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ABSTRACT

The end point method 1s mathematically developed and its application
to the Miine kernel studied im dotail, The gemeral solution of the Wiener.-
Hopf integral equation is first obtained. 7The lMllne kernel appeers ln
epplying this msthod to thse integral equation describing the diffusion and
multipliocation of noutrons in multiplying and scattering wedle. The neutrons
aro treated as monoshromatlo, isotropically zoattersd and of the same total
mean free path in all materlais lavolved. Only problems with spherical
symmetry are treated, these being reducible to squivalent infinite slab
problems. Solutions are obtained for tamped an¢ untamped spheres; in ths
former case both growing and decaying exponential asymptotic solutions in
the tamper are treated in dstail. Appendix I treats the effects of the
mpproximations inhereat in the exnd point‘method (ef. 1A=53). Appsndix II

gives the solution of the inhomogeneous Wlener-Hopf equation.
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THE MATEEMATICAL DEVELOPMENT OF THE END.POINT MSTHOD

Introduction

The genersl development of the end-point method and some of its
applications are dssoribed im LA<5%. It 1s the purpose of this report to
supplement this gemeral desorlption with an explicit mathematical development
of the end-point method and a detailed study of ite application to the
Miilne kernel. This is the kernel entering in the integral equation describing
the diffusion and multiplication of neutrons in multiplying and scattering
matoerials where the neutrons are treated as monochromatic, isotropically
scattered, and of the same total mean free path in all materials involved.
The end-point method of treatment of integral equations is restricted to
one-dimensional oceses, This essentially limite the method *o the treatment
of problems in which fhe materials Involved and the neutron distribution
are both spherically symmetric, these problems being reducible to equivalent
infinite-slab problems. In LA-53 it was shown that the end-point results
may be applied loosely to problems of somewhat more complicated geometry
end sive more or less accurate approximations to the truth. These epplica-
tions depend primarily on loose analogies rather than mathematical argument
and will not be treated here:

Many parts of this report will be in part repetitions of material
treated in LA-53 and lA«53A, Here the omphasis will be primerily on the

olear mathematical development of the methods of application presented tisre.
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Chapter I. The Wiener-Hopf HMethod

The integral eguation,

2 ,
n(x) = ayodx' e(x') E(x = x') N (1.0)

is known as the equation of Wiener and Hopf. With certain reasonablie
restrictions on the character of K and n this equation cen be solved exactly.
Before examining the method of solwing this equation developed by ‘liener

and Hopf, it 1s useful to examine the simpler equation,

00
nx) = j.de n(x?) E{x - x") (1.1)
- 00 .

Since this equation is homogeneous, if no(x) ia & solution then a ¢ ng(x)

also satisfies the equation for any constant, a. Beosuse of the infinite

limits of integration and the "displacement” character of the kermel (K

depends only cn the difference, x x') no(x - b) must also be a sclution.

If the solution, n,(x), is unique (except for & multiplicative factor) them
kx

ny(x = b) =a n (x) for some 8o Hgnce n,(x) =e . This suggests looking

for exponential soclutions of (i.1).

n(x) = & = JE}' ehq K(z = x?)
= o _f;; Y K (y) (1.2)
-0

['% &

jay e K(y) =1

-00
Any solution of this "characteristic equation” gives a value of k for which
ka satisfies (1.1). If there is more than one solution to the characteristic

equation then any linear combination of the ezponentials determined by them

will satisfy (1.1)-
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Thesoe conslderations will be relevant to the study of the eguation
(1.0) if K decays rapidly for large ’y, s If this is the case then for
large x equation (1,0) aporoximates (1.1) and it may be expected that with
increasing x the solutione of (1.0) will approach asymptotically the exponent’al
solutions of (1cl). If this 18 the case the asymptotic exponential part of
the solution of (1;0) may be separsted from the remainder of the solutlon
by laplace or Fourier transf;rmation; The use of the laplace transform
is further suggested by the faot that the left hand term of (1.2) is the

Laplace transform of the kernel.

Taking the Laplace transform of equation (1.1) gives:
w» = oo
fhe”h n(x) er” dx'n(x') K(x - x7)
“rf - Jd .9

o

~ Y Jkx® o oy
\ldx'n(x')e dys K(y)

~0

. o
jdx o= KX n(x) (dee‘ky K(y) - l) =0

D

fl

This last equation shows that the laplace transform of n{x) must vanish for

all values of k which do not satisfy the ocharacteristic equation, (1:2) ¢
An application of the seme technique to (1.0) does not lead

jmnediately to a factored equation because of the finils lower limlt. To

get around this difficulty Viemer and Hopf intreduced the following trigke.
Define n(x) = F£(x) + g(x),

vhers £(x) == O0for x< O

g(x) = Oforx & O

U
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-70

This permits writing (1.0) in the form

(o]

£f(x) + g(x) = Idx' f(x') E(x - x7)
- OO N

Now takiag the laplece transform plves

(4] o 00 oo
j'dx f(x)é=th + fdxg(x)e‘h = J'dxe'kx dx'f(x')E(x - x')
-0 -00

o

00 u-08 o
= J“dx‘e.kx £(x") dycs"ky K(y)
-c0

-20
Y. x
Defining F(k) = dxf(x)e”
G(K) = 1:."!.afstg(x)a"]ﬂ‘
U- oo
E(R) = |dxk(x)o”F
we have
o) =F) (KW -1) = FO) PR (1.3)

This equation will hold for eny value of k for whioh all thres integrals
exist, We therefore impose conditions on the kernsl arnd solution of (1.0)
whioh ensure the existenoce of a sultable region in the complex plsene in
which all three Integrals exist. Ws require that K(y) decay at 1ea-.st 8.8

rapidly as an exponential for large {positive or negative) y.

£y = o™ [¥]), o>o. (1o)
Then K(k) will exist for ~c<R(k) <c, We further assume that
ax)

£f(x) = o(e d<co . (1;5)

The kernels of primary interest are symmetric. For these, if the "largest”
value of ¢ satisfying (1.l4) 18 chosen them (1.5) is not a restrictive
condition since f(x) must apprcach asymptotically an exponentlal, ekx, for

some k satisfying K(k} = 1 and therefore within the range of convergence of

L Y
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E(k). The form of equation (1.3) clearly requires that g(x) decay
(for large nerative x) at least as fast as e®*. Thus G(k) exists for all
k having (k) <o. The three integrals wlll therefore all exiat throughout ‘

8 vertical strip in the complex k-plans definad by 4 <R{k} oo

%\g\.
\NNX\X'
\\ .
N S
oS
bo  SON S
N
=
2
Wg(};)\é:k;sts
N
F.6,K codxist

Flg. 1

Within this "common &trip" all three integrals are couvergent and equation (1.3)
must be satisfled. Outside this strip the non-convergent integrals will be
defined by analytic extension (and need not be analytic) in such a way that
the equation is still satisfled.

Within and to the right of the common strip F(k) oxists and 1s
analytic. (It is clear fr&m its definltion that in this rangs any derivative

of F(k) exists.) Similarly within and to the left of the strip G(k) exists

.

end is apalytic. K(k), hence also P(k), exists and is analytic within tho
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strip but may have singularitieg on either side of it. ¥We make the further
essumption that F(k) and G(k) have no roots in their respsctive regions of

enalyticity. (Cf. Paley und Wiener, Fourier Transforms, p. 51). e further

require that there exist a sub-strip within the common strip within which
P{k) has no roots. (This must be true if P(k) has cnly a finite number of
zeros in the common strip. This will actually be the case, Cf. Titchmarsh,

Fourier Integrals, p. 339.)

e have now a sub=8trip within which log P(k) is analytic; within
which and to the right log F(k) is analytio; within which and to the left
log G(k) is mnalytie, and within which the three satisfy
log P(k) = log G(k) = log F(k)
This equation wil) be satisfied thrcoughout the plane by the analytic extensions.
It is now easy to find functions, * and G, satisfying this equetion
and the analyticity oconditions., For values of k within the sub~strip we

express log P(k) by means of a Cauchy intepgral:

leg P(k)

it

dict
2nri J‘ i
(1/2n) ¢ T 198 P(k")

i

(1/2m4) jﬂ S5 dog )

+

(1/2m) .[L ;TSELE log P(k?')

where the contour of integration consists of two vertical lines in the sub-strip,

ons running up to the right of k, the other down to its leaft.
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Fig. 2

We have now decomposed log P{k) into two parts, one certainly analytic within
the strip and to the left, the other within and to the right. These may be

tdentified with log G(k) and -log F(k) und give a solution to the equation (1.0},

dk*

- §%&i IL B -k log P(k) + constant

log F(k)

H

(1.6)

\j
log G(k) = Q%T IR ETS%qf 1og P(k') + constant

Thie contour integral representation of log F(k) determines F(k), hence also

U

£(x),

APPROVED FOR PUBLI C RELEASE
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- 11 =
16+ 00 ~
= 1 kx
f(x) = mar bt oo o F(k) dk (1.7

&

where § 18 chosen to make F(k) regular along the contour. In particuler B
may be taken in the sub-strip, Since F(k) 1s analytic to the right of the
sub=strip, the contour may be translated to the right as far as desired, For
negative values of x this may be used to show that £(x) vanishes,
: kgx :
If £(x) contains a term Ae (e<go ag its asymptotic solution),
then its laplace transform, F(k) will contain a corresponding term,

P
jdx o“kx Aek°x = A/(k - k)

Thus & pure exponential term in f(x) menifests itself in F(k) as e simple pols,
and the coefficlents of the two may be identified, The coefficient of the
singularity is most easily determined by expanding log F(k) about the
singularity.

log F(k) =« log{k - k) + log A +0(k - k)

The asymptotic solution will be determined by all of the singularities of
F(k) on the imaginary axis and ih the right halfeplans. If there are no
singularities on or to the right of the imaginary axis the solution, f{x),
will approach zero asymptotically. A more useful asymptotic welntion, however,
will be that determined by the first singularities to the left of the imaginary
axis.

