ms
 JUN 111979

Classification changed to UNCLASSTFIED
by authority of the U. S. Atomic Energy Commission,

21 July
This document contains 35 pages.

HEIGHT OF BURST FOR ATOMIC BOMBS

VERIFIED UNCLASSIFIED

EMs 6-11-79

Work Done By:
R. A. Houghten
F. R. Morsel
F. Refines
J. E. irhiterer

Report Written By:
F. B. Porzel
F. Reins

ABSTRACT
The sicnificant role of lach reflection and the $1^{1 / 3}$ scalinf lav which is used to relate the blast pressures from chomical explosions and nuclear explosions is discussed; the simplo scalines law can ho expodted to fail at distances near the erplosions becauso of the Vrstuv diferent energy donsities involved in tho two cases. A new set of values for rofloctod pressures in the lach rerion is presented as a function of incident pressures and anfles of incidence. These values are basod on Von Neumann's theory of refular reflection, semiemnirical considerations at extremely flat aneles, and Taub's experimental data in the rerion of liach reflection. An atitompt was made to eliminate from the data the effect of certain erperimental conditions, such as feometry of char.se, a factor recently shown to be of considerable importance. A free air curve is deduced for an atomic bomb and a nev set of height of burst curves for atomic bombs is presented. The most strikinf chanfe in the height of burst tables resulting from the present study arises from the observation that in the resion from $\not 又-20$ pisi pak overpressure tho blast from an atomic homb of iv kilotons total ennry release is most noarly eanal to the blnst resultinc; fron a scaled E $\frac{3}{4} W$ dericiencios in present datia are sumarizod. The study indieates that a requirement exists for a broad exporimental program, prior to and

[^0]

APPROVED FOR PUBLIC RELEASE
during future tests of and ne ware of such a proser is briefly indicated.

LA. $743-R$
Series B differs from Series A Ain that the free air carveVfrom Bikini Able is asdeducet for an atone bombs Somewhat altered in accordance with the reflected pressure data given in. A maxes 5 of th. Send stow Sinuate Dietary: Papist.

CHOLASHELU

As is well known the daname aren produced by the blast fror. an atomic bonb can be maximized by choosing the proptr heifht of burst. This reports contains the rosults of a study of the factors which entior into this ohoice of the burst height vith special emphasis on the prossure distribution to be expected from a bomb kurst above a rigid surface. in the absence of structures.

It is, of coursc, necessery in applyinf, the results to actual tarcet configuratiaus to allov for the diminution in blast onerar at a siven position by target destructior an! the shieldinf, of one target element by anotier. n'here is, at present, no accurate quantitative :rooedure for ralinf such sllorances.

Furtiermor*, due allowance should be made for tle meteorolorical conditions at the time of doliver! sinco it is fnow that enery is lost to the blast if the voapon is detonated in rain or fog (2) Tle possible Importance of the effect of the altitude of the target on the blast vave rarrants further study. Firally, the present study is restricted to the blast efjects of air burst atomic bombs and roes not attompt to deal witi: Radiolorical Warfare aspects of the moblem. Sm
II. TTEORY OF RFFIFCTION ATI SCALT:KG IAWS.) -

2.1 Mach Reslection

In the repion of practical interest (2 to 50 psi) the peat: pressures ${ }^{(3)}$ alons; and near the !round are closely related to th:e pressures ${ }^{(3)}$ along and near the !round are closely related to th:e phenomenon of Mach reflection. Intuitively, one might fuess that in
(2) it Co Ponney, IA -in. There is reoent evidence that this effect
(3) Only peal: pressures ajo dif soussof ebagans of the sole dependence

APPROVED FOR PUBLIC RELEASE

order to mexinize the pressure at a target area ky means of an explosive charge located al a fixed distance from the targat area one should placed tre explosive directly above the area to get a "broadside" offect. It is a peculier conseruence of linch reflection that such is not the cese: to achieve maxirnu offect, ore places the charre at an ancle θ to the tarrot area (Fic. 1).

