

CIC-14 REPORT COLLECTION REPRODUCTION COPY

CRITICAL HESS HEASURERENIS FOR A 25 SPHERE IN TU AND WC TAPERS

```
A. EXPERIMENTAI PROCDDURE
```

WORK DONE BY:
F. Bontzon
R. E. Carter
E. Fermi
J. Hinton
L. D. P. King
R. R. Schreibor
J. Wo Staxiacr
B. INTERPRETATION AND CALCULATIONS

WORK DONE BY:
REPORT WRITTEN BY:
E. Fermi

We Fermis

Classification changed to UNCLASSIFIED
by authority of the U. S, Atomic Energy Commission,

Dy REPORT LIBRARY TH YOP art ions

REPORT MRIITMN BY:
R. E. Carter
J. Hinton
L. Do Po King

APPROVED FOR PUBLIC RELEASE

ABSTRAGT

An estimate of the critical mass for 0235 was determined by moasuring tho neutron roproduction in $301 / 2-i n c h o$ and $401 / 2 \pi$ inchadianoter β ostagematarial sphorcs sursounded by tuballoy and wo tamperso A fission source of neutrons was abtained from a beam of thermal neutirons from the water boiler striking a β ostagematerial target placed at the ounter of the sphereso The Bostago meterial usod is 74 percent 250 The multiplicetion obe tained was detornimed by collecting fission fragments on collophano oatcher foilso One foil was pleced so as to moasure the fissions cocurring throughout the macs of the sphere vhile a gecond Soil was used to determine the fissions produced in the targeto

CRITICAI MASS MEASUREHENTS FOR A 25 SPHERE IN TU AFD YRC TAMPERS

ITHRODUCTION ANIL SUMBHARY

This report describes experiments performed in February and Maroh 1945 to determino the criticel sizo for a 25 sphere tamped with urantum and tumgeton oarbides the oxperimonts were performed using spheros of about $301 / 2^{11}$ and $4-1 / 2^{\prime \prime}$ diamoter and of isotopic constitution of about 75 porcent 250 The method consisted in observing the maltiplication by the sphere of che neutrons produced by a source of fiseion noutrons pleced at the center of the spheroo Tho source mas obtainod by alloming a bcam of thernal noutrona from tine thomar. column of the wator bojior to strike a boteostegematerial targot fdasod at tho
 fissions taking place both in the mass of the sphere and in the souroe by collecting fission fragments on collophane catcherso

The values found for the critical mas (with infinite tamper) of 100 percent 25 (donsity 19) wore 1508 Kg for natural uranidm tarmerg and 1308 保 for tungeten cerbide tampero

The report contains the following sections:
Part Ao Experimental Procedure
An Lo Spiners and tamper arrangemonte
Am2. Heasuring toshnique

Part Bo Interpretation and Calculation
Belo Gomeral considerations

APPROVED FOR PUBLİC RELEASE

AO EXPER TMENTAL PROCEDURE
Aolo Sphere and Tamper Arrungementsc A strong source of thormal neutrons was. obtainod by making a laigo oavity in tho thormal columa of the water boileno The cevity was $21^{\prime \prime} \times 21^{11} \times 24^{17}$ and was made one foot from the ond of the thernal columo This pormitted small target placod 22^{n} in iront of the colum to "soe" an 1801/2" oircle 3 ft back in the colum through a aone of 21° apexo Flux moasuremonts gave an av $=1.15 \times 10^{6} /$ Ms at tine terget positiono This gives a fisetion source of 103×10^{7} noutions per ses on the sh82ainchediameter target button of β-etage material mhen the boiler is running at $401 / 2$ kilowatiso

Fig. 1 is a schematic draming of the neutron beam port and tho tuballoy temper in front of the water boiler thermal columso The tuballoy temper consisted of two large hemisphorioal sholis $1801 / 8$ inch od and $701 / 16$ Do Smallar nesting hemisphares filled up the contral oavity so that oithor s. $3-1 / 2^{\prime \prime}$ or $4-1 / 2^{\prime \prime} \beta$ ostage sphere could be inserted in tine centero

