APPROVED FOR PUBLIC RELEASE

November 9, 1949
This dooument oontains 86 pages

 TIME SC:ALE MEASUREMENTS BY THE ROSSI LETHOD

PUBLICLY RELEASABLE
Per Mak k mones, FSS-16 Date: 3-13-96
ByMader_Lijun. CIC. 14 Date: $4-96$
Work done by:
C. W. Johns tone
J. D. Orndoff

Written by:
A. Van Duren
J. D. Orndoff

We2 Group Mombora
C. W. Johns tone

VERIFIED UNCLASSIFIED
Per EMS 6-11-79
By Martaue Laion ex-it $4 / 4 / 96$

UNCLASSIFIED
Deapons Data

$\bullet \bullet \bullet \bullet$	\bullet	$\bullet \bullet$
\bullet	\bullet	\bullet
$\bullet \bullet$	\bullet	\bullet
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet

APPROVED FOR PUBLIC RELEASE

INDEX
I. INTRODUCTI(N

Page 4
II. APPARATUS
A. Reaotor at Pajarito 7
B. Eleotrcnio Equipment

1. Model 200 Time Delay Analyzer 18
a. Control Cirouit 23
(1) Initiatior-gated
(2) Initiation-ungated
(3) Poriodio gate
(4) Swesp
(5) Input H2
(6) Bias Tubs
b. Reoording Channels
(1) Disoriminator and blooking osoillator
(2) Gate froming oirouit
(3) Coinoidence tubs
(4) Soalers

- Powor Supplies 34

2. Romote Equipment 35
3. Modifisd Model 200 Soaler 37
4. Delay Calibrator 40
III. THEORY
A. Fluotuations 44
B. Rossi liothod 45
5. Determination of $E \quad 48$
6. Detormination of $\chi_{2} \quad 50$
7. Determination of
8. Decermination of Kge• : $\because: \bullet: \bullet: \quad 51$

APPROVED FOR PUBLIC RELEASE

IV. EXPERIMEATAL Page
A. Control Rod Calibration 58
B. Measurement of Reactor Fission Rate

1. Binltiplioation siothod E3
2. Calibrated Chamber Lethod 65
C. Rossi Hoasuremonts
3. Ressi fun at Critical 69
4. D.otermiration of $d \alpha / \mathrm{dm}$ 78
5. 0 ;her beabursments
a. Ferturbation due to ohamber 81
b. Double ohamlor operation 83
o. Suboritioel measurement of α by removing 84 oentral oubes
v. CONCLUSIOI 85

I. INTRGDUCTION

The noutron level in a ohain reaoting assenbly near oritioal sither Erows or deoays promptly as $\theta^{\alpha t}$, depending on whether the assembly is above or bslow prompt oritioal. Apparatus for measuring this α by the Rossi method has been assemblei by Group ' 1 -2 at Pajarito Canyon with the eleotronio work dons by Group P-1. Speoifioations submitted to P-l for the design of the elsotronio components requested tha: the apparatus should be as versatile and have as wide 4 range as possibls so that routine measurements of α oould be made on all conositable types of oritical assembliss. Those spocifioations were met in overy detail. It is possible at the present time to make Rossi measurements on any oriticel assembly without adrance plannine by simply switohing on the apparatus. The eleotronio oirouits are desoribed in rather oomplete detail sinoe they are the heart of the apparatus to measure of.

A series ff measurements has been made on a tuballoy tamped oralloy" asserably. heasurements havo been made previously with low onriohment matorial and less uniform and oomplete tampsis than the onss used in the present experiments.

[^0]

(LA-374, LA-4'9, LA-1036.) The purpose of the following experiments he s been to ohsok out the apparatus on a known assembly in oider to disoover "bugs" in our apparatus and to gain experienoe in making suoh measurements. Great oare has been taken to utilize the flexibility of the assembly to keep perturbations to a minimum. Also, the effeot of the unavoidable perturbations has been studied.

The experiments disoussed here may be justified on the basis that appuratus for making time-soals measurements has besn suooossfully oonstruoted, and that the present measurements deal wity a higher oonoentration of $0 y$, more oomplete tamper, and feaser perturbations than existed in previous measurements. As a long time program, the Rossi measurements oan supply information that is valuable both from the theoretioal and experimental points of view. A value for $\mathrm{d} \alpha / \mathrm{dm}$ is an indioation of the valus α may attain when an assembly is highly superriritioal. Although measurements of α are made in a regior of oritioality far removed from the region in question, this is about the best one oan do without making a measurement on a nuolearexplosion itself. At least ons is justified in oomparing the effeots of varying the tamper materials and core materials in the suboritioal region and then exirapolating relative effeots to the superoritioal. Carsful experimonts may yield information on

APPROVED FOR PUBLIC RELEASE

quantities otrer than α. Other constants involved ares (1) T_{0}, the mean life of a noutron in the assemblys (2) X_{2}, a measure of the dispersion of the number of neutrons per fission; and (3) K_{p}, the prompt reproduotive faotor. The folloving report deals with the time soals apparatus and its ap llication to a solid Oy assembly. Disoussion of measurements on other types of assemblies will be treatod in future riports.

APPROVED FOR PUBLIC RELEASE

II. APParatus
A. Reaotor at Pajarito

The present experiments wers performed using the tub-alloy-tamped, Oy assembly oalled "Topsy" at Pajarito Canyon. This reactor will be desoribed oompletely in a future report. Topsy is desoribsd below in only snough detail to indicate its funotion in the Rossi measurements.

An overeall photograph of the redotor is shown in Figure 1. Tre tamper pseudosphere is on the platforn at the right anc contains approximately half of the aotive material. Tr e tamper thiokness is equivalent to about $8 \frac{1}{2}$ inches, whior approaches an effectively infinite thiokness. The oart is shown at about the midde of the traok which extends undes the tamper table. A tuballoy oan is mounted on the ram in the oenter of the oart. The lower half of the aotive meterial is staoked in this oan. In operation the oart is run under the tamper table and the ram is raised hydrallically to assemble the tamper and aotive material. These assembly operations are acoomplished by remote oontrol from the oontrol room 1200 fest distant. The assembly usuelly is staoked so that it oontains almost ons orit when assombled. It is then brought up to critioal by insertion of the oontrol rods. For suboritioal operation,

APPROVED FOR PUBLIC RELEASE

oubse of oy ors-half inoh on a side and weighing about 38 grams, oan be removed.

Figure 2 is a phantom vien of the assombled tampor and oan assembly showing the relative positions of ontrol rods, souree tube, end oounter tube (glory hole). The stove lid arrangement for supporting the uppor pseudohemisphere of $O y$ is niosly ovident in this pioture.

Figure 3 is a olose-up visw of the tamper partially unstacked to show the oontrol rods. The total oontrol rod travel is apprjximately 10 inohes. Control rod position oan be read to .001 inch, elthough the settings are probably not aoourate to more than .01 inoh.

The assembly has been further unstaoked in Figure 4, and the inner isan exposed. The $4 \frac{z}{\text { a }}$ inoh 25 stovelid oen be soen in plaos. Approximately half of a pseudosphere of Oy is stacked on :he stovelid and the remainder of the can filled with Tu blooks.

In Figurs 5 the souros jerk meohanism is exposed. With this equipment the soures oan be removed quiokly. The source may also be mosed up and down slowly and stopped in any position. Mook fission souroes of various strengths wers available. These souross were in the form of oylinders 0.40 inohes in diameter and $0.4 E$ inohes long. Such a source in the souros jark tube could be moved down to within about

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

one inoh of the aotive material. In osrtain of the Rossi runs, it wes neosssary to staok the souros within the aotive material in order to produos a suffioisntly high fission rate. A spooial $\frac{1}{2}$ inoh oube containing a oylindrioal oavity to hold the source was available for this purpose.