FiE. 1.
This phenomenon has been descrited in some cetail in
(4). Briefly the picture is this: Initially a spherical shock: wive diverfes fron the explosive source, followed by the familiar patitern of a reflected wave, illustratiod in Fifure i. re!e region in winch t?e troo shoc!:s interesct nnly on the sround is alled the rerion of repular reilnction. ine once-shoctrad air in the refion bohind the incident wive is heatird by the passace of the

incident shock and

$$
:: \text { : }
$$

Fir.. 2. Kepular Reflection of a Shock leave.

At a cortain critical angle of incidence (which is a function of the pressure), the reflected shock actually overtakes the incident shock and the two fuse forming a Y like pattern sta + (Fir. 3). The triple point pinch limits the fused region/ continues to rise as the shocks move outward until eventually the incident and reflected waves are ever: where fused into one. The pressure in the fused marion behind the stem or the Y, or ! tach stem as it is called, is roughly double the pressure behind the incident or reflected wave alone.

Although there is evidence that the pressure may vary along the leach ster decreasing by $\sim 15 . \quad$ in passing from the ground to the triple point, we neglect this variation in the present discussion. When more accurate data are obtained this会: refinement might well be made.

Stages:
A. Regular reflection
B. Mach stem barely
formed
C. Mach stem
D. Hech stem completely closed (Fusion omplete over hemisphere)
where:
I - Incident wave
R - Refleoted rave
$\because:$ - Fusion wave (:ack stem)

71: =

Fif. 3. !rovelopment of iach Fattern.
"in mrossurfis recordnal at; a certain heirht \underline{n} above the points \therefore, 's end C as a function of time, would be sonevilat as in
:'isure 4.

Lir. 4. Prorsura i:istribution in Reflection Pattern.

APPROVED FOR PUBLIC RELEASE

Tho point at which the :ach stem is formed, and at which the advantape of the fused shock is obtained, is very sensitive to the hejpht of burst.

At the present tine the rolations in the refion of repular reflection ara reasonably well understood, as a result of the theory of i. vonNeumann ${ }^{(5)}$. Datailed calolsiations hased on this theory were carried (G) , and testad and verifiod by Taub and others. However, tihere is no adequate theory presently available for the rasion of ilach refleotion. In this region, wit will depend primarily upon experimental $\int \begin{aligned} & \text { data } \\ & \text { data } \\ & \text { atatained from small scale explosive shots (TMP, }\end{aligned}$ pentolite). The work by Taub in this region is basec in part on shock data of L. G. Snith (8). There is, hovever, reas on for believing, that shook: tube results are not fenerally applicable to explosions because of the one dinensional character of the shock tube data (cf however remarls on nage 12 below). Nor is sufficient data available from atomic bombs because of the small number fired and the low heipht of burst employed. The only possibly reliable existinf, pressure distance data are from Bikini Able. 'lo free air pressures are as yet available for atomic bomb explosions althouph it is understood that considerable effort will be puti forth to obtain this basic information in the next series of bomb tests.
(5) "Oblique Keflection of Shocks", J. von!!eumann, Explosives Kesearch Report Ho. 12, Navy Uept. Board, Oct. 12, 1943, Confidential.
(6) "Repular Reflection of Shocks in Ideal Gases", H. Polachok and $\mathrm{K}_{\mathrm{A}} \mathrm{J}$. Seéeer, Explosives Research Roport jo. 13, Navy Dept. Hoard, Febıuary 15, 1944, Confidential.
(7) "Peal: Pressure "ejendence on Feight of Detonation", A. I. Taub, IDRC Div. 2, Interim Report No. 1, NDRC A 4076.

APPROVED FOR PUBLIC RELEASE

A considerable portion of t'is paper is devoted to an analysis of tho available small charpe data for llach refleotion, a study of its applicability to atomic bombs, and the maring of a compilation designed for use in height of burst charts.