The large hamispheres were mounted so that the splitting plane vas horizontalo The lower half pas mounted on a teble of adjustable holeghto The upper hemisphere could be raised and lowered in vertionl guides by meane of a chain hoisto

The procedure for each bombardment mes as followso Vith the upper hemisphero renoved, the source assombly (Figo 6A) mas inserted into tho radial hole of the lower half of the nesting spheres; the colleoting sanduich (Figo 6C) is put in place; the uppar half of the nesting ophores is assembled abcut the source tubso The central spheriosi structure is then roteted through 90° and the sourcoosssombly tube pushed into the sman reoess in the cadmium conoo This rotation of the sphorical structure.jangegessary ia order to have the muss cacoher perpendicular to the neutron besin fism inhe

UKGLAJJIELV
distortion due to the beam porto The final step is to lower the large upper tuballoy hemisphereo About one minute was required to remove the source assembly and oatchor sandvich aftor each irradiationo

A special table and drawer arraigament were made for the 76 tamper bricks in ordor to bo able to duplicato the short disessembly time roquired for the tuballoy tamper. Figs 20304 and 5 show the tamper arrangement in the process of assembly for an irradiationo Figo 2 shows the aluminum source cylinder and oatchor sandwich in places Figs. 3 and 4 show the assembling of the 25 sphere segmentso Figo 5 indicates the complete assembly in place ready for an irradiation. The disessomily required the pulling out und tipping of the drawer and the romoval with a hand olamp of the upper central wi blooko

The $2-1 / 8 \times 2-1 / 8 \times 4-1 / 4$ WG blooks were hold in place by external olamps. A oO10" steel sheet supplemented by side clamps wes sufficiont to eupport the blocks over the drawar aqvityo l he large WC pieces were made under the direction of \sin a Belke one sot with a $3-1 / 2^{\prime \prime}$ cavity and one set with a $4 \infty 1 / 2^{\prime \prime}$ cavity to hold the β-stage spheres.

Precautions had to be taken to avoid contamination of the counters and blank catcher foilso this was especially true for the tuballoy tampero Ac2. Measuring Technique0 As indicated in the preceding aection, neasur ements were made with $305^{\text {th }}$ and $405^{\prime \prime}$ spheres in both WC and Tu tamporso The essential measuroment in each case consisted of finding the ratio of the fissions occurring in the sphere to those occurring in the souroco It is unngcessary to make absolute measurements of theso quantitios if their ratio oan be dotermined. and this fact simplifies the probloms of messurement considerably.

The catcher foil tochnique yos usery to fotergine the numboss of

fiselonso Cellophane folis placod in tho spleore and in front of tho sourco wore astivated simultaneousily axd then were counted on twe Goil countors with similar geonetry for the tro foilso the foils wero interchanged during the counting to minimsne errors duo to difiteronge in efficiengy of the twe countordo Tho source catcher (S) was a cellophane disk oly $80^{\prime \prime}$ in diameter punohed from $0.001^{\text {T }}$ sheet. It whe placed in front of the souroo button and kres activatod by a disk of 25 punched from the seme foil winch vas iased to activato the mas catchors to minimize any orrors due to surface layerso Shnge the flux at the source was mach higher than that in the spheros an aluminum mask with a small hole was placed botweon the 25 foil and the collophanco The size of the hole was ohosen for each axperimont so that the counting ratea of the source and sphore oatchors were nearly the samoo The "mak ratio" uras measuxed in a separato experiment described in the next sectiono The retio was 22.25 for the $305^{\prime \prime}$ sphore and 10.16 for the $405^{\text {ir }}$ spieron The arrangement of the souxce assembly with the target at tho conter of the sphere is shown In Figo GAo Some measurementa were made with the target aise at $\mathrm{h} / 2$ and at R as well as at the center (Tablo Io) o Calculations are eiven for the central pasition only in this reporto

