$$
\begin{aligned}
& \text { - } 25 \\
& \text { \% }
\end{aligned}
$$

$$
\begin{aligned}
& \text { CIC-14 REPORT COLLECTION } \\
& \text { REPRODUCTION } \\
& \text { COPY }
\end{aligned}
$$

April 10, 1945
This dooument contains 66 pages

THE MATHEMATICAL DEVELOPMENT OF THE ENDOPOINT METHOD

三1RK DONE BY:
S. Frankel
S. Goldborg
E. Nolann

REPORT WRITTEN BY:
S. Frankel
S. Goldberg

UNCLASSIFIID

The and point method is mathematically devoloped and its applicetion to the Milno kernel etudied in dotail. The general solution of the Wiener. Hopf integral equation is first obtainedo Tho Hine keraol appeare in applying this method to the intogral equation describing the diffusion and maltiplioation of noutrons in multiplying and scattaring media o The neutrons are treated as monoohromatio, isotropically boattared and of the same total mean free path in all materials involvedc Only problems with spherical symotry are treated, these being reducible to equivalent infinito siab problems Solutions are obtained for tamped and untamped spheres; in the former case both groping and decaying exponential asymptotio solutiona in the tamper ere treated in detail: Appexdix I treats the offects of the approximations inherant in the ead poinc method (or. LA=53) o Appondix II gives the solution of the inhomogeneous Fienor-Elopi gqution.

-3.CONTENTS
Page
Introduction 4
Chaptor I. Tho Wioner-Hopf Mothod
General solution of the integral oquation
$n(x)=\int_{0}^{\infty} d x^{i} n\left(x^{\prime}\right) K\left(x-x^{i}\right)$ 5
Extonsion to two modium problome 13
Chapter II。 Application to Noutron Problams
Physical approximations; the resulting equation. 14
Roduction of sphere problem to a correaponding slab problem. 16
The ond-point method 18
Onoomedium problom with Milne kernel
Care, c) 1 19
Caso, o く 1 29
Two-medium problems 31
Decaying exponential in tamper 33
Growing exponential in tamper 43
Linear combinations of solutions 49
The ondopoint recipe 51
Table I: Sumary of Formulae 53
Appendix I. Accuracy of mwo Boundary Approximation 55
Appendix II. Solution of the Inhomogeneous Wiener-Hopf Equation 60 63
Application to an albedo problem.
Application to an albedo problem.
Table II. $\frac{1}{\mathscr{F}} \int_{0}^{\frac{d s}{1+k s}} T_{c}$ 65
Graph of Extrapolated End Points 66

UNCLASSIFIED

THE 解TEERATICAL DEVELOPMENT OF THE BMD.POINT PGETHOD

Introduction

The genorel development of the end point method and somo of its applications are desoribed in LAo530. It is the purpose of this report to supplement thie genoral desoription with an explicit mathematical development of the endmpoint method and a detailed otudy of ite application to the Mine kernel. This is the kernel entering in the integral equation describing the diffusion and multiplication of noutrons in multiplying and scattoring metorials where the neutrons are treated as monochromatic, 1sotropically scattered, and of the ame total mean freo path in all materials involved. The end point method of treatment of integral equations is restricted to oneadimensional cases. This essentially limits the method to the treatment of problems in which the materiala involved and the neutron distribution are both spherically symetric, these problems being reducible to equivalont infinitemslab probloms. In Lhes it was showa that the andopoint results may be applied loosely to problems of a omewhat more complicated geometry and give nore or 1 ess accurate approximetions to the truth Those epplications depend primarily on loose analogies rather then mathematioal argument and will not be treated heres
many parts of this report will be in part repetitions of material treated in LAa 53 and LAm $53 A$. Here the omphasis will be primarily on the olear mathematical development of the methods of application presented tiare。

Chapter Io The $\mathrm{I}_{\mathrm{T}} \mathrm{iener-Hop}$ Wethod

The integral equations

$$
\begin{equation*}
n(x)=\int_{0}^{\infty} d x^{\prime} n\left(x^{\prime}\right) E\left(\pi \propto x^{\prime}\right) \tag{1.0}
\end{equation*}
$$

is known as the equation of Hienor and Hopfc with certain reasonable restrictions on the character of K and n this equation can be solved exactly. Before oxamining the method of solving this equation doveloped by "!iener and Hopf, it is useful to examine the simpler equation,

$$
\begin{equation*}
n(x)=\int_{-\infty}^{\infty} d x^{p} n\left(x^{v}\right) \mathbb{H}\left(x-x^{\prime}\right) \tag{1.1}
\end{equation*}
$$

Sinoe this equation is homogeneous, if $n_{0}(x)$ is a solution then a $\cdot n_{0}(x)$ also satisfies the equation for any constant, a. Beoause of the infinite Iimits of integration and the "displacement" sharacter of the kernel (K deponds only on the difference. $\left.x-x^{\prime}\right) n_{0}(x-b)$ must also be solution If the colution, $n_{0}(x)$, is unique (exoept for a multiplicative factor) then $n_{0}(x-b)=a n_{0}(x)$ for some a_{0}. Hence $n_{a}(x)=e^{k x}$, This suggests looking for exponential solutione of (1,1)

$$
\begin{align*}
n(x)=\theta^{k x} & =\int_{-\infty}^{\infty} d x^{p} e^{k x^{8}} K\left(x-x^{p}\right) \\
& =e^{k x} \int_{-\infty}^{\infty} d y e^{\infty k y} K(y) \tag{1,2}\\
\int_{-\infty}^{\infty} d y e^{-y} K(y) & =1
\end{align*}
$$

Any solution of this "characteristio equation" gives a value of k for whioh $\theta^{\text {lox }}$ satisfies (1.1)。 If there is more than one solution to the characteristio oquation then any linsar combination of the exponentials determined by tham will satisfy (1.1):

Theso considerations will be relevant to the study of the equation (1,0) if K deceys rapidly for large $|y|$. If this is the case then for large x equation (1.0) approximatos (1.1) and it may be expocted that with inereaing x the solutions of (1,0) will approach asymptotically the exponent al solutions of (1.1). If this is the case the asymptotic exponeatial part of the solution of $(1,0)$ may be sopareted from the remainder of the solution by Laplace or Fourior transformation. The use of the Laplace transform is further auggested by the faot that the left hanc terin of (1,2) is the Laplace transform of the kernel?

Taking the Laplace transform of equation (1.1) gives:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d x e^{-k x} n(x)=\int_{-\infty}^{\infty} d x e^{-k x} \int_{-\infty}^{\infty} d x^{n} n\left(x^{\prime}\right) K\left(x-x^{0}\right) \\
&=\int_{-\infty}^{\infty} d x^{\prime} n\left(x^{\prime}\right) e^{-k x} \int_{-\infty}^{\infty} d y e^{-k y} K(y) \\
& \int_{-\infty}^{\infty} d x e^{-k x} n(x)\left(\int_{-\infty}^{\infty} d y e^{-k y} K(y)-1\right)^{\infty}=0
\end{aligned}
$$

This last equation shows that the Laplaoe transform of $n(x)$ must wanish for all values of f whioh do not satisfy the characteristic equation, (2, 2).

An application of the aame technique to $(1,0)$ does not lead dinadiatoly to a factored equation beaques of the finito lower limito To get around this diffioulty Wienar and Hopf introduead the following triek.

Whers

$$
\begin{aligned}
\text { Dofing } n(x) & \equiv f(x)+g(x) \\
f(x) & \equiv 0 \text { for } x<0 \\
g(x) & \equiv 0 \text { for } x \geq 0
\end{aligned}
$$

UNCLASSIFIED

This permits witing $(1,0)$ in the form

$$
f(x)+g(x)=\int_{-\infty}^{\infty} d x^{p} f\left(x^{\prime}\right) K\left(x-x^{\prime}\right)
$$

Now taking the Laplace trana form gives

$$
\begin{aligned}
& \text { Defining } F(k) \equiv \int_{-\infty}^{\infty} d x f(x) e^{-k x} \\
& G(K) \equiv \int_{-\infty}^{\infty} d x g(x) e^{-k \pi} \\
& \boxed{L}(k) \equiv \int_{-\infty}^{\infty} d x K(x) e^{-k x}
\end{aligned}
$$

wo have

$$
\begin{equation*}
G(k)=F(k)(K(k)=1) \equiv F(k) P(k) \tag{1,3}
\end{equation*}
$$

This equation will hold for any value of k for whioh all three integrale exiato We therefore impose conditions on the kernel and solution of (1.0) whioh enaure the oxistenoe of a suitable region in the complex plane in which all throe integrals existo Fo require that $K(y)$ decay at least as rapidly as an exponential for large (positive or nogative) yo

$$
\begin{equation*}
\Pi(y)=o\left(e^{-c}|y|\right), \quad a>0 \tag{1.4}
\end{equation*}
$$

Then $\mathbb{E}(k)$ will exist for $-c<R(k)<c$. We further assume thet

$$
\begin{equation*}
f(x)=o\left(e^{d x}\right) \quad d<c \tag{1.5}
\end{equation*}
$$

The kernels of primary interest are symuetrice For these, if the "largest" value of c satisfying (1,4) is chosen then (105) is not a restrictive condltion since $f(x)$ must appraach asymptotically an exponential, $\theta^{k x}$, for some k eatisfying $K(k)=1$ and therefore within the range of convergence of
$K(k)$. The form of equation (1.3) choarly requires that $g(x)$ deagy (for large nergative x) at least as fast as $0^{c H}$ 。 Thus $G(k)$ exists for alil
 a vertical strip in the complex kwplano definad by $d<R(k) \quad 0$ o

Fig. 1

Whthin this "common atrip" all three integrels are convergent and equation (1.3) nunt bo satisfied. Outside this atrip tho non-convergent integrals will be dofined by analytio oxtension (and need not be analytio) in such a way that the equation is etill satisfiedo

Within and to the right of the common strip $F(t)$ exista and is analytio。 (It is clear from its definition that in this pange any derivative of $F(k)$ exists. Similarly within and to the lent of the strip $G(k)$ exists and is analytio: $K(x)$ henco also $P(k)$, exiets and is analytio within tho
strip but may have singularities on either side of it. We make the further assumption that $F(k)$ and $G(k)$ have no roots in their respective regions of analytiaity. (Cfo Paley and miener, Fourier Transforms $p=51$). We further require that there exist a subostrip within the common strip within which $P(k)$ has no rootse (This must be true if $P(k)$ has only 2 findto number of zoros in the oomon strip. This will actually be the osse, Gf. Titchmarsh, Fouriar Intograls, P. 339.)

We have now a subostrip within which $\log \mathrm{P}(\mathrm{k})$ is analytio; within whioh and to the right $\log F(k)$ is anglytio: within which and to the left $\log G(k)$ is analytic, and within which the thres satisfy

$$
\log P(k)=\log G(k)=\log F(k)
$$

This equation will be satisfied throughout the plane by the analytic extensions.
It is now easy to find functions, $F_{\text {and }} G_{\rho}$ satisîying this equetion and the analyticity conditions. For values of k within the subastrip we express $\log P(k)$ by means of a Cauchy integral:

$$
\begin{aligned}
\log P(k) & =(1 / 2 \pi i) \quad \int_{C} \frac{d k^{\prime}}{k^{0}-k} \log P\left(k^{0}\right) \\
& =(1 / 2 \pi i) \quad \int_{R} \frac{d k^{\prime}}{k^{0}-1} \log P\left(k^{\prime}\right) \\
& +(1 / 2 \pi i) \quad \int_{L} \frac{d k^{\prime}}{k^{\prime}-k} \log P\left(k^{\prime}\right)
\end{aligned}
$$

where the contour of integration consiste of two vertical lines in the subastrip. one running up to the right of k, the other down to its lefts

Fig. 2

We hate now decomposed $\log P(k)$ into two parta, one certainly analytio within the strip and to the left, the other within and to the righto These may be identified with $\log G(k)$ and $-\log F(k)$ and give a solution to the equation (1,0)。

$$
\begin{align*}
& \log F(k)=-\frac{1}{2 \pi I} \int_{1} \frac{d k^{q}}{k^{2}-k} \log P(k)+\text { oonstant } \\
& \log G(k)=\frac{1}{2 \pi} \int_{R} \frac{d k^{\prime}}{k^{\prime}-k} \log P\left(k^{\prime}\right)+\text { constant } \tag{1,6}
\end{align*}
$$

This contour integral representation of $\log F(k)$ determines $F(k)$, hence also $f(x)$ 。

$$
f(x)=\frac{1}{2 \pi 1} \int_{0-i \infty}^{0+i \infty} e^{k x} F(k) d k
$$

where δ is chosen to make $F(k)$ regular along the contour in particuler δ may be taken in the sub－stripo Since $F(k)$ is analytic to the right of the subsotrip，the contour may be translated to the right as far as desired．Fors aogative values of x this may be used to show thit $f(x)$ vanishes：

$$
\text { If } f(x) \text { contains a term } A 0^{k_{0} x} \text { (O.go as its asymptotio solution), }
$$ thon its Laplace transform，$F(k)$ will cortain a corresponding termo

$$
\int_{0}^{\infty} d x 0^{\infty k x} A \theta^{k_{0} x}=A /\left(k-k_{0}\right)
$$

Thus a pure exponential term in $f(x)$ manifests itself in $F(k)$ as a simple pole。 and the coefficients of the two may identified．The coefficient of the singuiarity is most easily determined by expanding $\log F(k)$ about the singulanity。

$$
\log F(k)=-\log \left(k-k_{0}\right)+\log A+0\left(k-k_{0}\right)
$$

Tho asymptotic solution will be determinod by all of the Eingularities of $F(k)$ on the imaginary exis and in the right halfoplane If there are no singularitios on or to the right of the imaginary axis the solution，$f(x)$ ， will approach zero asymptotically。A more useful asymptotic adntion however， will be that determined by the first singularities to the loft of the inaginary axis：

An important spacial case of this general treatinent is that for which the kornel，$K(y)$ ，is symmetrio and for which the characteristic equation has only a single pair of conjugato roots on the imaginary axis．If these two roots areat $+1 k_{0}$ ，then the solution wlll be of the form

$$
\begin{equation*}
F(k)=B\left[\sin k_{0}\left(x+x_{0}\right)+h(x), h(x) \rightarrow 0 \text { as } x \rightarrow+\infty\right. \tag{1.8}
\end{equation*}
$$

Sino the equation is homogeneous B is undeterminede x_{0}, howerer, can be evaluatod。

$$
\begin{aligned}
F(h) & =\int_{0}^{\infty} d x \theta^{\cos x} B\left[\sin k_{0}\left(x+x_{0}\right)+h(x)\right] \\
& =\int_{0}^{\infty} d x \theta^{-k x} \frac{B}{2 i}\left[\theta^{i k_{0}\left(x+x_{0}\right)}-\theta^{-i k_{0}\left(x+x_{0}\right)}+2 \operatorname{in}(x)\right] \\
& =\frac{B}{C i}\left(\frac{e^{i k_{0} x_{0}}}{k-i k_{0}}-\frac{e^{-i k_{0} x_{0}}}{k+i k_{0}}+2 i H(k)\right)
\end{aligned}
$$

In the neighborhood of $\pm 1 k_{0}, H(k)$ is finites We expand $\log F(k)$ near these two poler.

$$
\begin{align*}
& \log F\left(i k_{0}+\varepsilon\right)=\log \frac{B}{\sum 1}+1 k_{0} x_{0}-\log \varepsilon+O(\varepsilon) \\
& \log F\left(-1 k_{0}+\varepsilon\right)=\log -B 1-i k_{0} x_{0}=\log \varepsilon+O(\varepsilon) \\
& \lim _{\varepsilon \rightarrow 0}\left[\log F\left(i k_{0}+\varepsilon\right)-\log F\left(-i k_{0}+\varepsilon\right)\right]=\log (-1)+21 k_{0} x_{0} \\
& \log F(k)=\log G(k)-\log P(k) \\
& =\frac{1}{2 \pi} \int_{R} \frac{d k^{0}}{k 1-k} \log P\left(k^{1}\right)=\log P(k) \\
& \lim _{\varepsilon \rightarrow 0}\left[\log P\left(1 k_{0}+\varepsilon\right)-\log P\left(\infty 1 k_{0}+\varepsilon\right)\right]=\log \left[\frac{P^{0}\left(i k_{0}\right)}{P^{\prime}\left(-i k_{0}\right)}\right]=\log \tag{-1}
\end{align*}
$$

sinse $\mathbb{I}(y)$ is even, hence also $\mathbb{K}(k)$ and $P(k) ; P 0(k)$ odd.

