APPROVED FOR PUBLIC RELEASE

CIC-14 REPORT COLLECTION

 REPRODUCTION COPYMULTIPLICATYOA OF IfUURONS IN SMALL SPHERES OF ACTIVE. BEATFRIAL

WORK DONE BY:

REPORT WRITTEN BY:
C. Richman

vi.LLASSIFED

 by authority of the U. S, aivmic Energy Commission Per rask 7/ Hahn 8-3-60 By REPORT LIBRARY
 Roach 8-25-60

A calculation has been made of the result of the following axperiment: a source of meutrons is surrounded by a sphore of active material and a fission counter is placed nearby. Tho count is compared when the sphore is in place and when the sphere is removed; the ratio (B) of the two counting rates is a messure of the rgo active properties of the sphere. The results of our calculations are compared with the results of the oxperiments of Group $\mathrm{R}-3$:

Materias	Sphore Diametar	Counter	$M_{\text {cale }}$	
$\begin{aligned} & 73 \% 25 \\ & +\quad 27 \% 28 \end{aligned}$	$2.5{ }^{18}$	$63 \% 25+37 \% 28$28	1.381	$1.35 \pm .02$
			1.082	1.13 ± 002
	2.018	$63 \% 25+37 \% 28$28	1.262	$1.28 \pm .06$
			1.032	$3.07 \pm .05$
Hormal Uranium	2.54	$63 \% 25+37 \% 28$ 28	1.044	$1.031 \pm .011$
			0.707	$0.760 \pm .012$
Plutoniun	$.9{ }^{19}$	63 名 $25+37 \% 28$ 28	1.199	$1.202 \pm .012$
			1.176	$1.175 \pm .015$

In the case of the $2.5^{\prime \prime} 25$ sphere the outcoming spoctrum has also been calculated. The agrecmont with the spoctrun as measured by Richards is eatisfactory.

APPROVED FOR PUBLIC RELEASE

MOLTIPLICATION OF NEUTRONS TN SMALL SPHFRES OP ACTIVE MATERTAL

1. INTRODUCTION

Recently a number of experiments have beon performed which measure the multiplication of noutrons by small spheres of active material. (Comparo also LAMS-227, 230.) These experiments are essentially differential and sorve to check our data on the neutron processes in active material.

Vio shall calculate theoretical quantities to be compared with the resilt of the experiment performed by R. L. Walker, J. H. Manley ${ }^{\text {I }}$ and cooworkers of Group R-3. The experiment is performed by surrounding a souroe of mock fission neutrons with a sphere of active material. A suitable distance away a fission counter records the counts when the sphere is in place and when the sphere is taken away. The ratio of tho counting rates is a wetghted measure of the production of neutrons due to fissions taking place in the sphere. We will call this ratio the multiplication ${ }^{2}$) and will denote it by μ.

Tho experiment has beon made using spheres of $73 \% 25+27 \% 28$, normal uranium and plutonium. Furthernore with sach sphere the measurement has bsen mado using both a 25 foil of $63 \% 25+37 \% 28$ and a 28 foil as detector. The 25 foil reo sponds to neutrons of all enorgies; the 28 foil on the other hand has a threshold at around 1.1 Mev. The 28 counter, therefore, will be much more sensitive to ins elastic collisions taking place in the sphere.

1) LaMS-207, p. 16; LabS-222, p. 9; LA-191.
2) Strictly speaking the term multiplication applies only to the ratio of the counto ing rates when the counter has a flat response. In this case the multiplication represents exactly the number of neutrons produced per neutron from the source and not merely a rather complicated weighted measure of this quantity.

2. FXPANSION IN NUMBER OF COLLISIORS

The spheres of active material used in the experiment had radii, a, mich wore less than a mean free path. This means that most of the neutrons that make collisions will make only one collision in the sphore. A few will mako two and a very fow thros. Thia suggosts a study of the problem in the form of en expansion in the number of collisions that the noutrons mako. The natural parameter of such an orpans sion will be af, where σ is the reciprocal of the mean fres path. For our spheres thon $\alpha \equiv n \sigma<1$. In the calculations we shall take the unit of longth to bo the radius of tho sphere.

