Ll
0
—
|
o
O
1
oa)
2
o
&
LL
o
_._WL
X
o
o
<

e e e p— o ———

[P

R R R SIEN 00

N - . .
. . - P
- . 1T = .8
s
. .
T R . o o 2
. " " -

€¢vC 0S£00 8€EE6 €

I

AHOLYHOBY TYNOILYN SOWVIV SOT




APPROVED FOR PUBLI C RELEASE

“SEEEER  NCLASSIFIED

Classification changed to UNCLASSIFIED
by authority of the U. S. Atomic Energy Commission, .
Per ../ » \7. i’j\‘i’g@LS
: 3-25-5C

By REPORT LIBRARY ?

/
P%ICLY RELEASABLE
Pe Jﬁﬂ&g&ms-m Date: 3-29.9(»
. CIC-14 Date: &—l:l -9(

B
1A REPORT 31T

This dosument contains 10 pages

June 19, 1945

B

ON THE [ILNF. PRO3LFi# FOR A LARGE PLANF. SLAB
WITH .
CONSTANT SOURCF. AND ANISOTROPIC SCATTERING

RFPORT WRITTEN BY:

W ORK DOKF. BY.:"
Ro Es H&rahak

R, T, larshak

* At lontreal, Spring, 19Lk.

i

OR PUBLI C RELEASE nuyary aeretrIrA

APPROVERN


ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the 
original report at a 300 dpi resolution.  Original 
color illustrations appear as black and white images.

For additional information or comments, contact: 
Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov



APPROVED FOR PUBLI C RELEASE

ABSTRACT

Formulae sre derived for the asymptetie neutron demnsity and the ourrent
emerging from an infinfite plane slab (thickness large compared to the mean free path)
which sustains a uniform production of net;trons. The slab is assuwned to be weakly
capturing and to ascatter ncutrons in accordance with the law: (1/4M)(1+ 341 where
f1 is a constant, p 1s the cosine of the angle of soattering. TFxpressions for the
asymptotic neutron deneity in the alab and the emerging current in the limiting cases

£3 0 and/or no capture are also given.
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ON THE IfILNF, PROBLFI FOR A LARGF PLANE SLAB
WITH

r——pr

CONSTANT SCURCE AND ANISOTROPIC SCATTFRING

Ve conﬁider the following problem: an infinite plane slab of material of
helf-thickness d bounded by vacuum on both aides contains a source oi' neutrons uni-
formly distributed throughout the aslab. The neutrons are scattered unisotropioallyl)
without change of energy and almo suffer vieak capture. The half-thickness d is az-
sumed lerge ¢ompared to the soattering mean free path. Ve wish to obtain expressio s
for a) the asymptotic neutron density inside the siab and b) the neutron current iexv-
ing either fage,

Knewledge of (&) and (b) ia useful for various problems; e.g., it gives an
upper bound to the thermal utilizatlion of a unit cell in a plane pile where the modaxs
tor has the same dimensions, mean free paths, eto., as the slab. The moderator giv:s
rise to ¢ roughly constant source of thermml neutrens. The uranium part of the uni
cell strongly absorbs thermal neutrons and approaches vecuum which is equivalent to e
black absorber. The actual thermal utilization is somewhat lecss than the "black"
utilization.

The tranasport equation goyerning the distribution of neutrons in the slab ji:
the case of linear scattering and with constant neutron production is (ef. Fig. 1);

.
Fgé/(zar‘)?)‘(zp;»") = (1/20) [}{,(z) +3f1p}ﬁ(z)]+ 90/2 (2)
In Fq. (1) the origin of the z-axis is taken on one face of the slab,
M is the cosine of the angle between the direction of the noutron a:

the positive z-axis, }Kz,yadp.is the number of neutrons per unit wvol-

ume st the point £ with dirsotion cosine botween pand pt du, ¢ is tl

c};\\\\\l\\\\\

Filg. 1 ratio of the scattering mean free path to the total mean free path,

1) we work with linear scattering, i.e., the acattering function is assumed to be ex-

pressible in terma of the zero and.first harmonics; the generalization to a higher
number of harmonics is possible bufOf:-no-interest.at.opresent.
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qp 48 the number of neutrons produced per unit ), £y iaa

measurs of the deviation of the seattering funstion from isotropy, and finally }%(2)

and ﬁ{(z} are the zero and first moments of the neutron distribution funstion, namely:

1

FAOE lthmdﬁ (1a)
1

K(2) = 1“"‘%’ yap o (1b)

The quantity ﬁ;(z) is the neutron density and the negative of Qﬁ(z) is the neuiren
surrent, Iu the above, the total mean free path is taken as unit of length and the

nsutren velooity is set equal to one. Ig. (1) is to be solvcd subject to the boundery

conditions: .
Ao,w)

(bﬁ:/bz)a'ym

Condition (A) follows because the vacuum does net return any neutrons, condition (B)

0 for Ww»0 . (a)

0 at z=d (8)

because of the symmetry of the problemO: The use of the asymptotic part of the solution
for ﬂ%(z) in (B) is valid as long as d»> 1, the opndition beseming more severe, the
stronger the capture.. |

Following the progedure outlined in Reports MTcSz)and MTo265>, we take the

Laplace transform of both sides of Eg. (1). We get:

7‘(8-}*){1* BV-]'-' ‘é]':& {;50(3)4, 31‘1?‘751(5)]* %':- +10.1) (2)
where

[> o}
ge,1) = Mz 4) e=52 dz

Q

R 1
Fo(8) = J . Flogiaps  Fi(s)= jl M (s o) dpr

Integrating both sides of (2) over di from =1 to 1, we find:

2) (BM=110; NT-5) G. Placzek and %, Seidel - "Milne’s Problem in Transport Theory".

3) (BM=225; MT-26) (. llark - “Kilne's Problem for Anisotropic Soattering".

v
e ————
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WIY W sy =~ ° -

=5

sfy(s) = (Lfor=1) %(a)*qo/nj rﬂopr)dr (3)

where we have made use of boundery condition (4). Substituting for ﬁl(e) into (2),

dividing by (1+sp) and integrating over dp from =1 to 1, Fq. (2) is trensformed inte;

th fq1(05=1 th £ th th
9’0(8) lnaras 8 3 :}éaa ) (1°§r 2 a)]= EE_Q. F (lvars B)*aro'; s]

(L)

+ gy (s) rZAELD) () 200 2

In Eq. (4) we have written:
' ’“yd(oa’“‘)
= 3
9
go that g*(o) = [ P}’(O,ﬁdw gf(o) represents the negative of the neutron current
=] '
flowing into vmeuun.

Progeeding further along the lines of r.£T~265). we rewrite Fg. (44) in the

form; -

-

{aﬁo(s) % o’qo} X(s) = (51'1/012) H(se) [sgq_(o) +0’q°}+ lsg’(s) ¥ qu} (6)

where '
. arth s 3f4(0-1) arth s
- —-nl—:—- =
#(e) = 1- T a2s? . s )
H(s) = (l_arth s)

Expressing H(s) in terms of K(s):

6252 K(s) .= a(o-1) s2
P82 $3(6=1)f; ©s2¢ 3(ce1)f

H(s) =
we may transform Eq. (6) into:

&(s) K(s) = &(a) ()

whore . L S
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1 : e ’_‘:T%
@(e) {sp’d(é) + c'qo} [0'82 +$(d~1)£1} wﬁflmp (72)
G(a) = [sg*(s) + qu] [6’82¢- 5(6«1)!’1} ©3f3(e=1) {98+(0} * U"lo] (7b)
In Eg. (7§ _Q(s) ia analytic in the plane R(s) >V (whers » is the positive root of
K(s) ), 6(s) {s maflybié in the hhifnplano R(s) <1 and K(s) is analytic in the strip
sﬁ(a)‘c lf, Just as in the case of no capture, it can be shownlt) that in the strip
K(s) has just two %eros| namely,’i +v, and aéprouoh&s unity as [a{-——a ., he may thers-

fore adopt the usual device of defining, a fv.nétion:

T = (55 )(.) | (®)

The’ funcﬂon Yoz T(s) is analytioc snd ninglv-valued in the strip iR(s)l <1, provided

a particular deternination of the logarithm is chosen5) and approsagches zéro as

|s| —> @ in the strip. The usual deéompos:.tion then follows:

o) = T (/) | (8e)
wherc X o ' ' .
z, = 1§ im log “E{u)du
- . ’_.}.;. i 16g E(u)du
T_(s) = OXP‘M f:m rerand

and 'Re(s)‘<ﬁ with V‘.ﬁ_‘la Introducing (8) and (8a) into (7) yields:

(82-%3) 1 (s-1)
#o) S5 ety T ay o) -9
The left<hand sids of Fq. (9) is s.no.iyt;c in the half-plane Re(s)>» and the right-

hend side is anelytic in the halfeplane Re(s)e(ﬁ. Sinoe there is a reglon of overlap,
ofch side is the analyt},c conti.rmuti'on of the other, TFxamination of the behavior of
the two gides of (Q) as gul-—e © $n the plano shows that they spproach infinity as

is Po By an extension of Liouville's theorem, it fdllows that each side mmy be

equated to a polynomial of cyder thres. We therefore write:

L) ef. MT=56, C. tark - "Some® Constents and Lxpansions Used in Applications of the
aiener-Hopf Method" (unpublished),

5) The determination log 1= O is chosen. :ﬁm::__:

UNCLASSIFIED
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(s2 - ¥2)
(s¢1) T.(e)

where Cq, C1, Cos &nd 05 are constantsa.

(s=1) @(s)

= o+ Cya +Cpn2 +Cx83 = —
o™ M1 2 3 T.(s)

&(s) (10)

The problem is now to asvaluete the Cfs. Fram (10) it is evident that -
Co= = G(O)/i‘+(0) which is zero since G(0) = O (cf. (7b) ) and T,(0) is finite. () is

also zero as can be seen by wrxdting

(8=1) G(s)

75&(3)

differentiating both sides with respect to s and setting s=0. Henae:

o(s) = ﬂ%’f:‘”l—jl'l@(s) | (11)

inserting (7b) for G{s) and resrrenging terms, we find;

Cls < 0282 + 0505 =

_ 62(Co+0z8) Tals)* 321 (0-1)[sp_(0) + oug)(2-1)
[’3848% d“lo] = (:»‘1)[“2,,,3(@,1) £1]" .

(12)

From (12) it would follow that [Bg&(s)ﬁ- 6q°] has poles et 5 =+ vhere
{ = 3/35T1(1~ 1/o); since this is impossible it follows that the numerator of the right-
hend side of (12} must venish for sz§ snd 8 = = §, i.e5,
(C2+C58) T,(8) = ofbe, (0) + oao] (4-1) = 0 (33a)
(- 038 T, (- %)~ of- 4£,(0) + oag) (=4+1) = O (13b)
Egs. (13n) snd (13b) yleld values for C2 and Cz, namely: '
_ 82 gl (0)@ +Bh)  gaqle+f38)

2FTT@D) wEepR) ()
_ = B.(0){x +£%) g '
3 = (@2 =) * (a2 ,;;2) (/) (%hb)
with ) :
as 'ti(g)e"'o:ti("f')’ ﬁ._.’h}({)a‘:;tj('”;) (1)»!»0)

Eqs. {ila) and (l4b) express Co and Cz in terms of the upknown constant

£,{(0); this is as 1t should be since we still mus into meccount boundary condition

APPROVED FOR PUBLI C RELEASE
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(B). T6 determine g (O), we find the o.aymptetic aofution for }90( z) and then impose
the boundary condition (B).

To find the asymptotic solution for W (2), wo write down the expression for
¢'°(s) given by (10) and {7a) and find the contribution to the Laplace inverse from the

polesé) For #,(s) we have:

¢ (s) = d’qo §f1[agi_o)qo’q°] A_’f,(a)a(afl)(Cgﬁ@—C3s)
8(s2=¢2) o(s2=£2)(s2v2)

The contribution to ,Wo(z) (the laplace inverse of ﬂfo(e) ) from the poles is:

(15)

. : - = (reY
N {m,(v)(w)e*’”«» (1-9) 7. (-v)e”}
(16)
' 56—5%”—? [= (D(149)e"8 - (19) T.(=9)e7]
Ve may rewrite (16) in the form: :
}4;;(:),"&m = {:3:) +Cah(v,§) coph Wz«e-—z'o) +CzVA(V,§) sinh ¥(z47,) (17)
where - |
L2 T(0) Tlew)
‘ a(v,§) = d(uaeta) . (17a)
- 1 - -
% % Fv {I%E(lf*’) ’i-(v):ﬂ - ,los{(lww 'ta(-V)j} (17b)
The boundery condition (B) applied to {17) no.w ylelds:
Cz sinh v(d +%,) +C3v cosh ¥(d+ %) = O (18)