An important spsciel case of this general treatment is that for
which the kernel, K(y), is symmetric and for which the characteristic equation
has only & single pair of conjugate roocts on the imaginary axis. If thesse
two roots are at + 1 k,, then the solution will be of the form ‘

N

e

APPROVED FOR PUBLI C RELEASE
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F(k) =B [ﬂin k, (x +x,) +h(x), h{x)30 as x-> +20 (1.8)

Sinoe the equation is homogeneous B is undetermined. =x,, however, can be
evaluatoed,

F(k) = f:x ewkx B [sin' ko (x + xg) + h(x)]
e

i <kx B [ik(x-l-x) -1k (x + x.) ]
= dx o o © O'.e 7O 4+ 2ih(x)
Jo e 2in(

B ( oi¥o%o - iEo%o
= 9 \r—Iir iko - TR + 2iH(k)
(s

In the neighborhood of + ik , H(k) is finite, We expand log F(k) near these

two poles,

log F(ik  + e) =1log 2. + 1k, x, = log ¢ + 0(c)
log F(-1k_ + ¢) = log 5%- 1 kx, - log € + 0(e)

12::0 [105 F(ik, + €) - log F(=1k, + e)] =log (-1) +21 kx_
€

iog F(k) = log G(k) - leg P(k)

ﬁ%i'f’ .L g% log P(k') = log P(k)

;Ezzo [10@ P(1k, + €) - log P (=ik  + 5)] = log [;g%} = log (-1)

sinse E(y) 1s even, hence alse K(k) and P(k); P'(k) edd.

= 1 . 1 1
2 Legho = gy Jr 9k e P(E) [T:”"‘.’."‘To s 11{0] |
e L j G e (19)
= — 1o
o i JR Y- koz g
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The two terms, log (=1), have beer neglected since the form of the solution
(1<8) is uncha:ped by the addition of s multiple of n to kyX,: The evaluation
of x, completes the determination of the asymptotic form of the solution
(1.8, x, is oxpressed in (1.9) as a singls integral which in many cases must
be evaluated numericaily. To get the complete solution requires two integrétiona?
one to evaluate log F(k) by (1.6), another to get f(x) by (1.7)-
Two-lediun Froblena
A more goneral problem that cen be treated by the‘Wigner-Hopf

teohnique is

o Y ’
n(x) =l[ dx? K'(x - x*)n(x") + \f dx' K (x - x') n(x').
- 00 [s} .

Breaking up n(x) as before and taking the Laplace transform of the resulting
equation givss

F(k) + 6(k) =K(x) F(k) +K*'(k) G(k)
where the notation is the same as before. This may be written as

(k) :F(k)(..l.:éilfl, = P(k) P(k)
K (o -1

This is now of the same form as (1.3). The rest of the treatment proceeds in
the Bgma way: With this more oomplicated form for P(k) there may be a greater
number of singularities of log P(k), leading to a larger number of indeperdent
sclutions. In particular it is no longer neceseary to reguire that g(x) decay
exponentiaily away from the boundary.

An.import%nt special case of this two-medium vroblem is that
for which X(y) and K*(y) differ only by & multiplicative factor. This casze
wlil be treated extensively in the eecond chapter.

The ¥Wiener-Hopf technique may be further extended to permit the

solution of inhomogeneous displacement integral equetiona. This method is

outlined in A:pendix II. I I I I m i
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Chapter II, Application to Neutron Problems.

In this chapter we treat the appllcations of the “Wiener-Hopf
method (combined with some approximations) to problems concerning the spatial
distribution and time dependence of neutrons in spheres of muwltiplying and
scattering materials. It will be shown that such problems, with suitable
physicel approximations, can be represented by integral equations closely
analogous to the Wiener-Hopf equation., By making suitable mathematical
approximations (the "end=-point method") fairly accurate solutisns to these
equations can be potten from the corresponding Wiener-Hopf sclutions,

e make the following physical approximetiona:

(A) We consider only one nsutron velocity; hence for each material only one
value for each cross section,

(B) We treat all collision processes as isotropic. (Anisotropy of elastic
scattering can be treated to o limited extent. It can be shown that if this
anisotropy is neglected and the transport average used for the eln:stic
scattering cross-section quite accurnte results will be obtained. Cf. L&=53
and BM-225.)

{C) The total mean free path will be taken to be the same for all materials
involved,

(D) The neutron distribution will be treated as a continuum. It will be taken
to be spherically symmetric and of stable spatial distribution. These three
conditions will certainly be good approximations if the neutrom distribution
has lived through many generations end consists of a sufficient number of
neutrens to meake statistical fluctuation negligible.

We adopt the following notation:

|
|
| I

gl
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op 18 the fission probability per unit path length. (It is
therefore the product of the fiasslon crose scction and the
number of nuclel per unit volume.) Similarly

G, 18 the scattering probability per unit path length.

o is the absorption probablility per uwalt path lengtho

o = (Jf + Os + Oa

v is the mean number of neutrons emorging from a fission process,

F=1+f= "f *% ig therefore the mean number of neutrons
[o]

emergzing from a collision,
v 18 the meutron velocltys
n(r,t) is the neutron density at point r at time t.
We express the neutron density at (r,t) as an integral over

all points et which these neutrons may have suffered thelr last collisions.

)

v n(r,t) = szf o v F(") o, t- I - o 1 =olrmr4

v La(rer)2 °

(2.1)

We look for solutions of the form

a(r, t) =n(r) o'’

The integral equation, (2.1), then takes the form:

1 e=(° + To/ﬁ)lr - rq

n(i) = Idi' g F(i‘) n(}:) m}a

We now rescele r, taking as the unit of length the mean attenuation distance,
/(o + YO/V) o

x =1 (0 +71/7)

()= ot ax' F(x') n(x')
i 1 +‘Y°/bv ‘{ = = =

en|x - xq

DR —

Li(x - x7)2

ITHIN
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n(x) = T‘%T"%"‘ fdg' F(x')n(x*) e (2.2)

If we now introeduce polar coordinates, x'= (r', g
taking the point x on the polar axis we may make use of the assumed spherical

symmetry of n{x') to reduce {2.2) te an equation in ons dimension,

f @(re-}r‘a 2rr'cos G')lf‘z
nir) = 3 jr"z dr® F{r') n(m‘)jfdﬁ' sin & d9 &

1ty Ua(r24r12 . 2rrt cos @)

Taking p = cos ©, Qa = r2 + 1:"72 = 2rr'cos ©

sin®de = _ =L s
o lul(ra +1'2 - 2rr' cos 9) 2 J-l A

an " o(r? 4+ 12 . 2rrt cos 9)1/2 1. -
af ap

1 r+r! ﬁdﬂ e.,,}; 3 ,e_d,e_\l
? 'r-»r" v ?D (dpm-m

i

E"%T E(ir - r".) - E{r + r')]

0 =t
vwhere E(s) = j hd ‘_éf;
4 C

1 @ .
ro(r) = A RETR \[0 dr® P(r*)rén(r?) [E(Ir - r'!) = E(r + r')] (2.3)

If we now define u{r) = r n(r) and treat uir) as am odd function and F(r)
as an oven function of r {(no mecaning has previously been essigned to negative

values of r or te the corresponding n(r) and F(r) ) we may write (2.3) in

the form:

APPROVED FOR PUBLI C RELEASE
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=17 =
u(r) = 2(11:_;.5_ ji(i:" F{r*) u{r?) E(Qr - r“‘) (2‘02*)

If jpatesd of sssuming ths material and neutron éistribution spherically
symmetric, wo take both as functions of only one Cartesian coordinate, 2z,

equation {2.2) may be reduced to au equation in one dimencion as follows:

N 2 #l1/z
1 e {2=2') 4+ (yay' )T+ (x=x? !
n(z) =375 |4z F(z") n(z‘)‘f‘rdx‘dy" g [( - (y-") ( )]q
bt flzez)? + (7 « y1)2 + (xex)?