The offects of surrounding the source by the sphere of active naterial are twofold: first, the flux of noutrons that cano directly from the source in the no sphere experiment has boen attenuated by the collisions performed in the sphere; second, the collisions occurring in the sphere multiply the number of neutrons and prosent to the counter a distributed source in which the intensity is a funotion of tho distance of the point of the sphere from its conter. The flux of neutrons that comes directly from the center is attenuated by the factor $\theta^{\infty} 0 / 4 \pi R^{2}$. Let us undero stand this from the point of view of an "expansion in collisions". ne need only study $\theta^{-\alpha}$ since $1 / 4 \pi R^{2}$ is a purely geometric attenuation。 Consider thon a slab of active material of thickness equal to b. Suppose one noutron enters the slab n normally how many neuirons amergo which have not suffered any collisions at all?

Fig. 1
Tranamission through a Slaio
Lat σ be the probability of a collision per cm. If we now consider only single collisions, wo say that the number of neatrons lost in $d x i s$ sdx and therefore

throughout the slab the lass is 0 1-ob. If we now include the consideration of doublo collisions uo pould say that wo have subtracted out too many noutrons bacause we have just sosn that due to single Qollisions σx fower get to x. Tharofore at x, thore will be $\sigma x \cdot \sigma d x$ fewer nou'vrons taken out of the beam. And across the whode slab $\sigma^{2} b^{2} / 2$. This argument in terme of collisions is continued and we see that me obtain the development of $e^{-\sigma b}$. This argument in torms of collisions is continued and we see that wobtain tho dovelopo ment of $e^{-\sigma b}$. The term in $(o b)^{n}$ ropresents the offeat of x collisions contributing positivoly or negatively to the outcoming bean.

In tho case of the sphere of aotive material wo will use oxactly thin type of reasoning with tho addition that neutrons can bo oreated by fission. The caloulam tion will bo made in the following way. we will first assuns that all the neutrons have the same onorgy, and that the foil is activated by neutrons of this onerey. Ho vill then calculato the multiplication on this basis. From this we will get tho correct multiplication by introducing the propor avorages in each collimion.

3. SINGLE COLLISIONS

Let the source ondt 4 noutrons per sec, and let the counter be at a diso tance R from the source. Then the flux at the counter when the sphere is absent is $\mathrm{R}^{-2} \mathrm{sec}^{-1}$. In calculating tho multipliaation we always require the mumber of oounts with the sphore rolative to single count without the sphere. This conversion may be obtained by multiplying the flux at the counter with the aphero in place by R^{2}.

In the aphorical case we also uso the method of collisions which was flluso trated above in the case of the alab. In this method, the multiplication is given by the sum

$$
I+\mu_{1}\left(\operatorname{sing}(0 \text { collisions })+M_{2}(\text { doublo collisions })+=\infty\right.
$$

we will now calculate M_{2}, the contribution due to single collisions. Lot (r, μ) repreaent any point in the sphore, and lot ρ be tho distance of (r, μ) to the eounter.

Fig. 2
Goonetry for Single Collisions
From the figure wo have $p^{2}=R^{2}+x^{2}-2 r q \mu$. The flux of noutrons from the source at any point $r 1 * 2 / \mathrm{r}^{2}$. The element of spherical valume is $2 \pi \mathrm{r}^{2}$ drdpa Therew fore the number of collisiona per sec taking place in drdpis ce2mardu. Let itf noutrone come off after oach collision. The contribution of these neutrons is $\frac{\alpha(1+r)}{2} \int_{0}^{2} d r \cdot \int_{-1}^{1} \frac{d \mu}{\rho^{2}}=\frac{\alpha(1+f)}{2} \int_{0}^{1} d r \frac{R}{R} \ln \frac{1+x / R}{1-x / R}=\alpha(1+1)\left(1+\frac{1}{9 R^{2}}+\frac{1}{25 R t}+\ldots \ldots\right)$ The net contribution due to aingle collisions is this plus the term, o α_{ρ} resulting from singloacolileion attemuation of the direct beam from the source to the counter

$$
\begin{equation*}
M_{1}=\alpha(1+1)\left(1+1 / 9 R^{2}+1 / 25 R^{4}+\ldots 00\right)=a \tag{1}
\end{equation*}
$$