Either $\frac{1}{2}$ inoh or $7 / 8$ inoh diameter spiral oy fission counters (LA-1004) wers used for all Rossi measurements. These ohambers were construoted by J. C. Hoogterp. The deteotors oould be plaoed in the glory hole at any position along the radius of the reaotor without introduoing too great a perturbation. Figure 6 shows one of the spiral ohambers in position in the glory hole and feeding into a modifisd model 500 preamp. An sxploded visw of the spiral ohamber and tuballoy and $O y$ parts in the glory hols is given in Figure 7.

Figure 8 is a photograph of the oontrol room instrumentation for remote oontrol operations. The left oenter seotion of the consols consists of the oontrols for Topsy. On the right may be seen the five reoording neters for indioating resotor level. The thres meters on the lower level are connooted to the sefety trip monitors. The two upper meters reoord for the logerithmio and linear amplifiers whioh operate from BF_{3} ionization ohambers.

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

B. Eleotronio Equipment

1. Modsl 200 Tims Delay Analyser

The Model 200 time delay analyser is aotuated by pulses applied to input \#l for double input operation or to input \#2 for single input operation. For a predetermined period following eeoh initiating pulse, subsequent pulses applied to input \#. 2 are sorted and reoorded as they ooour in 10 equal and adjacent time intervals. inen a suffioiontly large number of initiations have taken plaos, the number of pulses that have appeared in each of the 10 re-: oording ohannels will give an indieation of the time relationship that sxists betweon initiating and subsequent pulses. In partioular, the hodel 200 time delay analyzer is intended for use ir Rossi time soale experiments as desoribed in LA 1036.

Various individual time intervals or ohannel widths may be selooted as follows:

A periodio gate is provided whioh may be used to oon= trol the initiation oirouit. Two suoosssive time intervals or gates are generated independently and oontinuously. During an "on" interval or A gate open, the initiation will

respond to the first pulss oocurring in that interval and to no nore than one pulse per A gate. During the "Off" interval or B gate open, the initiating aotion oannot take plaos. For each ohannel width there is a B gate duration whioh is just suffioient to allow all transients to cease after the opening of the 10 ohannels. Thus, reoyolirg at a maxi:um safe rats is permitted and errors dus to too rapid re-oyoling are prevented.

If initiating pulses ooour only at relatively long intervals, the aotion of the periodio gete may not be required and it oan be switohed out.

The Kodel 200 time delay analyzer was origirally oonosived by Edward N. Dexter, who did not remain at Los Alamos to ses its completion. P. Glore and one of the writers (C. N. J.) oheoked the oompleted unit and made oirouit modifioations whioh sesmed advisable.

An overall view of the apparatus in the control room oan be seen in Figure 9. It inoludes the time dolay analyzer on the right, and assooiated soalers, power supplies and the delay oalibrator on the loft. Ons pows supply ohassis is behind the console and doss not show in the photographe In Figure 10 a baok viow of the time delay analyzer rack is shown. Figure 11 is a blook diagram showing the oontinuity of the apparatus as established at Pajarito.

FIG. II
BLOCK DIAGRAM
10 CHANNEL TIME DELAY ANALYZER
Pate $2 x$.

APPROVED FOR PUBLIC RELEASE

a. Control Cirouit .

The diagram for the oontrol oirouit is shown in Figure. 12. Its operation will bs disoussed in the following six seotions.
(1) Initiation-gated. In double input operotion, positive pulses applisd at input \#l firs blooking osoillator V-101. Positive output pulses obtained from the grid wind: ing of the blooking osaillator transformer are fed to the oontrol grid of $\nabla=102$, whioh is a gated amplifier. The periodio gate operates on the suppressor grid of V-l02, and the m $A^{\prime \prime}$ interval of the gate drives the suppressor positive, allowing amplifioation of the pulss from V-101. During the "B" interval, the suppressor is held negative, proventing the transmission or amplifioation of pulses.

The first pulss to arrive in ooinoidenoe with an "A" gate trisgers a "flip flop" V-103 and V-104. The positive jump in voltage at the plate of V-104 triggers blooking osoillator V-106, whioh in turn starts the sivesp whioh opens the reoording ohannsls. This gating proosss introduoss about 0.15 miorosecond delay.

V-106 can be triggered only onos per "A" gate sinos the "flip flop" is unresponsive to further pulses until it is reset after the " A " gates ends. The reset pulse oomes from differentiating the positive going wave form on the sorsen of the "B" gate phantastron, V-IIfo yhioh corresponds

 V1OGs and delayed 0.5 mioroseoonds befors being applisd to the flip-flop. The 0.5 mioroseaond delay is inserted to make sure the flip-flop will respond to the resst pulse. The initiating pulse may oome at the very ond of an A gate, and the flip-flop needs nearly 0.5 mioroseoond after being triggered before it will respond to the reset pulse.

For single input operation, V-l0l is not used and blooking osoillator $V=108$ reoeives all input pulses, through Input \#2. In both double and single input operation, V-108 supplies pulses to be oounted in the 10 reoording ohannels but in the latter type of operation, it must provide all initiating pulses as well. By means of SiV-102, pulses appearing aoross the oathode resistor of V-108 are routed to the grid of V-102 to take the plase of pulses from V-l01.
(2) Initiation Ungated. If gated operation is not required, switohing sw-103 to UNGATE oauses V-l06 to be triggered direotly by pulses from either V-l01 or V-108, thus bypassing tubes V-102, V-103, and V-104. Ungated operation should be used only when the probability is low for swesps ooouring in too rapid sequenoe to allow complete reoovery.
(3) Periodio gate. The A and B intervals whioh oomprise one complete oyole of the periodio gate are mutually' independent and oapable of being varied between wide limits.

Two phantastrons (Eleotronios, April, 1948) are used,

APPROVED FOR PUBLIC RELEASE

$V-110$ and V-lll. They differ from an elementary phantastron. in two respects: (a) Cathode resistors are used and oross ooupling is employed between cathodes and suppressor gride. This positively insures that one phantestron is started when the other reaches the end of its oyole, with a minimum of undesirable interaotion. (b) Each phantastron uses cathode followsr ooupling (V-109A and $V-109 B$) betwesn plato ard control grid. To sstoblish stablo time intervals, a phantastron nesds a large plate resistor. This confliots with the requirement for rapid reoharging of the grid oondenser at the snd of a oyole. The oethode followers supply the reoharging ourrent and permit rapid reoyoling.

Each phantastron will operate at any duty oyole up to about 97% with no appreoiable ohange in period. For example, a 100 miorosecond B gats may bs used with any A gate from 3 to 3000 \& seoonds. By switohing grid tims oonstants, gate durations of from 3 to 30,000 mioroseoonds are obtained.

The B 4 supply for the periadio gato was reduoed to about 230 volts bsoause the soresn dissipation of a 6 AS 6 in this oirouit reaohes its limit with a $B+$ of about 250 volts.

A high impedance attenuator connesoted betwesn the sorsen of the A gats phantastron, V-110, and the -150 volt bus, supplies output to the gated amplifier tube V-l02, at

APPROVED FOR PUBLIC RELEASE

the proper voltage level. A "speed-up" oondeniser is inoorporated to drive the supprescor of V-102 sharply at the gate odges.

