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ABSTRACT

The method of allowing fluctustions in the mechaniocal solution of hydro-
dynamic problems to teke the place of the entropy inmcrease in the shock, is analysed
statistically., The model corresponds to the thermal behavior of a substence of
anomalously low specific heat, and the effect of the pseudo thermal motion is greater
than for any real substance, Therefore the model is a good approximation only when
the contribution of the thermal pressure is negligible; Curves are given from which
this contribution can be estimated, Other complicated features arise when the mass
intervals are not'equal and in the case of radial motion, A typioal ocuse, taken from

I.B.M, oaloulations, is discussed by way of illustration,
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I, INVRODUCTION

i1t is well known that in hydrodynamic problems involving compressible media
there mey exist shock waves, i.8,, places at which the velocity, pressure and demsity
are practically discontinuous, end at which the equations of Buler do not hold., The
reason for this is that the Euler equations assume the changes in the materlial to be
reversible, whereas &t a shock wave the gradients become 80 large that the dissipative
effects (viscosity, heat conduotion) become important., Indeed, in the limit usually
considered, in which the dissipative terms are small in the units appropriate to the
problem, the shock is a sharp discontinuity and the gradients are infinite.

Therefore it would in general not meke sense to assume Euler's equations to
hold even across the shock, Von Neumanu has pointed out, however, that the situation
is diflferent if one uses, instead of the differential equations, the approximate
difference equations which are the basis of one mechanical method of treating the
equations, In conditions where a shock would form, we know there exists no solution
of the differential eguations, A4ny solutlion of the difference equations will approxi-
mate to a solution of the difforential equations only if the chenges of all funotious
over one interval are small, hence the difference equations cannot be expsoted to heve
any solution of this kind at a shook, There are, hqwever, solutions of oscillatory
behavior containing flucbiations with periods of the order of the interval sizs, These,
according to von Neumann, can be regarded as a model of the increase of entropy in |
the shock, and indeed the fluctuations thus obtained represent the heat motion of the
shocked material,

It is evident that this model of the heat motion is very crude, and that it
does not represent correctly the thermal behavior of any reasonable substance. However,
there are many oases of interest in which the influence of temperature on the equation

of state is negligible, and in th?}séibesses':a'ni'?miv-expeot that the error introduced by
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the model may not be sericus,

The purpose of the present report is to study the difference between the

model and an actual substence in more quantitative detail and to 'derive oriteria that

may serve to estimste the error in individual ocases.

I3, BASIC EQUATIONS :

In one oase of a one-dimensional problem the differential equations are

y=- L 2 ,p=pH),v=% (2.1)
Po dX ox
where y(t) is the position at time t, of the point whioch would be at x if the material

had normal density, p is the pressure, which is assumed to be a unique function of
the specific volume v(reversibility). MHore precisely, v stands for the ratioc of the

volume to the normal volums . The normal density is Po ©

The difference squation is obtained from this by choosing time intervals 6

and space intervals 4, so that after neglecting higher than second powers of the

interval sizes, (2.1) becomes:

Yotl,m * Yo-l,m ™ 2yn,m= L

—— 1 . 1
62 PoAz (pn’m+§ Pn,m--z- )
(2.2)
- .1 ( 1 1 )
vn ’m - A yn’m+-2— .. yn’m" 7
where n, m label the time and space intervals:
ty = nb + const (2.3)

xn = me + ocomst. UNGLASSIFIED

We apply these equations to the stafo. ofeualfadys 06 Wypoot behind e shock, where there
s .o ° ° e o .