=N ned )
B e J‘dz‘ F(z')a(z") of | pip _C7
ity o o liag:
yhere 12 = (2 « 2°)2 + p%, fad = pdp
n{z) = Ealﬁ-~Y5. v(‘dzzv F(2°) nfz") E(az - z“h) (2.5)

A compariscn of eoguatlons {2.l) and (2.5) shows that the sphere problem (2.l4)
may be identified with a slab problem (2:5) in which the distribution of
meterisls (F(zl) across the slsb is the same as thut along a diameter of the
sphere, Any odd solution of the slab problem, n{z), may be identified with
the quantity u(r) in the aphere problem and conversely. The "fundamentel.
mode” of the sphere for which n(r) is everywhere posltive corresponds to the
"piret harmonic” of the slab in which the neutron density taekee orn epparently
meaningless negative values. For thls reason, and because higher modes may
be spperimposed on the fundamontal, we will treat the neutron denslty, n{z),
w8 a real quantity walch may heve either sign.

For a temped sphers of core radius a and outer tumper radius D
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mean pttenuation distances, the integral equation (2.4) takes the form

1 + ft =8

UL & commemracam= dr® ulr?® 1 - 4
(r) T N (re) §,E (Ir - r7|)
a
+
-+ }am—l—‘ufg. drf‘u(r’) 3": B (ir‘ - rhi)
i+ =B a
1+ ft b

f 1l g
el a(e)) 7 & (fr = xr])

]

where £, and f, are the values of £ in core and tamper respectively. This
eguation differs from the Wiener-Hopf equation in having four boundaries
instead of one {or two for an untamped sphere). With more than one boundary
no exeet solution is knowm. We therefore resort to sn approximation, namely
te treat the behavieur of the solution near each boundary as if no other
boundaries existed. It was shown in the first chapter that the solution of
the one-boundary problem appreaches, at large distances from the boundery, &
solution of the problem vwith infipite limita, It 1s reasomable te expect that
the solution of a twowboundary problem in which the boundaries are very farx
apart will behave in some middle region as & solution of the infinite-limits
equation. If this is the caze, we have only to combine tws one-bouncary
solutions in such & way that their asymptotic components coincide. In m
many-boundary problem, e.g. the tamped sphere, we apply this recipe in each
region. This approximation method, the "end-point method", would seem, from
the above argument, reasonably accurate only if the distences between
boundaries are many mean attenuation distamcer. It is shown inbAppendix I
that the limit of reasomable accuraey is mctumlly a few tenths of a mean

anttenuvation distence, There is therefore gopd reason to believe that
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throughout the interesting renge of slzes the end-point method iguéifffgfﬁﬁ%ly

accurate,
In order t¢ apply the endepoint methed we must first study the

one=boundary problem with the "Milme kernel”,

K(y) =c 5 B(ly])
Thia kernel with @ = 1 occurs in "the equation of E. 4, Milne" describing
the flow of rediation through the outermost layers of e star, We wlll, however,
refer to it as the "Milne kernsl” for all positive values of @, The general

equation we have to study is then

O Q0

n{x) =¢* jj” ax? n(x*) %.E (= - =) + Q.Jo dx? n{x') %-E (|x - x’!)
e =(1+£)/(1 +v).

Several cases arise, FPFor a fres surface, elther the outer surface of e
tamper or the surface of an untamped sphere, we toke ¢! = 0., IFor an inter-
face wo take both ¢ and ¢! positive, For the core material ¢ must be greastex
than 1 (f>v); in tho tamper ¢ - 1 may be of either Bign.
We first treat the free=surface case.
® 1
n(z) =8 | ax’ a(x') 5 E (|x - =*|)

The clharacteristic equation is

]

(e/2) ur”dy (e"ky -+ ekY) LES-_:_ =Y B

@@yﬁég(sikﬂ.?%?)

o fayle qyh) o

o0
cj ds
1 g2 8

g%a 10@(%.“?,%.} = % tanh™ 1k =

it
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If @ <1 wo have two real roots, + k _such that o = k/tanh .k' s If e>1 we
have twe imaginary roots, + i k_, such that e = Icc/tanolkoe In either case

1% san be shown that ths characheristic equation has only two roots, In the
lettor case the asymptotic solution is & sinusoidal funetion of kox, in the
former a hyperbolic function, We will represent the phase of the asymptotic
solutiom by the "oxtrapolated end-point”, x,, such that the asymptotic solution
is the sine or hyperbolic sine of k (x + x, ). We now follew through explicitly

the method of solutlion ocutlined in Chapter 1.

n(x)

i

@
g f{x) +glx) = cj dx? £{x") % E (|x - =7|)
-co
f(x) = o for x<o
g{x) = o for x 2 o
(v -]
f dx n{x)e kX =j\ dx &"F* Ju&h (x7) % _,(ixw:ﬁ’s

fdx" () e jd vy oY & E(jyl)

F(k) + G(k)

i

S’

il

)

7 (k) SX log ; ffﬁ)

6(x) aF(‘k){:é% Log (1 x ") 1} = Pl p

P(k) has singularities only at + 1. These singularities are branch points so
that te make the function explicit we Introduce cubte lying along the real

axis from o0 to =1 and from Hl te +oe0 . Ve treat first the case ¢ > 1,

The two roots of P(k) are then pure lmaginary, + ik o The singularities of
iog P(k) are 1 and + ik, Ve look for a log F(i) analytic to the right of
the imaginary axis (corresponding to the sinuscidal asymptotic solution, £(x),)}
and & log G(k) analytic to the left of +1 (correaponding to a g(x) decaying

@X
somewhat faster than e ) and satisfying
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log P{k) = log G(k) - log F(k)

The "subestrip” i# which all three of these quantities are analytic is
0<:R(k)<11; We therefore break up leg Flk) by means of & Cauchy integral
slong & centour runming up and down in this strip and enclosing k, and (except
far a cemmon constant) identify log G(k) snd =log F{k) with the two parts of

tho integral.
log Bglk) = =T JR T log P{k'} = log G(k) + constant,

1 dk? . - .

R FiS
k
ik, r
=] +1
_iko*'
L
Vv
Fig. 3
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We simplify log PR(IC) by defarming the right contour te enclose the righte
band cut,
I
S ’
Lw—-—-‘—
¥ g
S | dk? c 1+ k?
[+] as
log Fplke) = om L g 198 ['2'1?"(1"5 TR e [“10&9 = "i""]

(<]
1 dk* c 1+ k°
*+ pAt 1 TR log [E'E'V’" (iog ..1;:.'—,:,..5?. 4+ ni ul] [I(log) = 03 +ﬂ5:i

Moo
1 " Qake -1 /e
= = tan [t -1 =Q->n]
A Jd %7 °F ] Kt 11 - an

"é" ]Og ET' ) = (—:‘
«l . ‘
Here the tan rises from 0 at k* = 1 te Rat k° = +00 (a5 indicated by

the bracketed expressions). Substituting k' = ",l/:sD

1

1 ds
10g P (k) = oo - . T
R il Jo s 1 - 1{5; 'Lcii
where T = tan"l( n/2 ) T, = n 6 =0
tanh~ts - 1/05 0 5 =1
1 ’ ds k ¢ d '
f > — RIS iy d by
log Py (k) T Jo 5 Tt T Jor—m % (2.7)

= ,
TTe——
—
m, =
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Here and throughout this treatment we encounter logarithmically infinite
constants, A slight modification of our procedure (to make P(k)-—»1 as

k| & o0) suffices to avoid this embarrassment. The present treatment is

somewhat simpler, though formally less rigorous.

#te 5lmplify log PL(k) by a corresponding deformation of the left
contour,

ik

A

- [
BX
L - 1 1

b’

miko

Fig.
-1

3 k-1 , - ;
log[ﬁ‘? log y7 + nw)' ] [I(Iog) = g Zm]
-]

~ 0 ik, re -1
x| (nd) *{ (2mid + g (- 2m1) f‘é‘ -22i)
Jal o

~iko 0

. 1
- log fi(k}z i‘,;fj

k-1

® " Qgg[‘isk‘; (los "T_""’_'(‘F - 1."!.} ’1} "é"ji {I(’og) =

o 2l —> - ﬁf.}
Vel
< 21 .
Y <3 ‘J.Q—," W{écg“%_‘f‘i‘r + ﬁL}‘;l |
Tow | ek g e WA [tog = 29— 47 ]
~ zk o 1,&!
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azll_{.a .
Letting r = k'
.- d 1wl .
"og PL(!()" %: ‘;\:EYF:.] m‘%{‘“‘z& [tanl‘: Zﬂ'""ﬂ'}
) 1 ¢ 13 gr-‘L
Y

ML T

1
Letting s = ; we have
l .
.. 1 ds -1 /2 4.7 = -
= log P'_(k) z ,,.‘g o] gz T+ tan YN —tww'is] [tan R o]
° .

ke hlt

+ |og TR

3 : 1

- ds 1 ds 1

) 2[ s Ls(nka) Tov dog (e,
(]

1 1 . ri '
. 4 8T o e (ke 3y, B S5
log PL(k)-Z{ : %{ 3 T, log(u WA #J T Tc" (2.8)
o ¢ ) . o
Combining these two expressions, (2.7) and (2.8), with

log P (X) = leg (%E log T - 1) = Jog Py (k) - log B () (2.6)

gives

‘ . :
log 3 log LELXK _ ): 2 s (v .
g(x 081 — 1 = 0 > (TC ﬂ)

2 - 2 ¢ .
+ log (k - 1:02) + df sds (2.9)

A

0 1.k“5= AT°

Teking the limit as k—20 we get

R
1 ds 1 - 1
‘17\5\0 -.s.-sa- (TQ - ﬂ) = ? log S—I:*ém
Q
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and (2.9) becomes

b A 1

‘41? 3ds - k ds 1 ds

‘v’?‘g 13-kt T @ 320G Tﬁ W L+ k3 Tc s
o

(2.1

Dividing by K% and again letting k ~30,

3 j.v
1 c
= 0 sdea T =& +
¢ 2}:02 6{c - 1)

i 4
We now subtract the (ini‘inito) constant, 2 fli < ._1, 93.. T. = log B
. 0 8 n o S C L

from log Pr(k) and log PL(k) te give log (k) and log F(k).

