

CIC-44 REPORT COLLFCTION REPRODUCTION COPY

IA REPORT - 260

PUBUCLY RELEAGABLE

 LANL Gtesetifation Group Whahans $\mathrm{bmin} 3 / 27 / 9{ }_{3}$This document contains 12 pages

Clasgification changril to IJNCHARSITIETD by anthority of the $\mathrm{U} . \mathrm{E}$, Atomie Imersy Par fack 2 - Kalum An $4-26-54$ by REPORT LIBRARY 5-1-570

ENEGY OF INELASTICALLY SCATTERED NSUTRONS
IN a large mass of tubelloy

TIORR DONE BY:
B. To Feld

REPORT WRITTEN BY:
B. T. Feld

APPROVED FOR PUBLIC RELEASE

AisStract

The experimental data taken on a 35-ton noass of tuballoy metal early in 1944 (CF-1627) have been reoevaluated in the light of our present knowledge of the 28, 25 , and 49 constants. The averaze energy of neutrons which have bean degraded by inelastic scattering of 28 is concluded to be $170 \pm 30 \mathrm{Kov}$.

IN A LARGE LEASS OF TUBALLOY

Measurements on a 3 boton mass of tuballoy, made at site X in the early part of 1944 (Cr-1627) ${ }^{1}$, were interppeted in terms oi a twowroup theorya these were referred to as the slow and fast noutrons; the fast consists of those neutrons above the fission threshold of 23; the slow consists of all neutrons below the 28 threshold (about $l_{0} 2$ iev) and results mainly from inelastio soatioring of fission neutrons by the 28. A direct measurenent of the average energies of the two groups was also attempted at that time。

The data obtained in the experiment could be consistently interpreted by a two-group theory, using the oross sections and other constants then known to the authors and assuminis an onergy of about 200 Kev for the slow group.

Since the variation of the aross seotions of 28,25 , and 49 with enorgy are now reasonably well know, it was suggested by F_{a} leller that the experimental data be remevaluated, with the object of attempting to find an acourata value for the averaje energy of the slow group. This onergy is of considerable interest, for it tolls us to what onorgy neutrons can be degraded by inelastic scattering of 28 and can lead to some knowledge of the low-lying energy levels of the 28 nuclsus.

There are three independent measurements that can be interpreted to jive a value of the energy of the slow sroup:

1. A direct measurement of the slowing-down range in a graphite column.
1) The axperinent was performed at the Clinton Laboratories by a group, headed
 and the author.
2. A neneurement of the ratio of the fiscion cross sections of 25 and 4ϑ 。
3. A measurement of the oquilibrium relaxation length of the noutrons in the mass of tuballoy.

In addition, there were measuranents of the ratio of radiativa capture to fission and of 25 to 23 fission which, though they do not yield a valuo of the energy of the slow oroup, shed lizht on some of tho other constants involved.

1. Slowine-down ranze in praphite- The distribution of indium rosonanoe neutrons in a graphite coluran, on the bottou of which a bean of neutrons impinged energy of the slow group - as deduced irom this measurement - may lie anywhere betwoen 30 and 300 Kev.

2. Rolaxation leath of the equilibrium neutrons in the tuballoy The value of 9.6 cas for the equilibrium relaxation length of neutrons in an infinite mass of tuballoy is the most acourately known or all the constants measured In the experiment. The probable arror of tils measurement is certainly lesa than 5 percent. Irom the theoretical considerations discussed in CT-1027, it may be seen that the equilibrium relaxation length is primarily dependent on the product of the transport oross section by the 28 capture cross section for the slow noutrons. Both these cross sections are stronsly dependent on eneray in the 50 to 300 Kev regiono so that the relaxation length should yield a good value for the eneray of the slow group.

