorem IV. The generating functions in the zero, first, second generations are

the funotions:

B(x), B(x) » d[f(x)], g(x) * ﬁ‘[f(xﬂ - 8 L’t‘a(x)J

Proof is completely analogous to that of theorem I.

In gensral, letting I k(x) represont the distribution in the kth

generation

a) Fk(x) =8 (x) Fp .1 [_f(x)]

If the system is suberitical, but sustained et a definite level by the sourcs,
we shall have the limiting distribution - or its limiting generating funotion -
as a nonsingular funotion of x: lim F (x) = F(x), F(1) = 1. Passing to the

k300
1imit on both sides of our equation a) we get

b) F(x) = g (x) °F [_f(x)] vihere 2{(;), £(x) are given.

One has to determine F(x) from this functional equation., Even without doing

it one can obtain at once useful statistical information, for example the
moments of F(x), by differentiating (b). Thus:
F'(1) =46 (1 - ¢£)
4]
F(1) = 2 (282 + £
(1) T * Gy a—r

giving us & way to compute standard deviations, and similarly, more

complicated expressions for the higher derivatives and momenis. The first

derivative ~-= tho expected valuo-nen!, ‘pva;, eﬁ.y__mwportional to the degree
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of subcriticality becomes infinite if f'(1) approaches 1.

6. VWe come now to the probability distribution of the sum of all neutrons
in the system from the first to the kth gencration. We have established
previously that if f£(x) =% Py X° is the generating function for the
probabilities of n partzzges in the first generation then the generating
function of the kth generation is given by the kth iterate £¥(x).

If we want the generating function for probabilities of having the
total of n particles from the first to the kth generation, we shall proceed
as follows,

The total of n particles can be obtained by any one of the
following mutuelly exclusive cases: we can have 1 in the first generation and
n - 1 in the remaining k - 1, or 2 in the first generation and n - 2 in the
remaining k -~ 1, in general we can have r in the first and n -~ r in the re-

naining k = 1 generations. The required probability is therefore the sum of

a®) =z p, o Pk 3} (@
r

Here pg - %(n) denotes the probability tlat, starting from r
in the first generation, we shall attain from these r a total of n - 2 in
k = 1 generations. But the r particles are independent of each other. The
probablility of getting the total of n - r from them is therefore the
probability of n - r in the sum of these r variables. The generating
funotion for the sum of the independent variables is the product of the
gonerating functions corresponding to each of themo In our case it is the
rth power of £(x). We are looking for the coefficient of x* = T in

[?k - l(xi]r. Our required probability qk equals thersfore the sum with

reapect to r of coefficients of x> ¥ ﬁi}[fg" : ]_'(:c.? ¥, or the sum of the
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coefficients of x® in & p, x¥ o [fk - l(x)]ro
But the ctoi’ioient of x% in % p, x¥ [fk - l(x)] ¥ is the same

as this coefficient ép.“i‘é: o fk - 1(:c))o rThis j.s true for all q. Therefore
the generating function forAqn is ¢ xfk - 1(::))o Since n here is arbitrary
we get:
Theorem V. The generating function for the time sum is:

uk(x) = i‘[xuk - l(xﬂ
If wo "cownt™ the original particle, this multiplies the generating
funetion by x; expressing this slightly modified form recursively, we
obtain the more convenient expressiones

uf(x) = xfﬁ.uk - l(x)]
As we know we have, in general, ;a relation between moments of the nth order
of a distribution function and tl;'_u'; nth derivative of the generating function.
We shall now show how one ocan compute the derivatives of uk(z) for any
k in an explicit manner.