[ [ .
will be irregular fluctuations supeﬁapr!se?nar}a3".na:t,%-osoopio" or mean motion, If our
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interval sizes are chosen correctly, the mean quantities vary little over one intervel
and over a fow intervals we may regard all macroscopic guantities as uniform,

As to the "atomic" motion, or fluctuations, we shall assume that the ampli-
tude 1s small, The limitations introduced by this assumption will be discussed later,
fe can then write

Ya,m = Ya,m ¥ Ta,m ' (2.4)

where the bar denotes the "mean" position and Ta,m 18 small, Then

Pa,m = p(v) + (dp/av) -}g (7n,m+_2; Y0, m- %\, ‘ (2.8)

Then (2.2) becomes:

+ 7 - -27 , 1 d
7u+1,m 53 l,m n.,m . _ ;;ZE— (.5% );Wn,mﬂ + 7n,m-1 -221,!11) (2.6)

Solutions of this equation osn be written in the form

Y’n,m =A ei(% * ¥a) " (2.7)

where, A, £, % are constants. Inserting this in (2.6), we have

82

(1-cos &) = -
o A%
o

(%5- : (1 - cos }I/) (2.8)

It 18 well known that the factor

52

2. 2 (. 4\
£ = pod? v /5 ' (2.9)

must be less than unity in order that the step-by-step solution of (2.2) be possible,

Indeed, it is evident from (2.8) that if £2 > 1, & is imaginary near ;1/= M o, and

hence there are disturbances which z%113%%ow Woohetlially with time, making the

system unstable, ® e o5e See sos oo

s
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Otherwise there will-.ﬁe.fys frguueneikss where N 1is the number of space

intervals in the rezion under consideration, The values of y'belonging to these will
be spread uniformly over the interval - m to =,

1f the linear equations {2.6) were rigorous, all these oscillations would be
independent, Since, however, the ocorrect equation (2.2) does contain terms of higher
degree, there will be a certain amount of coupling betwoen different oscillations
which, given enough time, must produce some kind of statistical equilibrium,

For strong smplitudes the oscillation, where the terms of different degreos
in the amplitude arec comparsble, it is clear from dimensional arguments that the
"mean free path" of the osoillations, i.e., the distance a wave travels before equili-
brium has essentially been established, is of the order of the interval size, with a
numerical factor which, by analogy with the problem of waves in crystal lattices, one
would expect to be larger than unity., As the mean emplitude is reduced, and the
ooupling is weaker, the mean free pafh inoreases further, and one would thus expect
that for some apprecisble distance behind the shook the oscillatinn ocaused by the sh;ck

may not be in equilibrium, This effect extends over a greater distance for weaker

shooks,

I1I, THERMODYNAHMIC RELATIONS FOR SHALL Z

Weo have seen above that we may expect statistical equilibrium to be
established except very closely behind the shock. To this equilibrium ordinary thermo-
dynamics is not immediately applicable, since equation (2.6) is s difference equation
in time as well as in space, and hence energy oconservation does not hold in the usual
form.

If, however, £<< 1, the time interval is negligible in comparison with
the space interval, and the oquation# are then essentially differential equations in

time, They are olosely analogous to those for a one-dimensional Bory-yop Karmapn

o e ~eenT
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lattice, Since the equations are linear, and there is a restoring force for each
degree of freedom, it is olear that, in equilibrium the thermal energy will be kT
per degree of freedom, or

B, = 3. kT (3.1)

th - 7

per unit mass, where 1// is the number of dggrees of freedome per unit length, k
Boltezmann's constant, and T the temperaturas,

The unit of temperature is here arbitfary, since we capnot meamsure the
temperature of this fiotitious system by bringing it into thermal contact with any
other physical system, hence only the product kT has a definite meaning. For con-
venience we choose our units of temperature in such a way that

k = pg¢ (3.2)
equal to the mass per interval, hence

E¢nh = T | (3.3)

As in any other oscillating system, this energy is on the average half

kinetic and nalf potential, Henos for the kinetic energy per unit nass

1E-1,
or

wd =7 (3.4)
where

u =%/t 4 (3.5)

is the velocity mssociated with the fluctuations, and the bar denctes the statistioal
average,
(3.4) may be regerdod as s, definitiqn ofi :'I‘ and allows one to estimate T

in eny individual case. The potenﬁgl.gpéégy.égeé:pr%i.i mass is UNCLASSlHEB

1
=1
B(v) = = v
(v) Po § B
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Por small deviations, to second order inclusive,

B(v) = a() + 3 p() Gen)- A (R ) F-vf (3.