$$
\begin{align*}
2 i k_{0} x_{0} & =\frac{1}{2 \pi} \int_{K} d k^{s} \operatorname{lqg} P\left(k^{\prime}\right)\left[\frac{1}{k^{\prime}-i k_{0}}-\frac{1}{k^{\prime}+i k_{0}}\right] \\
x_{0} & =\frac{1}{2 \pi i} \int_{K} \frac{d k^{\prime}}{k^{\prime 2}+k_{0}^{2}} \quad \log P\left(k^{\prime}\right) \tag{1.9}
\end{align*}
$$

The two terms, $\log (-1)$, have been negleoted aince the form of the solution (1.8) is uncha ced by the addition of a multiple of π to $k_{0} x_{0}$. The ovaluatron of x_{0} oompletes the determination of the asymptotic form of the solution (1,8) o x_{0} is expressed in (109) as a single integral whioh in many cases must bo evaluated numesically. To get the complete solution requires two integrations: one to evaluate $\log F(k)$ by $(1,6)$, another to get $f(x)$ by (1.7): Twow Modjun Froblean

A more goneral problem that can be treated by tho Wiener-Hopf
teohaique is

$$
n(x)=\int_{-\infty}^{0} d x^{\wedge} \mathbb{R}^{\prime}\left(x-x^{0}\right) n\left(x^{0}\right)+\int_{0}^{\infty} d x^{0} K\left(x-x^{\prime}\right) n\left(x^{\prime}\right)
$$

Breaking up $n(x)$ as before and taking the Laplace transform of the resulting equation gives

$$
F(k)+G(k)=\underline{K}(k) F(k)+\underline{K}^{p}(k) G(k)
$$

where the notation is the same as before. This may bo written as

$$
G(k)=F(k)\left(\frac{1-K(k)}{\underline{E}^{\prime}(k)-1}\right) \equiv F(k) P(k)
$$

This is now of the same form as (1.3). The rest of the treatment proceeds in the same way, with this more oomplioated form for $P(k)$ there may be a greator number of singularities of $\log P(k)$, leading to a larger number of indoperdent solutions. In particular it is no longer necessary to require that $g(x)$ decay exponentially away from the boundary
fin important special case of this twomadiun problem is that for wheh $\mathrm{K}(\mathrm{y})$ and $\mathrm{K}^{\mathrm{B}}(\mathrm{y})$ differ only by multiplicative factoro this ase will be treated extensively in the second chapter:

The wiener-Hopf technique may be further extended to permit the solution of inhorogeneous displacement integral equationa. This method is outlined in Aopendix $I I_{\text {s }}$

Chapter II. Application to Neutron Problems.
In this chapter we treat the applications of the WienoroHopf wethod (combined with some approximations) to problems concerning the spatial distributfon and time dependence of noutrons in spheres of multiplying and scattoring materials. It will be show that such probloms, with suitable physicel approximations, can be represented by intogral equations ol osely analogous to the Niener.Hopf equation. By making suitablo mathomatical approximations (the "end-point method") fairly accurate solutions to these equations can be gotton from the corresponding WieneroHopi solutions,

We make the following physioal approximations:
(A) We consider only one neutron velocity; hence for each material only one value for each cross section.
(B) We treat all collision processes as isotropic. (Anisotropy of elastic sattering can be treated to a limited extent. It can be shown that if this anisatropy is negiected and the transport average used for the elfatic scattering crose-section quito aocurate results will be obtainedo Cf. LA=53 and $8 \mathrm{M}-225$.)
(c) The total mean free path will be taken to bo the same for all materials involvod.
(D) The noutron distribution will be treated as a continuum. It will be taken to be spherically symetric and of stable spatial distribution These three conditions will certainly be good approximations if the neutron distribution has lived through many generations and consists of a sufficient number of neutrone to make statistical fluctuation nogligiblo. We adopt the following notation:

α_{f} is the fission probability per unit path lengtho (It is therefore the product of the fission crosi section and the number of nuclei per unit volund.) Similarly
σ_{s} is the scattoring probability per uait path length.
σ_{a} is the absorption probability per unit path langtho
$o=o_{\mathrm{f}}+\sigma_{\mathrm{s}}+\sigma_{\mathrm{e}}$
v is the mean number of neutrons emerging from a fission process $F=1+f=\frac{\nu o_{f}+o_{s}}{\sigma}$ is therefore the maan number of noutrons omorging from a collision.

Tis the meutron velooity.
$n(\underline{x}, t)$ is the neutron density at point \underline{r} at time t_{0}
We express the neutron density at (r, t) as an integral over
all points at which these neutrons may have suffered their last collisionse

We look for solutions of the form

$$
n(\underline{r} ; t)=n(\underline{r}) e^{r_{0} t}
$$

The integral squation, (2.1), then takes the form:

$$
n(\underline{r})=\int d \underline{r}^{\prime} \sigma F\left(\underline{r}^{\prime}\right) n\left(r^{\prime}\right) \frac{1}{4 \pi\left(r-r^{\prime}\right)^{2}} 0^{0\left(0+r_{o} / v\right)\left|r-r^{\prime}\right|}
$$

We now rescale r, taking as the unit of length the mean attenuation distanoe. $1 /\left(\sigma+\gamma_{0} / \sigma\right)_{0}$

$$
\begin{aligned}
& \underline{x}=r\left(0+\gamma_{0} / v\right) \\
& n(x)=\frac{1}{1+\gamma_{0} / 0 v} \quad \int d x^{\prime} F\left(x^{\prime}\right) n\left(x^{\prime}\right) \frac{0^{-\left|x-x^{\prime}\right|}}{4 \pi\left(x-x^{\prime}\right)^{2}}
\end{aligned}
$$

Defining $\gamma=\gamma_{0}$ /ov fives the threadimencional integral equations

$$
\begin{equation*}
n(x)=\frac{1}{1+\gamma} \int d x^{\prime} F\left(x^{\prime}\right) n\left(x^{\prime}\right) \quad \frac{e^{-\left|x-x^{\prime}\right|}}{4 n\left(x-x^{\prime}\right)^{2}} \tag{2.2}
\end{equation*}
$$

If wo now introduee polar coordinates, $x^{\prime}=\left(r^{\prime}, \phi^{\prime}, \theta^{\prime}\right)$ 。
taking the point x on the polar axis wo may make use of the assumed spherical Eymmetry of $n\left(x^{5}\right)$ to reduce $(2,2)$ to an equation in one dimension.
$\operatorname{Taking} \mu=\cos \theta, l^{2}=r^{2}+r^{2}=2 r r^{\cos \theta}$

$$
\begin{aligned}
& \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta \frac{e^{-\left(r^{2}+r^{2}-2 r^{2} \cos \theta\right)^{1 / 2}}}{4 n\left(\pi^{2}+x^{2}-2 r r^{\prime} \cos \theta\right)}=\frac{1}{2} \int_{-1}^{1} d \mu \frac{e^{-l}}{d^{2}} \\
& =\frac{1}{2} \int_{\left|r \rightarrow r^{\prime}\right|}^{r+r^{\prime}} \frac{l d \ell}{r r^{\prime}} \frac{e^{-l}}{\ell^{2}} \quad\left(d \mu=-\frac{l d \ell}{r r^{\theta}}\right) \\
& =\frac{1}{\operatorname{Lrr}}\left[E\left(\left|r-r^{0}\right|\right)=E\left(r+r^{\prime}\right)\right]
\end{aligned}
$$

where $E(s)=\int_{s}^{\infty} e^{-t} d t$

$$
\begin{equation*}
r n(r)=\frac{1}{2(1+\gamma)} \int_{0}^{\infty} d_{0}{ }^{0} p\left(r^{0}\right) r^{4} n\left(r^{0}\right)\left[E\left(\left|r-r^{\prime}\right|\right) \infty E\left(r+r^{\prime}\right)\right] \tag{2.5}
\end{equation*}
$$

If we now define $u(f) \underset{m}{ } \mathrm{~m}(r)$ and trout $u(x)$ as adodd function and $F(x)$ as an oven function of t (no meaning has previously boen essigned to negstive Faluos of r or to the corrosponding $n(r)$ and $F(r)$) wo may wite (2,3) in the form:

$$
\begin{equation*}
u(r)=\frac{1}{2(1+r)} \int_{-\infty}^{\infty} d \Gamma^{1} F\left(r^{0}\right) u\left(r^{0}\right) E\left(\left|r-r^{0}\right|\right) \tag{2.4}
\end{equation*}
$$

If inatead of assuming ths matorial and noutron distribution sphericelly symmetric. wo take both as functions of only one Cartesian coordinato z_{0} oquation (2.2) may be reduced to ax equation in one dinention as follows:

$$
\begin{aligned}
n(z) & =\frac{1}{1+\gamma} \int d z^{\prime} F\left(z^{\prime}\right) n\left(z^{\prime}\right) \iint d x^{\prime} d y^{\prime} \frac{9^{-\left[\left(z-z^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(x-x^{\prime}\right)^{2}\right]} \frac{1 / \varepsilon}{4 \pi\left[\left(z o z^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(x-x^{\prime}\right)^{2}\right]}}{} \\
& =\frac{1}{1+\gamma} \int d z^{\prime} F\left(z^{\prime}\right) n\left(z^{\prime}\right) \int_{0}^{2 \pi} d \phi \int_{0}^{\infty} \rho d \rho \frac{e^{-l}}{4 d^{2}}
\end{aligned}
$$

where $\ell^{2}=\left(2-z^{\prime}\right)^{2}+\rho^{2} \cdot \lambda d L=\rho d \rho$

$$
\begin{equation*}
p(z)=\frac{1}{2(1+\gamma)} \int d z^{y} P\left(z^{9}\right) a\left(z^{9}\right) D\left(f z=z^{0} \|\right) \tag{2.5}
\end{equation*}
$$

A comparison of equations (2aly and (2.5) shows that the sphore problom (2a4) may be identified with a slab problem (2.5) in which the distribution of meterjals ($P(z)$) across the slab is the sans as that along a diametar of the sphero. finy odd solution of the slab problem, $n(n)_{g}$ nay be fdentified with the quantity $u(r)$ in the aphere problem and conversely fo the fundamental. mode" of the sphere for which $n(x)$ is everywhore positive corresponds to tho "first harmonic" of the slab in winch the noutron density taked on apparently meaninglese negative values for this reasons and because higher modes may bo apperimposed on the fundamontal we will treat the neutron censity, $n(z)_{6}$ ag a real quantity winich may heve either bigao

For a tamped sphore of core radius a and outor tamper radiva b

nean ettenuation distances, the interral equation (2, 4) takes tho form

$$
\begin{aligned}
& u(r)=\frac{1+f_{t}}{1+Y} \int_{-b}^{\infty} d r^{Q} u\left(r^{p}\right) \frac{2}{2} E\left(\| r-r^{p} \mid\right) \\
& +\frac{\eta+f_{C}}{1+\gamma} \int_{=\theta}^{a} \operatorname{dra} u\left(r^{9}\right) \frac{1}{2} E\left(\left\|r=r^{i}\right\|\right) \\
& +\frac{I+f_{t}}{I+r} \int_{0}^{b} \operatorname{dr} u\left(r^{0}\right) \frac{1}{2} E\left(\left|r-r^{\prime}\right|\right)
\end{aligned}
$$

where x_{c} and f_{t} are the values of f in core and tamper respeotivelyo This oquation differs from the Wienerefopf oquation in having four boundaries instad of one for two for an untamped sphere) e With more than one boundary no oxact solution in knomo we therefore resont to an approximation namely to treet the behaviour of the solution near each boundary as if no other boundardes existed. It wes shown in the first chapter that the solution of the ono boundary problem appraaches, at large distances from tho boundarys a solution of the problem with infinite ilmitso It is reasomable to expect that the solution of a twomboundary problen in which the boundaries are very far apert will behave in some middle ragion as a solution of the infinite-intits equationg If this is the cajep we have only to combine two one boundary solutions in such a way that their abymptotic components coincidec In a manyoboundary problem $\theta_{c} g$, the tamped $\operatorname{sphere}_{g}$ we apply this recipe in each region。 This approximation method, the "end-point method", would seem iron the abore argument, reasonably accurate only if the distences between boundaries are many mean attenuation distance?. It is shown in appendix I that the limit of reasonible accuragy is actually a fer tenths of mean attenuation distenco. There is therefore good resson to believe that

throughout the interesting range of sizes the endopoint method is suficiently accurato.

In order to apply the endopoint method wo must first study the onecboundary problem with the "Mine kernel" ${ }_{0}$

$$
K(y)=c \frac{1}{2} \cdot E(|y|)
$$

This kemel with $a=1$ occurs in "the equation of E. A, Bilne" describing the flow of radiation through the outermast lagerg of a star. Wo will. however, refer to it as the "Milne kernel" for all positive values of o The general oquation we have to study is then

$$
\begin{aligned}
n(x) & =c^{0} \int_{-\infty}^{0} d x^{0} n\left(x^{0}\right) \frac{1}{2} E\left(\left|x-x^{p}\right|\right)+0 \cdot \int_{0}^{\infty} d x^{0} n\left(x^{0}\right) \frac{1}{2} E\left(\left|x-x^{p}\right|\right) \\
c & =(1+f) /(1+\gamma) .
\end{aligned}
$$

Several cases arise. For a free surface, et ther the outer surface of a temper of the surface of an untamped sphore ${ }_{0}$ we take $=0$. For an fintero face wo take both c and $C^{\text {a }}$ positive, for the core materiall e nust bo greatox than I ($f>\gamma$); in the tamper $c-1$ may be of either Biex。
We first treat the freessurface case.

$$
n(x)=a \int_{0}^{\infty} d x^{0} n\left(x^{\beta}\right) \frac{2}{2} E\left(\left|x-x^{0}\right|\right)
$$

The characteristic equation 2 :

$$
\begin{aligned}
\int_{-\infty}^{\infty} d y \frac{1}{2} E(|y|) e^{-k y} & =(0 / 2) \int_{0}^{\infty} d y\left(0^{-k y}+e^{k y}\right) \int_{1}^{\infty} \frac{d s}{s} e^{-y s} \\
& =(c / 2) \int_{1}^{\infty} \frac{d s}{s}\left(\frac{1}{s+k}+\frac{1}{s-k}\right) \\
& =0 \int_{1}^{\infty} \frac{d s}{s^{2}} \frac{k^{2}}{\infty} \\
& =\frac{c}{2 k} \log \left(\frac{1+k}{1}+\frac{k}{k}\right)=\frac{c}{k} \tanh ^{-1} k=1
\end{aligned}
$$

If $0<1$ wo have two roal rooto $\pm k_{0}$ such that $0=k / \tanh ^{-1} \mathrm{k}_{0}$ If o> I ws have two imaginary roots. $\pm 1 k_{o}$ such that $=k_{0} / \tan ^{-1} k_{o}$ o in oither case 14 aan be shown that the characteristio equation has only two roots. In the lattor case the asymptotic solution is a sinusoidal fungtion of $k_{0} x_{3}$ in the former a hyperbalic function We will represent the phase of the asymptotic solution by the "oxtrapolated ondmpoint". x_{0} such that the asymptotic solution is the siae or hyperbolie sine of $k_{0}\left(x+x_{0}\right)$. We now follow through explicitly the method of solution outlined in Chaptor il.

$$
\begin{aligned}
& n(x)=f(x)+g(x)=c \int_{-\infty}^{\infty} d x^{0} f\left(x^{4}\right) \frac{1}{2} E\left(\left|x=x^{2}\right|\right) \\
& f(x)=0 \text { for } x<0 \\
& g(x)=0 \text { for } x \geq 0 \\
& F(k)+G(k)=\int_{-\infty}^{\infty} d x n(x) e^{-k x}=\int_{-\infty}^{\infty} d x e^{\infty k x} \int d x^{\theta}\left(x^{y}\right) \frac{c}{2} ; \||x=x| j \\
& =\int_{-\infty}^{\infty} d x^{\eta} f\left(x^{\prime}\right) e^{-k x^{9}} \int_{-\infty}^{-\infty} d y e^{-k y} \frac{c}{c} E(|y|) \\
& =P(k) \frac{c}{2 k} \log \left(\frac{1+k}{1-k}\right) \\
& G(k)=F(k)\left\{\frac{c}{2 k} \quad \log \left(\frac{1+k}{1-E}\right)-1\right\} \equiv F(k) P(k)
\end{aligned}
$$

P(k) has efngularities only at ± 1 s These singularities are branch points so that to make the function explicit we introduce cute lying along the real
 The two roots of $P(k)$ aro then pure imaginargy $\pm 2 k_{0}$ o The singularitios of Iog $P(k)$ are +2 and $+i k_{0}$ We look for a log $F(i)$ analytic to the right of the finginary axis (corrosponding to the sinusoidal asymptotic solution, $f(x)$) and a $\log G(k)$ anslytic to the loft of +1 (corresponding to a $g(x)$ decaying somewhat faster than θ^{∞}) and satisfying

$$
\log P(k)=\log G(k)-\log F(k)
$$

The "subestrip" in which all threo of these quantities are analytic is $0<R(x)<I ;$ Ne therefore break up $\log P(k)$ by means of a Cauchy integral alone e contour running up and down in this strip and enclosing k_{0} and (except
 tho Integral

$$
\begin{aligned}
& \log P_{R}(k)=\frac{1}{2 \pi I} \int_{R} \frac{d k^{9}}{k^{2}} \log P\left(k^{0}\right)=\log Q(k)+\operatorname{constan}_{0} \\
& \log P_{L}(k)=-\frac{1}{2 \pi I} \int_{L} \frac{d k^{9}}{k^{2}-k} \log P\left(k^{0}\right)=\log F(k)+\text { constant }
\end{aligned}
$$

PIg。 3

We simplify $\log P_{P}(k)$ by deforming the right contour to onclose the righto hand cut.