If $R \rightarrow \infty$ we obtain just af. This is the number of neutrons produced by a noutron traversing the radius of the sphore. If in Eq. (1) we let $f=0$ we havo $M_{1} * \alpha\left(1 / 9 R^{2}+1 / 25 R^{4}+\ldots \ldots\right)$ which means that even if only soattering occurs, there is still multiplication. This clearly comes about from the fact that the sphere of material offactively brings the source closer to the counter. In our experiments R ~ 2 and the geometric multiplication is $\sim 3 \%$.
4. DOUBIE COLLISIONS

When only single collisions are considered, we say that a ray of neutron

to the counter. The sonsideration of doubls collisions is a refinement of this picture. Some neutrons will be scattorad out of the ray before thoy can produce this collision. Wo say that these noutrons undergo a doublo collision process. Supposo that the collision has taken placo and a ray of noutrons is on its way to fho countor。 This rey must pass through some matter in the sphers and a cortain number of noutrons will bo mattered out of this bsam. This is a second doubie oollision process. A third double collision procose talcos place when the neutrons perform a second col.lision after their firat collision and thon go to the countora Finally there will be the oontribution of the direct beam from the source in doubla collisiona.

The contribution to tho matiplication of the airect bean is $\alpha^{2} / 2$. The contribution of the two fission collisions can be calculated in the following vay. The first collision produces a ilux of noutrons at (x^{\prime} pf) of $2 \hat{f i}(1+f) \mathrm{dreq}$ dpe Lot the socond collision take place at r. Then the flux of neutrons at x where $\hat{r} \cdot=\cos ^{\infty}{ }^{1}$,
is

$$
\frac{a^{2}\left(1+f^{0}\right)}{2} \int_{0}^{1} d r^{\prime} \int_{-1}^{1} \frac{d \mu}{r^{2}+r^{2} 2-84^{?} \mu^{4}}=\frac{\alpha^{2}(1+)^{2}}{2 \pi} \int_{0}^{1} \frac{d s^{0}}{s^{2}} \ln \frac{r^{i}+r}{\left|r^{4}-r\right|}
$$

The contribution to the multiplication $i s$ therofore

$$
\begin{aligned}
& \frac{a^{2}(1+f)^{2}}{4} \int_{0}^{1} \operatorname{arr} \int_{0}^{1} \frac{d r^{p}}{r^{p}} \operatorname{lou} \frac{x^{8}+r}{\mid x^{2}-r i} \int_{01}^{1} \frac{d i^{2}}{p^{2} / R^{2}} \\
& =\frac{c^{2}\left(1+f^{2}\right)^{2}}{2} \int_{0}^{1} \frac{d r^{9}}{r^{9}} \int_{0}^{1} d r x \ln \frac{r^{i}+r}{\left|r^{i}-r\right|}\left(2+\frac{1}{3}\left(\frac{r}{R}\right)^{2}+\frac{1}{5}\left(\frac{r}{R}\right)^{4}+\ldots . .\right)
\end{aligned}
$$

Porforning these integrations wo find

$$
\begin{equation*}
\mathrm{m}_{2}(\text { two real coll. })=\alpha^{2}(1+)^{2}\left(\frac{1}{4}\left(\frac{\pi^{2}}{4} \quad 1\right)+\frac{1}{24 R^{2}}\left(\frac{\pi^{2}}{4}+\frac{2}{3}\right)+\ldots .\right. \tag{2}
\end{equation*}
$$

The contribution due to attenuation and thon fission is obtained as follows. The number of neutrons taken out of the beam is $\left(1 / r^{2}\right)^{\circ} \alpha r=\alpha / 5$. Therefore the lose in multipliantion because these neutrons did not produce fission, is

Finally we come to the loss in multiplication due to the noutrons loot on the way to the counter after fission took place. If the distance traversed in the active material starting at (r, μ) is Z, then the loss in multiplication is

$$
\begin{equation*}
-u_{2}(\text { att. })=\frac{\alpha^{2}(\lambda+f)}{2} \int_{0}^{1} d r \int_{-1}^{1} \frac{d \mu 2(r, \mu)}{p^{2} / R^{2}} \tag{4}
\end{equation*}
$$

Lat us find what this distance $2(x, \mu)$ is. Frosin Fig. 3 was have

$$
\begin{gathered}
\left(r+z \mu^{0}\right)^{2}+z^{2}\left(1-\mu^{2}\right)=1 \\
z=r\left(\sqrt{\mu^{2}+\left(1-r^{2}\right) / r^{2}}-\mu^{\prime}\right)
\end{gathered}
$$