In order that the mess catchor activity be a true measure of the fission rate in the aphere indopendent of distribution, the catcher assenbly was placed in a diametrical plano oir the sphere perpendicular to tho boileg beam, and aluminum shiclds were pleced betweax the catchor and the activeting foils to leavo an exposed area proportional to r^{2} where r is the radial distance from the center of the sphereo The shepe of tho shield fe shown in Figo 6Bo The $1 / 2^{n}$ diametor hole in thefonter dys sosactico allow room for the

source assemblyo a oorrection for this hole as well as for the beam part was made in the îinal calculationso

The sphere or mase catchor (M) was arranged to have a large surface area since the flux in the sphore wes rather low and the mosnoireampath iargeo The mas catchex "gandwich" is shown in Figo 6Co As can bo seen in the skotch, the cellophane foil catches fragments from six suriaceso fotal templates were uscd in oubting and pumehing the collophane from 0o00" sheeto The catchore for the $305^{\text {tr }}$ sphere were $305 \times 11075^{\prime \prime}$ and those for the 405^{n} ephere were 405 x 14, $75^{\prime \prime}$ o Tho s010" cadmium shoots shown in the diagram wore used outside the sandwich to stop stray thormal neutronso

Tho GoM countars used in tho expariment are special dural counters $7 \infty 1 / 2^{\prime \prime}$ Iong and $7 / 8^{\prime \prime}$ In with $00007^{\prime \prime}$ we.11so The thin portion of the counter is $6 \times 1 / 2^{\prime \prime}$ long and tests showed that the counters are esseutielly constant in response to beta particles over a length of $5 m 1 / 2^{\prime \prime}$ 。 The central wir of the counters is $0.005^{\prime \prime}$ thagston; the oounters are fillod with alconol (pressure。 1 an $\overline{\mathrm{g}}$) and argon (9 cm Hg) o The counters start to operate at about 850 volts and have plateaux approximately 150 volts wideo The backgraund count is about 100 per minute when the counter is placed vertically in $\% \mathrm{~Pb}$ "pig" behind the 5-ft concrotecearth mall at Omegao

The irradiated mes catcher was rolled on a dural slecve with $0.003^{\prime \prime}$ valls which intuted smugly over the Gwill counterso A Fo reflector war slipped over the sloeve and catchero In order that the aurco oatcher disk be countod with similar geometry, cellophone blank of the same siae as the mass oatcher foil was wrapped on the seoond sloeve and the source catcher was placed in the middle foldo Tho absorptigif dug "i\# the felfophane wes about 1

per cent per layer and there were either 5 or 6 turne (depeading on the size of the sphere) in each counter assemblyo

Uncertainty in tho rosults due to slow drifts of counters sensitivity was minimized by interchanging the source and mase catchers on the twe counters during oach counting cyole. It was found by exporimont thst equal total counta were obtaingd in the poriods 3 to 605 min, and 7 to 13 mino (time mossured from and of a 10 minute bombardment) $)_{0}$ so this schedule wes followedo The power of the boilor was edjusted so that e.pproximataly $20_{0} 000$ counts were obtained in each interval.

The experiments were run on a 2leminute schodule'ss follows $M=$ mass catcher $\quad S=$ source oatcher

Timo minutos
0
10
13
1605
1700
21
23

Start bombardment Noo I
Stop n n n
\% on Gounter $I_{8} S$ on Counter II start count
"
"

- stop count
S on Counter $I_{\text {g }}$ on Counter $I I_{\text {, start count }}$
Start bombardment No。2
S on Counter I, M on Counter II, stop count

During the 10 minutes between the ond of the oounting on No. 1 and the start of the counts on No. 2_{0} the counter operators take 3omin. baokground with each of the holders for 4 and S and run a 2ominostendard counto on each sucoessive run the order of counting vas interchanged betmeon Mand So A "cadmiun run" mas made at intervals so that the offect of the fastoneutron backgroma could bo taken into aocount. In the cadmium rung the oususi procedure was followed with the oxception of placing a disk of ceamjifin