The B gate duretions ohosen are suffioient to allow oomplete reoovery of the sweep oircuit for particuler ohennel widths.

Tube replecement in the periodio gate oirsuit may oause a few per oent ohange in gate duretion.
(4) The swesp oiralit includes V-105B, V-113, V-115, V-116, and V-117. V-113 is a flip flop triggered in one direction throueh V-105B. Its negative going grid is oonnected to the grid of V-116, the sweep clamp tube. Nhen triggering oocurs, V-1l6 is out off and tres plate voltage rises. This rise is co.pled to the top of R-3 through oathode follower V-117. A oonstant ourrert is ciainteined in R-3, oharging $C-3$ at a constant rate, which generates a linear sawtooth of voltage or sweop. 'Then the sweep reaches suffioisnt a:mplitude, fesdbaok ocours through diode, V-ll5B, thus resetting the flip flop ard terminating the sweep.

R-4 is for the purpose of adding a stesp step at the beginning of the sweop, and the orystal diode aids in spoeding up the disoharge of condenser C-3 at the end of a sweop.

The swesp is used to open and olose each reoording

ohannel in turn. One olannel width oorresponds to a 15 volt rise on the sawtooth. Channel 1 is triggered by the initial step at the stert of the sawtooth. A portion of the swesp filp flop wave form is differentiated and sent through oathode follower V-1l4. This provides an output to a scaler to indicate the total number of swesps.
(5) Irput \#2. V-106 is a blocking osoillator whioh responds to positive puless from Input \#2. It will firs on a minimum trigger pulse of 5 or 6 volts but for single irput operation it requires more than about 10 volts of trigger to fire twios within 0.5 mioroseoond. An output oonnection is provided to permit moritoring tine total number of times V-106 fires. The size and shape of the oz thode pulse is rearly independent; of the size and shape of input trigger. The narrow pulses from the cathode of V-106 are supplied to coincidence tuies in each of the recording ohannels and with single input operation, a lares fraction of thess pulses aot as initiating pulses as well. If a pulse oocurs when any reoordins ohaniol is open, it should oorstituts a count in that charrel.

Only the top of the output pulse is utilized in any reoording ohannel and the effeotive width is found to be 0.05 miorosecond or less. This blocking oscillator stage serves a very useful purpose since it oonverts the input

APPROVED FOR PUBLIC RELEASE

pulses, whioh are at lesst severel tenths of a microseoond Wide and not noosssarily of standard shape ard sire, into uniform very narrow pulses. The resed for having narrow pulses for this purpose should be olear if one corsiders the question of chennel overlop with 0.5 miorosecond ohennols, pertioularly in view of the faot that effective overlap of adjaoent ohannels has besn found to vary as muoh as a faotor of 2 botween different pairs of adjaoent ohannels.
(6) Bias Tube. V-107 is a oathode follower whioh supplies bias voltage for the blocking osoillators at a siffioiently low impedanos to preolude eny interaotion smong them.
b. Recording Channels

The oircuit diagram for the reoording oharinels is show in Fisure 13. Before beginning a detailed study, it should be mentioned thet all onennels are alike with the following miror sxosptions: (a) Channel \#l doss not supply a shut-off pules from its blooking osoillator sinoe no orannel exists ahesd of it. (t) Charnel \#ll oontains only a disorimirator, blooking osoillator and bias tubs. It exists for the sole purpose of shutting off ohannel \#lo. (o) Odd numbered ohenrels contain a bias tube V-6 whioh suppliss bias to the blocking osoillators in two adjaosnt ohannels. (d) sven numbered channels oontain a dual shutooff

APPROVED FOR PUBLIC RELEASE

tube V-l8 whose pletes connect to ooinoidenos tubs suppressor grids in two adjeosnt chennels.

The oleven discriminator oirouits fire in sequonos, sech intervel correspording to a 15 volt rise of the sawtooth. This means that the linear portion of the sartooth must rise at least 150 volts. Nith a 15 volt step at the beginning, the overall amplitude needs to be 165 volts. In practics, to allow a faotor of safety, the swesp is made longer than this by about one ohannel width or a total of 180 volts.

The sleven disoriminators reset themselves at the end of the swesp with \#l being the last one reset. The firing point of eaol, disoriminator is adjusted by an individual potentiometer. :ifh the deley oalibretor to be desoribed later, the disoriminator settings can all be made in five or ten minutes.

The squipment should be allowed to warm up for about thirty minutes before naking final adjustments in the disoriminator sattings.

The components and action of the 10 reoording ohamnels are disoussed in the following four seotions.
(1) Discriminator and blooking oscillator. V-l, V-2, and V-3 oomprise a discriminator. $V-3$ is a constant current tubs. Since $V-1$ is normally out off, $V-2$ oarries all the

APPROVED FOR PUBLIC RELEASE

ourrent until triggering ocours. When triggered, the ourrent is swiftly transferred to V-1 and the positive jump in voltage or the plate of V-2 is differentiated. The resulting trigger oauses the blooking osoillator V-4 to fire. Two simultaneous blooking osoillator output pulses ars obtainsd. The third winding, whioh is at a potential of -l 50 volts, supplios a shutoff pulse to the previous chennel. From the grid winding, whioh is normally at -l5 volts, a stsep positive pulse is applisd to the grid of a oathode follower V-6A.
(2) Gate forming oirouit. Condenser " C " is quiokly oharged to about 25 volts by the pulse on the grid of V-5A. It will normally remain in this oondition until the blooking osoillator in the next shannel fires. Then this happens, the shutoff pulse applied to the grid of V-18 oauses a pulse of ourrent whioh is suffioient to quiokly reduoe the oharge on "C" to 2ero. A diode V-5B prevents the potential on "C" from going negative. Thus a small gate is generated whioh represents the open time of that particular ohannel.

The value of ${ }^{\prime} C^{\prime \prime}$ is not critias, but for the narrowest ohannel operation a value of 60 mmf was found to give suffioisntly ste日p gate-edges. The edges are short oompared to 0.1 miorosecond. For ohannel widths of the order of millissconds it is neosssary to inorease "C" to prevent too

APPROVED FOR PUBLIC RELEASE

rapid disoharging through the parallel resistor. A valus of 750 mmf is a good upper limit. If "C" is larger than this it oannot be oharged and disoharged reliably.

If there were no tube lakage ourrent, it would not be neoessary to shunt "C" with a resistor. Apparently about two-thirds of all stook 6J6's show leakage ourrents of over 0.5 microamperes, when used in the oathode follower position, V-5. This is the upper limit of allowable leakage in the present oirouit. Low leakage ourrent is important, beoause during long intervals betwesn gates, oondenser "C" will oharge up. With 22 megohms in shunt, and a leakags ourrent of 0.5 mioroampers, "C" will oharge to ~ll volts whioh is the tols rable limit, if the ooinoidenos tubs oathode is set at ~21 volts. For the greatest ohannel width of $3000 \mathrm{mi}-$ oroseoonds a long time constant is nesded. 750 mmf and 22 megohms gives 16,500 mioroseoonds whioh oannot be reduoed very muoh.

It is unfortunate that the oircuit requires seleoted tubss, but there is no easy way to improve the situation. Fortunately, the selsoted tubss have not ohanged notiosably after several months use.
(3) Coinoidenos 'Mube. The gate is applied to the suppressor grid of $V=7$, whose oatiods should bs set at about 20 volts. The oontrol grid is normally at ground potential

APPROVED FOR PUBLIC RELEASE

so all plate ourreit is out off unless a pulse arrives at the grid in coincider.ce with the gate on the suppressor. In this oase an ainplified pulse appears at the plate and this aots as a trigger for the soaler wiloh follows.