Here the $\tan ^{-1}$ rises from 0 at $k^{\theta}=1$ ta at $k^{0}=+\infty$ (as indicated by the bracketod oxpressions) S Substituting $k^{\prime}=2 / s_{s}$

$$
\log P_{R}(k)=\frac{1}{i} \int_{0}^{1} \frac{d s}{3(1-k s)} \quad T_{c o}
$$

where

$$
T_{c}=\tan ^{-1}\left(\frac{\pi / 2}{\tanh ^{-1} I_{3}-1 / 0 S}\right) \quad T_{0} \quad \pi \quad s=0
$$

$$
\begin{equation*}
\log P_{R}(k)=\frac{1}{\pi} \int_{0}^{0} \frac{d s}{s} T_{c}+\frac{k}{\pi} \int_{0}^{0} \frac{d s}{1-k s} T_{0} \tag{2.7}
\end{equation*}
$$

$$
\begin{aligned}
& \log P_{R}(k)=\frac{1}{2 \pi I} \int_{\infty}^{0} \frac{d k^{3}}{k^{1}-k} \log \left[\frac{c}{2 k^{4}}\left(\log \frac{1+k^{2}}{1-k^{i}}=1\right] \quad[I(\log)=n i \rightarrow 0]\right. \\
& +\frac{1}{2 \pi 1} \int_{2}^{\infty} \frac{d k^{4}}{k^{8}-k} \log \left[\frac{c}{2 k^{0}}\left(\log \frac{I+k^{\varphi}}{k^{0}-1}+M\right)-1\right] \quad[I(\log)=0 \rightarrow+\pi j] \\
& =\frac{1}{\bar{n}} \int_{\Delta}^{\infty} \frac{d k^{\theta}}{k^{\prime}-k} \tan ^{-1}\left(\frac{n / 2}{\frac{1}{2} \log \frac{k^{\theta}+1}{k^{n}-1}-\frac{k^{8}}{c}}\right) \quad\left[\tan ^{\infty} 1=0 \rightarrow \pi\right]
\end{aligned}
$$

Here and throughout this treatment we encounter logarithmically infinite constants. A slight modification of our procedure (to make $P(k) \rightarrow 1$ as $\| \rightarrow \infty$) suffices to avoid this embarrassment o The present treatment is Somewhat simpler, though formally less rigorous o
fo amplify log $P_{L}(k)$ by a corresponding deformation of the left contour.

Fig. 4

$$
+\log \frac{k}{1+k}+\log \frac{k-i k_{0}}{k}-\log \frac{h}{k+i k_{0}}-\log \frac{1+k}{k}
$$

$$
\begin{aligned}
& -\log P_{L}(k)=\frac{3}{2 \pi i}\left[\int_{-\infty}^{-1} \log \left[\frac{c}{2 k^{\prime}}\left(\log \frac{\ln 1-1}{1-k^{j}}+\pi i\right)-1\right][1(\log)=s i \rightarrow[F i]\right. \\
& +\int_{-1}^{0}(2 \pi i)+\int_{0}^{i k_{0}}(2 \pi i)+\int_{-i k_{0}}^{0}(-7 . \pi i)+\int_{0}^{-2}(-2 \pi i) \\
& \left.* \int_{-1}^{-\infty} \log \left[\frac{c}{2 k^{\prime}}\left(\log \frac{k N 1-1}{1-k^{\prime}}-\pi i\right)-1\right]\right] \frac{d k^{\prime}}{k^{\prime}-k} \quad[I(\log)=-2 \pi i \rightarrow-\pi i] \\
& =\frac{2}{2 \pi i} \int_{-\infty}^{-1} \frac{d k^{\prime}}{k^{\prime}-k} \log \frac{\frac{c}{2 k}\left(\log \frac{\ln \cdot \mid-3}{\left.\frac{2}{-k}+\pi i\right)-1}\right.}{\frac{6}{2 M}\left(\log \frac{k^{\prime} \mid}{2-k^{\prime}}-\pi i\right)-1} \quad[\log =2 \pi \rightarrow 4 \pi]
\end{aligned}
$$

-24.

Letting $r=a l$

$$
\begin{aligned}
-\log P_{L}(k)= & -\frac{1}{\pi} \int_{1}^{\infty} \frac{d r}{r+k} \tan ^{-1} \frac{\pi / 2}{\frac{r}{c} \frac{1}{2} \log \frac{x+1}{r-1}}\left[\tan ^{-1}=2 \pi \rightarrow \pi\right] \\
& +\log \frac{k^{2}+k_{0}^{2}}{(2+k)^{2}} .
\end{aligned}
$$

Letting $s=\frac{1}{r}$ wo have

$$
\begin{align*}
& -\log P_{L}(k)=\cdot \frac{1}{\pi} \int_{0}^{1} \frac{d s}{s(1+k s)}\left[2 \pi+\tan ^{-1} \frac{\pi / 2}{1 /\left(s-\tan ^{-1} s\right.}\right]\left[\tan -1=T_{c}=-\pi \rightarrow 0\right] \\
& +\log \frac{k^{2}+v_{0}^{2}}{(1+k)^{2}} \text {, } \\
& =-2 \int_{0}^{1} \frac{d s}{s}+\frac{1}{d} \int_{0}^{1} \frac{d s}{s(1+k 9)} T_{e}+\operatorname{bad}_{a}\left(k^{2}+k_{0}^{2}\right. \\
& \log F_{L}(k)=2 \int_{0}^{1} \frac{d s}{s} \frac{1}{3} \int_{0}^{1} \frac{d s}{s} T_{c}-\log \left(h^{2}+k_{0}^{2}\right)+\frac{5}{\pi} \int_{0}^{1} \frac{d s}{1+k s} T_{c} .
\end{align*}
$$

Combining these two expressions, (2.\%) and (2.8), with

$$
\begin{equation*}
\log P(k) \equiv \log \left(\frac{c}{2 k} \log \frac{1+k}{1-\frac{k}{k}}-1\right)=\log P_{R}(k)-\log P_{Y}(k) \tag{2,6}
\end{equation*}
$$

give

$$
\begin{align*}
\log \left(\frac{c}{2 k} \log \frac{1+k}{10 k}=1\right) & =\frac{2}{\pi} \int_{0}^{1} \frac{d s}{s}\left(T_{c}-\pi\right) \\
& +\log \left(k^{2}-k_{0}^{2}\right)+\frac{2 k^{2}}{\pi} \int_{0}^{1} \frac{s d s}{1-k^{2} s^{2}} T_{c} \tag{2.9}
\end{align*}
$$

Taking the limit as $k \rightarrow 0$ we get

$$
\begin{equation*}
\frac{1}{\pi} \int_{0}^{0} \frac{d s}{s}\left(T_{0}-\pi\right)=\frac{1}{2} \log \frac{\operatorname{cosen} \frac{I}{k_{0}^{2}}}{} \tag{2.20}
\end{equation*}
$$

and (2.9) becomes

$$
\begin{align*}
\frac{k^{2}}{\pi} \int_{0}^{1} \frac{s d s}{1-k^{2} s^{2}} & =\frac{k}{\pi} \int_{0}^{2} \frac{d s}{2-k s} T_{c}-\frac{k}{\pi} \int_{0}^{1} \frac{d s}{1+k s} T_{c} \tag{2.11}\\
& =-\frac{1}{2} \log \left(\frac{k^{2}+k_{0}^{2}}{k_{0}^{2}}\right)-\frac{1}{2} \log \frac{c}{\frac{c}{2 k} \log \frac{1}{2}-k} \frac{k}{k}-1
\end{align*}
$$

Dividing by k^{2} and again letting $k \rightarrow 0$,

$$
\frac{1}{n} \int_{0}^{0} \operatorname{sds} T_{c}=-\frac{1}{2 k_{0}^{2}}+\frac{c}{6(c-1)}
$$

We now subtract the (infinito) constanto $2 \int_{0}^{4} \frac{\mathrm{ds}}{\mathrm{s}}-\frac{1}{\pi} \int_{0}^{0} \frac{\mathrm{ds}}{\mathrm{s}} \mathrm{T}_{\mathrm{c}}=\log \mathrm{B}$. From $\log P_{R}(k)$ and $\log P_{L}(k)$ to give $\log G(k)$ and $\log F(k)$.

$$
\begin{aligned}
& \log F(k)=\log \left(k^{2}+k_{0}^{2}\right)+\frac{k}{\pi} \int_{0}^{1} \frac{d \theta}{1+k s} T_{0}+\log B_{0} \\
& \log G(k)=\frac{2}{\pi} \int_{0}^{1} \frac{d s}{B}\left(T_{c}-M\right)+\frac{k}{\pi} \int_{0}^{i} \frac{d B}{2-k E} T_{c}+\log B_{b} \\
& =\frac{k}{\pi} \int_{0}^{0}-\frac{d A}{g^{2}} T_{c}+\log \frac{B(c-1)}{k_{0}{ }^{2}}
\end{aligned}
$$

We now determine x_{0} and the value of B required to give the asymptotio sing wave in $f(x)$ unis amplitudo.

$$
\begin{aligned}
& f(x)=\sin k_{0}\left(x+x_{0}\right)+h(x) \\
& h(x) \rightarrow 0 \text { as } x \rightarrow+\infty \\
& F(k)=\frac{e^{i k_{0} x_{0}}}{2 i\left(k-i k_{0}\right)}-\frac{e^{-i k_{0} x_{0}}}{2 i\left(k+i k_{0}\right)}+H(k)=\frac{k \sin k_{0} x_{0}+k_{0} \cos k_{0} x_{0}}{k^{2}+k_{0}^{2}}+B(k) \\
& \log F\left(1 \sum_{0}+\varepsilon\right)=-\log (21)+1 k_{0} x_{0}=\log \varepsilon+0(\varepsilon) \\
& \log F\left(\min _{0}+\varepsilon\right)=-\log (-2 i)=1 k_{0} x_{0}-\log \varepsilon+O(\varepsilon) \\
& \lim _{\varepsilon \rightarrow 0}\left[\log P\left(i k_{\theta}+\varepsilon\right)=\log P\left(-i k_{0}+\varepsilon\right)\right]=\log (\infty 1)+2 i k_{0} x_{0} \\
& =\lim _{k \rightarrow 0}\left[\frac{i k_{k}+6}{\pi} \int_{0}^{1} \frac{d s T_{k}}{1+\left\{k_{0}+t\right) s}-\log \left(2 i k_{0} s+\varepsilon^{2}\right)-\frac{i k_{g}+\varepsilon}{\pi} \int_{0}^{2} \frac{d s}{1+\left(-i k_{0}+t\right) s}+\log \left(2 i k_{0} t+c^{2}\right)\right] \\
& =\frac{i k_{g}}{\pi} \int_{0}^{1} d s T_{s}\left(\frac{1}{1+i k_{0}^{3}}+\frac{1}{1-i k_{0}^{3}}\right)+\log (-1) \\
& x_{0}=\frac{1}{a} \int_{0}^{1} \frac{d s}{1+k_{0}^{x} s^{2}} T_{c}
\end{aligned}
$$

New adding the two values of log Figivet
$\operatorname{lgg} F\left(i k_{0}+c\right)+\log F\left(-i k_{0}+\theta\right)=-2 \log (2 t)+0(6)$,

$$
\begin{aligned}
& =-2 \log \left(2 K_{0} t\right)+\frac{2 k_{0}^{2}}{0} \int_{0}^{2} \frac{s d s}{1+\log _{0}^{2} s^{2}} T_{s}+2 \log B+020
\end{aligned}
$$

$\log B=\log k_{0}-\frac{k_{0}^{2}}{n} \int_{0}^{1} \frac{s d a}{1+k_{0}^{2} 3^{2}} T_{0}$

This integral may be evaluated by allowing s to approach $i k_{o}$ in (2.11):

$$
\log F(k)=\frac{k}{\frac{k}{0}} \int_{0}^{1} \frac{d s}{1+k s} T_{c}-\log \left(k^{2}+k_{0}^{2}\right)+\frac{1}{2} \log \frac{k_{0}^{2}\left(1-\frac{c}{1+k_{n}^{2}}\right)}{2(c-1)},
$$

$$
F(k)=\frac{k_{0}}{k^{2}+k_{0}^{2}} \sqrt{\frac{1-c /\left(1+k_{0}^{2}\right)}{2(c-1)}} e^{\frac{k}{\overline{1}} \int_{0}^{1} \frac{d s}{1+k s} T_{c}} .
$$

We can cvaluate $H(0)$, the total area of $h(x)$, and $\frac{-H^{\prime}(0)}{H(0)}$, its "mean length",

$$
\begin{aligned}
& H(0)=\frac{1}{k_{0}}\left(\sqrt{\left.\frac{1-c /\left(l+k_{0}^{2}\right.}{2(0-1)}\right)}-\cos k_{0} x_{0}\right) \\
& \frac{-H^{9}(0)}{H(0)}=\frac{1}{H(0) k_{0}^{2}}\left(\sin k_{0} x_{0}-k_{0} \sqrt{\frac{1-c /\left(1+k_{0}^{2}\right.}{2(c-1)}} \cdot \frac{1}{\pi} \int_{0}^{1} d \operatorname{sT}\right)
\end{aligned}
$$