Elach measurement consiated of at laast 10 runso The data were analyzed as soon as each run was completed to maintain a continuous chock on the operation of the apparatuso

The date this obtained require two additlonsl measuremonts bafore thoy oan be used to compute the multiplication due to the sphere: 1) dotorminam tion of the "maskoratio" of the source mask and 2) messurement of tho ponetration of the boiler noutrons into the source plug to dotermine the effective depth of the sourcoo These measurements are discussed in the following sootionso

In order to devolop the above measuring technique several runs wors wade initially using normal uranium for the 3 m $/ 2^{\prime \prime}$ aphere and the catcher foilso The type of decay curve obtained irom the catcher foils is shom in Figo fo

Table I shows data taken with the $305^{\prime \prime} \beta$ ostage sphere in a uranium tampero In using the counteroswitching teofnique desoribed two corrections x and y had to bo usedo was a correotion for a difforenoe in officienoy of the two counters; and x was a corroction applied to take care of any difference In totel number of counts occurring in the two time intervals used: 3 to 605 minutess and 7 to 13 minutes as montioned aboveo

These correction iactors dropped out in finding $M / s=\sqrt{\rho^{2}} \mathrm{xy} / \mathrm{s}^{2}$ xy whore S and Mere intexchanged on alternate runso

Counter No. 1	Counter Hoo?	$\underline{T i m Q_{Q} \text { minutos }}$
y ${ }^{\text {H }}$	S	3 to 605
xys	x 81	7 to 13

A-30 Mask Retio for Sourceo The "souroe oellophane" caught fission fragments produced by the sapture of thermal noutrons in 7307 percent snriched 250 The "mas codlophane" aaught fragments produced by the oapture and subsequant multipliantion of the progony of thess incident neutrons in 7309 percent-average material. for tho $301 / 2^{\prime \prime}$ sphere and in 7607 percont-average meiterial for the $4 \infty 1 / 2^{\prime \prime}$ sphoreo The racios of the activity of these two foils were for both the opherea 10 and 20 respoctivelyo

In order te avoid uncertain Geiger-countor correctionas it mas dem cided to absorio some of the aotivity of the sources and thus equalide the counting qates of the source and mass cellophane foilso This was done by placing between the 25 source plug and tho oollophane catcher a o003" Al disk: with a hole in its middloo thus only the fraction of fragments which went through the hole was caught in the collophane The ratio of the activities with and without the Al mask is known as the mask ratioo In the final oalculations the value of this masir retio enters direotly so it must be woll knowno

In dotermining this quantity experimentally (it was not cadculable) oqual counting rates for equal bombardment times again wero desirablos This meant using different boiler powers for runs with and without mask, and Obtaining in some way a number proportional te $\overline{\mathrm{n}} \mathrm{m}$ at both powerso The firgt dovice wes a sma 1125 chamber placed in the front of the thermal colume This gave erratic results for reasons mich were nover asoortained. ihile the cellon phane foils for successive runs at the same power agreed to within at morgt 2 perconto Bolieving this moant that tho boiler was actually oonstant for each powor setting, about 25 Mm foils tho sizeannosizpe of the oollophane wero cuto

Thess were used as monitors for individul irradiations by plaoing then in the front of the source assemblyo Here againg when the mask was offe the ino oicent neutron beam was made only $1 / 20$ or $1 / 10$ as strong as with the mask ono Thj.s meant that there wo uld bo great differences in the oouning rates obtained Prom the Rn moxitorso

This difficulty vas oliminated as follows a different lan foil was used for each irradiation with maske whilo the same Mh foil was used for a series of irradiatione without the masko The number of rums in this series was approximately equal to the value of the mask ratio, so that if this series wers completed in about one housp all in foils would bo equally aotivoo