) = = 2 lc ' ds .
log F(k) = = log(k™ +k,%) + - L 5o Yo tlog B;

L]
e ds % k ! d3
iog G{k) - J‘O — ('lc =M + & j e T, + log B,

]

i 0
¢
k da Bl{e - 1)
= R Jo 7 Lo tlog s

[+

we now determine x, and the velue of B required to give the asymptotis

©

sine vuve in £{x) unit amplitude,

et
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- —
f(x) = sin k (x +x5) + h(x) h(x)=—30 a5 x=3+ ®
11f x
“o®o =1ky%,
Flk) = °

k sin kgx, + k. cos k. x
& + H{k o0 ) oxXa
AT 5 ?‘“(“+ Ty TRM) = K25 2 + B(k)

log F{ik, + €) =< log(2i) + 1k x =~ log ¢ + O{e)

log F(~ik  + €) = o log(=2i) = ik x, - log ¢ + O(e)

1im [ﬁlow Flik, + ¢) = log Fl=1k, + s)] = log {=1) + 2ik, x,
e-»0Q

g 1

i | kprel' ds T ikovs 1 45 7 ; :

Y Lu{rk, a5~ oy Qe 1) =5 } TeTgs * log £ 2ikgee )
L. -]

ik i
s '1'573 d‘ T, uw 3 1-2.14,,;‘) + tog €9
!

%
L]

New adding the two values of log F gives

log Flikyv &)+ dog Flik,+9= -2 leg (2¢) + DL,

oy tho [ 1 1
=lleg(2k,8 ﬁ*‘j{ as T, (uik,s - 1-ik°i) * 2 1ag B+ 0%,

4]

,'1'»1 -
:-zlog(zkae)»-’%;—j i Toe 2ieg ROl
L
o
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This integral way be evaluated by allowing k to approach ik, in (2.11) :

i
'%’:i 598 T 1= im '—-lag{\zl: (.)" L |Dg c‘ﬂ’c :
L lk°{ 1”‘0)6

e k
Yo
-1

"%h"h- i
1+ ko

kzg'l' S )
a1 ° 1e &,
Vog B =% log —57 }

2 i)
1) + “ tog Lk 5

i
log FX)= Lw—- - log (K vk )

FTYRIG T s 'f 1
1- /(e k) eﬁf-iﬁ‘;ﬂ

&
F(‘JC)" & Fy / (( l)

B k 43
<k@/}“ cf(1ek,”) eﬂ'ﬂfe-k's t - % sim ko X, ~ ko 08 ko >~'9>

Hik éiﬁ -1

-=H'"(0 i
We cen evaluats H{o), the total area of h(x), and H«(-g-)«?u "mean length",

2
1(\/1.;c/(1+k0)~c05 koxc)

H{o) = ¢
"o 2{s - 1)
<H'{0) _ 1 {Sin . . 1.-c¢/(1 ’+h1‘c02) 0o !
(o) H‘(O)kog . o”oc © "o 2(e - 1) y o asT,

Making use of the formwia
(93] .
. =kx .
n{o} = lim kj dxn(x)e = 1im kF(k),
k-»>c0 JO k- w —_—
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we got

ey
o=t e :/i'-» Jarky [ e (-0) s tog (et

kres &2 kg eic-n ¢ »

e iliie LT OR Y

n{o} = k 1-c/Qrk, o) -{ 3‘.2 (- ﬁ) / mw;‘TE

’E(r. 1)

We can derive an eoxpression for h(x) suitable for numerical evalusiion as

Ffollows:
i+ §
1 kx
nix) = = g dke  H(k), 0<cd <1l
- 1 004§

H(k) is not singular at + ik . (The bracketed expression vanishes), thus

the contour may be deformed Lo lie along the left cut, Only the integral

® ._‘E..T- k &T-&lm‘iﬂ_‘mr
Tl geks ¢ T 1-ks ¢ @ 1~ k*s* ‘o
éo uo [+]

i3 double-valued across the cut. Thus only the first term in H{k) contributes

-1 k dr - &5
hiw = A dk gk 1/ \ibk""’ eﬁol e - ﬂ(k:tka) 315‘;
' ¢ %Y z " .
2L k fk 4 (\“M ko ﬁéag’mﬁ—m)-i
-ea
_ 1
.ﬁj tng‘%-}‘—; + 'H)-l

. TTT‘TM e ﬂfnl W
s/ ¢ i) “"{”E"‘Sl“’“l) ]
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Replacing k by <k gives
pop
A {'F" kdke ﬂ‘johmT*
h(ﬂ—':,:“-; drait < J>-~r. ‘—ts)" .2t
j k+% ,
1

(h(x) is negative for all x).

if 6<1 the roots of the characteristio equation are + k,, where

¢ = kl/tanh"1k1° The contours must now he teken as showm in figure 5.

(8 4

Figo 5
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Proceeding in the same way as for ¢>1 we get the anslogous results:

n{x} = sinh kz(x txo) ¢ h(®)

23
4l ds (1- 1 1-c 2.42
% : (Tc £) s 5 log o ( )
o .
&—t‘l &s T - ‘og &1 a‘ ﬁ-c‘*"" (?-'::l—h-‘)
; kit e x . k
&« i-k"s k 1~ '275’\?5“’3%‘:_?
v g
4
1 ds__
go ?r—i 1’& ‘l,sth
o

S kit g
ky ﬁu-ww effL il

ey
H(g) = - E;[ -cj’(lz(l z) - eosh kl hg
L

1
Y lk)l,l
STIO NN TIN R UiC S S R

—

‘ 3
o) TR " 719

R ciasa ot d

n(uﬂ/é ('r*g”f‘l)
kY ds

4.c Ak Tla Tr&s '€ , .
v /4 (e ) y(%:g%-":f‘a) - &) d
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Combining these hyperbolic results (¢« 1) with the elliptic results {c> 7;1)
proviously obtanined shows the character of the solution and its numerically
identifiable features to be continuous {as a Tunction of @) across the parabolic
{e = 1) boundary case,

We now treat the two-medium case, distinguishing thoe twe
materials (e.g. active materinl and tamper) only by thelr different values
of ¢; Here four cases arise as the two o - vwnlues are less than or greatexr
than 1, We treat explicitly only the cese: e>»1, ¢%< 1. The extension to
other cases will then be obvious, Becmuse of the applicabillty of the
solution to the simple tamped sphere we refer to the one region, ¢>1,
x > o, as "the core", and to the other, o< 1, x< o, as "the tamper”, 'le
find two pertinent solutinns, one belongling te a growing and the cther to a
decaying exponential asymptotio solution in the tamper. For the problem of the
infinitely tamped sphere only the decaying solutizn will figure (decaying as
one moves away from the interface inte the tamper). However, the "asymptotie
solutin” for a finite tamper will be & linecar combination of the tea solutions.

The Integral equation ia;

ol

o] V o 1 .
n(x) = c! g dx'n(x') E(%x - x") + e dx”n(z')eé- E( lx - x'}{) (2.1L)
-00 0

Ke use the same notation as before:

n(x) = £(x) +g(x)

f(x) =0, x<£0
g{x) =0, x 20
=kx
F(k) :S“’ dxf(x) e
=0
(o8] ~kx
G{k} z& dxg(x)e
@
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r oo
K(k) =( dx ] B el log 1tk
;T Jew 2 =D e 2 =%
w -
P(k) + (k) =S dxn(x) e o
-
o0 w
:j dxe-kx X dx? %E (= - x'}) {0' g(x') + cf(x')]
20 @
Q0 - o k%!
=L dy e ky n]é‘.E (yh SGO dx‘e [c“g(x“) + cf(x')]
= é%r':.log % j;: [c"G(k) + cF(k)}
c 102; 1+ k -1
6(K)= 7 (1) 1ok = F(x) P(K)
1. ¢ 1+k

3¢ log ¢

The singularities of log P(k) now lie at:

+ 1 {branch points)

K o
+ ik_ (roots of P(k) mgjm =c
-0 ( * tan! k )

"0

+ky (poles of P(k) ; ky =c’ )

tanh” k?_i

F(k)} (and we assume also log F(k) ) must be amalytic for R(k)>o

G{k) (end we assume alss log G(k) ) must be analytic for

k’
R(k) <+ gy for "decaying solution”, 1.0, g{x) = 0(e ‘,__x)

o R(k) < - kl for “STOVv'ing 501ution". ie. g(x) = O(kaﬂ'x)

log P{k) is anmlytic for -1<R(k) <+l exoopt at + ik , +k,
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For the two cases weo choose contours as follows:
R,\
R
i ]
o iko
ik
o
o kl‘ 41 21 \Q _ k“ +
=1k 1
< .
nlko
L
\/L
Fig. 6 Fig. 7
"Decaying Solution”

“"Growing Solution"

We treat flret tﬁe decaying soiution, Am before we identify leg F(k) snd

log G(k) with the left and right integrals (again excepting a constant) o

1

k'dk"k log P(k?') = log G(k) + const.