We will now chang variable of integration fram μ to $\mu^{\prime \prime}$ in Eq. (4), Let $r / R=x$.

$$
\begin{gathered}
\mu^{8}=\frac{R_{\mu-r}}{P}=(\mu-x) \frac{R}{Q} \\
P / R=\sqrt{1+x^{2}-2 \mu x}=1-\mu x+\frac{1}{2} x^{2}\left(1-\mu^{2}\right)
\end{gathered}
$$

Fig. 3
The Attenuation Distance 2
and

$$
\mu^{0}=\mu+\left(\mu^{2}-1\right) x-\frac{3}{2}\left(1-\mu^{2}\right) \mu x^{2}
$$

negleoting highor powars of x than the second. To solve for μ in terms of μ let $\mu=\mu^{i}+x \mu_{8}+x^{2} \mu_{2}$. If we substitute this in the previous equation and thon sot the separate coofficients of different powers of x equal to zero wa find $\mu_{1}=10 \mu^{\prime 2}$, $\mu_{2}=-\mu^{9}\left(1-\mu^{2}\right) / 2$

$$
\begin{gathered}
\mu=\mu^{0}+\left(1-\mu^{2}\right) x-\frac{1}{2} \mu^{\prime}\left(1-\mu^{2}\right) x^{2} \\
\frac{d \mu}{d \mu^{2}}=1-2 \mu^{0} x-\left(1-3 \mu^{\prime 2}\right) \frac{x^{2}}{2}
\end{gathered}
$$

$$
\begin{aligned}
& =\int_{-1}^{1} r\left(6 / \mu^{0}+\left(1-r^{2}\right) / r^{2}-\mu^{3}\right)\left(1+\frac{1}{2}\left(1-\mu^{2}\right) x^{2}\right) d \mu^{0}
\end{aligned}
$$

On carrying out tho integrations we find

$$
\Leftrightarrow M_{2}(\text { att } .)=\frac{\alpha^{2}(1+r)}{2} \int_{0}^{1} d r \int_{-1}^{1} \frac{2 d \mu}{9^{2} / R^{2}}=\alpha^{2}(1+r)\left(\frac{\pi}{4}\left(\frac{\pi^{2}}{4}+1\right)+\frac{\pi^{2}}{128 R^{2}}+\ldots .\right)
$$

We have therefore the following result

$$
\begin{align*}
\mathrm{M}_{2} & =\frac{\alpha^{2}}{2}+\alpha^{2}(1+f)^{2}\left[\frac{1}{4}\left(\frac{\pi^{2}}{4}+1\right)+\frac{1}{24 R^{2}}\left(\frac{\pi^{2}}{4}+\frac{2}{3}\right)+\cdots \cdot\right]=\alpha^{2}\left(1+f^{2}\right)\left[\frac{1}{2}+\frac{1}{12 R^{2}}+\cdots\right] \tag{5}\\
& =\alpha^{2}(1+f)\left[\frac{1}{4}\left(\frac{\pi^{2}}{4}+1\right)+\frac{\pi^{2}}{128 R^{2}}+\cdots\right]
\end{align*}
$$

5. REINA INDER

With the calculation of the contribution to the multiplication due to neutrons that have made two collisions, we bring to a close the calculation in terms of colliaions, and we will now obtain the remaindor of the multiplication by an approximate mothod.

We will adopt a nethod first applied by Foymmon and Ashkin to problems of this nature. Consider the integral equation describing our system. In the one velor city approximation we can write it in the following foim

$$
\begin{equation*}
n(r)=S(r)+\left(1+r^{0}\right) \int K\left(r, r^{0}\right) \underset{1}{n\left(r^{\prime}\right) d r^{k}, ~} \tag{6}
\end{equation*}
$$

where n / r is the flux, S / r is the nourco function and K the kerned. Suppose now that have an approximate solution to n. Thia we denote by $n^{(1)}$. Let the ros mainder be $\overline{n^{(i)}}$. Thon $n=n(i)+\overline{n(1)}$ 。 We will now find an approximate expression for $\overline{n^{(1)}}$. Substituting in Eq. ((6) wo have

$$
\begin{align*}
& \overline{\mathbf{n}^{(i)}}=S_{i}+(1+i) \int K \overline{n^{(i)}} d 8^{9} \tag{7}
\end{align*}
$$

 equation as n exoept for a different souras funotion.