2.2 Scaling Laws

The forced dependence on small oharge data attaches a preat importance to the so-called $W^{1 / 3}$ scaling law, win oh states that for two explosives of different weipht, equal peak pressures are observed when the volurses involved are pronortional to the riasses and hence to the enery roleases W_{1} and H_{2}. From this it follows that the distances R_{1} (9) and R_{p}, are relatied as the cube roots . That is

$$
\begin{gather*}
\left(\frac{R_{1}}{R_{2}}\right)=\left(\frac{W_{1}}{i_{2}}\right)^{1 / 3} \tag{I}\\
p=\text { constant }
\end{gather*}
$$

Another inportant scalinp law is thal which relates the times for similar events to occur e.t. for the pressure to roach a given value.

$$
\begin{gather*}
\left(\frac{t_{1} r_{4}}{t_{2}^{+}}\right)=\left|\frac{W_{1}}{W_{2}}\right|^{1 / 3} \tag{2}\\
p=\text { constant }
\end{gather*}
$$

The fact that the scaling law has been found to be applicable over a considerable ranre of energy values for two chomioally identioal peometrically similar erplosives is taken as ovidence of its validitye In tilis naper tion; the faniliar assimption is made that ror similar explosive arranfdd in similar initial Freometries all dotails of the shock. phenoriena botlı in space and time will scale according to the cubo roots
(9) For a discussion or scaz reace apg dise tay hiph explosives seo R. F. Cole "r'ndermater Lixnlosions" "roceeton! "igi velgerity Press (1948). Vol。II and III nf the Jciontific ifget relative to the scrline laws as anplied to alomio bombs.

of their weirhts.
It is instructive in considerinf, the relevance of the scaling of blast from H © F . to atomic bombs to conpnre tine conditions at tendinf tho detonation of these turo sources of blast.

Assuminf. a density of $1.5 \mathrm{~mm} / \mathrm{cm}^{3}, 20 \mathrm{kilotons}$ of $\mathrm{i}!\mathrm{VF}^{2}$ would have a radius of 46 feet. An atonic bomb has a radius of the order of a few feet, the exact size dependinf on the model. It is clear that; the initial enery density in an atomic bomb explosion when the shock has reached the surface of the bomb is somethinf like 10^{3} to 10^{4} times that in the chemical explosivo whic! liberates the same detonation enorgy and that the pressures close to an atomic bomb are onmsequently much freater t!an those from chemical explosives. fartier out one mifht hope that the blast waves bocone more nearly similar in view of the decraasinf spatial extent of the chemical explosive relative to the dj.sitance fron the erplosion, i.e., the tendoney for the true solution to approach the point source solution.

There is an armunent which malies it plansible that enern lossese due to surface rouphness may be considerable in the case of the small charpes at least. I'he best small charge data has been obtained from charge fired over concrete; it is not uncormon to have projections of gravel as high as $1 / 16^{\prime \prime}$ quite generally fistributed over the "smooth" surface. For a 20 KT bomb an equivalent roughness would be something like 2 feet. In other words, to obtain comparable conditions, one would have to measure the pressures from an atoric borb over a field liborally strem with 2-foot boulders. On this view, the data ottained over a sandy beach at Enivetor. is more typical of a "smooth surface" than the small charpe data with which it can be compared.

A study vas made of the small charge pressure reflection data available to the authors. In order to provide tire best possbile basis for height of burst charts, an effort was made to eliminate a number of distorting: factors which initial study shored to be important.