Thers is a 100 ohm resistor in seriss with sach ooinoidenoo tube grid. The blooking oscillator V-l08, fesds all 10 of these grids in parallol. A oount-stop switah oan break the line whioh oomes from V-l0d when it is desired to stop the oount.
(4) Scalers. Two oonvertional soale of 2 oirouits are used in eaoh ohannel using diode trigger tubss. A 6J6 driver tube operates a heroury type register. To get the aotual number of coincidenoss from any channel the register oount should be multiplisd by four and the interpolator light indioations added.

The soalers in all 10 channels are reset by a single push-button switoh.
o. Power Supplies

The following regulated power is requireds

+300	50 ma	Top panel
$+300-\mathrm{A}$	110 ma.	Discriminators \& bias tubes
$+300-\mathrm{B}$	135 ma	Soalers \& ooincidenos tubss
+300	50 ma	Refisters
+150	175 ma.	Total

All the above voltages should come up simultareously. If the $+300-A$ supply is not on when the top panel voltages

are applisd, the swesp oirouit oathode follower will draw exoessive ourrent and the $6.8 \mathrm{~K}-2 \mathrm{~N}$ resistor must be replaced. 2. Remote Equipment

For messurements involving the narrowest ohannsls (0.5 mioroseoond) of the Time Delay Analyzer, number of stringent requirements must be met. In order that pulses may be oounted in the first ohannel, starting 0.5 mioroseoond after initiation, all pulses must be offeotively shorter then 0.5 miorossoond. Overshoot or base line distortion following a pulse must be small to minimize any undesirable influsnos on the ssoond pulse of a pair. Suffioient gain must be available to obtain pulsss of several volts from fission ohembers or possibly other types of detsotors.

The model 501 amplifisr and preamplifier mest the above requirements with minor modifications. A 0.1 miorow seoond RC olipping time oonstant was used, 50 mmf and 2000 ohms. The output cathode resistor was effeotively reduosd from 10,000 ohms to 1000 ohms to prevent lengthening of pulses when working into several feet of ooaxial oable (Ses Figure 14).

A distanos of 1200 feet separates the remote squipment from the time delay analyzer. To transmit pulses

over this distanos, 75 ohm ooaxial oable is used terminated in 75 ohms. It was found best to looats a disorininator at the remote or transmitting sid so that pulses sent down the oable are all the same size. At the roosiving end of the line all pulses are approximately 20 volts in amplitude and between 0.25 and 0.4 mioroseconds wide, depending on the amplitude of the original pulse. If the diseriminator (Figure 14) has a reoovery time which is short oompared to 0.5 miorosecond, two pulses 0.5 mioroseoonds apart will have equal probability of tripping the disoriminator.
3. Modifisd Model 200 Soaler

In order to provide accurate oounting of pulses as olose as 0.5 mioroseoond apart ocouring in pairs, it was deoided to improve the resolving time of an sxisting soaler. The model 200 soaler normally has a resolving time of 5 to 7 mioroseoonds. A new plugein soaler unit was designed which uses two 6SN7's and has a resolvine time of 0.4 to 0.5 miorosecond. The model 200 soaler was adapted to use 2 of these fast soaler units, thus providing a fast soale of 4 ahead of the remaining stondard stages.

The fast soaler uses oathode follower ooupling between the two halves of an otherwise oonventional soale of 2 oirouit. The cathode followers serve to remove some of the

APPROVED FOR PUBLIC RELEASE

oapaoitive load from the soaler plates, and greatly reduos the impedanos through whioh the soaler grids are driven.

The modifioation resulted in inoreased power requirements. The Bt supply in the Model 200 soaler is adequate, but a larger filament transformer was substitutad. The oirouit diagram as modified is shown in Figure 15.

The discriminator was modified to supply a narrower trigger pulse. This caused a deorease in "sharpness" of pulse amplitude disorimination whioh is not serious, sinos all input pulses are practioally the same amplitude, having come through the disoriminator at the input end of the 1200 foot coaxial lins, also a blooking osoillator in the Time Delay Analyzer.

For high oounting rates it was neosssary to oonneot a seoond Model 200 soaler in series with the modified model giving an overall soaling faotor of 4096. The refister driver tubs was removed from the first unit and a oonneotion made from the last soale of two to the input of the seoond unit.

Two standard Model 200 soalers were likewise oonneoted in series to reoord the number of swesps from the Time Delay Analyzer. The fastest swesj oan ocour no oftener than every 10 mioroseoonds so the standard soaler is adequate.

APPROVED FOR PUBLIC RELEASE

4. Delay Calibrator

The oirouit diagram of the delay oalibrator is shown in Figure 26. This oalibrator produoss two pulses independsntly delaysd and availabls sither at separate outputs or mixed on a oommon output. This permits oalibration for either double or single ohannel operation.

The two delayed pulses ars oontrolled by phantestrons, using 6AS 6 tubes. imen triggered, the plate voltage of a phantastron falls linearly with time until in this oirouit it is stopped by the conduction of a triode whose oathode is conneoted to the plate of the phantastron. The grid voltage of the triode which detiermines the stopping point and thus the delay produoed by the phantastron is variable over a wide range. When the phantastron plate is stopped, the resulting sudden ohange in soreon ourrent triggers a blooking osoillator.

The two delay oirouits are triggered simultaneously, either from an extermal souros or by means of a built-in relaxation osoillator whioh is synchronized with the 60 oyole line frequenoy to deliver 20 pulses/ssoond.

Several ranges of delay are provided to permit acourate calibration of ohannel widths from 0.5 to 30 mioroseoonds. When the calibrator is properly adjusted, by oomparing it

with a frequenoy standard and set to the appropriate delay range, one revolution of the 15 turn Helipot dial corresponds to one ohannel width.

Normally the "To" pulse aots to initiate the aotion of the Time Delay Analyzer and the "main" pulse is used for oalibrating purposes. When both pulses are fed into Input \#2 from the oomon output, and the Time Delay Analyzer set for single ohannel operation, whiohever pulse ocours first will aot as the initiating pulse end if the seoond pulse is appropriately delayed it will appear and be oounted in one of the ohannels. Sinos there is considerable overlap between the ranges of delay of the two pulses, it is possible to determine the interval between initiation and the start of ohannel \#l. This is done by moving the "main" pulse on either side of the T_{0} pulse and noting the time differenoe between the two points where ohannel \#l just starts to count. One half of this time difference repressents the delay in the start of ohannel \#l.

A motor drive is provided for the "main" pulse. This is neosssary for oalibration of the narrowest ohannels in View of the faot that the 0.5 microseoond ohannels overlap by amounts varying between 5% and 10%, thereby inoreasing their effeotive widthe: :Wen the oalibrator is switohed to motor drive, tre "main" pulse oan be made to move at a rate

APPROVED FOR PUBLIC RELEASE

whioh corresponds to one nominal ohannel width per minute, thus taking 10 minutes to move through all ten channsls. This is dons using the intermal pulse gens rator whioh sup= plies 1200 pulses per minute syrohronized with the power Ine frequenoy. After a complete 10 minute run through all ohannels, the number of pulses in excess of 1200 in each ohannel gives a mesasure of the effeotive ohannel widths, inoluding overlap. The notor drive is reversible and prom videg with limit switohes. Aoouraoy of the oalibrator has been shown to be within 2 to 2% over periods of several months.