Ho can write dom the formal solution to this oquation imnodiately

$$
\begin{equation*}
n^{(i)}=\sum_{n=1}^{\infty} \frac{1+f_{n}}{E_{n}-f}\left(\phi_{n}(r) S_{1}(r) d r\right) \phi_{n}(r) \tag{8}
\end{equation*}
$$

Whare

$$
\begin{equation*}
\phi_{n}=\left(1+f_{n}\right) \int K\left(r_{p} r^{y}\right) \phi_{n}\left(x^{*}\right) d x^{q} \tag{9}
\end{equation*}
$$

The proof of Fq. (8) is simple. The symotric kernol $K\left(r, r^{p}\right)$ goneratos a emplets orthonormal set of algenfunctions ϕ_{n}. Ine assooiated eigenvaluea are 1ting as shown in Fq. (9). Lot us then expand $\bar{n}(i)$ and S_{1} in terme of theso ofgenfunctions

$$
\begin{gather*}
\overline{n(i)}=\sum_{n=1}^{\infty} c_{n} \not \phi_{n} \\
s_{1}=\sum_{n=1}^{\infty} s_{1 n} \not \phi_{n} \quad s_{1 n}=\int s_{1} \phi_{n} d r
\end{gather*}
$$

Substituting in Eq. (7) and using Eq. (9) we find

$$
c_{u}=\frac{1+f_{n}}{f_{n} f_{n}} s_{1 n}
$$

If this is substitutod in Eq. (88) wo obtain Eq. (8).
The equation for $\overline{n^{(1)}}$ is an oxact expression. We now made the approximas tion $f_{n}=f_{0}$ for all a_{o}. This monne that we put all the noutrons from the source in the normal mode.

$$
\begin{gathered}
\overline{n^{(i)}}=\frac{1+f_{0}}{f_{0}-f} \sum_{n}\left(\phi_{n} s_{1}\right) \phi_{n}=\frac{1+f_{0}}{f_{0}-i} S_{1} \\
\overline{n^{(i)}}=\frac{1+f_{0}}{f_{0}-f}\left\{S-n^{(i)}+(1+f) \int K\left(r_{\infty} x^{\prime}\right) n^{(i)} d{\Phi_{0}}^{\prime}\right\}
\end{gathered}
$$

The contribution to the multiplication corresponding to $n^{(i)}$ we write ${ }^{(i)}(i)$. If wo say that the counter is at infinity wo hava

6. CORRICTIONS

Tho spheres of active material used in the oxperiments each had a small spherical holo at the centor which served to hold the source of noutrons. The radius of this inner sphere was 0.396 cm . The source of neutrons was epproximately spherical in shape of radius 0.336 cm . Our calculations so far have assumed a point source and no holes and it is now nocessary to find the offects of theso perturbations. They aro by no means nogligible.

The material in the zource has approximately the aame scattering properties as the active material. He make a negligible error if we assume the acattering proportios to be exaotly the sane, and furthermore if we assume for simplicity that ths space between the source and the active material is filled with inactive material but scattering like the active material.

It is easy to show that if we have a spherioal source of radius b and source strength q par unit volume, then the fiux, F, at a point distance r fron the center of the sphere is giver by

$$
\begin{equation*}
F(r)=\frac{q}{2 r}\left(\frac{b^{2}-r^{2}}{2} \ln \frac{r+b}{|r o b|}+r b\right) \tag{10}
\end{equation*}
$$

It is anvenient to have $F(s)$ as a aoxies in r. We normalize the total source strength to 4π noutrons per sec. $A=\frac{4 \pi}{3} \mathrm{~b}^{3} \circ \mathrm{q}=4 \pi$. wo havo then

$$
\begin{array}{ll}
r \geq b & F(r)=\frac{d}{r^{2}}\left(1+\frac{3}{3.5}\left(\frac{b}{r}\right)^{2}+\frac{3}{5.7}\left(\frac{b}{r}\right)^{4}+\ldots 00\right) \\
r \leq b & F(r)=\frac{3}{b^{2}}\left(1-\frac{1}{3.3}\left(\frac{r}{b}\right)^{2}-\frac{1}{3.5}\left(\frac{r}{b}\right)^{4}+\ldots .\right)
\end{array}
$$