Using the definitions (14a) and (1Lb), for Cp and C3, Fq. (18) permits us to solve for

8,(0) vith the result:

{eene)- (¢~13€)E:anh warz)ml) (19)
{(a+pD) - F@rB/t) [oamh v(av To)/w]]

It is to be recalled that § = 1/36y(1~1/0),

£,{0) = o,

6) The branche-point contribution yields the non-asymptatic w

{ -the solution,

APPROVED FOR PUBLI C RELEASE
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,,,,,

&= '—f-gg)"' 7“3«(-&)’ ' p= 'UA(O 't.,.(=£)
20

Eqs. (17), (17a), {17b) and (19) constitute asymptotic solution for the neutron density

in the slab; the negative of (19) is the current leaving either face of the slab.
If the capture is weak the various F-functions gan be expanded in powers of
'Joa( ~)°=.1/L with 1 +the ordinary ,d:},,t'msion'(length); neglecting all terms heyond ,,02’

ve obtain (of'.'m‘l’»56u)):

[tanh v{a4Z,) - o¥ B/3£; (o-1)
- 0)= - q.0 2! o
84(0)= = % [ vk tenh w(asz,) (20)
vhere
2
Bez, £ u°2 1*3%—{%+(1§£‘1)§;-f1+5zof1]
2 . .
-— 29 Yo 1 £1 28k of 1 2)
Zo R e T T ——=l=fy+2f
* - =f3) 3 [(1or1) 5 ?."'o *z 1-f] 1 1
with ’
2, 7 71044 ...
K = 217226 o.-

It is interesting to consi:iierAthe limiting case of isotropic scattering: al-

lowing 3 and therefore ¢ to approagh zero, g.'_(o) becomes
[tanh Vv (d.'l'- (isot)) Ty (isot)(o)}

84(0) = = qg9 l >, g 1‘,‘*(15“7(0) (21)

In Fq. (21), 2,(159%) ¢ cefined by

- {i i | : isot '
z°~“’°t) TN [log [(:u»,,) 7@'_‘-1“")(%)] - 1og[(1-=v°) ?_(1” )(-90)]} {22)
To evaluate 'i'o(i“t) it is necessary to know the definition of Ea(iBOt)(s) and

E*isot(ﬂ) ‘since ?n(iBOt)(-S) = 1/‘{?(180t)(3))3 ve have;

. =B#ico % (isot) s
;f.(lsot)( ) = exp{ 1 e log T — (n) au] (23)
, i} “ L ‘_\;::- \
\

e ==
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*100 —(W' o -
"f.,,(iec’t)(a) - exp[_a%{ A i log T o (u)du-g (23b)
\ /55‘ D
where :
2.
F(ieot) 4y 4 s;_ .,12 ( “ar’:: n) | (23¢)

The term Tt(mot)(o)/- (iuot)(o> is the logarithmic der:.vat.tve of T 180t(8) evaluated
at 8 =0 and can be found from {2%b). For weak capture, if we retain terms up to order

"02’ (22) reduces to (this can be seen directly from (20) ):

= {isot)
g,(0) = = 9,0 tanh Vo(d:’ozn - ) -2, ‘,; \,02] (24)

where - o
B g0 ) (@)

It is just as simple to £ind the asymptotic solution for ,Vg {z) in the limit-

ing caze of isotropic scattering; wé arrive at the expregsion:

y(z)a\.eym = {o/ a!bl) qq *A(Y, ) cosh V,{d-z) (25)
where 62 :
2(1 - ,2)
V) = 2
H °). cosh[v (d+z (i”t))] \ﬂloo'(lnvoa)] {o'-l} (25a)
and Z, 180% 5, gefined by (22), For weak capture %, (1s0t) ;4 defined more explicitly
by (2ha).

One final limiting cpse is worth mentioning; the oase of isotropic scatter-

ing and zero capture. The gurrent, of cpui'aea becpmes (qod) while the asymptotic

neutron density is: Lo ' i

k(iaot ;no capture) (z)

asyn ~

322 +A(z+ > {igot;no cap»ure)) (26)

where
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