In order to omploy this tschaique it must be trus that all irradiationa of the single 區 foil are approximately oqual and that saturation is not rasched. Thon from the following, where $A_{t}=$ measured activity at end of all bombardmants $A_{110} A_{i 2} A_{1 g^{000}} A_{i n}=$ initial aotivity had each irradiation bsen on a dead foil: $t_{1}, t_{2^{e}} t_{3^{\circ} \bullet o t_{n}}=$ time from midde of each bombardment to time of counting; one can find the average initial activity of the series:

$$
A_{i 1} / e^{\lambda t_{1}}+A_{i 2} / e^{\lambda t_{2}}+A_{i 3} / e^{\lambda t_{3}}+-\infty=A_{6}
$$

sinco a.11 $A_{i}{ }^{0} s$ are equal

$$
\overline{A_{i}} \sum_{1}^{n} 1 / e^{\lambda t}=A_{4} \text { or } \overline{A_{i}}=A_{i} / \sum_{1}^{n} e^{0 \lambda t}
$$

The actual mask ratios obtained wer 22025 for tine $301 / 2^{\prime \prime}$ sphere and 10.16 for the $4-1 / 2^{11}$ sphoreo

APPROVED FOR PUBLIC RELEASE $\bullet:-: \begin{aligned} & \bullet: \\ & \bullet: \\ & \bullet:\end{aligned}$

Asl4o Detormination of Effective Depth of the Sourceo To dotormine the number of fissions in the source, from the "source catoher cellophane" it is necessary to know what fraotion of these fissions is oaught by the cellophaneo

Let the activity of the cellophane be proportionel to N_{0} : theng sinoe the cellophane is on the front surface of the source plugs the total mumber of fissions in the source is:

$$
N_{0} \int_{0}^{\infty}{ }^{-\pi / \lambda} d x=N_{0} \lambda
$$

Where x is the distance into the source from the oollophane expressed in $g \mathrm{ga} / \mathrm{cm}^{2}$ and λ is the soocaliod "offective depth"。 The intogral is takon from O to bocause the dopth of penetration of therme noutrons into the source is so small that the source plug may bo considered infinitoo

Because of the energy distribution of the incident neutrons λ is a slowly varying function of x o Since this function was unknown λ had to be determined axperimontallys

In place of the solid source plug, five smell 25 dises woro placed In the source assembiyc a cellophane oatcher was inserted successively betweon each disc as ahown in sketch belowa This whole assembly was irradiated at the end of the Cd cons a short time for sach pozition of the oellophoneo

As the catcher could be changed rapidly it wes possible to hold the boiler at constant powor throughout a complete aerieso
 I_{i} / I_{0} as e function of gms/om of 25^{2} where I_{0} is twice the activity of the aellophane at position 1 (since it ceught fraingnts on one side only) and I_{i} is the activity in any of the other positionso

Fissions originating from the thermal neutron beam produce fast neutronso A small percentage of these neutrons are captured within the source glug resulting in secordary fissionse Since these secondary fissions should not count as part of the source a correction was made in the experimental ounve to eliminate themo

The inscouracies due to the fact that the cellophane catohes some fragments originating a finite distance on each side of itg and due to the thermal leakage out the sides of the souroe plugg have been neglected since these errors are well within other experimental errorso

The final integration of the oorreoted experimental ourve gave $.885 \mathrm{gms} / \mathrm{am}^{2}$ for the offective depth in the disos of isotopia constitution 74001 percento The effective depth in the source (isotopic constitution 7307 percent) was therefore $0886 \mathrm{gms} / \mathrm{cm}^{2}$ a