Waking use of the formila

$$
n(0)=\lim _{k \rightarrow \infty} k \int_{0}^{\infty} d x n(x) e^{-k x}=\lim _{k \rightarrow \infty} k F(k)
$$

$$
\begin{aligned}
& -\frac{k_{2}{ }^{2}}{\sqrt{6}} \int_{0}^{1} \frac{s d s}{2+k_{0} s^{2}} T_{c}=\lim _{t \rightarrow 0}\left[-\frac{1}{2} \log \left(\frac{2 i k_{0} t}{k_{0}^{2}}\right)-\frac{2}{2} \log \frac{1}{-\frac{1}{i k_{0}}\left(t-\frac{1}{1+k_{0}^{2}}\right) \epsilon}\right. \\
& =-\frac{1}{2} \log \frac{\frac{3(c-1)}{1-\frac{\varepsilon}{1+k_{0}^{2}}}}{} . \\
& \log B=\frac{1}{2} \log \frac{k_{0}^{3}\left(1-\frac{c}{1+\hbar_{0}^{2}}\right)}{2(c-1)} .
\end{aligned}
$$

wa got

$$
\begin{aligned}
& n(0)=\lim _{k \rightarrow \infty} \frac{k k_{0}}{k^{2}+k_{0}^{2}} \sqrt{\frac{1-c /\left(1+k_{0}{ }^{2}\right)}{2(c-1)}} e^{\frac{k}{\pi} \int_{0}^{1} \frac{d s}{1+k s}\left(T_{c}-\pi\right)+\log (1+l)}, \\
& n(0)=k_{0} \sqrt{\frac{1-c /\left(1+k_{0}^{2}\right)}{2(c-1)}} e^{\frac{1}{\pi} \int_{0}^{b} \frac{d s}{s}\left(T_{c}-\pi\right)}=\sqrt{\frac{1-d\left(1+k_{0}^{2}\right)}{2}}
\end{aligned}
$$

We cen derive an expression for $h(x)$ suitable for numerical evaluation as fOllows:

$$
h(x)=\frac{1}{2 \pi i} \int_{-i \alpha+\delta}^{i \infty+\delta} d k e^{k x} H(k), \quad 0<\delta<\mathbb{I}
$$

$\mathrm{B}(\mathrm{k})$ is not singular at $\pm \mathrm{ik}_{0^{\circ}}$ (The bracketed expression vanishes) ${ }_{0}$ thus the contour may be deformed to lie along the left cut. Only the integral

$$
\begin{aligned}
\frac{k}{\pi} \int_{0}^{2} \frac{d s}{1+k s} T_{c} & =\frac{k}{\pi} \int_{0}^{1} \frac{d s}{1-k s} T_{c}-\frac{2 k^{2}}{\pi} \int_{0}^{1} \frac{s d s}{1-k^{2} s^{2}} T_{c s} \\
& =\frac{k}{k} \int_{0}^{1} \frac{d s}{1-k s} T_{c}-\log \left(\frac{k_{0}^{2}}{k^{2}+k_{0}^{2}} \frac{\frac{c}{2} \log \frac{1+k}{1-k}-1}{c-1}\right)
\end{aligned}
$$

d doubleovalued across the cut. Thus only the first term in $H(k)$ contributes.

$$
\begin{aligned}
& h(x)=\frac{1}{2 \pi i} \int_{-\infty}^{-2} d k e^{k x} \cdot \frac{k_{0}}{k^{2}+k_{0}^{2}} \sqrt{\frac{1-c / 3+k_{0}^{2}}{2 k-1)}} e^{\frac{x}{\pi} \int_{0}^{1} \frac{d \xi}{1-k 3} i_{k} \frac{(k-1)\left(k^{2}+k_{0}^{2}\right)}{k_{0}^{2}}}\left[\frac{1}{\frac{2}{2 k}\left(100\left|\frac{3+k}{-k}\right|-i^{i}\right)-1}\right. \\
& \left.\left.-\frac{1}{\frac{c}{2 k}\left(\log \Delta\left|\frac{1+k}{2-k}\right|+\pi i\right.}\right)-1\right]= \\
& =\frac{c}{2 k_{0}} \sqrt{\frac{c-A}{2}\left(1-\frac{c}{1+k_{0}^{2}}\right]} \int_{-\infty}^{-1} \frac{d k e^{k x+\frac{k}{3} \int_{0}^{3} \frac{d s}{2-k s} T_{c}}}{k\left[\left(\frac{c}{2 k} \log \left(\left.\frac{1+k}{1-k} \right\rvert\,-1\right)^{2}+\frac{\frac{k}{}_{2} e^{2}}{4 k^{2}}\right]\right.} .
\end{aligned}
$$

Replacing k by ak give
($h(x)$ is negative for all x)

If $0<1$ the roots of the characteristic equation are $\pm k_{1}$ where
$c=k_{1} / \tanh ^{-1} k_{1}$ 。 The contours must now be taken as shown in figure 5 .

Fig. 5

Proceeding in the same way as for $c>1$ we get the analogous results:

$$
\begin{align*}
& n(x)=\sinh k_{2}\left(x+x_{0}\right)+h(x) \\
& \frac{1}{\pi} \int_{0}^{1} \frac{d x}{\xi}\left(T_{c}-\pi\right)=\frac{1}{2} \log \frac{1-c}{k_{1}^{2}} \tag{2.82}\\
& \frac{k^{2}}{\pi} \int_{0}^{2} \frac{s d s}{1-k^{2} s^{2}} T_{c}=-\frac{1}{2} \log \frac{k_{1}^{2}-k^{3}}{k_{1}^{2}} \cdot \frac{1-c}{1-\frac{c}{2 k} \log \frac{11 k}{1-k}} \\
& x_{0}=\frac{1}{\pi} \int_{0}^{2} \frac{d s}{1-k_{1}^{2} s^{2}} T_{c} \\
& T_{c}=\tan ^{-1} \frac{\pi / 3}{\tan h^{-1} s-1 / c s},\left[\tan ^{-1}=\pi \rightarrow 0\right]
\end{align*}
$$

$$
F(k)=\frac{k_{s}}{k^{2}-k_{1}^{2}} \sqrt{\frac{s\left(\left(1-k_{2}^{2}\right)-1\right.}{2(2-c)}} e^{\frac{k}{\pi} \int_{0}^{i} \frac{d s}{1+b s} T_{c}}
$$

$$
\text { L (0) }=-\frac{1}{k_{1}}\left[\frac{\sqrt{f\left(2-k_{1}^{2}\right)-1}}{2(1-c)}-\cosh k_{1} x_{0}\right]
$$

$$
\frac{-H^{+}(0)}{H(0)}=-\frac{1}{H(0) k_{1}^{2}}\left[\sinh k_{1} x_{0}-k_{1} \sqrt{\frac{1\left(1-k_{1}^{2}\right)-1}{2(1-c)}} \cdot \frac{2}{\pi} \int_{0}^{1} d s T_{c}\right]
$$

$$
n(0)=\sqrt{\frac{1}{2}\left(\frac{c}{1-k_{1}^{2}}-1\right)}
$$

$$
h(x)=-\frac{c}{2 k_{1}} \sqrt{\frac{1-c}{2}\left(\frac{2}{1-k_{2}^{2}}-1\right)} \int_{1}^{\infty} \frac{k d k e^{-\frac{k}{n} \int_{a}^{1} \frac{d s}{1+k s} \pi_{c}}\left(\frac{c}{2} \log \frac{k+1}{k-1}-\frac{1}{k}\right)^{2}+\left(\frac{\pi c}{2}\right)^{2}}{} e^{-k x}
$$

Combining these hyperbolic results ($c<1$) with the elliptic results ($c>1$) previously obteined shows the character of the solution and its numerically. fdentiplabie fatures to be continuous (as a function of across the parabolfe ($0=1$) boundary caseo

We now treat the twomedium case, distinguishing the two materials (eoge active material and tamper) only by thelr different valuas of a_{c} Here four cases arise as the two o valuos are loss than or greatex than 10 We treat explicitly only the case: $a>1, c^{t}<1$. The extension to other cases will then be obvious. Beacuse of the applicability of the solution to the simple tamped sphere we refer to the one region, $c>1$, $x>0$, as "the core", and to the other, $0<1_{0} x<0$, as "the tamper"。 find two pertinent solutions, one belonging to a growing and the other to a deeaying exponential asymptotio solution in the tamper. For the problem of the infinitely tamped sphere only the deoaying solution will figure (decaying as one moves away from the interface into the campor) . However, the "asymptotic solution for a finite tamper will be a linear combination of the two solutions. The Intogral equation ia:

$$
\begin{equation*}
n(x)=c^{\prime} \int_{-\infty}^{0} d x^{\prime} n\left(x^{\prime}\right) \frac{1}{2} E\left(\left|x-x^{\prime}\right|\right)+c \int_{0}^{\infty} d x^{9} n\left(x^{r}\right)^{\frac{1}{2}} E\left(\left|x-x^{\prime}\right|\right) \tag{2.14}
\end{equation*}
$$

We use the sane notation as before:

$$
\begin{aligned}
& n(x)=f(x)+g(x) \\
& f(x)=0, x<0 \\
& G(x)=0, x \geq 0 \\
& F(k)=\int_{\infty}^{\infty} d x f(x) 0^{-k x} \\
& G(k)=\int_{-\infty}^{\infty} d x g(x) 0^{-k x}
\end{aligned}
$$

The singularities of $\log P(k)$ now lie at:

$$
\begin{aligned}
& \pm 1 \text { (branch points) } \\
& \pm 1 k_{0}\left(\text { roots of } P(k), \frac{k_{0}}{\tan ^{-1} k_{0}}=c\right) \\
& \pm k_{1}\left(\text { poles of } P(k) \quad \frac{k_{0}}{\operatorname{tanin}^{-1} k_{I I}}=0^{\circ}\right)
\end{aligned}
$$

$F(k)$ (and we assume ajso $\log F(k)$) must be analytic for $R(k)>0$
$G(k)$ (and we assume also $\log G(k)$) must be analytic fors

$$
R(k)<+k_{1} \text { for "decaying solution", } 1_{0} \theta_{0} g(x)=0\left(e^{k \cdot \pi}\right)
$$

$$
\text { or } \quad R(k)<=k_{1} \text { for "growing solution", ion。 } g(x)=0\left(e^{-k x}\right)
$$

$\log P(k)$ is analytic for $01<R(k)<+1 \quad$ axcopt at $\pm i k_{0} \pm k_{B}$

$$
\begin{aligned}
& \text { - } 32 . \\
& \underline{K}(k)=\int_{-\infty}^{\infty} \mathrm{dx} \frac{1}{2} E(|x|) e^{-k x}=\frac{1}{2 k} \log \frac{2+k}{1-K} \\
& F(k)+M(k)=\int_{-\infty}^{\infty} d x a(x) e^{-k x} \\
& =\int_{-\infty}^{\infty} d x e^{-k x} \int_{-\infty}^{\infty} d x^{\prime} \frac{1}{2} E\left(\mid x-x^{\prime} \|\right)\left[0^{\prime} g\left(x^{\prime}\right)+c f\left(x^{\prime}\right)\right] \\
& =\int_{\infty}^{\infty} d y e^{-k y} \frac{1}{2} E(|y|) \int_{\infty}^{\infty} d x^{\theta} e^{-k x^{7}}\left[\operatorname{cog}^{9} g\left(x^{0}\right)+\operatorname{cf}\left(x^{0}\right)\right] \\
& =\frac{1}{2 k} \log \frac{1}{1-k}[\log (k)+\operatorname{cF}(k)] \\
& G(k)=F(k) \frac{\frac{c}{2 k} \log \frac{1+k}{1-k}-1}{1-\frac{c^{\prime}}{2 k} \log \frac{1+k}{1-k}} \quad \equiv F(k) P(k)
\end{aligned}
$$

For the two cases wo choose contours as followa;

Fig. 6
"Decaying Solution"

Fig. 7
"Growing Solution"

Wo treat first the docaying soiution An before we identify log f(k) and $\log G(k)$ with the left and right integrals (again excopting a constant)。

$$
\begin{aligned}
& \log P_{R}(k)=\frac{1}{2 \pi I} \int_{R} \frac{d k^{v}}{k^{\prime}-k} \log P\left(k^{0}\right)=\log G(k)+\text { const } t_{0} \\
& \log P_{I}(k)=-\frac{1}{2 \pi I} \int_{L} \frac{d k^{\gamma}}{k^{\prime}-k} \log P\left(k^{\prime}\right)=\log F(k)+\text { const }
\end{aligned}
$$

-34.

We deform the contours as follows:

Fig. 8

$$
\log P_{R}(k)=\frac{1}{2{ }^{\prime \prime} i} \int_{R} \frac{d k^{\prime}}{k^{\prime}=k}\left[\log \left(\frac{c}{2 k}, \log \frac{1+k^{\prime}}{1-k^{\prime}}-1\right)-\log \left(1-\frac{c^{\prime}}{2 k^{\prime}} \log \frac{1+k^{\prime}}{1-k^{\prime}}\right)\right]
$$

$$
=\frac{1}{\pi} \int_{0}^{i} \frac{d s}{s(1-k s)} T_{\sigma}=\frac{1}{2 \pi I} \int_{R} \frac{d k^{\prime}}{k^{2}-k} \log \left(1-\frac{e^{\prime}}{2 k^{\prime}} \log \frac{1+k^{\prime}}{1-k^{\prime}}\right)^{(2.25)}
$$

making use of the previous evaluation of the first term.

$$
\log P_{R}(k)=\frac{1}{\pi} \int_{0}^{2} \frac{d s}{s(1-k s)} T_{c}-\frac{1}{2 \pi i} \int_{k_{1}}^{\infty} \frac{d k^{\prime}}{k^{\prime}-k}(-2 \pi i)-\frac{1}{2 \pi i} \int_{R^{\prime}} \frac{d k^{\prime}}{k^{\prime}-k} \log \left(\frac{c^{\prime}}{2 k^{\prime}} \log \frac{1+k^{\prime}}{1-k^{\prime}}-1\right)
$$

- Fig. 9

Tho last integral is now equivalent to that ovaluated in (2.15) (abal is identical with the rightecontour istegral ocourring in the onemedium problem for $c<1$).

$$
\begin{aligned}
& =\frac{k}{\pi} \int_{0}^{0} \frac{d s}{1-k s}\left(T_{c^{-}}-T_{c^{\prime}}\right)+\frac{1}{\pi} \int_{0}^{n} \frac{d s}{s}\left(T_{c}-T_{c^{\prime}}\right)+\int_{0}^{2 / k_{1}} 1_{d s}\left(\frac{1}{s}+\frac{k}{1-k s}\right)
\end{aligned}
$$

We choose the constant to make

$$
\begin{align*}
\log G(k) & =\log P_{R}(k)+\log B-\frac{1}{n} \int_{0}^{1} \frac{d s}{B}\left(T_{c}-T_{c}\right)=\int_{0}^{1 / k_{1}} \frac{d s}{s} \\
& =\frac{k}{n} \int_{0}^{1} \frac{d s}{1-k s}\left(T_{c}-T_{c^{\prime}}\right)+\log \frac{B k_{2}}{L_{1}+k} \tag{2,16}
\end{align*}
$$

Evaluating the leftecontour integral givem

$$
\begin{aligned}
& -\log P_{L}(k)=\frac{1}{2 H} \int_{L} \frac{d k^{\prime}}{k^{\prime}-k}\left[\log \left(\frac{0}{2 k^{\prime}} \log \frac{1+k^{\prime}}{1-k^{\prime}}-1\right) \circ \log \left(2-\frac{c^{\prime}}{2 k^{\prime}} \log \frac{1}{1-k^{3}}\right)\right] \\
& =\left\{-2 \int_{0}^{1} \frac{d s}{s}+\log \left(k^{2}+k_{0}^{2}\right)+\frac{2}{n} \int_{0}^{1} \frac{d s}{s(I+k s)} I_{0}\right\} \\
& =\frac{1}{2 \mu k} \int_{ \pm 0} \frac{d z^{9}}{k^{2}-k} \log \left(1=\frac{e^{2}}{2 k^{9}} \log \frac{1+k^{9}}{1=k^{2}}\right)
\end{aligned}
$$

Fig。 10

APPROVED FOR PUBLIC RELEASE

$$
=\{ \}-\frac{1}{2 \pi_{i}} \int_{-\infty}^{-k_{1}} \frac{d k^{\prime}}{k^{\prime}-k}(2 \pi i)-\frac{3}{2 m_{1}} \int_{L^{17}} \frac{d k^{\prime}}{k^{\prime}-k} \operatorname{lom}\left(\frac{c^{\prime}}{2 k^{\prime}} \log \frac{1+k^{5}}{1-k^{\prime}}-1\right)
$$