Since, as was shown above,

uk (x) =xf[gk = l(x}]
we may obtain the desired results by repeated differentiations, and by solving
the resulting finite difference equations, But if k is allowed to approach
infinity, and if the system is subcritiloal,

1lin uk(x) = lim o - l(x) = u(x)

k> Ik =0
Hence for the distribution of the total number produced, we have

u(x) =x o £fu(x)]
differentiating, we obtain:

(1) =1/Q - (1))

u'(1) =[e" + £ (1.-
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These examples show how moments of the distributions cen be computed for
vari;oue problems in our discrete model. Otto Frisch has shown, how, from
the form of these moments one can write their correct form for the confinu-
ous model  without having to solve the partial differential equations aof the
problem. This correspondemco between the two models will be taken up in part
II. It may be sald that a gonerality o.f method has boen estmnblished by the
foregoing results, which demonstrate that the iteration of suitable operators
corresponds to various physica;l observables connected with chain processes.
For example it may be mentioned that the transformation x3(1/X) £(x) gives
us the probability-distribution for differences between the number of neutrons
in a generation ané the number in the next generation. Thus
£ - 1{;51/1:) ° £{x)| gonerates probabilities of this kinds The mathematiocal
desoription of a multiplicative chaln process is seen to involve the iterae
tion of & funotional operator U. These operators U act on the domain of all
monotone functions g(x), g(l) = 1o To summarize again just a few examples :
(1). U(g) = £(g), £ here is a given monotone iIunotion, g
represents any funotion of the domain on which U cperates, i.e., g(x) mono-
tonio, g(1) = Yo This operator U is. the only one that has been studied
extenslvely in literature. Its iteration leads to the simple iteration

process:

g, £ @), e ()] - - o EEE) oone

(2) 9(g) =£(x - g), £ & given function
The domain of the operator, 1.0., the admissible g are the

same, but there seems to be very «iidle knawreshaut the iterates of this
operator. This operator is tied.*‘so.!-".h;:p?‘.'s' ¥ X .':[\law of the total number
LNt AeoImIEny v eee s -
ULV SRR
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of particles produced.

(3) U =8 (x) g(f‘(x) ) ;8 (), £(x) are giv.enc The iterates
of this operator give us the distribution of the number of particles produced
when & source with given distribution § (x) is aoting constantlye

) e =z[(/x) - g]

This operator relates to the probabziity dirtribution of the
difference of the number of particles in successive generations. The study
of conjugates, fixed points, etc. for suoh operators seems to be important.
We hops to undertake this study in part II of this paper,

We turn now to a more complex version of the problem. Hitherto
it has been assumed that the gensrating funotion was independent of temporal
and geometrical faotors. Howsver, our methods are extensible beyond these
limitations.

(7) The caloulation of the probabillity distributions in the
general case of heterogeneous particles will now be considered. So far we
have assumed that the probability of generating m neutrons is the same in-
dependently of the parent neutrom. If one takes the real sitvation where the
system of the active material is of finite extent, then obviously the probability
of leakage and absorption is a function of posiiion of the parent nucleus.

I% 1s obvious that in generai chemical or nuclear chain-reaction process«s
one has to deal with several kinds or even & continuous variety of the
elementary generating funotionso

In order to explain our methods of iteration of functional
operators for tiiis generaul caso we shall take the simplest case of two kinds

of particles. If we divides, for.'*;hb"x“irst'"pa}’o;timtion, the sphere of the
aotive material into two parts, wa iﬁha:‘
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characterize the neutrons generated in the one part by the subscript x, the
others by subscript yo Ar. Xeparticle can gemerate either x-particles again

or penetrating to the outer shell y-particles, or, of course, leak out or be
absorbed ; the same, though with different probebilities, applies to the
yeparticlas. In reality we should consider a one-dimensional variety of kinds
of particles corresponding to all values of their distance r from the center
of thoe sphere or even & two-dimensional one if we want to take into account
different velocities, To simplify the presentetion we shall limit ourselves
here to just two kinds (x ard y).

Ws assume that the following elementary probabilities are given by
the nuclear constants and by the integrals of the geometry involved.

An x-psrticle can produce n{>0), x-particles with the probabilities
p, and n(>0) y-particles with probabilities e The probability of dying
out = absorption or leakage - will be denoted by p,.

For the yoparticles the corresponding probabilibdics will be
denoted by S;, E;, and S;o It is ?ecauae of the geometry of the system that
E; and p ere certainly different.