On the stetistical average, the first term gives the potential energy of the mean

density without temperature, the second term vanishes, and the last reprasents the

potential part of the thermal energy, hence:

gp ( )“" (v-v) “—"% T (3.8)
or
—=T5 _ dp| =1
(v¥)% = o7 |52 (3.9)

Since dp/hv is known, and T can be found from (3.4) this relation can be treated,

However, the equality of kinetio and potentia) snergy, in tho time average, holds

for any harmonic motion whather in equilibrium or not, Hence this test merely veri-

fies that the amplitudes of osoillation are weak enough to mske the motion essentially

harmonic,

#te can now find the pressure caused by the heat motion, By expansion to

second order
- d - 2 -
= p(v} *'3"2, (v-v) "'-;- e (v7)?
2
dv
On the average, the first term is the proessure dus to the mesn density without tempers-

ture, the second term vanishes the last is the thermal pressure,

_ 144 2. 1, =2 d
Pth =3 (E%>?G ~v)" = -5 ver)t =

dv

Henoe

dp
dv

(3.11)
(The negative sign comes from the fact that dpjﬁv is necessarily negative.) Using (3.9)
:) oo .u .5- ::0 5'. [l
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The same relé.tlon can be derived in a d1f’f.e.r;;1:b .v:ay: ”NGI.ASS”:IEI‘

In general,

' om _ OF = OF
Pm e T = Po o 3,15
oV dV ( )

where F 1is the free energy per unit mass, and V the volume per unit mass, F isa
sum over the different degrees of freedom, and for each degree of f{reedom,

F3 = -kT logw; + const (3.14)
where 0)3 is its freguenoy (in radiasns per sec) and the constant may depend on the

temperature but not on v. Henoe, using (3.2),

. (3.15)

_ 2
M

ov

the sum to extend over all degrees of freedom belonging to the region considered,
which has a total mass M, The frequencies are to be found from (2.8) with

w = ,g_ 4 ' (3.16)

ir A4 is small the right-hand side of (2.8) is always small, hence £ is a
small angle and the left-hand side oan be replaced by 1 ifz.o Henoce each of the

frequencies is proportional to ‘dp/dv‘ , and

wy =1, “dp/dv| (3.17)

where fj depends oun the wave number ){/ s but not on v. Hence all terms of the sum in
(3.16) are equal, and the number of terms is equal to the number of intervals in a
mass M, i.e, to

N

Pod

(3.18)

Inserting this in (3,15) we obtain again (3.12)

This derivation is of interest since it shows the deﬂﬁﬁrﬁsmﬂrﬁa result

on the relation (3,17 which is not,'pdcre%, rS%’s Z is small,

C REIFEASE
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'We may reasonably surmise thut, for our present purpose, £ can be regarded
as small as long as (5.17) is substantially correot. To test this, the solutions of
(2.8) have been plotted in Fig, 1 against¢£ for different angles ﬁ; It is seen that
all lines are straight in good approximation up to JZ==1/? and in view of (2.,9) this
means that in this range all frequencies are proportional to JT:E;Z;;]. For /e==1/2
01ly the uppermost curves begin to bend, and without further investigation it is not

possible to estimnte to what extent this would affect our comclusions,

IV, HUGONIOT RELATIONS

Consider now & shock, running into msterial at rest., {(This causes no
essential loss of generality). Let vy be the specific volume, p] the pressure ahead
of the shock, and assume there is no thermel motion ahead of the shock, Then the

first Hugoniot relation is

U = u(1- V) (4,1)
whore u is the mean velocity and v the mean specific volume behind the shock, U the
shock velocity., This relation only expresses conservation of material and must be
satisfied automatically in our model,

The other two relations:

p - pp = pol% YLV (4.2)
Vlz
and .
l -
Po(E-E1) =5 (v1-¥) (p*py) 4.3)

will now also contain the thermal pressure snd energy:

p(¥) - py * Pth = pozz (v - V) (4;4“NGLAS$lH§L'