Recently, Bloalnoy demonstrated
that free air curves differ marlene for different charge shapes reniorine invalid tho assumption employed in reference (4) that at, rear ci stances, any charge geometry cen be treated as a poiret source. islonfi:ar's curves
 close up than do spherical charges, that these pressures lateen fall to as much as $30, \dot{\circ}$ lower (in the case of TiT blocks, in tie r. pion of 3 psi) and gradually rise amain but are still 20 ; low in the region of 1 psi. Differences for cylindrical shapes rare less rarlec, some 15% low at 4 psi, rising, to about Fe, low at 1 psi. Reynolds (11) has shown that the free air curve from a rectangular fineineor block is quite complex, shows two pressure teals, as a frivit of the noricine of different peak pressures frost the side and butt ones of tie bloole Accordingly we have attempted to corsinar and eliritute, as far as possible, tie cffrets of difforont free air curves.
'LYe reflected pressure at any point on the ground is a

(10) "Attenuation of Spherioni she "reive in Air", "Journal of Applied Physios", July 194fs, Po.67!
(11) T. T. Reynolds pROt

It is, of course, recognized that in the region of the Nach effect the reflection phenomen does not take place in an infjnitesimal region of space but is, as it were, a phenomenon in the large the pressure on the ground is probably also a function of the past history of the shook pattern and consequemty should in prinoiple differ if the pressure versus time and distance surface differs for the explosions under comparison. The earliest part of the faoh phenomenon is of greatest interest to us (12) ard in this region it seems reasonable to expect that "history effects" are small. In addition, we lack experimental information bearing on this question. In consequence wre will negleot the differences in these effects in soaling from one explosive to another.

For convenience we define a quantity, M, called the pressure multiplioation, as

$$
\begin{equation*}
M \equiv\left(\frac{P_{r}}{P_{P}}\right)_{r=\text { constant }} \tag{3}
\end{equation*}
$$

where:

$$
\begin{aligned}
& P_{r}=\text { reflected pressure measured on the ground } \\
& P_{f}=\text { free air (or incident) pressure }
\end{aligned}
$$

As stated above, we assune that

$$
P_{r}=f\left(P_{f}, \theta\right)
$$

(12) The scaled stem heights commonly considered as optimal for the production of damarouare lag foete rfor a 20 kt bomb or $\sim 3^{\prime \prime}$.

APPROVED FOR PUBLIC RELEASE

Another useful quantiby 19. the refloction factor k, which is defined to be the ratio of the apparent tonnage as indicated $\sqrt{b y}$ the reflected pressure distance curve to that//Indicated by the free air pressure distance ourve.

$$
K=\left(\frac{R_{r}}{R_{f}}\right)^{3} p=\text { oonstant }
$$

ror a smari interval,
If the free air pressure distance relationship is of the form

$$
\begin{equation*}
P_{f}=\frac{c}{\left(R_{f}\right)^{n}} \tag{6}
\end{equation*}
$$

then K and M are related by the equation

$$
\begin{equation*}
K=M^{3 / n} \tag{7}
\end{equation*}
$$

Experimental data has been compiled on Fig. 6 where the free air pressures are plotted as a function of the reflected pressure and $\cos \theta$. The bulk of this data, based on the firing $1 / 2 \mathrm{lb}$. TMT blocks, is taken fron Tables $I \rightarrow$ IV of Taub's paper ${ }^{(7)}$. Fach rectangle represents the average of the group of shots (2 to 4) in which the data were talen at a certain distance and ancle from the charge. These were compared with the free air pressures for $1 / 2 \mathrm{lb}$. TNT blocks as given by Taub; and are plotted together with the assoclated value of $\cos \theta$. In these experiments the long axis wes kept perpendicular. to the line of gauger. Reynolds (11) reports that the variation was not very marked alomg an equatorial plane so that the uncertainties in reflection factors due to charge orientation are judged to be fstall. There is considerable difference between the free air curves for TNT blooks as given by Bleakney ${ }^{(10)}$ and Taub ${ }^{(7)}$, but Taub's free air ourves wera used, despite the fact that Bleakney's

 it is folt that this quantity is bost obtained by using the same experjmental techniques in determininf the free air and reflected pressures.