BE INTERPZETATIO, AND CALCULATIONS

Bol. General Considerationso Throughout this report the multiplication of an undercritical system is derined es the ratio between the totel number of noutrons produced in the system to the number of neutrons prociuced in the sourcea In the experiments described proviously, the aource is represented by the fission neutrons onitted by the targot button at the center of the sphere when thermal meutrons are absorbed by ito Let of be the soovalue for thermal neutrons and F_{s} the number of fissions taking place in the source。 The number of neutrons eadtted by the source is given by

$$
\begin{equation*}
y_{T} F_{s} \tag{1}
\end{equation*}
$$

Let yf be the vavalue for the fast neutrons that produce fissions through the mass of the sphere and F_{m} the number of fissions taking place in the mass of the spheroo The number of neutrons produced in the system is

$$
\begin{equation*}
N_{F} F_{m} \tag{2}
\end{equation*}
$$

The multiplication as defined previously is the ratio of expression (2) to expression (1) o In the following we havo assumed that $\psi_{T}=y_{F}$ o The multiplis cation M is given therefore by

$$
\begin{equation*}
{ }_{m}=F_{m} / F_{\sigma} \tag{3}
\end{equation*}
$$

The multiplioation ratio obviously beomes infinite when the system is just critical。 Its value can be expreased approximately as a function of the rafio r / r_{a} of the actual radius of the sphere to the critical radius. In the range of radil over which we have experimented the relationship oan be oxprossed with the following approximate formula:

This empirical relationship was obtained by celculating in terms of the Serber theory the critical radil and the multiplication ratio for spheres tampod both with uranium and tungsten sarbido tamperao plotting $\begin{gathered}\text { wersus } r / x\end{gathered}$ in all these cases one finds that the points lie very closely on a aingle curvo represented analytically by equation (4) for the interval x / \mathbb{r} e from o 5 to 1000

Four experiments wors performed with spheres having dimmeters of approximately 305 and 405 inches and with uranium and tungsten carbido tamperso The apheres wore assembled out of pioces of not identical isotopio constitutiono AT.se some gaps were 1 eft due to the imperfoct fitting of the various ploces and of the cavity in the tampero Propox avorages havo boon taken for density and isotopie constitutions The values used are suramerizod in Table IIo Bo2. Caloulatione of $F_{m} F_{B}$ o In detarmining the number of fiesions F_{m} and F_{8} taking place in the mass of the sphere and in the source tho assumption was made that the activity of the fission recoils is proporitional to the numbors of fissionso Sinco the fissions producod in the mass are due to the fask neutrons and the fissions in the souroe are duo to thermal noutrons, this assumption may be slightly in orroxo No attompt was made to oorrect for this factoro Lot us indioste by H and S tho activities of the mass catcher and of the source catcher correoted for cadmium as described in Part Ao2o The values found for w / S in the four cases invostigated with the source at the oonter pioro:

Value		Sphere	Tampor
1.057	105	$301 / 2^{11}$	U
1.150	1	$301 / 2^{12}$	WC
.998	n	$401 / 2^{\prime \prime}$	U
103L4t	"	$401 / 2^{n}$	

From these values one can calculate the ratio F_{m} / F_{s} by the following procedure that we deseribe in detail for the osse of the $301 / 2^{\prime \prime}$ sphere and uranium tamper:s

Lat if be the number of fissions per unit msss If a oatcher of
area s is placed in front of the material its aotivity will be proportional to fs or in case that P varies along the surface of the cistchers by the integral.

$$
\begin{equation*}
\text { Activity }=\int P \mathrm{~d} s \tag{5}
\end{equation*}
$$

The proportionality factor can be omitted since it vanishes in taking the ratioo
The number of fiseions F_{s} taking place in the source is given by

$$
\begin{equation*}
F_{8}=f_{\text {surface }} \circ \text { depth }\left(g i n / \mathrm{m}^{2}\right) \text { o area of source } \tag{6}
\end{equation*}
$$

vinere $f_{\text {surface }}$ indfcates the mean value of f at the surface of the souroco The depth is determined by the depth of penetration of thermal neutronec Its vulue has been found (see part Aoly) to be $0886 \mathrm{gms} / \mathrm{cm}^{2}{ }^{2}$ the activity of the source catcher is f;iven on the other hand by

$$
\begin{equation*}
S=\frac{2}{m a k k r i n} \quad \circ f_{\text {surface }} \circ \text { area of nourde } \tag{7}
\end{equation*}
$$

where the msk ratio determined in Aro3 is the faotor by which fhe intensity of the source catoher is reduced by the mask placed in front of ito Its values are 22025 for the $3=1 / 2^{\prime \prime}$ sphere and 10.16 for the $4=1 / 2^{\prime \prime}$ sphereo From (6) and (7) wo obtain

$$
\begin{equation*}
F_{s}=\text { mask ratio } ? \text { dopth } 0 S=22.25^{\circ} 0886 \div S=19.72 S \tag{8}
\end{equation*}
$$