Y17 e ese e 3
eo () 51 + 5] = 30t} fois Hhu) ) _0)
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It is convenient to write g for the ratio
& = PoPth/Pth (2.6)

Then, by (3.3) and (3,12):

- 2
y 4 105|902 (4.7)
dv dv
and with this abbreviation, we can solve (4.5) for pyy
1 . -
Pth _—'2'(p+P1)(v1"v) ‘po(EG) DEI) (4\’8)
g q’z:,: (vl.-vn)
and
eoUR(v1-¥) _ & [p(';)-pﬂ + p1(v1-¥) -p, [E(?) -E]J
v, 2 1 - (4.9)
1 & - f (vl - V)

The thermodynsmic properties'of the model are unimportant as long as (4.8) is small
compared to the pressure p(v)., At the same time (4.8) allows one to estimate the
amplitude of fluctuations to be expeoted behind a shock of given strength.

For this purpose one may either compare the average pressure with the
prossure belonging to the average volume Vv or use the mean square velocity fluotuation,

which, using (4.6) and (3.3), (3.4) is

S '

Yth = & Pth (4.10)
For strang shooks it is evident from (4.8) that there is a limiting compression ratio,
which cannot be excseded even for an infinite pressure and this is given by the con-

dition

8 =3 (v7) (4.11)
APPROVED* F&#2 PUBLI C*REf EASE
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As g depends on the volume in the [fimal state, it is most oconvenient to express
this limiting compression by giving the highest volume vy for which a given v ocan
be reached in & single shock:

vy = v + 2g(¥) (4.12)

Fig. 2 shows g as a function of tho density for tuballoy using the
equation of state of Metropolis (La-208),

Fig. 3 shows the limiting compressiom ratio for the same data, from 2q.(4.12).

Fig., 4 shows the tharmal praessure in the seme case, starting from normal
density and from material at twice normal density., For comparison, the "cold" pressure
p(v) is also shovn, as well as the corract thermal pressure behind a shock with normal
material, as caloulated by Kellasr,

It is evident from this figure that, whenever the thermal pressure amounts
to an appreciable contribution to the cold pressure, it is oconsiderably in excess of
the trus value.

Table I lists the thermal pressures for tuballoy for various values of
v] and Vv,

From these values, the mean amplitude of the fluctuations was obtained by

the formula

-1
re = Pth 8

. .
E?? (4,13)

which follows immediately from (3.9), (3.3) and (4.6). Sinoce, for a harmonio
osocillation, the root mean sguere amplitude is 1/'{§‘times the maximum smplitude,

we oan define a mipimum volume that would be reached for harmonic oscillation of the

somo T+ Tt s TR OT
vIﬁ.ln = ; - 43 sz ®e 000 000 cee coe o0 (4014>
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This quantity, which is convenient for practical purposes, is shown in Fig. 5.

V., OTHER EFFECTS

The analysis given.in the previous sections in some ways is still very
idealiged, and we want to discuss a few offects that have been negleotzd,

(a). The fact has elrendy been referred to that the discussion applies
only to small ,J, and probably in practioce is JZél/éo This probably covers all
applioations of pracotical interest,

(b). Moreover, we have assumed that the oscillations are always in
statistical equilibrium. In fact, all oscillations arise at the shock front, and it
will teke them a finite time to get into equilibrium, This means that there will be
a region behind the shook front inm which there is no equilibrium. The extent of this
region is inversely proportional to the temperatures since the establishment of
equilibrium depends on the coupling between different degrees of freedom by the terms
of higher order in the amplitude of the oscillations. This effect may cause errors
1f the extent of the non-equilibrium region is comparable to the distance over which
the dynemiocal variablos change appreciably,

{(c). In the disoussion given above, we have assumed harmonic oscillations,
which is correct only for small amplitudes. When the "thermal" pressure exceeds the
"sold" pressure this is no longer justified. As a result the thermodynamio properties
of’ the system may differ from our desoription at high temperatures and in particular
the limiting compression may be appresciably affeoted., On the other hand the limit of
applicability of the method will remain unchanged since this refers to the condition
that the thermal pressure is negligible which means small amplitude,