As stated preriously, regular reflection theory provides a quantitative relationship botween the incident and roflected prossures and the angle of incidence, θ. 'i'he gonoral features of refular reilection are these. !?rectly bencatll the boml! $(\Theta=0)$ the reflected pressures are given by the well known relationship

$$
\begin{equation*}
\xi^{*}=\frac{(3 \gamma-1) \xi-(\gamma-1)}{(\gamma-1) \xi}(\gamma+1) \tag{8}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \xi^{\prime}=\frac{P_{r}+\Gamma_{0}}{P_{f}+P_{0}}, \quad \xi=\frac{P_{f}+Y_{0}}{P_{0}} \\
& P_{0}=\text { pressure in the unshockod rerion (taten }=14.7 \text { psi) } \\
& P_{f}=\text { overprossure in the once shocl:ec recior: } \\
& p_{r}=\text { overpressure in trie twice shoclesd rerion: i. . . the } \\
& \text { reflected prossure } \\
& \gamma=1.4 \text { is the ratio of specific heats for air }
\end{aligned}
$$

Vonleumann's rerular reflection theor: was usod to defino the lines of constant P_{r} in tiie rerion of rocilar reflection. Finc feacin value of \ddot{F}_{f} there exists a critical anclo, θ_{0}, indicated by the fotter line, beyond which romular reflection ceases and irretular reflection sets in. In tlie absenco of rioro datailed evidence than is urosentily available we tale this to be lach roflection θ_{c} aviracies a limitinf value of 39.37° as the incidont pressure increases. ithe theoretical treatricnt or rorulne reflection is verifien! by erperimert

APPROVED FOR PUBLIC RELEASE

reflection sots in. The stan ic nsorgol: values were taken to be continuous across the bonnarary denoted by θ_{c}.

For $\theta=90^{\circ}$, another boundary condition was onployet. In the reflection from a smooth rigid surface, the reflection factor Y. should be exactly 2 at lar pe distances, because the energy which would normally have reno into the lower hemisphere is concentrated in the upper hemisphere, with a onnsequent doubling of the energy density. Since the round even if substantially rigid is not smooth, energy losses will occur and the reflection factor will be reduced from 2 . We make the assumption that the curves $P_{r}=$ constant are orthor,onal to the vertical axis at $\cos \theta=$). This seems reasonable jr. view of the extent of the fusion of incident and reflected shock waves which has occurred by the tine such extreme obliquity has been roached by the expanding, shock:
 experimental points in the noif,hborhond of $\overline{\cos \theta}=0$ and $P_{f}=1.75$ psi, ie. $P_{r}=2.0$ at, $\cos \theta=0.075$ and $P_{r}=1.5$ at $\cos \theta=0.058$. For the two points mentioned and the measured dependence of P_{f} on distance r (Fir. . 7), we find that

$$
\begin{array}{ll}
K=1.48 \\
K=1.46, & \cos \theta=0.075 \\
K=0.058
\end{array}
$$

Accordingly it appears that even on the best rigid reflecting surfaces used, smooth concrete, the reflection factor is lass than 2 and not far different from 1.5 at these pressures. In other words, about $1 / 4$ the apparent onorfy of the blast wave has been lost to the reflecting, surface.

With the boundary conditions on left and right fixed by regular reflection thoorgang $=0$

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE
were passe tirourh tho extine mon inl:potis. This procedure is sore:rhat arbitrary: veca'aso of tho erratic nature of the expertgroups of data
mental values. Some shotorums seam to be grenesorlly low. The fit on the curve which applies to the region just after inch reflection some sets in, is particularly poor; here one notes that the experimental points in this region, if acculeto, would mean that there is proctically no increase in reflected pressure over that at $\theta \neq 0$.

Closeness
The cortnass oi fit or the curves to the experimental data
an interval

 =0.2. For the 34 experimental points involved, tho smoothed curves are $4 i_{i}^{\prime \prime}$ higher than the experimental points which had large fluctuations. Tanh quotes tie overall accuracy of rise rata to be of tie order th er, and hence the curve can be taken as a fir representation of his data. The mrobnhle error of tie curves just after leach reflection sets in, is something, life $\pm 5!j$ in pressure corresponding in the pressure rance studied to $\sim \pm 255^{5}$ in yield. The scarcity of data for more oblique incidence mates a comparison between experiment and the curve oven less reliable.
IV. FRFF AIR PRESSURE DISTANCE CURVE FOR A: ATONIC: BOMB.