Dus to switch position limitations, the oalibrator is not capable of calibrating ohannels wider than 30 mioroseoonds. It was intended to be used only for narrow ohannels. To oalibrate the wider ohannels, the same oirouit is applioable with larger time oonstants assooiated with the phantastrons. The motor drive feature is not neosssary for ohannels wider than 30 mioroseoonds, sinoe these will overlap onsiderably less than 1%

III THEORY
A. Fluotuations

It has been observed that fluotuations exist in a near oritioal reactor that distinguish this type of soures from the usual random souros. These fluotuations may be explained on the basis that a single neutron in the assembly may initiate a long ohain, so that for a short time interval, the reactor may aot as though it were superoritioal. Since in reality the assembly is suboritioal, every chain must be finite and eventually deoay as

$$
N=\text { No } e^{\alpha t} \text {, }
$$

where the $\mathcal{\alpha}$ in this oase is negative. If one observes the reactor on a time soale that is of the order of $1 / \alpha$, these fluotuations may be observed and measured. The deoay time ($1 / \alpha$) for chains in the observable region of oritioality is short oompared to the shortest delay neutron period even for a reactor as slow as the water boiler, so that delay neutrons play no part in \propto observations exoept in-as-much-as they may serve to initiate long ohains. At prompt oritioal on the average a neutron ohain lasts forever when fed by prompt neutrons alone, so that $\%$ equals zero. Actually at prompt critical the level rises rapidly beoause of the inorsasing source due to delay neutrons. If ons introduces

a strong souros into a reaotor, and then suddenly removes suoh a soures and watohes the prompt deoay of the assenbly. he is making a dirsot measurement of the deosy oonstant \mathcal{X}. A more subtle messurement suggested by Rossi and referred to as the Rossi Method makes use of the smaller order fluom tuations resulting from ohains initiated by single neutrons. The Rossi Nothod then instead of measuring the average behavior due to a large number of ohains observes individual ohains and then averages after data is aooumulated for a great number of proossses.

The value of α depends upon (1) X_{p}-oritioality and (2) T_{0} mean life of a neutron in the assembly. The oriticality determines the average length of ohains and T_{0} determines the averege time between fissions in a ohain. It oan be shown that

B. Rossi hethod

The development of the theory for the Rossi experiment has been published elsewhere (Feynman, LA-591, and Frisoh, LAm1033). and so only the oonsequenoes of this development will be considered below.

The following equation is approximately correot for any ohain reaotor near oritiosl. Sinoe or measurements are

made near critioal, equation 3 may be considered valid:

$$
\begin{equation*}
P(t) d t=\operatorname{cdt}+\frac{E X_{2}}{2 r^{2} \tau_{0}\left(1-K_{p}\right)} \cdot \frac{\mathbb{K}_{p}-1}{T_{0}} t d t \tag{3}
\end{equation*}
$$

whers
C y chamber oounting rate
$\mathrm{E}=$ ohamber effioienoy in oounts/fission
$X_{2}=$ twioe the average number of pairs of neutrons per fission (second moment)
$\mathcal{V}=$ average number of neutrons/fission
To = mean life of a noutron in the assembly
$K_{p}=$ prompt multiplioation factor
This is an equation for the statistios of oounts from noutrons originating in a chain reaotor. $P(t) d t$ is the probability for a count at time t within an interval of time $d t$ following a oount at $t=0$. This equation indioates that fluatuations exist in a ohain reaotor that do not exist in a random souros. The seoond term on the right of equation 3 is a measure of these fluotuations. The probabilities for a random souros would be simply

$$
P(t) d t=C d t
$$

where the probability of a oount at time t in an interval
dt following a oount at $t=0$ depends only on the counting rate and the width of the time interval. From the definition of a "random souros" we know that this probability should

APPROVED FOR PUBLIC RELEASE

$$
\begin{aligned}
& \text { :.: :... :.• ©.. :": •: }
\end{aligned}
$$

be independent of the tirne t. For a reaotor far from oritiaal, the exponential tern approaohes zero beaause of a large negative and the statistios beoome those of a randon souroe. The interesting term fron our point of view is the seoond term on the right in equation 3 . The value of this term may obtained by measuring probabilitiss for coinoidenoss from pairs of neutrons and subtraoting a baokground term (Cdt) due to acoidental coinoidenoss, i.e. ooinoidenoes betwesn neutrons not in the sams chain. The ten ohannel time disoriminator previously desoribed is able to measure $P(t)$ dt for all types of near -oritiosl assemblies.

The measurement of α is quite straightforward. A plot of $P(t) d t$ - Odt on semi-log paper gives a straight line whose slope is \mathcal{C}. The interospt of this straight line at $t=0$ in addition gives a valus for

$$
\frac{E X_{2} d t}{2 \nu^{2} \tau_{0}\left(1-K_{p}\right)}
$$

This quantity is of no value unless some of the quantitiss appearing in it oan be determined independently. The average number of neutrons per fission is of oourse quite well known for both U-235 and Pu. Some disoussion of the

APPROVED FOR PUBLIC RELEASE

other constants and methods for their measurement is in order.

1. Determination of E

The determination of the efficienoy, E, of the oounter in oounts per fission is moro direot than any of the other oonstants although the preoision with whioh E oan bs found
is questionable.

One approach is to measure the total fission rate F of the reeotor. Then knowing the input oounting rate C, the effioienoy is C / F. F can be measured by two general methods:
(a) A dirsot measurement of the fission rate at some point in the reaotor plus a measurement of the fission rate distribution aoross the oore.
(b) A osntral souros multiplioation experiment. The fission rate at a point in the reaotor can be measured by the foil-fission oatoher teohnique or by the use of a fission ohamber containing a known "effeotive" amount of U-235. Using the i.esasured fission rate at some r, the overall fission rate may be found by an integration or a summation over the oore using the fission rate distribution ourve. In sither af these methods some oalibration experiment is necessary in order to measure absolute fission

APPROVED FOR PUBLIC RELEASE
B": B.. "." B.. : : ".

rates. The most convenient oalibration method is to compare the oetcher aotivities and the Oy ohamber oounts with the counts from a standard Oy ohanber in any arbitrary flux. The standard Oy ohamber is a parallel plate fission ohamber oontaining a known quantity of U-235 whioh will count 100% of the fissions ooouring in its U-235. Suoh ohambers onn bs oonstructed. Ons then has a deteotor whioh will neasure absolute fission rates. The aoouraoy of the oalibration depends primarily on how well the amount of material in the standard ohamber is known. A small spiral fission ohamber oalibrated in this manner makes a convenient probe to measure fission rate distributions throughout an assembly without introduoing serious perturbations.

The seoond method for determining the effioienoy of a deteotor oonsists of determining the fission rate in a reaotor by means of a maltiplication experiment. The not or leakage multiplisation is defined in LA-335 as

$$
M=1+Q_{f}(r-1-\infty)
$$

where the introduotion of one reutron results in the produotion of $Q_{f} f i s s i o n s$. For a fast reactor the valus of α, the ratio of non fission capture to fission oapture, is small and oan be negleoted. The overall fission rate oan be written as

$$
\begin{equation*}
F=S \cdot Q_{f} \tag{6}
\end{equation*}
$$

APPROVED FOR PUBLIC RELEASE

where S is the souros strength. There are two main souross of error in this measurement: (a) the souros is not a true fission source, and (b) the souroe strength, S, is not known acouratoly. The error due to (a) can be minimized by making the multiplication measurements with a long oounter geometry whioh has essentially a uniform response to neutrons of all energies involved.