1 ; , '
log Pp(k) == BRT S; Eﬁgg“ﬁ log P(k*) = log F(k) + const,
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We deform the contours as follows:

1N
: - rk
ik,
L R
5 ‘ Lo il
2 - - N
-1 ekl +k1 +1
-1k AP
Fig, 8
. dk® | c | ¢! 14k
2og Fp(k) = 7 J.R TR [“’g (ﬁ? log 12ir - ,) - 1°g( - ZEr )08 1,
1
En

wmaking use of the previous evaluation of the first term,

2
ds 1 dl: -
log P () =—ﬁ: PRET) Tc'm {2ed) 2'“
) kl R‘
R?

o

S )

N Figc 9

o?‘(l-ks) e a0 R ¥ ok 1051°5F10g

2.15)

¢
l 4+ k'
HE)

dk’ e vk |
ok o8 (ﬁ:‘ log 1ok 9
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L]
N
(¥ 1)

8

The last Integral is now equivalent to that ovaluated in (2 15) (axd is
identical with the right-contour irtegrul occurring in the one-medium

problem for ¢ <€1).-

9 £
log B, (k) -~1-S e T+ My L g ds
& R T W Jo s(1 < ks) ‘e © 5(L - ks) W Jo 571 = k&) Toe

? Fal ’ L
k ds 1+ ds 1/k 1 k
=°,TL§"':'TC§(TC_TQ,) »r-;;)om(TceT.)-rK las{z + l

35 o \ l—ij

We choose the constant to make

, 1/%
E [V ’l A“
leg G(k) = log Py(k) + log B = %g £, -1, - S ds

P
0

o & '
1 (ealé)
K . Bl
= So ToE (o - Ter) + Lo oy

Evaluating the leftecontour i:tegral gilves

2kt 1 - k7

1 di' 1+ k!
~log Py (k) = popp gL TR {106(;;.- Yog g—rir = 1).3 1og(1 - oS log L ¥ k")]

ds T
RJo ST Fks) ‘e

:;{,,2 g‘ ds+1og (k+k &) +15

1 x‘ ax? 1+ Kkt
= 2113 LI S B ilag |1 = 2)" Iog T._-WE;".

H
]
]
§
Fi
a3
[,
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‘-w.ﬁ—--\

=k
_ 1 5 dk? 1 X day ! 7+
} 55 do W (B - Joe e 108 25T 108 o < )

Lﬂ
-~ "") J 4 r
< -1 -l 1 kl 3
1
R
Fig. 11

n

e dk (1 mf 3 L 1+k )
mj ‘06 kf g}g ) Eﬁ-‘kﬁR‘ ku’ h log ( ku !Qg PS
L"

4

)
Ty s@Erks) e
o .

f* & Oyt kot
%é {(ﬂ‘ T ) (% - T)}' \co -“-_'-;_- ¢ bg 1
e

1 {k vk)a © kel
o= ds L 1-¢°  ®al
fog r(k)*%{ T (Tz‘Te.) + log "T;}T"’g“"-r tlos (k T e/ Tleg ki

0

N TONN TN V I

1 AN L4
k| _ds Bk,' (kie Ka-<)
:F.{ To ks (T T ) ¥ t
0
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We again determine X, and the value of B required to make ths asymptotic siné

solution of unit amplitude.

£(x) = sin k (x + xo) +h(x), x>0, h(x)—o0 as x—>»+ (2.17)

Fh: & (e"?"“" ) e"'f°‘°)+am

gt k-tk, k vk

€0

lim [iog Flik, 49~ 1og F(—'Lkpqe).g; ;ag,(. X Tikg v,

}

2k, | ds slkge kyr ks
z - T+ ——22Z 3 4 o --L—--—~
x 1tk s (’ ) °$ (‘fhk,t) log k, - ik,
Q9
a3 .3-_ (T .)+ -’*tm"l 53 T Ayt L tan'l “‘:"Q‘ . (28
o F k"‘"‘ ¢ k,)k],‘lko Ky
e :
lim{log F ik, re) + Tog Flikorsd ~2loge} = =2 fog?
€0
1 i
e IR TR I ¢ m
'Tj et T 2 g B B
0
The first term may be evaluated by the use of (2,11) and (2.13).
ok [ Lhgele-l) 2 ek 1 - o)
2k 1“ Sdi ; (-‘- ~T¢-):l‘ﬂ'n jod Z:-K.&sc 1) v - ‘°g : (x * ;:f )
@ | T e eqe] Oy, bf £ k. (1»—-m-.’-k)
o ' e & Lk,
(2.19;

_ 2(c—1) k. (3-e'/e)
( T 1)(& vk, ){1 e}

i

log
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) g P TS CREN -k
R e e g "
§og B )°SL ‘&1 c) 5 lo 4 ko z (1'(‘./(14"( 1))(k a’)(}‘@-') -"

e L oy 1) (2-/0+%)
BEIRCE T RO Oy Y

k{1~ c)( -¢/(Lek, 1)) og( ke ky )

fL
y "‘i md‘ -.- . ‘-l-'-
"’g‘E(H ﬂ'} 1+ ks (T Ted t g dog = 2k, (c-1) (1-efe) k* + ko™

0

Mk; /1 c)(l c/(hk ’&)) %‘[‘”“ (T- T )
k

Flk)= Ky K+ kot 2{c-2(1-e/e)
H(K) = Flo- x3in k*’;“{f;:,‘f’ Sk
H(o 35}“{ /(12'('.: 2)2{(1'2 )) c.os ko %ol -

. -ef - lfkl b
Hi: G200 (1 J ds (T,-Te) |- 13 5t Koo

2(c-1)Q-c2e) ko ki Ko ff
o

H) 1 e (/o) (o 1
- H(O) : H(O) Xo / ?(C -]} (1 _Ql/c) T‘:L * ﬂ' éq (T T = i(—; Sbﬁ ko Yo i
b

L L T..
wlo)z Hiwm  KF(K) = i ﬁ‘"’; o (y, k)‘/Q c)(l offirko” )} eﬁﬁl*u@c-h),

kwea %den &, 201 efe)

K[l ds T s tds (1, - T
ewje;:'ks (T il ‘c‘l--—-—a-é Q%T'jo %‘(T‘-W)- .ll?ja %(L’, ﬂ') - /(c'l) kll
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-39 - = .
— . | |

alo) = JL= /(1 + %5 )

(o) —/ T c'/c)" . (2.20)

i oo
h{x) = ,é%ﬁ:Xim dk H(k) ekx

N 3 (Nt
“ﬂjL““‘?"“‘( 5“*‘1‘)* Go™ 7O IS

L"

Filg. 12

vhere G = E.?_ (1-0/(1 *ko)(l-c’)
1

2(c - 1) (1 - c'/e)

i3 1 ds 2% c’ leb
e?k-{‘oifﬂu (TC’Tc’) . eﬂ‘ o TTFS (T - Ter) £k1+k7‘)(c 1) ky (IQTE ‘og TTE)

* (ki,ki (1.2,'] L
k, (?k log 145 1) )
B
K1 _ds . ¢ oi b o
h{x) ® ___r dk e C k(.Y o 5 (T L 5% ("'ﬂ%’tt"“)
I % - et [ 1\,' .
Z i) & (o)
-0

(wg[“'* . :n.)

un) 1 :‘

i+k

zk("%’\.-k
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Replecing k by <k gives

® \ ' K[ ds
) O Y (R0 T L B T LR
b= 7| ke ::(k;%'*) / I Y100 ML T

1

whera
' TS . K4}
{}' _E_}Z_;, '] l"zc?'og-ﬁf + L (-f-‘:' {Dg-&*;i-l) . ﬂ'i e-cf
ST (_5__‘0 sl _1)"+(_g_wj~ T TR (c Ckel 4 )12 m)’- ’
26 '°8 31 T 75 '8 T u) N (‘ii

- ) }-‘-r ds (T “T)
ke Jh-cfan N -D@rerfe) Kak e Tlolvks e
hix) Tk, ’ 2(1-¢7)

Now returning to G(k)

. = k ds . Bl
lag G(k) T XQ iﬂf‘ﬁ_ (Tc = ch) r log “‘-‘]‘."‘%""E 4
(2,16)
ok S 8B p L3) 4 lop 1 rop {e=1) Q=o/ (13k, )
T Rl TTEE Ve T e TR gmp Ty i0B i

2k 2(1-c*) (1~c'/e)