Figs 17

$$
\begin{aligned}
& \frac{2}{2 \pi i} \int_{L^{\prime}} \frac{d k}{k^{\prime}-k} \log \left(\frac{c^{\prime}}{2 k^{\prime}} \log \frac{1+k^{*}}{i-k^{\prime}}-1\right)=\frac{k}{2 \pi t} \int_{R^{\prime}} \frac{d k^{*}}{k^{*}+k} \log \left(\frac{c}{2 k^{\prime \prime}} \log \frac{1+k^{*}}{2-k^{*}}-\frac{1}{}\right), \\
& =\frac{1}{\pi} \int_{0}^{1} \frac{d s}{\left(1-+r^{2}\right)} T_{c^{\prime}} . \\
& -\log E_{1}(k)=-2 \int_{0}^{1} \frac{d s}{s}+\log \left(k^{2}+k_{0}^{3}\right)+\frac{1}{\pi} \int_{0}^{1} \frac{d s}{s(2+k s)} T_{c}+\int_{0}^{2 / k_{1}} d s\left(\frac{1}{5}-\frac{k}{1+k s}\right)-\frac{1}{\pi} \int_{0}^{1} \frac{d s}{s(1+k)} T_{c} \\
& =-\frac{k}{\pi} \int_{0}^{2} \frac{d s}{1+k_{k} ;}\left(I_{e}-T_{e}\right)+D_{0} \frac{k_{0}\left(k^{2}+\frac{\left.k_{0}^{2}\right)}{k_{1}+k}+\frac{1}{\pi} \int_{0}^{1} \frac{d s}{s}\left(T_{e}-T_{c}\right)-2 \int_{0}^{1} \frac{d s}{s}+\int_{0}^{2 / k_{2}} \frac{d s}{s} .\right.}{0} \\
& \log F(k)=\log P_{T}(k)+\log B-\frac{1}{5} \int_{0}^{1} \frac{d s}{s}\left(T_{c} \cdot T_{c}\right)-\int_{0}^{1 / k_{1}} \frac{d s}{s}, \\
& =\frac{k}{\pi} \int_{0}^{1} \frac{d s}{1+k s}\left(T_{c}+T_{e}\right)+\log \frac{\left(k_{2}+k\right) E}{k_{1}\left(k^{2}+k_{0}^{2}\right)}-\frac{2}{\pi} \int_{0}^{\frac{2}{b}} \frac{d s}{}\left(T_{c}-T_{c}\right)+3 \int_{1 / \alpha_{1}}^{2} \frac{d s}{s} . \\
& -\frac{2}{\pi} \int_{0}^{2} \frac{d s}{b}\left[\left(\pi-T_{c}\right)-\left(\pi-T_{c}\right)\right]=-\log \frac{k_{1}^{2}}{i-c^{0}}+\log \frac{k_{o}^{2}}{c-1} \\
& \left.\log F(k)=\frac{k}{\pi} \int_{0}^{1} \frac{d s}{1+k s}\left(T_{2}-T_{e}\right)+\log \frac{\left(k_{2}+k\right) B}{k_{1}\left(k^{2}+k_{0}{ }^{2}\right)}+\log \left(\frac{1-c^{2}}{k_{1}{ }^{2}} \cdot \frac{k a^{2}}{c-1}\right)+\log k_{1}{ }^{2}\right) \\
& =\frac{k}{\pi} \int_{0}^{1} \frac{d s}{1+k_{3}}\left(T_{e} \cdot T_{c}\right)+\log \frac{B k_{a}^{a}\left(k_{1}+k\right)\left(1-c^{0}\right)}{k_{1}\left(k^{2}+k_{0}^{2}\right)(c-1)}
\end{aligned}
$$

We again determine x_{0} and the vulue of B required to make ths asymptotic sino solution of unit amplitucio.

$$
\begin{align*}
& f(x)=\sin k_{0}\left(x+x_{0}\right)+h(x)_{0} x>0, h(x) \rightarrow 0 \text { as } x \rightarrow+\infty \\
& F(k)=\frac{1}{2 i}\left(\frac{e^{i k_{0} *_{0}}}{k+i k_{0}}-\frac{e^{-i k_{0} x_{0}}}{k+i k_{0}}\right)+K(k) \\
& \lim _{x \rightarrow 0}\left[\log F\left(i k_{0}+k\right)-\log F\left(-i k_{0}+\theta\right)\right]=\log (-k)+\overline{8} 1 r_{0} x s \\
& =\frac{2 i k_{0}}{\sqrt{r}} \int_{0}^{1} \frac{d s}{1+r_{1}^{2} s}\left(T_{E}-T_{c}\right)+\log \left(\frac{-j k_{0} t}{+2 i k_{0} \epsilon}\right)+\log \frac{k_{2}+i k_{0}}{k_{1}-i k_{0}} . \\
& x_{0}=\frac{1}{\pi} \int_{0}^{1} \frac{d s}{1+k_{0}^{2} s^{2}}\left(T_{c} \cdot T_{c}\right)+\frac{1}{k_{0}} \tan ^{-1} \frac{k_{0}}{k_{1}}=x_{1}+\frac{1}{k_{0}} \tan ^{-1} \frac{k_{0}}{k_{1}} . \tag{2.10}\\
& \lim _{t \rightarrow 0}\left[\log E\left(i k_{a}+t\right)+\log F\left(-i k_{0}+t\right)-2 \log t\right]=-2 \log ? \\
& =\frac{2 k_{0}^{2}}{0} \int_{0}^{1} \frac{2 d s}{1+k_{0}^{2} s^{2}}\left(T_{c}-T_{e}\right)+2 \log \frac{\beta k_{0}^{2}\left(2-c^{0}\right)}{k_{2}(c-2)}+\log \frac{k_{2}^{2}+k_{0}^{2}}{4 k_{0}^{2}} .
\end{align*}
$$

The first term may be ovaluated by the use of (2.11) and (2.13).

$$
\begin{align*}
& =\log \frac{2(c-i) k^{2}\left(1-c^{\prime} / s\right)}{\left(1-\frac{c}{1+k_{0}^{2}}\right)\left(k_{4}^{x}+k_{e}^{2}\right)\left(1-c^{-}\right)} . \tag{2.19}
\end{align*}
$$

$$
\begin{aligned}
& \log B=\log \frac{k_{2}(c-l)}{k_{0}^{2}\left(1-c^{2}\right)}-\frac{1}{2} \log \frac{k_{1}^{2}+k_{0}^{2}}{k_{0}^{2}} \frac{1}{2} \log \frac{2(c-1) k_{k}^{2}(1-c / c)}{\left(1-c /\left(1+k_{0}^{2}\right)\right)\left(k_{0}^{2}+k_{0}^{2}\right)\left(1-0_{0}^{2}\right)}, \\
& =\frac{1}{2} \log \frac{(c-1)\left(1-z /\left(a+k_{0}^{2}\right)\right)}{2 k_{0}^{2}\left(1-e^{2}\right)\left(1-c^{2} / c\right)} . \\
& \log F(k)=\frac{k}{\beta} \int_{0}^{1} \frac{d s}{1+k s}\left(T_{c}-T_{c} \cdot\right)+\frac{1}{2} \log \frac{k_{0}^{2}\left(1-c^{\prime}\right)\left(1-c /\left(l+k_{0}^{3}\right)\right)}{2 k_{b}^{2}(6-1)(1-c / c)}+\log \left(\frac{k+k_{z}}{k^{2}+k_{0}^{2}}\right) . \\
& F(k)=\frac{k_{0}}{k_{1}} \frac{k^{2}+k_{2}}{k^{2}+k_{0}^{3}} \sqrt{\frac{(1-c)\left(1-c /\left(1+k_{0}^{2}\right)\right)}{2(c \cdot 1)\left(k-c^{y} / c\right)}} e^{\frac{k}{\pi} \int_{0}^{2} \frac{\alpha s}{1+k_{s}}\left(T_{c}-T_{c^{\prime}}\right)} . \\
& H(k)=F(k)-\frac{k \sin k_{0} x_{0}+k_{g} \cos x_{0} x_{g}}{k^{2}+k_{0}^{2}}, \\
& =\frac{2}{k^{2}+k_{0}^{2}}\left[\frac{k_{0}}{k_{1}}\left(k+k_{1}\right) \sqrt{\frac{(x-c)\left(1-c /\left(1+k_{0}{ }^{2}\right)\right)}{2(1-b)(1-c / 2)}}=\frac{k}{\pi} \int_{0}^{1} \frac{d s}{1+k S}\left(T_{c}-T_{c}\right)-k \sin k_{d} x_{0}-k_{0} \cos k_{0} x_{0}\right] \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& H^{\prime}(0)=\frac{\left(1-c^{\prime}\right)\left(1-c /\left(1+k_{0}^{2}\right)\right)}{2(c-1)\left(1-c^{\prime} / c\right)}\left(\frac{1}{k_{0} k_{i}}+\frac{1}{k_{0} \pi} \int_{0}^{1} d s\left(T_{c}-T_{e^{\prime}}\right)\right)-\frac{1}{k_{0}^{2}} \sin k_{0} x_{0} . \\
& -\frac{H^{\prime}(0)}{H(0)}=-\frac{1}{H(0) k_{0}}\left[\sqrt{\frac{\left(1-c^{\prime}\right)\left(1-c /\left(1+k_{0}^{2}\right)\right)}{2(c-1)\left(1-c^{\prime} / c\right)}}\left(\frac{1}{k_{2}}+\frac{1}{\pi} \int_{0}^{2} d s\left(T_{c}-T_{e^{\prime}}\right)\right]-\frac{1}{k_{0}} \sin k_{0} x_{0}\right] \text {. } \\
& n(0)=\lim _{k \rightarrow \infty} k F(k)=\lim _{k \rightarrow \infty} \frac{k}{k^{2}+k_{0}^{2}} \frac{k_{a}}{k_{2}}\left(k+k_{i}\right) \sqrt{\frac{(1-c)\left(1-c /\left(1+k_{0}^{2}\right)\right)}{2(c-1)(1-c / c)}} e^{\frac{k}{f f} \int_{0}^{2} \frac{d s}{1+k s}\left(T_{c}-T_{c}\right)} . \\
& e^{\frac{k}{\pi} \int_{0}^{1} \frac{d s}{2+k s}\left(T_{c}-\pi+\pi-T_{e} j\right.} \longrightarrow e^{\frac{\lambda}{\pi} \int_{0}^{2} \frac{d s}{s}\left(T_{c}-\pi\right)-\frac{1}{\pi} \int_{0}^{1} \frac{d s}{\pi}\left(T_{c}-\pi\right)}-\sqrt{(c-1) k_{2}{ }^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& n(0)=\sqrt{\frac{1-c /\left(1+k_{0}^{2}\right)}{2\left(l-c^{\prime} / c\right)}} \\
& h(x)=\frac{1}{2 H i} \int_{-i \infty}^{i \infty} d k H(k) e^{k x}
\end{aligned}
$$

$$
=\frac{1}{2 n 1} \int_{-L} \frac{d k e^{k x}\left(k+k_{2}\right)}{k^{2}+k_{0}^{2}} C e^{\frac{k}{T}} \int_{0}^{1} \frac{d s}{x+k s}\left(T_{c}-T_{c}\right)
$$

Fig. 12

$$
\text { where } c=\frac{k_{0}}{k_{1}} \sqrt{\frac{\left(1-c /\left(1+k_{0}^{2}\right)\left(1-c^{\prime}\right)\right.}{2(c-1)(1-c \cdot / c)}}
$$

$$
h(x)=\frac{1}{2 \pi L} \int_{-\infty}^{-2} d k e^{k x} C \frac{k_{2}^{2}(c-1)}{k_{0}^{2}\left(k_{2}-k\right)(1-c)} \quad \frac{k}{\pi} \int_{0}^{2} \frac{d_{s}}{1-k s}\left(T_{c}-T_{6}\right)\left\{\frac{1-\frac{c^{\prime}}{2 k}\left(\log \left|\frac{1+k}{1-k}\right|-\pi i\right)}{\frac{c}{2 k}\left(\log \left|\frac{\mid-k}{1-k}\right|-\pi i\right)-1}\right.
$$

$$
\left.-\frac{1-\frac{c^{\prime}}{z k}\left(\operatorname{cog}\left(\frac{1+h}{2 k}\right)+\pi i\right)}{\frac{c}{z k}\left(\log \left(\left.\frac{1+k}{1-k} \right\rvert\,+\pi i\right)-1\right.}\right\}
$$

- 40 -

Replecing k by -k gives

$$
h(x)=\frac{2}{2 \pi t} \int_{1}^{\infty} d k e^{-k x} \frac{k_{2}}{k_{0}\left(k_{1}+k\right)} \sqrt{\frac{\left(3-c /\left(1+k_{0}\right)^{2}\right)(c-1)}{2(1-c \cdot)(1-c / c)}} e^{-\frac{k}{\pi} \int_{0}^{1} \frac{d s}{1+k s}\left(T_{c}-T_{0}\right)}\{ \}
$$

where

$$
\begin{aligned}
& \left\}=\frac{2 a i}{2 k} \frac{c\left(1-\frac{c}{2 k} \log \frac{k+1}{k-1}\right)+c^{c}\left(\frac{c}{2 k} \log \frac{k+2}{k-2}-1\right)}{\left(\frac{c}{2 k} \log \frac{k+1}{k-1}-1\right)^{2}+\left(\frac{c \pi}{2 k}\right)^{2}}=-\frac{\pi i}{k} \frac{c-c}{\left(\frac{c}{2 k} \log \frac{k+1}{k-1}-1\right)^{2}+\left(\frac{c \pi}{2 k}\right)^{2}} .\right. \\
& h(x)=-\frac{k_{a} c}{2 k_{p}} \sqrt{\frac{\left(2-c /\left(2+k_{a}^{2}\right)\right)(c-1)\left(1-c^{\prime} / c\right)}{2\left(1-c^{\prime}\right)}} \int_{1}^{\infty} \frac{2 d k}{k+k_{1}} \frac{e^{-\frac{k}{\pi} \int_{0}^{2} \frac{d s}{1+k s}\left(T_{c}-T_{c}\right)}}{\left(\frac{c}{2} \log \frac{k+1}{k-1}-k\right)^{2}+\left(\frac{c \pi}{2}\right)^{2}} e^{-k x}
\end{aligned}
$$

Now returning to $G(k)$

$$
\begin{aligned}
\operatorname{rag} G(k) & =\frac{k}{\pi} \int_{0}^{1} \frac{d s}{1-k B}\left(T_{c}-T_{c}\right)+\log \frac{B k_{1}}{k_{1}-k} \\
& \left.=\frac{k}{n} \int_{0}^{1} \frac{d s}{1-k s}\left(r_{c}-T_{c}\right)+\log \frac{k_{1}}{k_{1}-k}+\frac{1}{2} \log \frac{(c-1)\left(1-c /\left(1+k_{0}\right)\right.}{2 k_{0}^{2}\left(1-c^{\prime}\right)\left(1-c^{\prime} / c\right)}\right)
\end{aligned}
$$

A cheok of this expression is afforded by oveluating

$$
\begin{aligned}
& B(-0)=\lim _{k \rightarrow \infty} \operatorname{dkG}(k)=\sqrt{\frac{2-c /\left(1+k_{0}{ }^{2}\right)}{2(1-c q / c)}}=n(0) \quad \text { (cr. (2,20)). } \\
& G(k)=\int_{-\infty}^{0} d x e^{-k x} g(x)=\int_{-\infty}^{0} d x e^{-k x}\left(A e^{k e^{x}}+j(x)\right) \text {, } \\
& \text { where } f(x)=o\left(\theta^{k_{2} x}\right) \quad \text { as } x \rightarrow-\infty
\end{aligned}
$$

The first term will be called $k_{1} x_{2}$ by enalogy with the x_{2} introduced in (2.18), the second can be evaluated by the use of (2.11) and (2.13).