(d). Conduction of Energse {n tgezphypépal applications of most interest,

heat conduction is usually negligib%‘i.ai'z& aé. Eafloui'a:te model therefore sught to give

adiabatic changes in the state o?cmii;.i;ez' ‘oier}&uﬁe!’.& except at the shook front. In our

approveD FOR PUELI ¢ ReNEEER
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model, there exists a finite heat conductivity carried by the sound waves and limited
mainly by the second-order terms which limit the free run of such waves, The "mean
free path" of the waves is dimensionally of the order of the interval size, multiplied
by a function of temperature which is largec for low temperatures., Hence, one may
expoct some error due to this sffect for weak shocks, However, as the heat content
is then small, this will not lead to appreciable errors, In any case, for any shoock
strength this effect can by made negligible by a generous choice of the number of
intervals used.

(o). Changing interval size., It is often convaﬁient in calculations not
to make all intervals equal but to use groups of smaller intervals in regions where
more structure is required. Consider the boundary between two such groups. Physiocally,
the two parts of the material ought to be in equilibrium for equal temperature, i.e.,
for equal energy per unit mass. This does not, however, in the model oorreépond to
equality of temperatures as defined by (3.3) since the latter is measured on a con-
ventional scale., In tho model, the two groups of points are in equilibrium if the
energy per degrece of freedom is the same, which meaus different energies per unit mass,
What we heve done corresponds, in effect, to using different values of Avogadio's
number in different parts of the material,

Suppose, for example, that a shoock is moving through a range where the
interval size is 4, and that a short distance behind the shock it is reduced to 4/2.
Then, as soon as the disturbances have had time to travel back to the region with the
smeller intervals, an equilibrium will be approached in whioch the energy per interval

is the same, so that the temperatufe at the small intervals will be twice as high as

in the larger omnes,
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VI, APPLICATION TO SPHERICAL PROBLEMS

An important class of problems concerns motion with spherical symmetry. Then

we have, in place of (2,1)

00 1 > 2R3
R PR YT (6.1)
[o]

where R 1is the actual distance from the center, and the independent variable H 1is
the mass contained between the point under consideration and the center. If we not
obtain the linear equutions for small disturbances, we have to bsar in mind that the
mass contribution to the free energy comes from oscillations with wave lengths of the
order of. the interval size, and that, for any reasonable choice of intervel, this is
small compared to the distance from the center, Henoce if we write again

R=R+Y (6.2)
where R represents the undisturbed motion, the variation of 7 is wmuch more rapid

than that of R, Uenoce we find:

' 2
Ho=od BEBosnz__gb 6.5
? Po 3" dv DM (8.3)

Bere R® should be rogarded as loocally coustant. If the calculation is earried out with
constant intervals in mass, this leads to an equation of the typs of (2.6). 1t is
8till true that upon a change in volume eaoh freguency is proportional to ‘dp/dvll/2
and hence the formulae of Section IL1I gtill apply.

However, in addition the frequenocies vary with R, the position of the mass

element, and hence we find a dependence of f{ree oenergy on position, This means a

radlal force G psr unit mass

G = - oxpR o db LR (6:9)

APPROVED FOR' PUBLI'C RELEASE
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Using (3.14)
G =.Pol py d log®
M 177
and, in view of (6.3) .
o log())i 4
R TR
so that
= . 4:/& (6.5)
Using (4 6) and (3.3):
- 4
- - Pg (606)
Rp, h

In the numerical example illustrated in Tig, 2, g is of the order of 1/4
over a oconsiderable region, hence

Po G = pth/R (6.7)
If the true pressure varies, for example, as the invorse radius, the true pressure
gradient is