A cheok of this expression is afforded by ovaeluating

2
g{e0) = 1im =kG(k) =/1 - o/ ¥ kg ) = n{o), (ef. (2.20) ).
k- =00 2{1 = c?/c) :

G{k) mgo dxe-kx g{x) :Jo dxe“lm(A.eklJc + 3(x) ),

klx
where J(x) = ofe * ) a8 K-p =00
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E I XX A )

G(k) = I J(k), J(lcl) is finite.
k

log('"%) + 0(¢)

#

log G(kl + &)

¥
)k . , g 2
10@(11) L g 38 (T,-T 4 + _;_ tog te=1) (1=c/ (1 +,5)

i

o l-k.s

%o (- €

A:D /M)(l‘c/ﬁ*kﬁ) Bl 8 G )

1 kX
45 k) d,%:.. ks sds
—ﬁ- l_kls (Tc ’Tq’) - 1T 1“‘(1 si (TC-TQ') » 5 l'kli 51 (TC'T“_J) M

’I'he first term will be called LILIE by enalogy with the Xy introduced in

{2,18), the seccnd can be evaluated by the use of (2.11) and (2.13).

e

1
R S Ny s T
*® (k¥ e kD) o0 (/0 k)0

so that

= ky Q(Ll c/(l*k )) t %
A"’./ki*wo" c{efG -1y ”

by Jc(l -¢/l3 +k,, )) ekI(ui-)ll) +5 (x)

VR
gt v/k <k"/C(‘=/(1 k-1

T = Gli) ~ =L
J (K = Gl Koo F

t (- (1-e/e) )

g K
J {e-1) (-e/(ivk ")) ‘{ '{é‘}g('r( %) e'{%’jo 143 (T -
Ry €
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1 2k Z(1-c7) (1=
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© Tei ok -8 2(1 c')(l—clc) ?
J-io
™ ( fs ket 7Y |
1 AN R s ra e SR LK Rl A st 1,\} i
:2_17? 200 - Y1 -c/fc) k.-k © ¢ Lot i 7
t PEAAS 1 (k +ko )(t 1‘)!’1 (l-{'-i *‘fgg
- ke
. (u)(l-c/(hk ") dk(wkge’“ *Iﬂ““(" Ter {1(*8";:"' > ) -
Y IO 2{c- 1)(1-c/¢) D 1 ( )
1
kel AR
4,5". (!oo '_1 -ﬁ'~) 3
Zk{bg"'—"'“) ’
Na-o) | o st
ot b dNed) | e Fet
o ST S ey
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The second solution differs in having as an asymptotic solution
in the tamper a growing exponentiael (growing for increasing negptive x),
°=k1x° The core solution is again sinusoldal, differing only in phase from
the first solution. Thus, the 1eft contour must still lie to the right of
the roots of P(k) at + ik . The tamper soluticn, g{x), is to grow as

=Xk-X '
e 1, Thus G(k) must have a pole at =k1° {It may also have a pole at -k

1’
k

the corresponding ssymptotie gl{x), e lx, will be dominated by the growing

exponential.) To glve G(k) a pole ot ekl the right contour must pass te the

Yeft of the pole of P(k) at <k o Since the left-contour must elweys be to

the ieft of the right contour, the two conbtours must be taken 28 in Pig. 7.

(Other contour arrpagements are possible, e.ge

.
——
-ik, ]
Fip. 13

but the solutions so obtained may be represented as linear combinations of
the two solutions obtained from the contours of Figo. 6 and Fig. 7«

Deforming the contours of Fig. 7 50 as to permit simplification of
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the inoterrals gives this form:

N ik
r [o]
L / R
o,
.

N

oy

Taking as before:

!

log Pi(k) = - §%T’ XL k?k log P(k*) = log F(k) + constant

1 dik* ) .
log B (k) = ooy R FOE log P(k') = log G(k) + constant

The integral, log Pg(k), may be broken up into pleces which have been evaluated

previously.

= 1+ﬁ' dk? c! 34k
log Py k) ?Yf woE logé‘m’" e ) Tﬁik'ak 208{1 ~z7 108 TR
. o)
- 1 ds i j. .
= o T - . =21
i o B z1n§~5) c B ki 1" ! -af ( 1)

1
ni

The last term hes been evaluated in getting log PR(k) for the decaying

dk +et
k‘ 105 l = QE- 10b 1 >
Rdecaying
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sglutions

' A

- 1 ds » S ds
log P (k) = L . T, +
& R( ) i jo le.-kET c o s?]-ksT + Jo 5(1-ks)

v
L ds o
L TN B(1-ks) ‘o

_k ' as . 1 { as " a ) 2,
—i go imks (TC=IIO|) N —ﬁ SO _—5« (TC— Tc?) + 2 o "‘"z' - 10[‘: (k - kl )-'2
L}
k ds 2 2
log G(k) = 7-& s (Tc=‘1‘c,,) - log (kl - k%) + log B® (2.21)
s "

It may be observed that the G(k) here obtained differs by & factor of
B¢ '
Wﬁ from the G(k) previously obtained, Sirce the ratio of F(k)
1 .
te G(k) is the same, the two F(k)'s must differ by the same factor. Vie may

thorefore write log F(k) immediately

' 2
log F(k) = %S 1:1»;5 (T~ T,,) +log 23‘12{0 (1 ; c’)
0 Ecl (k +ko)(c..))

B' is again to be evaluated to pgive the asymptotic sine solution unit
amplitude.

£(x) = sin ko(x + xl) + h(x), x>0, h(x)—» 0 a8 x—>3wm (2.25)

ik x -1k :
1 o 0™l e oxl

Flk) = : - + A(K).

(k) Té’i‘(k-iko Kk + ik, (k)

1im [log F(iko+ g) - log Foik + ‘a)} = log{-1) + 2ik,x,,
g -0 |
ok, {7 ge
T Jo Tk Ese

(T,=T,1) + log (-1)
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(' ds )
X =g Jo THE_252 (Ty=T 1) - (x]< o since T < T , for o< s<1) (2.26)

lim [log F (11:0 + €) + log F(-iko—r—e) + 2 log e} = 2 log 2,
g0 ,
Bk, 2 (d-c")

- Q 5ds mo_p o ~ -
Ta &0 3:12:2;? (Tg~T,v) + 2 log - 2 1og (2k,).

e 2(091)
2 2 ]
ky (c - 1) Ik j sds
log B' = 10g k- . kg )
% fracen T Jorvrze o - T
k (c-l) el o '/
1 1 2(eel)ky {1 = c'f6} 1
- e B 2B (efo 2.19)
k (1=c') Ao/ ) (1% Kk %) (Toc?)
2 2,,. 2 2
= 1 10 2 (e-1) (2 = o/(1 4 %) (15" + & )
2k,2(2 - ¢') (1 = o/c)
k (' a : k 2(1 c')
lagF(k)=“-""Sf’:i-(TwT ) 410z BY + 108 wmuSmma
i o 1tks c®te? 5 kle(k2+k@2) (c=1)
2 2. , 2 ,
- E ' (T T ) + L (1-0')(1~c/(1+lio ) (k+ koe)
= o W c! - 1 og ;

2k12(c - 1)(k2+ k02)2(1¢c4/b)

F(k) =

2 .2 2 k ‘[‘ ds
ko Jkl -+ l&o (100') (16C/(1+‘(0 ) e "I‘I‘ o m (TCGTG ')
kl(k2+ koa) 2(c=1) (1ec’/c)

T K[! ds
k\ ATy ﬁ ¢ )(1 ‘/n*ket) e‘?jo e (e~ %e) . ksinkory tko cos ko Xy

H(k)®

k1 (k"& ko) 2{c-1Q -cfe) ’ k* ¥ kot
Lo+ d )
nid =7 AcHI ke = pap | akFR & (ef. ¥ig 1),
e -1
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since H(k) is regular at + ik  and F(k) - H(k) is single=-valued acrosc the

= @0 -> <1 cut,

1
D{c -1k, e%Io Té—f_‘?h‘q") L.- ﬁ-(ugﬁ.:t%'-ni) 1~§%(la3%—'_—& s o

1 k%
(x}z5=7 dk p . p
hixd 4t ¢ Kor(kyl-kD)(1-¢ lﬁeoggﬁl.m)-l —&Qﬂ%ﬁ»m)-l
-6
k /k—;‘oh v (1-c')(1-cl(1+k°‘))
where D: % A e :
ky 2(c-1)(1 - ¢*/e)
® Y IR
R kye /Kyt ek (1-:/(1':&;))((-1)(1"‘/‘)' kdk g MoTvis L~ . gk
0 T, 2o T (e k)t ()
1
L]
k ds 2 2
log G(k) = < So _ (T - Tc') - log (kl - k) +log B¥.,
el o+ k2 fle-1) (1uc/ (14k,7) X fn a5 . (T,-T,,)
G{x) = L4 2, 2 e 1 Jo Toks ‘el
k (k2 - k%) V2(1c?) (1-c'/c)

fl

se T AR, e
» yD k1*2- 1(2

G(k) has simple poles at + kl and a brench point et 1. ¥We will therefore be

able to writs g(x) as

X

g(x) = A" +86" 1% + 3(x), J(x) = 0(e") 85 xpew

iy B
+
-~k

6(x) = + 3%,
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- L8 -

k]_ ' B
=1 1 kls (T =T, u)

ke {'  as
1 e -
X L 1=k 5 (Tc Tc')