In the attempt to apply the small charge results to the pressure
 distance curve for an atomic bomb we recognize that the ratio of energies in the form of blast is different for an atomic and chemical explosion of the same total anergy;
 characteristics for the two are also different.

In this section we will give tie results of applying the reflection factors riven in Figure 6 from small charges to the Bikini
 curve for an atonic bomb of f:nom yield. Recause of the height of burst emplored in this case (520') it is expected that relatively little energy was lost to the surface and that the blast energy and hence free air pressure so deduced is in fact related to the total yield in much the same mannei as in most combat arops in which burst heights between 1,000 and 4,000 foet are contemplated (13). After the deduction of the free air curve the residts are applicd to determine tho scale factor for pentolite required to produce the best match in the region in wich data is availablo (2-20 psi).

First a atatement as to the blast measurements at Bikini Able (Fig. 8). Involved in tilis data are pressures caloulated fron shook velocities; these are reasonably dependable but do not go belom roflected overpressurcs of about 7 psi. At lower pressures, no data were available oxcept through such devices as foil gauges. In the region of 2 psi , the pressures can easily be in error by 20%, with a consequant error of about 50% for tonnages deducod from it.

The Bikini Ahle measurements have been combined with the small charge information of Figure 6 to give the free air curve for an atomis bomb plotted in Figure 9. Bleaknoy's ourve for spherical pertolite has been included for comparis on. (Note that two separate distance scales are used, one for the 1 lb . pentolito cliarge, and one for the Bikini Able bomb.) This is the free air curve for an atomic bomb, assuming that the relative energy loss is exactly the same as that for small charges fired over concrete and that history effeots are small.
(13) The Trinity and Saphsterne shope:peg ige too close to the ground in that the firebala touched at:and hence are omitted from the present discussion... .i. :......... :."

APPROVED FOR PUBLIC RELEASE

The blast tonne are readily obtained from Figure 9 and these results are plotted on Figure 10, which rives the indicated tonnage at various refleoted pressures The fact that the line is lint horizontal might be taken to indicate that the free air pressure distance characteristios of an atomic bomb and pentolite spheres are slightly different in the range considered or that the proconure used to derive then tonic bomb curvo is in error, except that the difference
$+\geq 0$,
$\pm 5 \%$ error.

In the region of interest, from to 20 psi , the averar;e value for the indicated tonnage in terms of pentolite is:

> Table I.

Bikini Able
Total Yield Kilotons
Avorace Indicated Blast Yield Kilotons Pentolite Fractional Indicated Blast field Mich Indicated Tonnage Kilotons I'entolite Low Indicated L'omnare kilotons lentolite

expected total yield of an atomic bomb by a factor of in scaling up the free air peak overpressure curves of pentolite so that they best match the free air peak overpressure curve from an atomic bomb in the region of interest (20 to for psi reflected overpressures).

If any true free air curves for atomic bombs were available, together with the collected experience of reflected pressure distance curves over many tactical targets, one could, no doubt, use a much more refined procedure than tana rosalotitro in the $7<6$ factor. Meanwhile, its use permits scajife freon sis $1:$ charge data in what seems to

APPROVED FOR PUBLIC RELEASE

be a rational manner.
7.: : : : : : :

V. HEIGFT OF BIRST CIIARTS.
5.1 Chart for 1 Kiloton Atomic Bomb

In the practical determination of hoight of burst, reflected pressuris may be presented in a useful form through the paramoters, height of burst, h_{c}, and horizontal distance d. An h_{c} vs d chart requires the use of a specific free air curve; spherical pentolite was chosen as a useful approximation.