We now write the two funotions of two variables each:

£(x,y) =p, + pyx * ...pn§n+....+q1y + ..oqnyn+..p

5(x,¥) =Dp * PyZ +eee D E Fesoot §,¥ toool ¥ ooo
The coeffioients of f(x,y) give the probabilities of having in the first
generation o given number of x-or y- particles starting with one x-neutron.
Those of g(x,y), if we start with a y-neutrons.

Required are the probabilities of finding in the next generation a

given number of x~end ybpartiolgéy
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let us form the funotion

0y =2[2(x,3), elx,y)
By reasoning exactly as in the proof of Theorem I {or Theorem III) wo see
that the probability of having n x-particles and m yepartioles is given
by the coefficient of x°y" in f 2(:t,y) o I we started in Oth geueration with
a y-particle we will get these probabilities as the coefficlents of xnym in
g[f(x,y), g(x,y)] o wy an ohvious induction we qbtain:
Theorem VI. The probabilities of having n x-particles and m y-particles in
the kth generation are given by the coefficient of xZy® in f[Tk - l(r)] zr
gta’k" 1(r)] (dep;nding on whether we started from an X- or from & yeparticle).
T(p) 38 & transformation of the plams (x,y) ipto itself defined as follows:
if p = (x,3) then T*(p) = 2(p) = [£(x,y), elx,]; () =1~ 1(m)

Without going into the details of the proof or actual computations
of moments weé wish to conclude by the following remarks:
(1). In the case of 3 or any fir.lte number r of different kinds of particles,
the formalism necessary to obtain the generating fimotion for the kth genera-
tion is the same. It consists of iterating a given set of r funoctions or

& transformation in r dimemsions (variables Xy, 'xao.oxr)o

(2) o One fairly general case where the coefficlents of the mixed powers of
the variebles xla'l x2°'2oooooxrar can be ocomputed explicitly in a closed form
for any number k of generations is when the given transformations is the

r dimensional generalization of our projeotive transformations on the line ice.
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p = (xp, Izoooxr)a p' = T(r) = (x x‘a.oox'r) whero
x'l = fl(xln.xr) = (a)1x1 toeony X+ bl)/(allxl teeo0q X :4.(11)

© 0 ® e ¢ 9 e e e 6 © e & & o g © & Y T & & © © © © o & o o o o

xirz fr(xlo, oxr) = (Ilrl 7;1 +oo.arrxr + br)/(orlxl 4o ocrrxr

(3) The computation of moments of the distribution in the most general case

+ dr)

does not involve the explicit knowledge of Tk(r), but can be obtained tarough
the knowledge of the moments of the r given elementary functions
fi(xloo . oxr) oo oofr(xlo .o oxr)
The role of the rumerical multiplication of moments is here taken
over by matrix multiplication

(L) o The other operators corresponding, e.g., to U(g) = £{x -g), eto.,

have not been so far investigated in the r-dimensional case.
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JONCLUS {008 REGAKDING APPLICATIONS : UNCLASSIHED

The expected value of the number of neutrons per fission "v" is known

with fair accuracy. The critical mess and the expected number of neutrbna
in a gadget depend on this constant alone. Very little seems to be knowm,
however, about the distribution function of the number of neutrons or even
only about its second moment. The great fluctuations in mmltiplicative
systems discussed above are of some practical interest for the following
reasons :
1o The corroct timing of the initiation of the gadget is vital for high
afficiency. BEven with good sources there will be sm uncertainty of several
gencrations time - due to fluctuations in multiplicationo
2o The fluctuations of multiplication are of interest in all "integral®
experimeats,
50 For gadgets large in comparison with the mean free path for fission, the
spatial fluctuations may destroy the initial gspherical symmotryo

In dealing with such problems it is useful to develop a uniform
technique for describing the statistics of multiplicative phenomena. This
papor constitutes a first step consisting essentially in the cbservation
that the iterated substitution (of a function, or more generally of &
functional operation) represents exactly the statistical laws of multiplie
cetive processes. In the sequel, it is hoped to apply this technique to the

study of the problems of geometrical-and time-dependence of the procksso
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