$$
\begin{equation*}
e^{\frac{k_{2}}{\pi} \int_{0}^{2} \frac{d s}{2-k_{1}^{s}\left(T_{c}-T_{4} \cdot\right)}}=e^{k_{1} k_{2}} \cdot \sqrt{\frac{2 k_{0}^{2}\left(c / c^{\prime}-1\right)(2-c)}{\left(k_{1}{ }^{2}+k_{0}^{2}\right)(c-1)\left(c \cdot /\left(k-k_{2}^{2}\right)-1\right)}} \tag{2,21}
\end{equation*}
$$

Bothat

$$
\begin{align*}
& A=\frac{k_{1}}{\sqrt{h_{1}^{2}+k_{0}^{2}}} \frac{2\left(1-c /\left(1+k_{0}^{2}\right)\right)}{\varepsilon \cdot\left(6 \cdot\left(1-k_{1}^{2}\right)-1\right)} \cdot e^{k_{1} x_{2}} \\
& f(x)=\frac{k_{1} \sqrt{c\left(1-c /\left(a+k_{1}^{2}\right)\right)}}{\sqrt{k_{1}^{2}+k_{0}^{2}} \sqrt{c \cdot\left(c \cdot /\left(1-k_{1}^{2}\right)-1\right)}} e^{k_{1}\left(n+x_{2}\right)}+j(x) \tag{2.22}\\
& j(k)=G(k)-\frac{A}{k_{1}-k}
\end{align*}
$$

$$
=\frac{k_{1}}{k_{0}\left(k_{2}-k\right)} \sqrt{\frac{(k-1)\left(2-c /\left(1+k_{0}^{2}\right)\right)}{2\left(1-c^{\prime}\right)(1-c / c)}}\left\{e^{\frac{k}{\pi} \int_{0}^{2} \frac{d s}{1-k^{3}}\left(T_{c} \cdot T_{c}\right)}-e^{\frac{k_{2}}{\pi} \int_{0}^{2} \frac{d s}{1-k_{2} s}\left(T_{c}-T_{c} \cdot\right)}\right\}
$$

$$
\begin{aligned}
& G(k)=\frac{A}{k_{2}-k}+J(k), \quad J\left(k_{1}\right) \text { is fintte. } \\
& \log G\left(k_{1}+\varepsilon\right)=\log \left(\frac{-A}{\varepsilon}\right)+O(\varepsilon) \\
& =\log \left(\frac{-k_{7}}{\varepsilon}\right)+\frac{k_{1}}{\pi} \int_{0}^{1} \frac{d s}{1-k_{1}{ }^{s}}\left(T_{e^{-T}} c^{\theta}\right)+\frac{1}{2} \log \frac{(c-1)\left(1-c /\left(1+k_{0}^{2}\right)\right.}{2 k_{0}^{2}\left(1-c^{1}\right)\left(1-0^{9} / c\right)} \\
& A=\frac{k_{2}}{k_{0}} \sqrt{\frac{(c-1)\left(1-c /\left(h+k_{0}^{2}\right)\right)}{2(1-c)(1-c)}} \quad e^{\frac{k_{1}}{1} \int_{0}^{2} \frac{d s}{1-h_{1} s}\left(T_{c}-T_{c}\right)} . \\
& \frac{k_{1}}{\pi} \int_{0}^{1} \frac{d s}{1-k_{1} s}\left(T_{c}-T_{c}\right)=\frac{k_{2}}{\pi} \int_{0}^{1} \frac{d s}{1-k_{1}{ }^{2} s^{2}}\left(T_{c}-T_{c}\right)+\frac{k_{1}^{2}}{\pi} \frac{s d s}{1-k_{3}^{2} s^{2}}\left(T_{c}-T_{c}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& j(x)=\frac{2}{2 \pi i} \int_{-i \infty}^{i \infty} d k e^{k x} J(k), \\
& =\frac{2}{2 \pi i} \int_{-i \infty}^{i \infty} d k \frac{e^{k_{x} k_{2}}}{k_{0}\left(k_{2}-k\right)} \sqrt{\frac{(c-2)\left(1-c /\left(1+k_{0}^{2}\right)\right)}{2\left(1-e^{\prime}\right)\left(1-c^{\prime} / c\right)}}\left\{e^{\frac{k}{\pi} \int_{0}^{2} \frac{d s}{1-k 5}\left(T_{c}-T_{e} \cdot\right)}-e^{\frac{k_{2}}{\pi} \int_{0}^{2} \frac{d s}{1-k_{2}^{5}}\left(T_{L}-T_{c} \cdot\right)}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{2 \pi i} \frac{k_{0}}{k_{1}} \sqrt{\frac{(2-c \cdot)\left(2-c h\left(1+k_{0}^{2}\right)\right.}{2(c-\lambda)(2-c / / c)}} \int_{1}^{\infty} \frac{d k\left(k+k_{1}\right) e^{k x} e^{\frac{k}{6} \int_{0}^{2} \frac{d s}{k^{2}+k s}\left(T_{c}-T_{c}\right)}}{\left.\frac{\frac{c}{2 k}\left(\log \frac{k+1}{k-1}+\pi i\right)-1}{1-\frac{k^{\prime}}{2 k\left(\log \frac{k+1}{k-i}+\pi i\right)}}\right)} \\
& \left.-\frac{\frac{c}{2 E}\left(\log \frac{k+1}{k-1}-\pi i\right)-1}{2-\frac{c^{2}}{2 k}\left(\log \frac{k+1}{k+1}+\pi i\right)}\right\} \text {, }
\end{aligned}
$$

The sacond solution differs in having as an asymptotio solution In the tamper a growing exponential (growing for increasing negative x) ${ }^{\circ} \mathrm{k}_{1} \mathrm{x}$. The core solution is again sinusoidal, differing only in phase from the first solutions Thus, the $20 f t$ contour must still lie to the right of the roots of $P(k)$ at $\neq i k_{0}$. Tho tamper solution, $g(x)$ is to grow as $e^{-k_{1} x}$. Thus $G(k)$ must have a pole at x_{1}. (It may also have a pole at tk , the corresponding asymptotio $g(x), e^{k} 1^{x}$, will be dominated by the reouing exponential a) To give $G(x)$ a pole at ok the right contour must pass to the Left of the pole of $P(k)$ at ok ${ }_{1}$ Since the loftocontour must alweys be to the ioft of the right contours the two contours must be taken an in fig: 7 . (Other oontour arruagemonts are possibles o.ge

F1g. 13
but the solutions so obtained may be represented as Inear combinations of the two solutions obtained fron the contours of Fig. 6 and Fig. 70 Deforming the contours of Fige 7 so as to permit simplification of
the interrals gives this form:

$$
\text { Fig. } 14
$$

Taking as before:

$$
\begin{aligned}
& \log P_{L}(k)=-\frac{1}{2 H} \int_{I} \frac{d k^{\prime}}{k^{\prime}-k} \log P\left(k^{0}\right)=\log F(k)+\text { constant } \\
& \log P_{R}(k)=\frac{1}{2 d} \int_{R} \frac{d k^{n}}{k^{\prime}-k} \log P\left(k^{\prime}\right)=\log G(k)+\text { constant }
\end{aligned}
$$

Tho integral, $\log P_{R}(k)$. may bo broken up into piecos whioh have beon evaluated proviouslyo

$$
\begin{aligned}
& \log P_{R}(k)=\frac{1}{2 \pi 1} \int_{R} \frac{d k^{8}}{k^{0}-k} \log \left(2 k^{\prime} \log \frac{1+k^{\prime}}{1-k^{\prime}}-1\right)-\frac{1}{2 \pi I} \int_{K^{\prime} k^{\prime} \infty k^{\prime}} \log \left(1-\frac{c^{\prime}}{2 k^{\prime}} \log \frac{1+k^{\prime}}{1-k^{\prime}}\right) \\
& =\frac{1}{\pi} \int_{0}^{1} \frac{d s}{5(1-k g)} T_{c} \cdot \frac{1}{2 \pi I} \int_{=k_{i}}^{\infty} \frac{d k^{i}}{k-1 k}(-2 \mu i) \\
& -\frac{1}{2 \pi} \int_{R_{\text {decayjug }}} \frac{d k^{\prime}}{k^{\prime}-k} \log \left(1-\frac{c^{\prime}}{2 k!} \log \frac{1+k^{\prime}}{1-k^{T}}\right)
\end{aligned}
$$

The last term has been evaluated in getting $\log \mathrm{P}_{\mathrm{R}}(\mathrm{k})$ for the decaying

solutions

$$
\begin{aligned}
& \log P_{R}(k)= \frac{1}{\pi} \int_{0}^{1} \frac{d s}{s(1-k s)} T_{c}+\int_{0}^{-1 / k_{2}} \frac{d s}{s(1-k s)}+\int_{0}^{1 / k} \frac{d s}{s(1-k s)} \\
&-\frac{1}{11} \int_{0}^{1} \frac{d s}{s(1-k s)} T_{c} \\
&= \frac{k}{14} \int_{0}^{1} \frac{d s}{1-k s}\left(P_{c}-T_{c}\right)+\frac{1}{\pi} \int_{0}^{1} \frac{d s}{s}\left(T_{c}-T_{c^{\prime}}\right)+2 \int_{0}^{\pi} \frac{d s}{s}-\log \left(k^{2}-k_{1}^{2}\right)_{0}
\end{aligned}
$$

$$
\begin{equation*}
\log G(k)=\frac{k}{\pi} \int_{0}^{1} \frac{d s}{\log }\left(T_{c}-T_{c^{\prime}}\right)-\log \left(k_{D}^{2}-k^{2}\right)+\log B \tag{2,24}
\end{equation*}
$$

It may bo observed that the $G(L)$ here obtained differs by a factor of $\frac{B^{0}}{k_{1}\left(k+k_{1}\right) B}$ from the $G(k)$ proviously obtained. Sirce the ratio of $F(k)$ to $G(k)$ ia the same, the two $F(k)^{\prime}$'s must differ by the same factor We nay therefore mrite $\log P(k)$ imnediatelly

$$
\log F(k)=\frac{k}{\pi} \int_{0}^{1} \frac{d s}{1+k s}\left(T_{c}-T_{c^{\prime}}\right)+\log \frac{B^{0} k_{0}^{2}\left(1-c^{0}\right)}{k_{1}^{2}\left(k^{2}+k_{0}^{2}\right)(c-1)}
$$

B^{\prime} is again to bo evaluated to give the asymptotic sine solution unit amplitude.

$$
\begin{align*}
& f(x)=\sin k_{0}\left(x+x_{1}\right)+h(x), x>0, h(x) \rightarrow 0 \text { \& } s x \rightarrow \infty \tag{2.25}\\
& F(k)=\frac{1}{21}\left(\frac{e^{i k_{0} x_{1}}}{k-i k_{0}}-\frac{e^{-i k_{0} x_{1}}}{k+i k_{0}}\right)+K(k) . \\
& \lim _{\varepsilon \rightarrow 0}\left[\log F\left(i k_{0}+\varepsilon\right)-\log F\left(0 i k_{0}+\varepsilon\right)\right]=\log (-1)+2 i k_{0} x_{1} \\
& =\operatorname{Lik}_{i} \int_{0}^{1} \frac{d s}{1+k_{0} \sigma_{j}}\left(T_{c}-T_{c},\right)+\log \tag{-1}
\end{align*}
$$

$$
\begin{equation*}
x_{1}=\frac{1}{n} \int_{0}^{1} \frac{d s}{1+k_{0} z_{s} Z}\left(T_{c}-T_{c^{\prime}}\right) . \quad\left(x_{j}<0 \operatorname{since} T_{c}<T_{c}, \text { for } 0<s<1\right) \tag{2.26}
\end{equation*}
$$

$\lim _{\varepsilon \rightarrow 0}\left[\log F\left(1 k_{0}+\varepsilon\right)+\log F\left(-i k_{0}+\varepsilon\right)+2 \log \varepsilon\right]=-2 \log 2$,

$$
=\frac{2 k_{0}^{2}}{11} \int_{0}^{1} \frac{s d s}{1+k_{0}^{2} s^{2}}\left(T_{c}-T_{c}\right)+2 \log \frac{\left.B^{\prime} k_{0}^{2}(1-c)\right)}{k_{1}^{2}(0-1)}-210 g\left(2 k_{0}\right)
$$

$$
\log B^{x}=\log \frac{k_{1}^{2}(c-1)}{k_{0}\left(1-c^{1}\right)}-\frac{k_{0}^{2}}{n} \int_{0}^{1} \frac{s d s}{1+k_{0}^{2} g^{2}}\left(T_{c}-T_{c^{\prime}}\right),
$$

$$
=\log \frac{k_{1}^{2}(c-1)}{k_{0}\left(1=c^{\prime}\right)}-\frac{1}{2} \log \frac{2(c-1) k_{k}^{2}(1-c / 0)}{\left(1-c /\left(1+k_{0}^{2}\right)\left(k_{1}^{2}+k_{0}^{2}\right)\left(1 o c^{\prime}\right)\right.}
$$

$$
=\frac{1}{2} \log \frac{k_{1}^{2}(c-1)\left(1-0 /\left(1+k_{0}^{2}\right)\left(k_{1}^{2}+k_{0}^{2}\right)\right.}{2 k_{0}^{2}\left(1-c^{1}\right)\left(1-c^{1} / c\right)}
$$

$$
\log P(k)=\frac{k}{\pi} \int_{0}^{1} \frac{d s}{T+k B}\left(T_{c} P_{c}\right)+\log B^{0}+\log \frac{k_{0}^{2}\left(1-c^{\prime}\right)}{k_{1}^{2}\left(k^{2}+k_{0}^{2}\right)(c o 1)}
$$

$$
=\frac{k}{\pi} \int_{0}^{1} \frac{d s}{1+k s}\left(T_{c}-T_{c},\right)+\frac{1}{2} \log \frac{k_{0}^{2}(1-c)\left(1-c /\left(1+k_{0}^{2}\right)\left(k_{1}^{2}+k_{0}^{2}\right)\right.}{2 k_{1}^{2}(c-1)\left(k^{2}+k_{0}^{2}\right)^{2}(1-c, / c)}
$$

$$
F(k)=\frac{k_{0} \sqrt{k_{1}^{2}+k_{0}^{2}}}{k_{1}\left(k^{2}+k_{0}^{2}\right)} \sqrt{\frac{(1-0)\left(1-c /\left(1+k_{0}^{2}\right)\right.}{2(c-1)(1-c) / c)}} e^{\frac{k}{\pi}} \int_{0}^{1} \frac{d s}{1+k s}\left(T_{c}-T_{c}\right)
$$

$$
H(k)=\frac{k_{0} \sqrt{k_{1}^{2}+k_{0}^{2}}}{k_{1}\left(k^{2}+k_{0}^{2}\right)} \sqrt{\frac{\left.(1-c)(1-c)\left(1+k_{0}^{2}\right)\right)}{2(c-1)(1-c-j)}} e^{\frac{k}{\pi} \int_{0}^{2} \frac{d s}{1+k s}\left(T_{c}-T_{c}\right)}-\frac{k \sin k_{0} x_{1}+k_{0} \cos k_{0} k_{0}}{k^{2}+k_{0}^{2}}
$$

$$
\begin{equation*}
h(x)=\frac{3}{2 \pi i} \int_{-i \infty+\delta}^{i \infty+\delta} d k g(k) e^{k \delta}=\frac{1}{2 \pi i} \int_{-L^{\prime \prime}} d k F(k) e^{k x} \tag{cf.pig12}
\end{equation*}
$$

sinco $H(k)$ is regular at $\pm i k_{0}$ and $F(k)-H(k)$ is singieavalued acrose the $-\infty \rightarrow-1$ cut.

$$
h(x)=\frac{k_{2} c \sqrt{k_{2}^{2}+k_{0}^{2}}}{2 k_{0}} \sqrt{\frac{\left(1-c /\left(1+k_{2}^{2}\right)\right)(c-1)\left(1-c^{\prime} / c\right)}{2\left(1-e^{\prime}\right)}} \int_{1}^{\infty} \frac{k_{d} k}{k^{2} k_{1}^{2}} \frac{e^{-\frac{k}{\pi} \int_{0}^{1} \frac{d s}{1+k s}\left(T_{c}-r_{c}\right)}}{\left(\frac{c}{2} \log \frac{k+1}{k-2}-k\right)^{2}+\left(\frac{\pi c}{2}\right)^{2}} \cdot e^{-k x}
$$