It is now necessary to go through our previous oaloulations taking into acoount this more complicated ilux distribution and also the fact that in the region which we designate $0 \leq r \leq C$ no fissions take place corresponding to the hole in the sphere of active material. The caloulation is straightforward and we now give the new exproso sions for the contributions to the multiplication of the different colilsion processes: rore $b / C=d$.

$$
\begin{aligned}
& \left.\left.+\frac{3}{3.5} b^{2}(1-c)+\frac{3}{1.5 .7} d b^{2}(1=c)+\ldots 0\right)+\ldots \ldots .\right] \\
& +a\left\{c(1-d)+\frac{3}{1.3 .5} b(2-d)+\frac{3}{3.5 \cdot 7} b\left(2-d^{3}\right)+\ldots+\frac{d}{3 R^{2}}\left(\frac{c^{3}}{3}\left(1-d^{3}\right)\right.\right. \\
& \left.\left.+\frac{3}{3.5} b^{2} c(1-d)+\frac{3}{2.5 \cdot 7} b^{3}(1-d)+\cdots \cdot\right)+\ldots \ldots \ldots\right] \\
& +a . b\left[\frac{3}{4}+\frac{b^{2}}{R^{2}}\left(\frac{1}{5} \circ \frac{1}{1.3 .7} \times \frac{1}{3.5 .9} \cdots\right)+\frac{1}{5}\left(\frac{b}{R}\right)^{4}\left(\frac{1}{7} \div \frac{1}{1.3 .9} \circ \frac{1}{3.5 .11} \cdots \cdots\right)\right] \\
& \left.-a x\left(1-\frac{b^{2}}{5}=\ldots\right)+\frac{1}{5}\left(\frac{b}{R}\right)^{2}\left(1-\frac{2 b^{2}}{7} \ldots \ldots\right)\right]
\end{aligned}
$$

$M_{2}($ two real coll. $)=\alpha^{2} J_{1}+\alpha(1+f) \alpha J_{2}+\alpha^{\sigma} \alpha(1+f) J_{3}+\alpha^{2}(1+1)^{2} J_{4}$

$$
\begin{aligned}
& J_{1}=3 b c\left[\frac{1}{4}-\frac{1}{1.3} d^{2}\left(\frac{1}{5}-\frac{1}{1.3 .7}=\frac{1}{3.5 .9} \cdots\right) \cdot \frac{1}{3.5} d^{4}\left(\frac{1}{7} \cdot \frac{1}{1.3 .9}-\frac{1}{3.5 .11} \cdots\right)\right] \\
& +c\left[c(1-d)+\frac{3}{2.3 .5} b(1-d)+\frac{3}{3.5 .7} b\left(1-d^{3}\right)+\cdots\right. \\
& -\frac{1}{1.3}\left(\frac{1}{3} c\left(1-d^{3}\right)+\frac{3}{1.3 .5} d^{2} c(1-d)+\frac{3}{1.5 .7} d^{2} b(1 .-d)+\ldots .0\right) \\
& \left.=\frac{1}{3.5}\left(\frac{1}{5} c\left(1-d^{5}\right)+\frac{3}{3.3 .5} d b\left(1 \cdots d^{3}\right)+\frac{3}{5.7} d^{L_{l}} c(1-d)+\ldots .\right)+\ldots \ldots \ldots\right] \\
& J_{2}=c\left[c\left(\frac{1}{1.3}(20 c) \div \frac{1}{3.3 .5}\left(10 c^{3}\right)+\frac{1}{5.5 .7}\left(1-c^{5}\right)+\ldots\right)\right] \\
& \left.\uparrow \frac{3}{3.5} \mathrm{db}\left(\frac{1}{1.3 .3}\left(1-c^{3}\right)+\frac{1}{3.5 .5}\left(1-c^{5}\right)+\ldots 0\right)+\frac{3}{5.7} \mathrm{bd} 3\left(\frac{1}{1.3 .5}\left(1-c^{5}\right)+\ldots\right)\right]+\ldots 00 \ldots \ldots
\end{aligned}
$$