2. Determination of X_{2}

Considerable'work has been done on establishing a value for the dispereion of the number of neutrons per fission. X_{2}. sinoe the probability for predetonation of a bomb dew pends dirsotly on its value. X_{2} is defined by

$$
x_{2}=\sum_{V=1}^{\dot{V} \sum_{i=\infty}^{\infty}} v(v-1) P_{v}
$$

where V is the number of neutrons per fission and P_{V} is the probability for the emission of noutrons. The quantity which we usually oall V is aotually $\bar{\psi}$, the avorage number of neutrons per fission. Measurements of \mathcal{X}_{2} have been made by Delloffman (LA-101, LA-185, LA-183A) who studied fluotuations in the water boiler, and by do Benedotti (MonP-437) who used coinoidenos counting to get fission neum tron angular oorrelation whioh was used to oaloulate X_{2}.

Determinations of X_{2} have agreed on a value slightly higher than 4 for U-235. A value of 4 would mean 2 neutrons per fission 50% of the time and 3 neutrons per fission 50% of the time. The value 4 is not outside the range of error in the experiments. The value of X_{2} is probably known to about 20%
3. Determination of T_{0}

Very little oan be said about a direot experimental determination of T_{0}. If α oan be masured by the Rossi Ifethod and K for the assembly oan be assigned, thon Fo follows. Other than this possibility the theoretiosi estimates of To mast be used. They should be fairly aoourato for an all-metal spherioal assembly.
4. Determination of X_{p}

The value of the reaotivity oonstant for a ohain reactor is probably the most abstract of all the oonstants. There are no good methods for an absolute messurement of k. Any reactor oan be aocuratoly set at $K=1$, but any 8 K from this value is diffioult to detemine. For a slow reaom tor an absolute measurement of K has besn made by the "boron bubble" method. (LA-2033). Other relative measurements oan be made by introduoing sudden ohanges in reaotivity

APPROVED FOR PUBLIC RELEASE

```
:::!..:.!.. :": \bullet:
```


(oontrol rod jerk), by introduoing sudden ohanges in level (source jerk) and by positive period measurements (IA-1033). All of thess measurements give E in terins of γ or $X f$ where γ is the relative effectiveness of delayed neutrons for producing fission in the assembly compared to the prompt neutrons and f is the fraotion of neutrons whioh are delayed. These quantities are not readily measurable nor acourately known.

Two new schemss have been conoeived: (a) An active material interchange method for an absoluto measurement of K , and (b) A modulated souros method of determining 8 K in terms of γ_{f} These methods appear to have some merit and are disoussed below.
(a) Deteraination of K by an aotive material interohange method. This method is based upon being able to replece an element Δ_{m} of $O y$ with a speoial Pu element whioh differs from the $O y$ only in Z, the number of neutrons per fission. This means that the Pu olement will oontain a fewer number of atoms than the Oy element as determined by their relative oross seotions for the neutron speotrum sxisting. Ons wishes the total fissions in the Pu to be the same as in the replaosd element of Oy for squal resotor level. When the number of atoms in the speoial Pu pieos is adjusted in this fashion, one oan assume

APPROVED FOR PUBLIC RELEASE

that scattering and non-fission processes ares closely enough the same for the two pieces the their effects on be negleoted when the Pu and Of pieces are interchanged. If a cubs of $O y$ be replaced by a cube of Pu as speoifled above, essentially all that happens is that the average V for the assembly has been ohanged. This ohange will be given approximately by

$$
\Delta r=\left(\nabla_{49}-V_{25}\right) \frac{\Delta m}{m} 8
$$

that is, it is the difference in γ^{μ} between $P u$ and Dy multiplied by the fraction of the assembly in which the change takes place. Either the change must be effected in an "average" position in the assembly or several changes should be made, distributed properly over the assembly.

Near oritioal one on say that

$$
\frac{V}{V O r}=K
$$

where or is the number of neutrons per fission that would be necessary to mare the assembly just critioal. Then

$$
\Delta k=\frac{\Delta \gamma}{V \text { or }}=\frac{V_{49}-V_{25}}{V_{\text {or }}} \frac{\Delta \cdot m}{m} \quad 9
$$

The experiment is performed in the following way. Replace a oubs of Of with Pu. Run the assembly just up to

APPROVED FOR PUBLIC RELEASE

oritioal, when

$$
Y_{\text {or }}=\gamma^{\prime}=Y_{25}+\left(Y_{49}-Y_{25}\right) \frac{\Delta m}{m}
$$

Then replace $P u$ with $O y$ and run the control rods to the same position as befors when the assembly will be suboritioal by an amount given by 2. Nows the oontrol rod until the assembly is just critioal again. This then gives a motion of the control rods equivalent to a known $\Delta \mathrm{K}$.

The above experiment is an elaborats and rather touohy one. Performing this experiment can only be justified by the feot there exists no known better method for a direot measurement of K.
(b) An intermittent souros method of determining δX in terms of Z. The conventional souros jerk experiment provides a simple means for measuring $\delta \mathrm{K}$ in terms of γ f. Unfortunately, experimental diffioulties have not permitted acourate measurements by this method. The ourve below shows the reactor variation during a souros jerk.

APPROVED FOR PUBLIC RELEASE

The souroe is suddenly renoved at A. Then the following squation holds near critioal:

$$
\frac{8}{K} \frac{K}{K}=\frac{A-B}{B}
$$

Experimentally it is very difficult to determine the breakaway point B with any aoouraoy beoause of the short delay neutron periods.

It is proposed that a source in the oenter of the assembly be suddenly turned on for sey one seoond, turned off suddenly for one seoond, and this 2 seoond oyole repeated oontinuouely. This oan be aooomplished either by means of a speoial modulated souros or by a meohanioal motion of the souroe. Possibly a much shorter oyole can be aooomplished. The figure below shows the effeot on the reaotor of suoh a souroe.

Level A is the statio level the reaotor will attain if the souros is left in continuously. $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ oonstitutes one complete oyole for the source. The value of $A^{\prime}-B^{\prime}=D^{\prime}-C^{\prime}=A-B$ where $A-B$ refers to the jump shown in the previous figure of the conventional source jerk. This jump in all oases is due to the prompt multiplioation of the souros. It is planned then to soan the region $A^{\prime} B^{\prime}$ or C'D' with a 10 ohannel time disoriminator whioh is synohronized meohanioally with the souroe. A plot of the data obtained with this instrument should be similar to the ourve below.

Points oan be obtained at milliseoond intervals on either side of the souros jerk time. A-B an then be aoourately determined with the intermittent souroe experiment while A is easily found from a statio experiment. The aoouraoy of the determination of $\& K$ will depend upon how rapidly a soure oan be "turned on or off" in the assembly. It is neosssary only that the rise time of the souros be small

APPROVED FOR PUBLIC RELEASE

oompered to the shortest delay neutron period.
F. de Hoffman (LAkS-179) has disoussed a moduleted souroe experiment in whioh the souros is turned off and on at very high repetition rates. The modulate souroe experiment and the intermittent souroe experiment are in no sense squivalent and are used to study two oompletely different sffeots.

APPROVED FOR PUBLIC RELEASE

IV EXPERIUENTAL

A. Control Rod Calibration

The oontrol rod oharaoteristios were among the first considerations when Topsy was originally assembled. Since. small ohanges in oritioality were usually made by moving the control rods it was neosssary to get as complete a control rod oalibration as possible. One would like to have a ourve relating control rod motion to ΔK, but this is very difficult to obtein. Multiplioation vs. control rod position ourves were obtained and measurements were made of positive period vs. oontrol rod position.