A further correotion should be applied in order to take inte aocount the faot that the souree leses effootiveness bocause of the hole that is nocessary to lead the thermal neutron beam on to ito The effect of this hole is that seme of the neutrons that aro emitted by the arcian ingentird direotion

are sompletely lost to the system and the rest hit the material at a greater distance from the oenter than they would in the case of a solid sphereo Tho Loss of effectiveness due to both these happenings has been estimated using the distribution runction of the Ser', er theory and has been found to be 930 for the $3=1 / 2^{\prime \prime}$ sphere and 0944 for tho $4-1 / 2^{11}$ sphereo introducing such correstion factor we find for the effective value of F_{g} a result 9930 times smallers than (8) $)_{\text {nemely }}$

$$
\begin{equation*}
F_{8}(\text { offeotive })=19071 \times 0930 \mathrm{~S} a=18.33 \mathrm{~S} \tag{9}
\end{equation*}
$$

The number of fissions taking place in the mass is given by:

$$
\begin{equation*}
F_{m}=4 \pi \rho \int_{\theta}^{R} f(r) x^{2} d x \tag{10}
\end{equation*}
$$

The aotivity of the mess catchers is given on the other hand bys

$$
\begin{equation*}
M=6 \circ 2 \pi \circ(315 / 360) \int_{0}^{R}(r / R) r d r f(r) \tag{11}
\end{equation*}
$$

where the factor 6 is due to the fact that the catcher had 6 surfaces oolleoting recoilso The factos $(315 / 360) r / R$ represents the fraction of the catoher at the distance x from the center that is not covered by the mask (see description of the mak in Part Ao2)

A corrsotion factor must be applied to take into account (a) the fact that the ontohes does not reach to tho center of the sphere; (b) the fact that the foils placed in front of the oatcher had an isotopic ratio slightly different from that of the mas of the sphero; and (0) the fact that the outoner foils had a diameter slightly differeat from that of the sphere. the correction factor amounts to 2.078. We find

From (12) and (9) we obtain finally

$$
\begin{equation*}
F_{m} / F_{E}=(31.17 / 18.33) \mathrm{w} / \mathrm{s}=(31.17 / 18.33) 1.057=1.797 \tag{13}
\end{equation*}
$$

A similar cal.culation can be carried out in the other three cases'o The results are sumarized in column 5 of Table II。

Bo3. Calculation of the Critical 学e8n The procedure followed in calculating the oritioal mass is sumenerized in Tuble IIo The uncorrected critionl radius r_{0} given in column 6 of the table is calculated from the moasured values of $F_{r a} / F_{B}$ given in column 5 and the actual values of the radius given in column 2_{j} making use of formula (4) . Threa corrections are apnlied to the critical radius as indicated in column 7,8 , and 90 The correction to infinite tamper given in column 7 has been calculated with the Serbor theory by increasing the effective absorption of the tampor in order to take into acoount the added loss of neutrons due to the finite siza of tho tamper. The density and isotopia oonstitution correction given in colums 8 and 9 have been calculated using the relationship recommended by Opponheimors

$$
\begin{equation*}
\text { oriticel mase } \sim \rho^{-104} c^{-1.8} \tag{14}
\end{equation*}
$$

where c is the fraction of 25 in the active materialo This formula can be rewritton in terms of the oritical radius as follors:

$$
\begin{equation*}
\text { oritical radius } \sim p^{\infty 08} C^{\infty 06} \tag{15}
\end{equation*}
$$