APPROVED FOR PUBLIC RELEASE

$J_{3}=H_{2}-J_{1}$

$$
\begin{aligned}
A_{3} & =3 b\left[\frac{1}{4}-\frac{b^{2}}{2.3}\left(\frac{1}{5} \frac{1}{1.3 .7}-\frac{1}{3.5 .9} \cdots\right)-\frac{b^{4}}{3.5}\left(\frac{1}{7} \cdots \frac{1}{2.3 .9} \cdots \cdots\right)\right]+c(1-d)+\frac{3}{3.5} b(1-d) \\
& +\frac{3}{3.5 .7} b\left(1-d^{3}\right)+\frac{3}{5.7 .9} b\left(1-d^{5}\right)+\ldots-\frac{1}{2.3}\left(\frac{1}{3} c^{3}\left(1-d^{3}\right)+\frac{3}{3.5} b^{2} c(1-d)+\frac{3}{5.7} b^{3}(1-d)+\ldots\right) \\
& -\frac{1}{3.5 .}\left(\frac{1}{6} c^{6}\left(1-\frac{b^{6}}{c^{6}}\right)+\ldots\right)+\frac{1}{3 R^{2}}\left(c-\frac{2}{3} b\right)+\ldots \ldots \ldots
\end{aligned}
$$

$$
J_{4}=H_{4}-J_{2}
$$

$$
H_{4}=1-c+\frac{3}{1.3 .5} d b(1 \infty C)+\frac{3}{3.5 .7} d^{3} b\left(1-c^{3}\right)+\ldots 0-\frac{1}{1.3}\left(\frac{1}{3}\left(1-c^{3}\right)+\frac{3}{3.5} b^{2}(1-C)\right.
$$

$$
\left.+\frac{3}{1.5 .7} d b^{3}(1-c)+\ldots 0\right) \frac{1}{3.5}\left(\frac{1}{5}\left(1-c^{5}\right)+\frac{3}{3.3 .5} b^{2}\left(1-c^{3}\right)+\ldots 0\right)+\frac{1}{24 R^{2}}\left(\frac{\pi^{2}}{4}+\frac{2}{3}-\frac{8}{3} c\right)+
$$

$-M_{2}\left(\right.$ att. then $\left.\cos 1_{0}\right)=-\alpha^{2}(1+f)\left[\frac{1}{2}\left(1-c^{2}\right)+\frac{1}{12 R^{2}}\left(1-c^{4}\right)+\ldots.\right]$

$$
-a^{2}\left[\frac{1}{2} c^{2}\left(1-d^{2}\right)+\frac{c^{4}}{12 R^{2}}\left(1-d^{4}\right)+\ldots \cdot\right]-a^{2} \cdot \frac{2}{5} b^{2}+\ldots \ldots \ldots
$$

$-M_{2}(0011$. then att. $)=\alpha(1+f) \mu\left[1-c=\frac{1}{1.3^{2}}\left(1 \rightarrow c^{3}\right)-\frac{1}{3.5^{2}}\left(10 c^{5}\right) \ldots\right.$

$$
\begin{aligned}
& +\frac{1}{R^{2}}\left(\frac{1}{9}\left(1-c^{3}\right)-\frac{2}{75}\left(1-c^{7}\right)-\ldots\right)+\frac{3}{3.5} b^{2}\left(\frac{1-c}{c}-\frac{1}{3}(1-c) \cdots\right) \\
& \left.+\frac{3}{3.5}\left(b d(1-c)-\frac{b^{2}}{3}(1-c)-\ldots\right)+\frac{3}{5.7}\left(\frac{1}{3} b d^{3}\left(1-c^{3}\right) \ldots\right) \ldots \ldots \ldots \cdot\right] \\
& +a^{2}\left[c-b-\frac{1}{9} c^{3}\left(1-d^{3}\right) \ldots+\frac{3}{3.5} b\left(1-d-\frac{b^{2} C}{3}(1-d)+\ldots\right)+\ldots \ldots 0 \cdot 0\right]
\end{aligned}
$$

$M($ direct beam $)=\frac{\alpha^{2}}{2}\left[1-\frac{b^{2}}{5}+\frac{d}{R^{2}}\left(\frac{b^{2}}{5}-\frac{2 b^{4}}{5.7}\right)+\cdots\right]$