The result of corbining Figure 6, with the free air ourve for spherical pentolite, Fig. 9, after the transformations are made to h_{a} and d, and a soale factor $\left(\frac{5}{4} \times 2 \times 10^{6}\right)^{1 / 3}$ was applied, appears as Figure 11. This then is the height of burst chart for an atomic bomb of 1 kiloton total vield. This is the same form of presentation as given previously by Von?loumann and Reines (Fig. 42 reference of footnote 4), and is intended to supercede it.

Included on the chart are curves for several liach Y stem heights. These were obtained principally from Helverson's vork at Woods Hole (14). The data presently available for such lor stem heights is extremely meager and inaccurate. The experimental procedure ordinarily used is to place gauges at several heights in a vertical line; the time lag Δt botwoen incident and reflected pressures is measured, plotted against gauge height, and the corresponding liach stem height found by extrapolating Δt to zero. This procedure is quite satisfactory a hocpot for high stem heights; the tirn $Y=1.0$ agrees within a few per cent with other sources, but on a soaled basis, it corresponds to sevoral hundred feet for atomic bombs. The procedure is not satisfactory for
 R. R. Halversen, Dive 2 ND: ACB, DrRD Report 4889.

APPROVED FOR PUBLIC RELEASE

very low heifhts, about 0s0f: U, repion of interest for atomic bomlis. For example, the line $Y=0$ may be in error by 50 to loo,

To appl:r Figure ll, one merely multiplies all distances by the scalinf, factor $W^{l / 3}$, where W is the total yield in kilotons TWT (1 liloton TMT is definod as 4.2×10^{19} ergs). We now proceed to five several illustrations of how it can be used, subject of course to the limitations cited in Section 1 of this report.
(1) !laximize the ares covered by a certain peak prossure. T:is is given by the maximum horizontal distance reached by any of the reflected prossuro curves.
(2) Stom height required to cover a struoture. One scales down the height of the structure by the scaling factor, selects the pressure desired in the stem, and reads directly the height of burst wrlich sives this combiration, and the distance at which it occurs.
(3) Areas covered by improper heights of burst.

For a given hejr, of burst, and a solected pressure, read the horizontial distance at which this occurse This can be compered with the distance for the maximum, and squaring; the ratio gives the \because of maximum area covered.
(4) Small targets.

If a riven ciroui.ar area is to bo damaged, and no damare
is desired beyond a certain radius fron fround zero, one can increase the clamare inside that radius, and

APPROVED FOR PUBLIC RELEASE

pressure will be maximized, obtained by interpol'ion on a line joining all the maxima. A somewhat similar procedure would be used if the presiure outside the critical radius was definitely not :ranted to exceed a certain pressure.

Fimure 11 storms quite clearly the insensitivity of damage area to heist of burst in the region of the maxima. For example, 6 the ara covered by f psi is maximize with a height of burst of 240 feet, and the relevant horizontal distance is 2850 feet. For a height of burst of $1 / 50$ intern, $\frac{8 \%}{20 \%}$ low, the horizontal distance is 24,50 20% changed to $2 \mathbb{2} 10$, a change of 2π in radius or reduction of in area. On the other hand, an increase in height of burst of $\underset{\mathcal{F}_{1} \prime \prime}{ }$ to 1350220
 1140 feet, decreases the radius to 1350 fest by 在, a reduction of 44\%, in area.

This emphasizes the fact that in general no great ri = +real t accuracy is required in height bs burst, manderably is considerably better to err in the direction bt' low: heights, than to err in the direction of high heights fer remarks below relative wo biestion

We note further than the same height of burst is fairly satesfactory for several peak pressures near it; that is, maximizing \& psi very nearly maximizes both 10 and' 6. Also, if leach stem heights were selected ais a criterion, say 30^{\prime} minimum, for a bomb of total yield $=10$ andorra AFEfent, and such a value passes close to all the maxima in the neimhborhod of 8 psi. an
 bomb has about the correct blast tonnage: so that the Y hoist and peak pressure required to damare. of ire gee $\left.4 \frac{10}{1} \mathrm{psi}\right)$ is obtained