$\log G(k)=\frac{k}{\pi} \int_{0}^{1} \frac{d s}{1 \sigma k s}\left(T_{c}-T_{c}\right)-\log \left(k_{1}^{2}-k^{2}\right)+\log B^{n}$.

$$
\begin{aligned}
G(k) & =\frac{k_{1} \sqrt{k_{1}^{2}+k_{0}^{2}}}{k_{0}\left(k_{1}^{2}-k^{2}\right.} \\
\frac{(c-1)\left(1-c /\left(1+k_{0}^{2}\right)\right.}{2\left(1-c^{0}\right)\left(1-c^{\prime} / c\right)} & e^{\frac{k}{n}} \int_{0}^{0} \frac{d s}{1-k s}\left(T_{c}-T_{c^{\prime}}\right) \\
& =\operatorname{say}_{0} \frac{c}{k_{1}^{2}-k^{2}} e^{\frac{k}{\pi} \int_{0}^{1} \frac{d s}{1-k s}\left(T_{c} \in T_{c^{\prime}}\right)}
\end{aligned}
$$

$G(k)$ has simple poles at $\pm k_{1}$ and a branch point at ol. We will therofore bo able to write $g(x)$ as

$$
\begin{aligned}
& g(x)=A e^{-k_{i} x}+B e^{k} l^{x}+j(x), j(x)=O\left(e^{x}\right) \text { as } x \rightarrow \infty \\
& G(k)=\frac{A}{-k-k_{1}}+\frac{B}{-k+k_{1}}+J(k)_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } \\
& D=\frac{k_{0} \sqrt{k_{1}^{2}+k_{1}{ }^{2}}}{k_{1}} \sqrt{\frac{\left(1-c^{\prime}\right)\left(1-c /\left(1+k_{0}^{2}\right)\right)}{2(c-1)\left(1-c^{\prime} / c\right)}}
\end{aligned}
$$

$$
\begin{aligned}
& =48- \\
& -\frac{k_{1}}{n} \int_{0}^{1} \frac{d s}{j+k_{1} s}\left(T_{c^{-}} T_{c^{0}}\right) \\
& A=\frac{C}{\delta r_{2}} \theta \\
& B=+\frac{C}{d} e^{k_{1} \int_{0}} \frac{d s}{1-k_{1} s}\left(T_{c}-T_{c}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } x_{2}=\frac{1}{\pi} \int_{0}^{1} \frac{d s}{1-k_{1} 2^{2}}\left(T_{0}=T_{0}\right) \quad\left(x_{1} \leqslant x_{2}-0\right)
\end{aligned}
$$

$$
\begin{align*}
& g(x)=\sqrt{\frac{c\left(1-c /\left(l+k_{0}^{2}\right)\right)}{s^{0}\left(c^{0} /\left(1-k_{2}\right)-1\right)}} \sinh k_{1}\left(x+x_{2}\right)+f(x) \tag{2.27}\\
& J(x)=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} d k e^{k x}\left\{\frac{c}{k_{1}^{2}-k^{2}} e^{\frac{k}{3} \int_{0}^{1} \frac{d s}{1-k s}\left(T_{c}-T_{e}\right)}-\frac{A}{-k-k_{1}} \cdot \frac{B}{-k+k_{i}}\right\}
\end{align*}
$$

$$
\begin{aligned}
& \text { - } 49 \text { - } \\
& j(x)=\frac{\left(c-c^{-}\right) C k_{0}^{2}\left(1-c^{\prime}\right)}{2 k_{1}^{2}((-1)} \int_{1}^{\infty} \frac{k \frac{1 k}{} e^{k k} \int_{0}^{x} \frac{d s}{1+k s}\left(T_{c}-T_{c}\right)}{\left(k^{2}+k_{0}^{2}\right)\left[\left(k-\frac{c^{\prime}}{2} \log \frac{k+1}{k-1}\right)^{2}+\left(\frac{\left(c^{\prime}\right.}{2}\right)^{2}\right]},
\end{aligned}
$$

We now hare two solutions whose asymptotic forms are:

$$
\begin{array}{r}
\sin k_{0}\left(x+x_{1}+\frac{1}{k_{0}} \tan -1 \frac{k_{0}}{k_{1}}\right) \Leftrightarrow \frac{k_{1} \sqrt{c\left(1-c /\left(1+k_{0}^{2}\right)\right)}}{\sqrt{k_{1}^{2}+k_{0}^{2} \sqrt{c^{0}\left(c^{8} /\left(1-k_{1}^{2}\right)-1\right)}}} 0^{k_{1}\left(x+x_{2}\right)} \\
\text { (of. 201\% 2.18 }
\end{array}
$$

$$
\begin{aligned}
\sin k_{0}\left(x+x_{1}\right) \longleftrightarrow \frac{\left.\sqrt{c\left(1-c /\left(1+k_{0}^{2}\right)\right.}\right)}{\sqrt{c^{1}\left(c^{2} /\left(1-k_{2}^{2}\right)-1\right)}} & \sinh k_{1}\left(x+x_{2}\right) \\
& \text { (cfo 2.25.2.26. 2.27) }
\end{aligned}
$$

Fo introduce the notation,

$$
\begin{aligned}
& \beta \equiv \sqrt{c\left(1-c /\left(1+k_{0}^{2}\right)\right)} \\
& \beta^{\prime}\left.\equiv \sqrt{c^{\prime}\left(c \cdot /\left(1-k_{1}^{2}\right)-1\right.}\right) \\
& n_{0}(x) \leftrightarrow \sqrt{\frac{k_{1}^{2}+k_{0}^{2}}{k_{1} \beta} \sin k_{0}\left(x+x_{1}+\frac{1}{k_{0}} \tan { }^{-1} \frac{k_{\mathcal{D}}}{k_{1}} \longleftrightarrow \frac{e^{k_{1}\left(x+x_{2}\right)}}{\beta^{1}}\right.} \\
& n_{\mathbb{1}}(x) \longleftrightarrow \frac{\sin k_{0}\left(x+x_{1}\right)}{\beta} \longleftrightarrow \frac{\operatorname{sink} k_{1}\left(x+x_{2}\right)}{\beta^{\prime}}
\end{aligned}
$$

$n_{0}(x)$ is $\frac{\sqrt{k_{1}^{2}+k_{0}^{2}}}{k_{1} \beta^{2}}$ times the "decaying solution" first obtained (2.14 to 2,23). $n_{1}(x)$ is $\frac{1}{\bar{\beta}}$ times the "growing solution" next obtained (2,24 to 2.27). Subtracting $k_{1} n_{1}(x)$ from $k_{1} n_{0}(x)$ fiver

$$
\begin{aligned}
n_{2}(x) & =k_{1} n_{0}(x)-k_{1} n_{1}(x) \\
& \leftrightarrow \frac{\sqrt{k_{1}^{2}+k_{0}^{2}}}{\beta}\left(\sin k_{0}\left(x+x_{1}\right) \frac{k_{1}}{\sqrt{k_{1}^{2}+k_{0}^{2}}}+\cos k_{0}\left(x+x_{1}\right) \frac{k_{0}}{\sqrt{k_{1}^{2}}+k_{0}^{2}}\right) \\
& =\frac{k_{1}}{\beta} \sin k_{0}\left(x+x_{1}\right) \\
& =\frac{k_{0}}{\beta} \cos k_{0}\left(x+x_{1}\right) \longleftrightarrow \frac{k_{1}}{\beta^{\prime}} \cosh k_{1}\left(x+x_{2}\right)
\end{aligned}
$$

If wo now subtract $n_{1}(x)$ from $\frac{n_{2}(x)}{k_{1}}$ wo get

$$
\begin{aligned}
n_{3}(x) & =\frac{n_{2}(x)}{k_{1}} \cdot n_{1}(x) \leftrightarrow \frac{1}{\beta}\left(\cos k_{0}\left(x+x_{1}\right) \cdot \frac{k_{0}}{k_{1}}-\sin k_{0}\left(x+x_{1}\right)\right) \\
& =-\frac{\sqrt{k_{1}{ }^{2}+k_{0}^{2}}}{k_{1} \beta} \text { an } k_{0}\left(x+x_{1} \cdot \frac{1}{k_{0}} \tan ^{-1} \frac{k_{0}}{k_{1}}\right) \\
& \leftrightarrow \frac{1}{\beta^{\prime}} 0^{-k_{1}\left(x+x_{2}\right)}
\end{aligned}
$$

Wo now have two simple pairs of linearly independent solutions; $n(x)$ and $n_{2}(x)$; $n_{0}(x)$ and $n_{3}(x)$. For any one of these four solutions, hence also for any other solution made from them as linear combinations, the asymptotic solutions on the two sides and the derivatives of the asymptotic solutions

havo a constant ratio whon avaluated at $x=0 x_{1}$ and $x=-x_{2}$ for the core and tamper solutions respectivelyo
$\frac{\text { asymptotic core solution }\left(x=\propto x_{1}\right)}{\text { asynptotio tamper solution }\left(x=x_{2}\right)}=\frac{-k_{0} \beta^{\prime}}{k_{1} \beta}=\frac{\begin{array}{c}\text { derivative of asympotio } \\ \text { core solution }\left(x=-x_{2}\right)\end{array}}{\begin{array}{l}\text { derivative of asymptotio } \\ \text { tamper solution }\left(x=-x_{2}\right)\end{array}}$

The points, $-x_{1}$ and $=x_{2}$ are both on the coresoide of the laterface $\theta_{6}=x_{2}$ boing the farther from the intorface. This property leads to the following recipe:

In each medium the asymptotic solution is one of the family of solutions of the equation: $\left(\Delta+k^{2}\right) \mathfrak{n}(x) \approx 0, \frac{k}{\tan ^{-1}}=c$ (k may be either real or imaginary). Each of the two asymptotic solutions to bo joined at an interface is examined at its "fiducial point", distant Δx from the interface on the side of greater 0 .

$$
\Delta x=\frac{1}{1} \int_{0}^{\pi} \frac{d s}{1 \infty k_{s}}\left|x_{c}=T_{c}\right|
$$

(The dx for each solution uses its own k which may be either real or inaginarys) The two asymptotic solutions, sach at its own fiducial point have equal fagarithmic derivatives. The magnitudes of the two solutions, evaluated at their fiducial points have tho same ratio as their valuos of the quantity.

$$
\frac{k}{\beta}=\sqrt{\frac{k^{2}}{c\left(1 \infty c /\left(1+k^{2}\right)\right.}}=\sqrt{\frac{k^{2}}{c\left(c /\left(1-k^{2}\right) \infty 1\right.}} \quad(\operatorname{fon} k=i k)
$$

$-52=$

This recipe paraphrases the comeationoformule given above fdentifying the two asymptotia solutions on tho twosides of an interface. It differs from a simple diffusion theoretio boundary condition connecting tho asymptotic solutions only in so far as

1) Δx differs from 0 (very little a few hundredths)
2) $\frac{k}{\beta}$ differs from a constant (doubles between $c=07$ and 2.7)

This recipe connects only the asymptotio solutions。 Detalied features of the solutions may bo gotten from Table Io

\qquad

Symbole used in Table I.

$$
T_{\mathrm{c}}=\tan ^{\operatorname{co}}\left[\frac{\pi / 2}{\tanh ^{-1}-1 / \mathrm{cs}}\right] \cdot T_{c}(0)=\pi_{0} T_{c}(1)=0
$$

In untamped solution

$$
\begin{aligned}
& x_{0}=\frac{1}{n} \int_{0}^{0} \frac{d s}{1+k_{0}^{2} s^{2}} T_{c}, \frac{k_{\omega}}{\tan ^{-1} k_{0}}=c, \beta=\sqrt{c\left(0-c /\left(1+k_{0}^{2}\right)\right.}, c>1 \\
& x_{0}=\frac{1}{\pi} \int_{0}^{1} \frac{d s}{1.0 k_{1}{ }^{2} s^{2}} T_{c} \frac{k_{1}}{\tanh ^{-1} k_{1}}=c, \quad \beta^{0}=\sqrt{c\left(c /\left(1-k_{1}^{2}\right)-1\right.} \cdot c<1
\end{aligned}
$$

In tamped (twoomediun) solutions tho formulao havo been witten for the asse $c>1, c^{\circ}<2$. Other cases follow by analytic extension.

$$
\begin{aligned}
& \frac{k_{0}}{\tan ^{-1} k_{0}^{-}}=c \\
& k_{2}=\sqrt{k_{0}^{2}+k_{1}^{2}} \\
& \frac{k_{1}}{\tanh ^{-1} k_{1}}=c^{0} \\
& \beta=\sqrt{c\left(1=o /\left(1+k_{0}^{2}\right)\right)} \\
& \beta^{\prime}=\sqrt{\left.c^{0}\left(c^{\prime} /(1)-k_{1}^{2}\right)-1\right)} \\
& \pi_{1}=\frac{1}{11} \int_{0}^{1} \frac{d s}{1+k_{0} 2_{s}^{2}}\left(T_{c}-T_{0}\right) \\
& \left(x_{2}<x_{1}<0\right) \\
& \mathrm{x}_{2}=\frac{1}{n} \int_{0}^{1} \frac{\mathrm{ds}}{1-k_{1}{ }^{2}{ }^{2}}\left(T_{c}=T_{c^{0}}\right)
\end{aligned}
$$

Each of the four solutions is presented as an asymptotic solution in each medium (sinusoidal or hyperbolic) to which is added a discrepance torm $(h(x)$ for $x>0, j(x)$ for $x<0)$. This discrspancy term may be of either signo

Appeadix I

Accuracy of twooboundary approximation.
To estimate the error introduced by neglecting the intorection of two boundariee we determine the effect of this negloct in the untamped sphere problom an a first ordar perturbation Tho fundamental eigenvalue, of the aquation

$$
\begin{equation*}
n(x)=c \int_{-a}^{a} d x^{0} n\left(x^{0}\right) \frac{1}{2} g\left(\left|x-x^{2}\right|\right) \quad, \quad n(\infty x)=-n(x) \tag{1}
\end{equation*}
$$

we write as $c=c_{0} /(1+\varepsilon)+O\left(\varepsilon^{2}\right) \quad$ where a $\frac{\pi}{k\left(c_{Q \beta}\right)} \quad x_{0}\left(c_{0}\right)$.