The latter messurements resulted in ourves suoh as Figure 17A. One oontrol rod aooording to the ourve is 23.5 osnts on this oritioality soale. Neasurements showed that the two control rods have very little interaotion so that the total travel of the two control rods is then equal to a ohenge in oritioality of 47 cents. The relation betwen positive period ard oents comes from oalouleted ourves besed on delayed neutron periods. The equation for the oaloulation has been published as

FIG $\quad 17$

where usually the delayed neutrons are split up into 5 groups with deoay periods Ti and relative abundanoe a_{i}. T is the resulting pile period. The equation is valid for all $T \gg \tau^{\prime}$. Various investigators do not agres exaotly on the delayed neutron data. For example, refer to Physical Review, Vol. 74, No. 10, pages l'S30-1337, November 15, 2948 .

The control rod oalibration in oents oen be oonverted to absolute units of ΔK by multiplying by γf and dividing by 100. The freotion of neutrons delayed has been taken as . 00755 for U-235 (Phys. Rev. Vol. 73, No. 2, pages 11-124), whils (rar for a small metal assembly. Using these values, Curve B in Figure 17 results.

By means of inter-reletions explained in LA=335, osntral souros multiplications oan be oonverted into ΔK. The relations used are

$$
\begin{aligned}
& M_{0} M_{n}=4 / 3 \text { (for high multiplications) } \\
& \frac{M_{n}-1}{T_{n}-1}=\frac{V-1-\alpha}{V} \\
& T_{n}=\frac{1}{1-K}
\end{aligned}
$$

where M refers to net or leakage multipliastions. T to total multipliostions, the subsoript 0 to central souros,

APPROVED FOR PUBLIC RELEASE

and the subsoript n to normal mode souros. For high multiplioations then the following relation is approximately trues

$$
\begin{equation*}
\Delta K=4 / 3 \quad \frac{\gamma-1-\alpha}{v} \frac{1}{M_{0}} . \tag{5}
\end{equation*}
$$

Assuming 2 مس 2.5 and or very small.

$$
\begin{equation*}
\Delta K=4 / 5 \frac{1}{M_{0}} \tag{6}
\end{equation*}
$$

Applying the above squation to the multiplioation ve. oontrol rod position, data results in Curve C in Figure 17. B and C agres quite well.

Positive period neasurements wers also made by going into the delay oritioal region by the addition of oubes of Oy to the outside of the sotive pseudosphere. These positive periods were then converted to oents and the result plotted in Figure 18. Extrapolation of the ourve to 100 oents gives 426 gm of outside $O y$ between delay and prompt oritical. Comparison of Figures 17 and 18 gives 200 gm of outside Oy (5.22 half-inoh oubss) squivalent to the two oontrol rods near oritioal. The mass differenos extrapolation betwesn delay and prompt oritioal is important for fixing the position of the point for $\alpha=0$ in the Rossi measurements.

FIG 18

APPROVED FOR PUBLIC RELEASE

B. Measurement of Reaotor Fission Rate

1. Multiplioation Mathod

Central souros multiplication measurements wers made using a calibrated mook fission souroe (MFH5). In Figurs 19 these multiplioations are plotted against logarithmio amplifier defleotions. The logarithmio amplifier was always set to a standard defleotion before any measurements were made with it, by means of a radium-beryllium source in a standard position. This proosdure essured using the log amplifier at the same sensitivity lovel from day to day. The log amplifier was intended to have a range of 3 deaedes full soale but Figure 19 shows that the range was a little less than this. The ourve for the fission rate vs. log amplifier defleotions wes oaloulated from the oentral source multiplioations and the souroe strength $S=8.45 \times 10^{5} \mathrm{n} / \mathrm{sec}$ by the use of equations 5 and 6 in Seotion III, giving

$$
F=S \frac{M-1}{V-1}
$$

These multiplioation measurements wers repeated at various times and satisfaotory agresment obteined.

CENTRAL SOURCE MULTIPLIGATION

APPROVED FOR PUBLIC RELEASE

2. Calibrated Chamber Mothod

A speoial perallel plate fission ohamber (F 252) was oonstruoted by J. C. Hoogterp having a good geometry and a thin Oy ooating of a known thiokness. The chamber was filled with speotrosoopio argon and the pressure adjusted to give maximum pulse heights. The total amount of U-235 in the ohamber was 12.1 mg . spread out to a thiokness of $0.15 \mathrm{mg} / \mathrm{om}^{2}$.

A disoriminator bias ourve for this ohamber is given in Figure 20. The horizontal slope of the ourve at zero disoriminator setting indioates that all fissions are counted at this point. At the discriminator setting of 20 used, the oorreotion for low pulses was the faotor l. 10 :' A $7 / 8$ inoh spiral fission ohamber (2522) was oompared with. this ohamber in a standard flux. The data appears below.

TABLE I

Ratio of oounting rates 2522/F252: 16.4
Mass of U-235in F 252: 11.1 Effeotive mass of U-235 in 2522: 182. mg.

Chamber 2522 was placod in the center of the $O y$
assembly and the assembly run up to power. Presumably the ohamber now oould indioate fission rate per gram in the aotive material immediately surrounding the ohamber prom Vided the perturbation due to the ohamber was not exoessive. Fission ohamber counting rates and logarithmio and linear

FIG 20

APPROVED FOR PUBLIC RELEASE

amplifier reading were reoorded. The determination of fission rate for ons of these points follows.

TABLE II
Counting rate $=22.35 \mathrm{~S} / \mathrm{m}$ Soale ${ }_{3} 4096$
Fission pulses/seo. $=1.53 x_{1} 10^{3}$
Fissions $/ \mathrm{gm}$ seo. $=8.38 \times 10^{3}$
Log amplifier $=0.31$
Mass of Oy in assembly $=17.94 \mathrm{~kg}$.
The radial fission distribution relative to the oenter had been measured with small 25 spiral ohambers. Using this data the following table was oompiled.

TABLE III

FIG 21

APPROVED FOR PUBLIC RELEASE

oaloulated radius of a 27.94 kg oore of density 18.7 turns out to be 6.12 om. Acoording to the area under the ourve then, for 100% oonoentration Oy the total fission rate at a 108 amplifier reading of 0.81 would be 1.11×10^{8} fissions por seoond. Sinos the Oy in the assembly averaged only 94% oonosntration, this value must be reduosd 6% to 1.05×10^{8} fissions per seoond. Comparison with the results of the previous multiplication method (Figurs 19) shows that the agreement is very good. Corresponding fission rates for other pozer levels may be obtained by multiplying the above value by the oentral spiral chamber oounting rate ratios.

C. Rosei Masurements

1. Rosbi Run at Critioal

The oomplete proosdure involved in measuring an \propto will be disoussed by desoribing in detail a typioal run with the reaotor at delayed oritioal.