Pigo 2 is a plot of the 28 transport oross section vso energy. The curve is not the same as that fiven in LA-140. It is rather a combination of neasurements of the total 28 oross section recently made at the Arjonne Laboratories for low onerifies and the Los Alamos measurements for high energies. It has been shown by Vo Weisskopf to be consistent with both the Argonne and the Los Alamos measurements, when account is taken of the forward soattering by 28 of neutrons above about 200 Kev .

In Figa 3 is plotted the latest values for the 28 apture crose section vs. enersy, from the measurements of Linenberger and Segrò. In addition to the abover discussed cross sections, the fission oross section of 25 as given in LA-140 and the following cross sections for the fast group were used:

$$
\begin{aligned}
& \sigma_{f}(28)=.45 \text { barns } \\
& \left.\sigma_{\text {inelastic }}(28)=2.4 \text { barns } 2\right)
\end{aligned}
$$

> 2) This value is not the actual inelastio soattering oross section but a fiolitious number chosen to fit a two-sroup approximation. ifore detailed considerations show that the data are consistant with the presently accepted values of the 28 inelastio soattering oross seotion.

> APPROVED FOR PUBLIC RELEASE

$$
\begin{aligned}
\sigma_{t r}(28)= & 4.5 \text { bnrne - for the fast group } \\
v_{25}=v_{28}= & \varepsilon_{0} 5 \text { barns, of which } 75 \text { percent ere cinitted fast and } \\
& \text { the rest slow. }
\end{aligned}
$$

The expressions developed in crale27 were used to calculate the value of $\left(2 / 3 N^{2}\right)\left(1 / L^{2}\right)$ as a function of enoriy．（ N is 10^{-24} times the number of T atoms per om ${ }^{3}$ ror a density of $18.9 ; L$ is the relaxation length。）The results of this calculation are plotted in $F i g$ ．1。 As stated ahove，L is primarily a function of the produat oi the 28 transport and capturo cross seotions with the other con－ stants ontering only as corrections。

From this plot（lig．4）we obtain a value of 170 Kev for the energy of the slow neutrons in the tuballoy mass．This value is accurate to about 5 percent if the cross sections used are that good。 However，Vo Feisskopf suspects，on theoretical srounds，that the 25 fission cross section may be somewhat high in the 100ヵRev resion。 This would lower the above energy rather slightly and raise the enorgy as obtained by the 25 to 49 fission ratio so as to bring the two into better agreement。

4．Other measuroments－The ratio of capture to fission in the tuballoy is rather insensitive to energy；the measured ratio is in good arreenent with a slowoneutron enorisy of betweon 150 and 200 Kev

The experimental value of the ratio of 25 to 28 fission in tuballoy was 336 with a probable error of about 20 percent，due again to the uncertainties in the foils used．In fign 5 is plotted this ratio as a function of energyo The value of the ratio at 170 Kev is 270 ，whioh agrees with the experimental value to within the experimental error．Again，a lower value of the 25 fissiof ：crgsis ：secigicg weuld make the agraement better．

From the theory presented in CFw 1627, it may be seen that the ratio depenas directly on the following ratio of fastioneutron constants:

$$
\frac{\sigma_{\text {inelastio }}(28)}{\sigma_{f}(28) v_{25}}
$$

The uncertainty in this ratio can easily explain the difference between the theorotical and experimental values. For instance, if we should take

$$
\text { Oinelastic }(28)=2.5 \text { barns }
$$

and

$$
\sigma_{f}(28)=040 \text { barns }
$$

the agreament would be almost perfeot.
The above considerations lead to consistent values for the enersy of the slowaneutron group in an infinite mass of tuballoy. In view of these considerations, this onergy can be stated with some confidence to havo a value of $170 \pm 30 \mathrm{Kev}$ 。

1514

barns

F青:			I		$\because 10$	F\%
	,		$=$	-		
$\square \mathrm{Ca}$	-	\%	-			
F-7						O

 EXPERIMENTAL VALUL $=3163(\mathrm{E}=9.6 \mathrm{~cm})$:-