The last oolumn of the table gives the oritical mass in grams for pure 25 of density 19 in an infinite tamper of uranium or tungeten carbides Thers

APPROVED FOR PUBLIC RELEASE
is apparently some systematic error in the procedure because the oritioal mass as calculated from the experimonts with the $301 / 2^{\prime \prime}$ sphero is siightly lower than the critical mass calculated from experimonts with the $4,1 / 2^{17}$ sphere for both tamperso We believe, of course that the measurements with the Larger-sized sphere are more reliableo As a onclusion of the experiment wo have thorefore the following values for the critical nas:
uranium tamper $\infty 1508 \mathrm{Kg}$ 。
tuagston carbide tamperos $13.8 \mathrm{Kg} \circ$
These values refer to 100 percent 25 of density 19 and to infinite tampero

APPROVED FOR PUBLIC RELEASE

- 20 -
: : : .. : • : .. : : : •:

TABLE IO

Data for $3: 5$ inch 25 sphere in Tu traper

(a) Normal Foils Eor Mes Catcher, Sourco at Centor

1.	2640			662		13280	23920		0.295
2.		2860	2776		14790			25230	$\frac{0.188}{80!9}$
Ed,	128			279		-1902	064		corre

(b) Sourco at Conter

10	17220			18170		14400	15370		1.183
20		27490	18580		23900			15100	1.243
30	28000			19900		14680			1.218
40		17380	19790		14720			15300	L. 203
50	18010			19130		95580	15970		1.203
6.		2014	18496		15949			17271	1.167
70	17924			18803		$\$ 5340$	85360		1.189
8.		18496	17350		14707			15090	1.202
$9=$	26320			27056		14822	34860		1.124
sadmiun									corre

(ब) Scurce at edge

10	10700	10790	19200	20200	0.544
2	10820	11500	19230	20940	0.555
30	10720	2.2870	20040	21210	$\frac{0.528}{a \Psi 0.0 .542}$
66^{6}	870	940	89	57	avo corio

TABLE I_{0} (Continuod)

Run	M Max	3y		S $\quad 3 x$	Sy \quad Sxy	$\sqrt{\frac{M^{2} x y}{S^{c} x y}}$
(d) Source at $\mathrm{R} / 2$						
3.	15090		15700	23220	21480	0:049
20	348.10	15710		22100	23000	2v. $\frac{0.676}{\pi .663}$
0.	124		3350	- 38	-266	ave corio $0=325$
Averages for 25 sphere neasurements						
Tamper	- Goro.	\%/s	S	Catchers	Cd. correction	C Cdocorresters
su	$305 \prime$	1.192	centor	25	-887	1.057
2ne	$3=5$	0.542	R	25	-917	0.497
Tv	$305^{\prime \prime}$	0.663	R/2	25	0985	0.607
Tu	$3.5{ }^{\text {n }}$	0.192	centers	normal	-942	0.181
WC	$3.5{ }^{\prime \prime}$	1.176	centess	- 25	-975	1.150
WC	3.51	0.581	R	25		
WC	$3.5{ }^{\prime \prime}$	0.698	R/2	25	-977	0.672
WC	$3.5{ }^{\prime \prime}$	0.198	center	- norma	0.942	0.187
WG	$4.5{ }^{\prime \prime}$	1.229	conter	- 25	- 938	2014 ${ }^{\text {a }}$
WC	4.51	0.582	R	25	-910	0.530
Tu	$405^{\prime \prime}$	2.276	conter	- 25	- 776	0.998

APPROVED FOR PUBLIC RELEASE

Fig. $6-A \quad$ Source Assembly
Parts separated to show detail, Cd tube is pushed in flush with Al. tube.

Fig. $\begin{gathered}6 \\ \text { " } r^{2 "} \\ 3 \frac{1}{2} " \text { Mask For }\end{gathered}$

Fig. 6-c Mils Catcher Assembly

UNCLASSIFIED