B T ¢ e 1
=+ pE-
<

1 21 1y
k dS kl ‘!‘ sds I ) 5 -
ai 'fTJ:';{o ik (Tc TC’) e 7 IO 1,k1dﬂd (Tg=Tgy) ¢ —,-,.l" o mz’l-ggg (To = Tar)

Jf(:e‘,u N "éi( R syt

k* :ka"
1 2
kl -k

-2
RS ICT D €

33
’ir’jo T?Ts’ (T3 b sinh kyfat k cosh" 5
I NN ]
k"uejl sds (T, - )
¢ e
g{x) = -;]; N7 =-kldm? e sinh kl(mxg) . 3(x),

. 1 1 as
(] 122 T l

-=k12 s (Tg= qu) ' (xl < xp ¢ 0)

2 [0 sce (1 2+ic62) (0=1){0° /(1-1y2) 1)
T, =T R, l . 2.2
r L) 1 kla 82 (To QI) ok X 8(0/@“&1)2(1@6“) (of. 2.21)

c{l-ef(1eky?)
g(x) = .35;2694;(1?1{:2)21)85311 kg (x0xp) + 3(%)

(2.27)

Y- ' '
K
1 ¢ D 18 (Te- Te) A
m= -i-&-i»j dk ek‘- T R % e 1-Ks kS .

To-kaky -k+k
(1=}

)}
ke v . C ek
Co et S (o) k2002 8%0-) Flog
z Zﬂl :‘I‘A,k‘l e
P"

T
(kz + ‘lot)(ﬁ -1 ) ki * 1 e
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- 19 = e T ;:~§
S0 = () Chy' (3-¢) kdk k¥ J:?%?(TC %)
A Ty (c-1) fic*s & 1)[(k__’°g ] )f & )} ) ,
e : Ter)
ST (G [ e U s xedd
y 2 {c- ]) (k,‘#kat){('- k#l) (v } %
1

on = =
s 2k,

We now have two solutions whose agymptotlo forms are:
1 " n,,l ko ) kl\/ (1a0/(1+k ) kl (x+x2)
- tae
Ve (/097 )
2,17, 2» 18 2 22)

sin ko(x -+ xl
(Ofo

/(100/(1 el ) sinh kl(x + xz)

e R
(cf. 2,25, 2.26, 2.27)

sin k (x + = )

¥Wi» introducs the notation,

,‘.gg \!c(l - c/(2 +k02))

2
/5‘5 \lc"(c‘/(l - k& ) - 1)
fi 2+ k2
) 1 + 0 1 =l k
(¥ = sin Kk (x + X, +‘E‘; tan T -2 ¢y 2

iy 8
sin ko{x + x) > sinh k;fx + Xp)

n, (x) &
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2
o+ ko . ,
no(x) is u--lk . times the "decaying solution" first obtained (2.1l to
1 ' .
2.23) . nl(x) is %. times the "growing solution" next obtained (2.24 to

2,27) . Subtracting kyn, (x} from klno(x) rives

n2(x) = klno(x) - kln1 (x)

’k12+ k e k
o ; .
e e | Sin ko(x + xl)

-
/ kl + k o

k
+ ¢cos kO (K‘l'xl)-su:?g%:samé:D
ftl + ko

ky
o “‘;‘E" sin ko(x + xl)

_ k

- “;’ ces k,(x + xl) Q-'“-Q%J; cosh kl(x + x2)

Bo (x)
1

If we mow subtract n;(x) from we get

nB(x) = nei(x)v - nl(X) é«»—)% Q:os lc'o(x +xy) e 1%’. - sin k_(x +;x1))

, 2 2
. kl +kd

-1
= sin k 6: + e 1. tan ko)
o et
klﬂ v 1 Ko kl
“kq {x + x,) .
e3>t o1 2

F

Ve now have two simple pairs of linearly independent selutions, n(x) and
n?(x) 3 B {x) and na(x) s Por any one of these four solutions, hence also
for any other solution made from them as linear combinations, the asymptotic

solutions on the two sides and the derlvatives of the asymptotic solutions
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heve a constant ratio when evaluated at x = cxl and x = =x2 for the core

and tamper solutions respectively.

derivative of asymptotic
kb _ core solution (x = -xq)
asymptotla tamper solution (x = =X3) kifd derivative of asymptotic

tamper solution (x = -x5)

asymptotic core solution {x = =axl)

1 2°

being the farther from the interface., This property leads to the following

The points, <x, and =x_, are both on the core=slde of the ilnterface, =Xg

recipe:

In each medium the asymptotic solution is one of the family of

solutions of the equation: (A + kg) n{x) =0 4 K =c¢ (k may be either
: tan 1k
real or imaginary). Each of the two asymptotic solutions 4o be joined at

an interface is exsmined at its "fiducial point”, distant Ax from the interas

face an the side of greater &

1
= 3 ae !
R I N

(The Ax for each solution uses its own k which may be either resl or imaginary,)
The two asymptotic solutions, each at its own fiducial point, have equal
jegerithmic derivatives. The magnitudes of the two solutions, evaluated

at their fiducial points, have the same ratio as thelr valuos of the

quantity,

i / ka =\/ = - for X = ik
Joa T/ ) Jeola oy oy (fork =1k)

—

_—

RN o
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This recipe paraphrases tho couneetion-formulee given above
identifying the two asymptotisc solutions on the two=sides ef an interface.
It differs from o simple diffusion theoretic boundary conditicn connecting
the asymptotic solutions only in so far as

1) o&x differs from o (very little, a few hundredths)

2) g- differs from a constant (doublea betveen ¢ = .67 and 1.7)
This recipe connects only the asymptotie solutions., Detailed

features of the scolutions may be gotten from Table I.
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Sywbols used in Table I,

=1 nf2 |
T. = tan . T (0) =7, T .(1) =0
¢ {tanh"ls - 1/cs] T ©e

In untemped solution

~ 1 j‘ ds k. 7
X, = @ 2 .
o] i T s e T QO :/c R c/(l + k DA
tJo 1 +k,"s ¢ tan"lko ' f? ( ) o) »

’ .

1 ds kl ? 2

X = Lol L ] i maz = = - -
AR T o I - v/c("/(l k) -1, cchs

tanh kJl

In tamped (two-medium) solutlons tho formulae have been written for the

case ¢’ >1, ¢'L 1. Other cases follow by analytic extension.

/c(l -o/(1 + kog))

= \/c“ (:c'/{l‘ = klz) c_“l)

e
tH

T
i

.- = X ds
" T o TR k@ygg (Tg = Tge)
(x2< %< 0)
_ 1 S' as .
x2 = = o "“*"“g""ﬁ""’gl X ds (TO © fcq)
-

Each of the four solutions 1s presented as an asymptotic solutlon in sach

medium {sinusoidal or hyperbolic) to which 1s added a discrepancy term

@(x) for x %0, j(x) for x(.O)._, This discrepancy term may be of either sign.

&
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th

{

Appendix I

Accuracy of twos-boundary approximaticn,
To estimate the error introduced by neglecting the interaction of

two boundariee we determine the effect of tihis neglect in the untamped spheres

problem a# a first order perturbation, The fundamsntal eigenwvaluwe, ¢, of the

aquation,
n(x) =¢ Sa dx? n(x’) %E(‘x - x'i) s nl=x} = =n(x). (1)
: -8

we write a8 ¢ = co/(l + e) + 0(82)

oW
g dx? % E(‘x = x|)
J=co

we denote by AN

Trite R = R{x) for x € =8

it
[+)

=1 for x> =8

)

L = L(x) @ for x > a
=1 forx < a
Equation {i) becomes
(1 + € = ARL) n{x) = o , valid for =a $x S &
n{x) = n,{x) + ny (%) (11)

n,(x) =ng(x) +np(x) = sin kx

where nR(x) and nL(x) are the exact one=boundary solutions satisfying
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il

5 s I
et -

(2 aJ\.R)nr, = (1 a./\.L)nL =0

nR(x) =R sin k_x + hR(x)
nL(x) = L sin k x + hL(x)

Then

(1 +¢ =_/\RL)n1 = (ARL - 1 - ts)nQ = (ARL « 1) (nR + 1, - sin kyXx) = eng

= [j\_R - 1 -./\.RQ - L)]nR —.k[jLL -1 -ALO - R)] ng,
A1+ AE - 1)) sin kgx - eng

= - A [(1 -L)n; + (1 -R)n + (RL - 1) sin kox] - en_

=\ [(i - )b, + (1 = R)hy + (R = RL + L = RL +RL = 1)sin k%)
- en

= o f\ [(1 - L)hR + {1 - R)hL] - en {114)

Since ny must be finite, the right side of (iii) must contain no component, -

n{x), satisfying (ii). Neglecting terms of order &2

we have

Saa dxn(x) {J\.[(l - Lh, + (1 - R)hl} ¥ e nﬁ} =0

<

i

oo .
- g dx KLla(x) A {(1 - Ly + (3 - R)hx,]

€ ga dx noa(x)
-8, « Q0

b

]
= =§ d [(1 - L)hR + {1 = R)hL]J\ RLn (x)

=QC

= . Sm dx [(1 - Dhy + (1 - ®)hg | n(x) (iv)

<)
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The left term of (iv) is roughly sa. The right term is minus
twice the integral of the discrepancy term, hP’ (> 0) starting from a point
distant 28 from ita boundary, with n(x) beyond x = a. The charmcter of

n{x) in this region may be determined by taking ¢! = O in the decaying two-

medium solution. Its value at the surface is

B _[1.e/0 +xD)

e N St L)

J2(e - o)v e

. 2
The right term of (iv) will be approximately (-2) x 1= cé(l + ko7) h(2a)

divided by their combined decay-rate, about 3-l, Using these approximations
Por o = 1.l gives

?6 S ¢=2 X e2q X 5000095'
3

E Ay anlo“’é

for o = 2,0

1 2 x .58 x .00117 '
10" 3 = - +000L5

For a tamped sphere we proceced in a similar way!