APPROVED FOR PUBLIC RELEASE

maximize the area covered by trat pressure.
It is to be noted that the ronuirement that stem height have a prescribed value is a me:ch more strinent critorion in fixinf, the height of burst then is the requirement that a fiven peak Fressure be nchieved on the greund. In vier: of this fact it is of interest to inquire ag,ain into the validity of the sten height criterion. Furtheriore, in viev of the contidarable experimental error in measuring the low stem heights here employod, it is not relt that a heicht of burst should be fixed by this sriterion except in a rough manner until better experimentol evidence becomns arailable.
5.2 BURST HEIGHTS FOR ATOMIC HOMBS

Firs. la, 13,14 and 15 pive the hoimht of burst as a function 0^{n} bomb tonnare for several seloc+ed prossures.

The criterion choses iz makinf: up these curves was height of burst which will maximize t:e a:eea for the particular pressure, as obtained from Fig. ll. The yields show are the expected rated yield of the bomb. The locus of points for such a proper height oi burst is the central log:\% line on each graph. As a fuide to the accurac: required, lines are also given which show the heights of burst at which only 90 and $80, \%$ of that arca is covered. On the left marrin are also scales ror the correspondinf horizontal distance in feot for maximun coverace, and the maximum area in square miles. It mist be cautioned that the distance and area scales refer only to the lof; lines. For heights of burst which are too hirh of too low, tho \% factor for nron

APPROVED FOR PUBLIC RELEASE

vary from about 10 ft . for the 5 kiloton cases to about 35 ft . for the 50 kiloton bombs, this for tre 100% lines.

APPROVED FOR PUBLIC RELEASE

1. It is surinested that experiments desinned to measure tine ranlection patiorn be contracted usinr lar:er (~ 500 lus.) ina E. charres. Larier charror h.han used in tho pas; ale required in orcor to facilitate mensurement of the lach patitern and minimize the Grfect. of surface irremalarities. Charmes sionld be sphorical in shape and detonatiod at the center. The importalles of this !. Fi. progran is in part based on econo!!ic considerations which will probahly always mave necessary depeniance on scalin! on small charree data.
2. In visw of the absence on free air pressuro-distance curves for atomic bombs, it is sumerested that all possiule suprort he rivon towarcis measuromonts of this quantit! at ?niwesor. in the 1051 tests as well as to calculations wilic! can be carried out in advance of these tests.
3. Yensure hach phenomenon in conjunction with full scale testis of atomic bombs.
4. The role of tine Hach stem in the production of damace should be re-investigated, espcciall: in view of our present lack: of precise information of stem haights which result in a riven burst heirft.
5. In any practical use o: the heipht of burst curves herein derived one must considor a muoh moro complex situation than that in which a single structure is sot by itself on an infinito rifid plane. In an actual tareet array ono has a rroup of structures, each one in general requirinf a differeat peak over pressure to be destroyed and oach one shieldine others and absorbinf, energy from the blast. It is clear that in view of these foses

t?nn those felt to be noces:iar; at the tarmat point undre considaration. In this connection it misht te vell to stiudy the tarpet; confimurations
 sometiline about the problems of s!ioldin, ond eneriy absorbtion bif stindyine the pre- and post-shot pontomraphshare available. Furthermore, a comparison oi the oliserma pressure aurve and surve which ran: te "predicted" usini" tirura 11 ani the heirht of burst and bomb nociel emplored may rive some indicstion as to tho enerpr loss. Some mrrk has alroad. neen done in comparinm theso pressures.

DOCUMENT ROOM

REC. FROM ${ }^{3}$ del gryp DATE $7-15-49$

REC. CNO. REC.

[^0]: (I) Since data of the same ordor of accurracy was not available for spherical TNT charges as it was ior pentolito, the latter was chosen as a reference. The difference between TIT and pentolite is possibly of the order of 5% in pressure (15% in blast energy) fron two charges of the same weight. In consequence the factor 0.6 would be raised somewhat if TWT were used as the reference chemical explosive.