7. DATA AND RESULTS

The mock source of fission neutrons was obtainod by the roaotions
$\mathrm{Po}+\mathrm{NaBF}_{4}+2 \% \mathrm{BeF}_{4}$. Natural alphas on boron do not produce a spectrum of aufficiantly high avorage anorgy; so a small amount of berylliwn was added. The rosultiag spectrum as meqsured by Richards 3) $i s$ given in Fig. 4 together with the latest fission pootrum. The method of caloulating the averages to be put in each collisien has been given by Kurath and Rarita ${ }^{5}$). In the case of 25 and 28 wo possess rather extonsive data and here thero is no difficulty in obtaining the propor onergy averages 5). on tho other hand for 49 only the fission oross section is known as a function of energy. Wo have therefore used what we believe to be reasonable values and in the case of the experimont with the 28 counter the aleulation has been mado for three valuos of the ino olastic crosa mection: $075,1.0$, and 1.25 barns. The other data used were: $\sigma_{f}=1.80 \mathrm{~b}, \nu-1-\propto=2.02$, or more signifioantly, $\sigma_{\mathrm{f}}(\nu=1 \sim \alpha)=3.64$, and $\sigma_{\text {total }}=4.77 \mathrm{~b}$. The tables below give the calculated values of M the ratio of the counto ing rates when the ephere is in place and when the sphere is removed. For comparison we have added the experimentally obsorved values of wo
3) H. T. Riehards, LA-201.
4) H. T. Richards, LA-200.
5) D. Kurath and W. Rarita, Li-197. To the data used here must be added a 3% roduction in $\sigma: f$ for pure 73% 25. indicated by the multiplioation experiments with the flat oounters.

TABLF: I: Experimonts witn ${ }^{\circ} 25\left(73 \%^{\circ} 25: \cdot 27 \%\right.$ 28)

Dianoter	Counter	Mcale	Mobs
	25	1.383.	$1.35 \pm .02$
2.5	28	1.082	$1.13 \pm .02$
$20^{\prime \prime}$	25	1.262	$1.28 \pm .06$
2.01	28	1.032	$1.07 \pm .05$

TABLE II: Experiments with normal uranium

Dianeter	Countor	Moalc	Mobs
	25	1.044	$1.031 \pm .011$
$2.5^{\prime \prime}$	28	0.707	$0.760 \pm .012$

TABLE III: Fxperiments with 49

Diamoter	Counter	Meale	Mobs
	25	1.199	$1.202 \pm .013$
$.9^{11}$	28_{1}	1.187	
	28_{2}	1.176	$1.175 \pm .015$
	283	1.265	

As an oxample of the contribution of the verious torms to 14 lot us eone sider the $2.5^{\prime \prime}$ aphere of 25 used in conjunction with the 25 oounter. The zero colo 1isions give l: The first collision gives 0.2935 the second 0.0915 the renainder 0.0388. Total 1.4238. Correcting for tho fact that the 25 foil is $63 \% 25$ and 37% 28 wo find that the result of the experiment should bo 1.383 . The gilght difference between the experimental values here listed and those in Ref. 3 arises from the fact that the latter have been corrected to correspond to a pure 25 deteotor.

Richards ${ }^{6}$) has messured the spoctrum of neutrons emerging from the 2.5 ${ }^{\text {n }}$ sphere of 25. Fig. 5 shows the calculated spectrum together with Richards3) resulto.
6) Private communication.

On the whole the agreament botweon thoory and experiment is satiafactary oxcept for the multiplication of the 25 spheras as messured by a 28 counter. Such a discrepancy has also been reported by Kurath and Rarital) whon thoy calculated the reault of similar experiments performed by Snyder, i.11son, and woodward 8). In our case a raduation of $\sim 35 \%$ in the inelastic scattoring is required to bring the theoretionl rosulta in mereement with experiment. It is not posaible to loarn anyo thing from the comparison of the measurements of the spectrum that comes out of the $2 \frac{10}{\prime \prime}$ sphere with the theory on this point because the difieerence in the spectrum (Fig. 5) sought is far inside the probable orror.
7) Loc. Sit.
8) $4 A-189$.
i!
(17)

Fin g Face \qquad
\qquad DATE.. $5-11$.

REC.