The integrel operator

$$
\int_{-\infty}^{\infty} \mathrm{d} x^{9} \quad \stackrel{e}{<} \mathrm{e}\left(\left|x-x^{0}\right|\right)
$$

we denoto by A.
Mirite $R \underset{\sim}{2} \mathrm{R}(x)=0$ for $x<-8$
$=2$ for $x>$ on
$L \approx L(x)=0 \sin x>a$
$=1$ for $\pi<a$

Equation (1) becomed

$$
\begin{align*}
& (1+\varepsilon=\Lambda R L) n(x)=0 \quad \text { valid for } \infty \leq \pi \leq a \\
& n(x)=n_{0}(x)+n_{1}(x) \tag{i1}\\
& n_{0}(x)=n_{R}(x)+n_{L}(x)=\sin k_{0} x
\end{align*}
$$

where $n_{R}(x)$ and $n_{L}(x)$ are the exact onoboundary solutions satisfying

$$
\begin{aligned}
& =56- \\
& (1-\Lambda R) n_{R}=(1-\Lambda L) n_{L}=0 \\
& n_{R}(x)=R \sin k_{0} x+h_{R}(x) \\
& n_{L}(x)=L \sin k_{0} x+h_{L}(x)
\end{aligned}
$$

Then

$$
\begin{align*}
(1+\varepsilon \Rightarrow \Lambda R L) n_{1}= & (\Lambda R L-1-\varepsilon) n_{0}=(\Lambda R L-1)\left(n_{R}+n_{L}-\sin k_{0} x\right)-\varepsilon n_{0} \\
= & {[\Lambda R \propto 1-\Lambda R(1-L)] n_{R}+[\Lambda L-1-\Lambda L(1-R)] n_{L} } \\
& -[\Lambda-1+\Lambda(R L-1)] \sin k_{0} x-\varepsilon n_{0} \\
= & -\Lambda\left[(1-L) n_{R}+(1-R) n_{L}+(R L-1) \sin k_{0} x\right]=\varepsilon n_{0} \\
= & -\Lambda\left[(1-L) h_{R}+(1-R) n_{L}+(R-R L+L-R L+R L-1) \sin k_{0} x\right] \\
& -\varepsilon n_{0} \\
= & -\Lambda\left[(1-L) h_{R}+(1-R) h_{L}\right]=\varepsilon n_{0} \tag{iii}
\end{align*}
$$

Since n_{1} must be finite, the right aide of (iii) must contain no component, $n(x)_{e}$ satisfying (id)。Noghecting terms of order ε^{2} we have

$$
\begin{align*}
& \int_{-a}^{a} d \operatorname{dxn}(x)\left\{\Lambda\left[(1-L) h_{R}+(1-R) h_{L}\right]+\varepsilon n_{o}\right\}=0 \\
& e \int_{-a}^{a} d x n_{o}^{2}(x)=-\int_{-\infty}^{\infty} d x \operatorname{RLn}(x) \Lambda\left[(1-L) h_{R}+(1-R) h_{I}\right] \\
&=-\int_{-\infty}^{\infty} d x\left[(1-L) h_{R}+(1-R) h_{L}\right] \Lambda \operatorname{RLn}(x) \\
&=0 \int_{-\infty}^{\infty} d x\left[(1-L) h_{R}+(1-R) h_{L}\right] n(x) \tag{iv}
\end{align*}
$$

The leit term of (iv) is roughly sa, The right term is minus twice the integral of the discrepancy term, $h_{k}(>0)$ starting from a point diatant $2 a$ from ita boundary, with $n(x)$ beyond $x=a$. The character of $a(x)$ in tinis region maj be determined by taking $c^{\prime}=0$ in the decaying twoo medium solution. Its value at the surface is

$$
\frac{\beta}{\sqrt{2(c-o)}}=\sqrt{\frac{1-c /\left(1+k_{0}^{2}\right)}{2}}
$$

The right tern of (iv) will be approximately (o2) x $\frac{1=c /\left(1+k_{0}^{2}\right)}{2}$ o $h(2 a)$ divided by thejr combined decay-rate, about 3040 Using these approximations for $0=1.4$ gives

$$
\begin{aligned}
& 2 \varepsilon \sim \frac{-2 x \cdot 25 x \cdot 000095}{3} \\
& \varepsilon \sim=8 \times 10^{-66}
\end{aligned}
$$

for $0=2.0$

$$
\varepsilon \sim=\frac{1}{1.0} \cdot \frac{2 \times 0.58 \times .00117}{3}=-.00045
$$

For a tamped sphere we proceed in a similar way:

$$
\begin{aligned}
& \left\{1+\varepsilon-\Lambda\left[R L+(1-R L) \frac{o^{\prime}}{c}\right]\right\} n(x)=0 \\
& n=n_{0}+n_{1}=n_{R}+n_{L}=\sin k_{0} x+n_{1} \\
& \left\{1=\Lambda\left[R+(1-R) \frac{o^{\prime}}{c}\right]\right\} n_{R}=\left\{1-\Lambda\left[L+(1=1) \frac{c^{\prime}}{c}\right]\right\} n_{L}=0 \\
& \left\{1+\varepsilon-\Lambda\left[\frac{c-c^{\prime}}{c} R L+\frac{c^{\prime}}{c}\right]\right\} n_{1}=\left\{\Lambda\left[\frac{c-c^{p}}{c} R L+\frac{c^{\prime}}{c}\right]=1\right\}
\end{aligned}
$$

$$
\cdot\left(n_{R}+n_{L}-\sin k_{o} x\right)-\varepsilon n_{0}
$$

$$
\begin{aligned}
& =\left\{\Lambda\left[R+(1-R) \frac{c^{2}}{c}\right]-1\right\} n_{R}+\Lambda R(1-L)\left(\frac{c^{2}}{c}-1\right) \operatorname{ia}_{R} \\
& +\left\{\Lambda\left[\bar{L}+(1-L) \frac{e^{\prime}}{c}\right]-1\right\} n_{L}+\Lambda L(1-R)\left(\frac{c^{\prime}}{c}-1\right) n_{L} \\
& +\left\{1-\Lambda\left[\frac{c-o^{\prime}}{2} R L+\frac{c^{\prime}}{c}\right]\right\} \sin k_{0} x-\varepsilon n_{0} \\
& =-\Omega(1-L)\left(\frac{c-c^{\prime}}{c}\right)\left(R \sin k_{0} x+h_{R}+g_{R}\right) \\
& -\Lambda(1-R)\left(\frac{c-c^{r}}{e}\right)\left(L \sin k_{0} x+h_{L}+g_{L}\right) \\
& +\left\{1-\Lambda\left(\frac{c-c^{v}}{c}\right) R L-\frac{c^{\prime}}{c} \Lambda\right\} \sin k_{0} x=\varepsilon n_{G} \\
& =(1-\Lambda) \sin k_{0} x=\frac{c-e^{g}}{c} \Lambda\left\{(1-L) h_{R}+(11-R) h_{H_{H}}\right\}-\varepsilon n_{0} \\
& =-\left(1-\frac{c^{0}}{c}\right) \Lambda\left\{(1-L) h_{K}+(1-R) h_{I}\right\}-\therefore a_{0}
\end{aligned}
$$

Hence as before:

$$
\begin{aligned}
& \varepsilon \sim=\frac{c_{0}}{\sim}\left(1 \infty \frac{e^{\prime}}{c}\right) \int d x n_{0}(x) A\left\{(1 \sim L) h_{R}+(I \infty R) h_{h}\right\} \\
& \sim=\frac{2}{Q}\left(1-\frac{c^{\prime}}{c}\right) \int_{a}^{\infty} d x n_{0}(x) h_{R}(x)
\end{aligned}
$$

Estimating this integral in the same way as before gives

$$
\begin{aligned}
& c=2.0, c^{\prime}=1.0 \\
& \varepsilon \sim=\frac{2}{.072} \times \frac{05 x-071 x-003}{2} \sim 0.0015
\end{aligned}
$$

The chiof factor making these eriors smojl is the rapid decay of $h(x)$ o Takine the matampedmsolution ralues es tyoiaal (they will actually be somewhat too largol it would appear that ε will excocd ol only for core diameters or tamper thicknosses considerably 1 ess than one mean free path. .

$-59=$
Comparison with variation theory results gives about 0.3 as the limiting thickness for 2 per cent accuracy s (cfo Comparison of variation theory and and point results for tamped spheres, LA -205.)

Appendix II - Solution if the inhonogensous 能ienoroHopf cquationo

The Wienermbopf techaque was shown by Ec Reisener (Journsl of Fathematica and Physics, Vola XX (1911), pp 219-223) to permit oxtension to the inhomogeneous probleme we here treat only the one medium problem with the inhomogeneous term confined to $x \geq 0$. The extension to the twomediun problem with an unestricted inhomogensous term is immediately obvious The equation we wish to solve is:

$$
\begin{equation*}
n(x)=\int_{0}^{\infty} d x^{\prime} n\left(x^{p}\right) K\left(x-x^{0}\right)+f_{1}(x) \tag{a}
\end{equation*}
$$

where $f_{1}(x)$ is known and vanishes for $x<0_{0}$ Tho Laplaco transform oi (a)s with the notation used previously is ${ }_{0}$

$$
\begin{align*}
& G(k)=F(k)(k(k)-2)+F(k)=F(k) P(k)+F_{1}(k) \\
& F_{\mathbb{1}}(k)=\int_{0}^{\infty} d x f_{1}(x) e^{-k x} \tag{b}
\end{align*}
$$

The solution of the corresponding homogeneous equation will be clenotad by a subscripto 0

$$
\begin{aligned}
& G_{0}(k)=F_{0}(k) P(k) \\
& P(k)=G_{0}(k) / F_{0}(k)
\end{aligned}
$$

We define $F(k)$ such that

$$
P(k)=F_{0}(k) F(k)
$$

This introduces no eingularitios in $F(k)$ in the right helf=plane sinee $F_{o}(k)$ had no roots in tre right nalfoplane. Thes (b) becomes,

$$
F(k) P(k)=F(k) F_{0}(k)\left(\frac{Q_{0}(k)}{F_{0}(k)}\right)=F(k) G_{0}(k)=G(k) \text { of } F_{I}(k)
$$

Thus orp (k) is the rightoanalytio component of $F(k) G_{o}(k)$, which wo may write as

$$
\left[F(k) G_{0}(k)\right]_{R} \equiv \frac{1}{2 \pi} \int_{L} \frac{d k^{\prime}}{k^{i}=k} E\left(k^{\prime}\right) G_{0}\left(k^{\prime}\right),
$$

where the contour L lies to the lert of k and of the singularities of $G_{0}(k)$ (which are ontirely in the right halfoplene) and to the right of the singularities of $F(k)$ (in the left half-plano).

$$
\begin{equation*}
\left[E(k) G_{0}(k)\right]_{R}=-F_{1}(k) \tag{c}
\end{equation*}
$$

Making use of the fact that $\frac{1}{G_{0}(E)}$ as well as $G_{0}(k)$ is analytic in the left half-plane we can show thet (c) is satisfied by

$$
\begin{equation*}
\underline{F}(k)=-\left[F_{1}(k) \frac{2}{G_{0}(\mathrm{~L})}\right]_{R^{i}} \tag{d}
\end{equation*}
$$

sinoe

$$
\begin{aligned}
{\left[G_{0}(k) P(k)\right]_{R} } & =\left[G_{0}(k) \quad\left[F_{1}(k) \frac{1}{G_{0}(k)}\right]_{R}\right] \\
& =\frac{-1}{(2 \pi 1)^{2}} \int_{L^{\prime}} \frac{d k^{0}}{k^{\prime}-k} G_{0}\left(k^{v}\right) \int_{L^{\prime \prime}} \frac{d k^{\prime \prime}}{k^{\prime \prime}-k^{0}} \frac{F_{1}\left(k^{\prime \prime}\right)}{G_{0}\left(k^{\prime \prime}\right)}
\end{aligned}
$$

$$
\left[G_{0}(k) \underset{F}{ }(k)\right]_{R}=\frac{1}{(2 \pi i)^{2}} \int_{L^{\prime \prime}} d k^{\prime \prime} \frac{F_{1}\left(k^{\prime \prime}\right)}{G_{0}\left(k^{\prime \prime}\right)} \int_{L^{8}} d k^{i} G_{0}\left(k^{8}\right) \frac{1}{k^{n}-K^{2}}\left(\frac{1}{K^{2}-k}+\frac{1}{k^{\prime \prime \prime}-k^{0}}\right)
$$

Displacing the contour Le to the left of $L^{\prime \prime}$ picks up a residue at $k^{\circ}=k^{\prime \prime}$ 。 The remaining k^{6} integral vanishes as it may bo displaced indefinitely to the left, in which direction the integrand decays as $\frac{i}{|k|^{2}}$. This leaves:

$$
\begin{aligned}
{\left[G_{0}(k) E(k)\right]_{R} } & =-\frac{1}{(2 n g)^{2}} \int_{L^{\prime \prime}} d k^{\prime \prime} \frac{F_{I}\left(k^{\prime \prime}\right)}{G_{0}\left(k^{\prime \prime}\right)}\left(\frac{2 n_{i}}{k^{\prime \prime}-k} \cdot G_{0}\left(k^{\prime \prime}\right)\right) \\
& =-\left[F_{I}(k)\right]_{R}=-F_{1}(k)
\end{aligned}
$$

The particular integral of (a) has therefore the Laplace transform

$$
F(k)=-F_{0}(k)\left[\frac{F_{1}(k)}{E_{0}(k)}\right] R .
$$

UNLASSIFIP

-63

To this rasy be added any multiple of the homogenoous solution, $F_{0}(k)$.
Ho extend this method of solution to the twomedium problem requires only the replacement of (a) by the corresponding twomedium equation. This leaves the form of (b) and the rest of the solution unchanged. To treat an inhomogeneous tem existing for both $x>0$ and $x<0$ it suffices to break up the inhomageneous term into a right and a left side part and treat each soparately as above。

A particularly simple special case of the untamped inhomogeneous aquation is that of the albedo problem a

$$
\begin{aligned}
& f_{1}(x)=e^{-a x} \quad a>0 \\
& F_{1}(k)=\frac{1}{k+a}
\end{aligned}
$$

Then

$$
\begin{aligned}
{\left[\frac{F_{1}(k)}{G_{0}(k)}\right]_{R} } & =\frac{1}{2 \pi i} \int_{L} \frac{d k^{\prime}}{k^{2}} \frac{3}{\left(k^{\prime}+a\right) G_{0}\left(k^{8}\right)} \\
& =\frac{1}{G_{0}(-a)(k+a)}+\frac{1}{2 \pi i} \int_{L} \frac{d k^{\prime}}{\left(k^{\prime}-k\right)\left(k^{\prime}+a\right) G_{0}\left(k^{\prime}\right)}
\end{aligned}
$$

In the second term the contour $L^{\text {p }}$ may be displaced indefinitely to the Sefe its integrand may be writton as

$$
\frac{\text { Const。 }}{k^{\prime}}+0\left(\frac{1}{k^{\prime}}, 2\right)
$$

Thus the kodepondent part of the integral vanishes. The constant part represonts an admixture of the homogeneous solution to $F_{1}(k)$ and thereforo may be disregarded. The general solution is therefore

$$
F(k)=a F_{0}(k)\left(\left[\frac{F_{I}(k)}{G_{0}(k)}\right] R+A\right)=-F_{0}(k)\left(\frac{1}{G_{0}(-a)(k+a)}+A\right)
$$

in an albedo problem c will be ≤ 1 and A should be chosen to make $a(x)$ finite for all x_{0} hence $F(k)$ regular at $k=+k_{2}$ despite the pole of $F_{0}(k)$: Thus

$$
\begin{aligned}
& A=-\frac{1}{G_{0}(-a)\left(k_{1}+a\right)} \\
& F(k)=\frac{\left(k-k_{1}\right) F_{0}(k)}{(k+a)\left(k_{1}+a\right) G_{0}(-a)}
\end{aligned}
$$

The density of energent noutrons in the albedo problem as a function of μ_{s} the \cos ine of the angle of emergences fis

$$
\begin{aligned}
N(\mu) & =0 \int_{0}^{\infty} d \operatorname{sn}(x) e^{-x / \mu} \\
& =c F\left(\frac{1}{\mu}\right)
\end{aligned}
$$

and is therefore given directly by the solution $F(k)$ 。

UNCLASSIFIED

encluscrife

-650

TABLE II: $\frac{1}{\pi} \int_{0}^{1} \frac{d \mathrm{~s}}{1+k \mathrm{kB}} \mathrm{T}_{\mathrm{c}}$

x^{6}	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
. 2	. 79408	. 73643	. 69159	. 65676	. 62912	. 60660	. 58792	.57214	. 55862
. 5	. 71142	.66248	. 62406	. 59395	. 56988	. 55026	. 53371	. 51975	. 50774
-8	. 64,816	. 60551	. 57178	. 54518	. 52379	. 50618	. 49442	4,7886	. 46801
1.2	. 58303	. 54650	. 51741	. 49430	. 477561	. 46014	. 44712	. 43599	. 42634
1.6	. 53240	. 50039	. 47474	. 4.5426	. 43763	. 42378	. 412210	-4,0208	. 39338
2.0	. 49160	. 46306	. 44020	.42168	. 40666	-39142	. 38350	. 37437	. 36642

UNCLASSFIED

UNCLASSIIIED

Lacblimen Rught

MLC. FKOM
|APR 18 1245
DATE
RCC. ...nn
NO. REC. .nemem

UNCLASSIFIED