- /R
and henoe the relative error in the acceleration is of the order of pth/b, i.e., the

same as the relative error in the pressure itself,

VII, COMPARISON WNITE I.85.M, CALCULATIONS

As an illustration of the above relations, typical dats were taken from
I.8.M. Problem 10, in which & collapsing shell hits a presssembled sphere, the shook
returning into the shell being treated by the von Neumann method. One would expsct
this ocase to give fairly olean-cut results, since the region considered uses a cone
stant interval size so that no complications arise from changes in the interval, and
e eve eee oo

also since, over the shell, the ridﬂhs.varies:byze.small factor so that the radial

effects desoribed above ars not {ikely o be serlous°

APPROVED FOR PUBLIC RELEASE
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1t was found fhat no clear picture of the fluctumtions is obtained by
plotting the dynamic quantities against mass at constant time, but that very regular
curves result for the volume at a given muss point as a function of time. This is
not surprising since the condition £ £ 1 means that, for an oscillation with a wave
length ocomparabls to the space interval the preicd must necesserily be rather larger
than one time interval,

Fig. 6 shows the specific volume for a number of mass points as a function
of time. At time zero the impact between the moving and the stationary shell had
already talken place and the shock had been carried by analytical calculation to about
mass point No, 30, The interface was at point 25, Hence the curves for mass points
23, 24, 26, which are shown in the figure, show initially no fluctuations, but they
later acquire some thermal motion from their neighbors. Mass point 30 is just about
being shocked when the I.B.i. calculation starts, All following points pass the
shock in conditions to whioh our theory is spplicable, One can see that the osoil-
lations of volume are fairly harmonic, and that, in particular, the first minimun
ought to represent the mean volume after the shock minus the maximum amplitude, and
the curves of Fig. 5 should therefore be applicable,

By reading the volumes ahead of the shoock and the first minimum we oan then

obtain the average volume behind the shoock:

Mass Point No, 32 35 40 45
v, 70 69 .69 71
Voin .44 042 .42 43
v .62 50 -50 .51

The last line is taken from 9109 5 by interpolationo The mean volumes

behind the shock obtained in this® wa‘& ai :.21 r'éasbr:able agreement with averagaes obtained

from Fig. 6 by inspection, with zha'GXQﬁptzvh'o: :hﬁs point 32 for which it appears
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that the average by inspection is somewhat lower j; this may be due to the fact

that this mass point, being too near to the “cold" compressed region, is losing
amplitude by contact with its neighbors, so that our theory overestimates its fluoctu-
ations, For the rqst, the predictions are well borne out,

A similar test was applied to I.B.M. run A, dealing with the shook
returned from the center of a solid implosion, Here the amplitudes of different
mass points differ rather widely, no doubt due to the faot that "heat conduotion"
between different rate groups tends to establish a constant energy per interval,
Since over the period of & fluctuation the density changes by an appreciable amount
it is not easyt obtain averages "by inspection" but the averazes derived in the
above manner from the first minimum are comparable with the averages by inspestion to

the extent to which the latter can be defined,
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TABLE I

Py 1n megabars,

Theoretical Pressures in Model as a

Function of the Final Volume v and the Initial Volume vy o

-'T -
vy \ .9091 8333 .7692 °7142 .6667 .6250 »5566 o5 o4 03333 1 2857 ] .26 |.2

1.0 -0063 20331 .158 0541 1,47 3,73 26,85
%
o .9 15,27
5 . .

8 3,72 | 88,5 of ofe $°

[eleeodle Y o o o . oo | @ °
Caeade & %uue ' Seedh? °
3 s e
Py S 4 200 .960 | 11,7 §53 ° °
'U. o [ ] . :....: :.
GO...L [ ° ] e 9
o E seTe 03691 5,68 | 55.7 seeshe oo
(’)..2.'lb :oé . 2163 2,81 21,9 443 secche .o
%’. :h :....: (XY ) Y
@ i o5y 1,05 | 9,33 | 60.8
» B °339 4,06 22,1 139

045 .118 1,69 9,04| 39,3

4 0344 2,90 13,5 | 233

035 0137 0711 4017 51&2

<3 12,1

026 1.79
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