{2

+

€ -aj\_[RL + (1 = RL) %—'-]} nlx) =

(s
H

a, + n. -+ n » 8in kox + n1

L

1A [R + {1 - R) g—a} oy =L{1 - N [L + {1 = llea}nL =

1+e-=J\[ = % RL +_=:]} &J\[%%.ELRL +_(°_=_'_],1} .

(qR +ny = sin kyx) - en

" lonmuih]
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{afrra-ng]- 1} g+ ARG - B
+{j\_ [L+a-1 %l]., 1} n + ALQ - R)({:-:- ~.;1) 1y,
{ -_/\[c - o RL + %-:-]} sin k_x = eng

c -c'

a.‘[\_(leL)\

il

) (R sin k x + hp + £g)

c - ¢t .
- A (1 -R) --m--—---) (L sin kyx + hp + gL)

C = C c! o
i - N .._.__,..) RL = ga./\:]oin kx = @ R,

i

{1 « A) sin k% = E’_,..g,.f..,, v {(1 - L)th + () - R)hL} w £0

0

{

-t - %'.1.)_/\_ {{1 -~ Lh, + Q- R)hlz& - oo

Hence as before:

croe s (1 2 or g { 3o g+ 1 e Em]

5.2"( - .‘.’.:.) S:) dx n,(x) hg(x)

Estimating this integral in the same way as before gives
Cc = 2«.\0’ c! = ;17:0’

Erv =

. 2 ) 05 X ¢,71 X 0003
. x >
72 . €

~ aOOlc,;
The chisf factor making these errors smell is the rapid decay of h(x). Taking
the unbamped-solution values s tyoical (they will actually be somewhat too

large) it would appear that & #1ll excocd .01 only for core diameters or

tamper thicknesses considerably less than one mean free path.

411
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o 59 =

a

Comparison with variation theory results gives about 0.3 as the
1imitir.g thickness for 1 per cent accuracy. (cf. Comparison of veriation

theory and end point results for tamped spheres, LA-205.)
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Appendix II - Solution ¢f the inhomopgencous Wiener-Hopf equetion.

The Wiener<Hopf technique was shown by E. Reissner (Journsl of
Hathematics and Phyéics, Vol. XX (1941), pp 219-223%) to permit extension to
the inhomogeneous problem. We here treat only the one medium problem with
the inhomogensous term confined to x 2 O. The extension to the twoemedium
preblem with an unrestricted inhomogensous term is immediately obvious; The
eguation we wish to solve is:

a0 :
a{x) x‘K dx! n(x') K(x = x") + fl(x) {s)
o 4
where £ (x) is known and vanishes for x £ Oc The Leplace transform of (a),

with the notation used previously is,

(k) = F(k) (¥(k) - 1) +F (k) = F(E)P() + Fy(k),

: ()
Fl(k) e gw dx fl(x) S'clkx
(+]

Tho selution of the coerresponding homogeneous equation will be denoted by a
subscript o
6,09 =F (k) (k)
P(k) = Gy (k) /F (x) | .
We define'gﬂk) such that
P(k) = F, (k). F(1)
This introduces no singuiarities in F(k) in the right half-plane sinee F (k)

had no roots in the right half-plane. Then (bh) becomes,
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= 6l =

-’Go(k)\_
olkl/

F(x) P(k) =F(k) Fo(k){\‘ﬁ“(‘“) = Pk 8,00 = G(k) - F, (k)

Thus ~F,; (k) is the right-analytic component of F(k) G,(k), which wo may write

as

o @(k)%(kﬂi{ = ﬁ'lﬁi‘ SL L F (k') 6,(x'),

kV = k

vherse the contour L lies to the left of k and of the singularities of
G,(k} (which are ontirely in the right half-plene) and to the right of the

singularities of F(k) (in the left half-plame).
[F0 600] 5= - 7@ ()

Making use of the fact that L(»-;»l(«fy- as well as G (k) is amalytic
o]

in the left half-plane we can show that (c) is satisfied by

P = -7 aa;ﬁ’g,-]ﬁi (a)
sinse : '
' [Go(k) g_(k)]R T w [Go(k) [Fl(k) '@:}FET}E]R

-1 g ak? S ak"  Fp (k")
T i G (k¢ 1
(2ng)® Jpr KT-E ol L' k" - k' g (k")
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)

* Kk
N2
\’LII
1 (kf!) .
G (k) F(k)} = S e, S dg® ..EL dk'G (ke 1 ( 1 1
[u R (2n ﬂ)? 10 G (k“) L* 0( ) PR\ -+ Ay

Displacing the contour LV to the left of L" picks up = residue at k* = k",
The remaining k' integral vanishes as it may boe displaced indefinitely to

the left, in which directlion the integrand decays as i . . This leaves:
1] ®

1

G (k) F(k = . ak™ Fl(k") (2;1.1 o ".‘
oo 20l = e Lo o - (B - oo

|

- [Fl(k)] R =" F‘l(k)

The particular integrel of (a) has therefore the Laplace transform

F(k) = = F (k) Fl(k)
(k)
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To this may be added any multiple of the homogeneous solution, Fo(k).

To extend this mefhod of solutioa to the two~medium problem
requires only the replacement of (a) by the corresponding two-medium equation.
This leaves the form of (b) and the rest of the solution unchanged. To treat
an inhomogeneous term e;isfing for both x>0 and x 0 it suffices to break
up the iﬁhom@genwous term into & right and a left side part and treat each
soparately as above.

A particularly simple special case'of the untamped inhomogenecus

equation is that of the albedo preblem -

X
f_l(x_) :e'a a > 0.
Fo(k) = 1 .
1 = g5 k
LF '
L
'?ﬂ'
£ 4
(V4
/

Then
P ()

{*” Aﬂ] e 1 S dk' 1
EXCGH i JL ¥k TE T a) Gy kT)

1 + 1 S ak!
Golea)(e +a) 20 Jpv (0 LK) (k' + a)Gg (k')

Tn the second term the contour L' may be displaced indefinitely to the
jef%, Jts integrand may be written as

Const.

e

APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE

e Wltsgry,

Y . e e—

Thus the k-dependent part of the integral wvanishes. The constent part
represents an admixture of the homogeneous solution to Fl (k) and thereforo

may be disregarded. The general solution is therefore

Py (k '
F(k) = - Fo(k) [Ei.%:c%-] R +A] = = Fo(k) (Go(ca)](ik ) + A) 3

-

n an albedo problem ¢ will be & 1 and A should be chosen to meke n(x)
finite for all x, hence F(k) regular at k = + kl’ despite the pole of P, (k).

Thus

1

A= - Gy l=a) (kl + a)

(k = kl)Fo(k)
Pk = T T @6, )

The density of emergent neutrone in the albedo problem as a function of

the cosine of the angle of emergence, is

00 %/
o j‘ dxn(x) e

Q
ek (-3—3)
B

and is therefore given directly by the solution F(k)o

!

¥{w)

UNCLASSIFIED
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L =65~ i\ e
TABLE II: % t Tg%s’ To

X X 0.4 OL,6 0.8 1.0 1.2 | 14 1.6 1.8 2.0
o2 | 79408 | L73643 | 69159 | 65676 | .62911 | .60660 | .58792 | .5721l | .55862
25 | STAIUR | 66248 | L62L06 | 159395 | 56988 | 55016 | .53371 | .51975 | .50774
8 | 6UB16 | 60551 | 57178 | .6L528 | .52379 | 50618 | .Lo1h2 | L7886 | L6801 |
1.2 | 58303 | .5L650 [ .51741 | .LoL30o | L7561 | L6olL - | k712 | 43599 | Ledéal,
1.6 | .53240 | 50039 | L7L7L | .Lsheé | L3763 | .L23ys | JL1210 | .Lo208 | .39338
2;0 L9160 | L6306 | JLhol10 | L2168 | LL0666 | .23chi2 | .38350 | J37L37 | 36642 |
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