The eleotronio apparatus was designed to operate with a single input ohannel or a double input ohannel. In the double ohannel type of operation, two spiral fission ohambers are used with two soparato amplifiers foeding into the timing apparatus. One ohannel (initiating ohannel)

provides neutron pulses wioh initiate the timing swesp. The ten coinoidenoe oirouits then reoord pulses from the seoond ohamber-amplifier network (oounting ohannel) whioh ooour within the interval of tin swosp. This oyols is repsated by subsequent pulses from the initiating ohannel. iman the oirouits are switohed over to single input operation, the first neutron pulse whioh oomes along initiates the swesp and the next following pulses ooming from this same input are reoorded in the coinoidenos ohannels and oonsequently their time separation from the initiating pulse is measured. Single input operation was usually used beoause of the greater convenisnoe in using only ons ohamberamplifier combination. Also the insertion of a single spiral ohamber into the assembly rosulted in less perturbation. The requirements on amplifiers and pulse shaping are muoh more stringent with single input operation beause then one has to resolve two pulses from the same amplifisr about 0.5 mioroseaond apart. The requirements are oven more severs than this. Since pulses from the amplifier have all variations of pulse height, it is neosssary that there be no interrotion between the two pulses. in order to be able to oount these pulses with equal probability. If the amplifier does not oompletely reoover before the seoond pulse comes along, then the second pulse may be shoved up or down

by riding on the tail of the first pulse and the relative probability of deteoting the seoond pulse will be ohanged. Using pulses originating from two different amplifisrs the pulses oannot interaot and quite wide pulses oen still give gocd resolution if one looks at their initial fast rise. Single input operation geemed to be quite satisfaotory. Some small oorreotions had to be made to correot the first thres ooinoidenos ohannels when half microseoond ohannel widths were used.

The table of Figure 22 gives the data and oaloulations involved in a typioal Rossi run at oritical. Soms oomments are neoessary to explain the way in whioh the data are obtained.

Run \#23C was made at delay oritioal so no source was neoossary. For the metal assembly the dooay is so rapid that either 0.5 yseo or 1.0 y seo ohannels are necessary. The first ohannel delay is the time between the initiating pulse and the opening of the lst timing ohannel. It is neosssary to know this time in order to determine the absolute time position of the oenter of each ohannel with respeot to the initiating pulse. Gated operation was unneoessary beoause of the low effioienoy of the deteotor. Fission rates were obtained by the \log amplifier defleotion and Figure 19.

FIGURE 22

```
Critioality: K=1
Souroe: None
Log amplifier: 0.335
Fission rate: 1.2 < 10 8}\textrm{F}/\textrm{sec
```

Rossi run:
Channels:
lst channel delay:
Periodic gate:
\#230
0.5 mioroseoond 0.8 microseconds Ungated

APPROVED FOR PUBLIC RELEASE

Channel widths wers adjusted with the double pulser. The dividing lines batween sucoessive ohannels wers set 0.5 miaroseoond apart. The final offeotive ohannsl widths wers obtained by driving the delay helipot in the double pulser with a 1 rpm synohronous motor. This sweeps the delayed pulse through the 10 ohannels at the rate of 0.5 mioroseoonds per minute. If the ohannels are exeotly 0.5 mioroseoonds wide, one gets 300 register oounts per ohannel. Any oounts over the 300 are considered as overlap and a ohannel overlap oorreotion was obtained. It oan be seen " that the average overlap was a littlo less than 10\%. A final correotion to the ohannel counts had to be obtained ' due to the faot that pulses within about 1.5 mioroseoonds " of each other were not oompletely independent. This oorreotion, oalled a random oorrection, was applied to the first three ohannels. It was obtained by using the Rossi apparatus with a random souros. With the random souroe it! was found that the first thres ohennel oounts were lower than the sxpeoted value and a correotion faotor was oaloum lated whioh would just bring them up to the expeoted: These two correotions wers then incorporated into a single' faotor for saoh ohannel whioh was used to multiply the observed ohannel counts in order to get the correoted value.

APPROVED FOR PUBLIC RELEASE

The correoted Rossi data were then used for the caloulations. $P(t) d t$ for any ohannol a is just the average number of oounts reoorded eaoh time the ohannel is opened, -.g. in the time intarval 0.5 miaroseoond. This obviously equals the total oounts in the ohannel divided by the nume ber of times the channel is opened. As an example, in Channel 1 the total counts were 4004×4 and the number of times the ohannel was opened was given by the swesps or 485×4096. The faotors of 4 and 4096 enter beoause the ooinoidenoe ohannels were scele of 4 and the swop soaler was soale of 4096. Thus

$$
[P(t) d t]=\frac{4004 \times 4}{485 \times 4096}=806 \times 10^{-5}
$$

One oan write a general formula whioh takes into aooount the soaling faotors and the rasult is

$$
[P(t) d t]_{n}=\frac{c_{n}}{S} \times 9.77 \times 10^{-4}
$$

where C_{n} are the ohannel counts (Soale of 4) in the nth ohannel and S is the sweop register counts soale of 4096.

The baokground term or $P_{0} d t$ is the number of oounts whioh would be expeoted for eaoh opening of a ohannel if the input pulses were ooming from a random souroe instead of ohain reaoting assembly. This is the ohanoe ooinoidenoe rate per ohannel opening and is constant for all ohannels.

APPROVED FOR PUBLIC RELEASE

The baoigground term is then the input counting rate times the ohannel width. The input counting rate for the cass under consideration was 514×4096 divided by 1800 , the time in seoonds. Consequently

$$
P_{0} d t=\frac{514 \times 4096}{1800} \times 0.5 \times 10^{-6}=58 \times 10^{-5}
$$

A general formula for thie term is

$$
I / t \times 3.41 \times 10^{-5}
$$

where I is the total input soales of 4096 and t is the time of the oount in minutes.

Subtraoting the ohanos ooinaidence probability from the total ooinoidenoe probability yields. the related ohain ooinoidenoe probability $P_{0} d t$. In terms of the quantities of Equation 3 of Seotion III. the relationship is as follows.

$$
P(t) d t=C d t+\frac{E X_{q}}{2 V^{2} T_{0}(1-K p)} e^{\alpha t}
$$

or, in abbreviated notation,

$$
P(t) d t=P_{o} d t+P_{c} d t
$$

A plot of $P_{0} d t$ against t should be a'straight line on semim log paper with a slope α and an interoept at $t=0$ of

$$
\frac{E x_{2} d t}{2 V^{2} T_{0}(1-I p)}
$$

Figure 23 shows this graph. The probable statistioal errors ars indioated.

APPROVED FOR PUBLIC RELEASE
related chain coincidence probability Pcd \dagger

APPROVED FOR PUBLIC RELEASE

Thia run is typioal of the runs noar critioal. Conditions are not so favorable suboritioal and oventually the background term beoomes 80 large that a limit is reached due to the statistioal unosrtainty of the points. Two or more separate runs wore mads at eaoh oritioality.

The slope of the ourve for \#23c yields an of 0.36×10^{6}.

$$
\frac{1-x}{r_{0}}=.36 \times 10^{6}
$$

At delay oritioal essume 1-5 5.00755 . Henoo wo get

$$
T_{0}=2.10 \times 10^{-8}
$$

The ovaluation of the interoept is at present not too reliable due ohiefly to the unoertainty in the determination of the fission rate of the reaotor. From the ourve the intoroopt is

$$
\frac{E x_{2} d t}{2 v^{2} r_{0}\left(1-K_{p}\right)}=1.08 \times 10^{-2}
$$

E, the sffioienoy of the oounter, is the input counting rate divided by the fission rats or

$$
E=\frac{514 \times 4096}{1800 \times 1.2 \times 10^{8}}=0.875 \times 10^{-5}
$$

oounts per fission. Substituting the values for E, V, and $d t$;

the following relation is obtained.

$$
\frac{x_{2}}{T_{0}\left(1-K_{p}\right)}=2.88 \times 10^{10}
$$

The above inter-relation betwesn X_{2}, T_{0}, and $1-K_{p}$ is the thing that one gets experimentally from the interoopt value. If ono believes the proviously mentioned determination of T_{0} and aocapts .00755 for $2-K_{p}$ at $K_{s} 1$, then subw stituting their values, $X_{2}=4.6$ is obtained.

It should be pointed out that the ralues deduoed above are not presented as being authoritative but are simply illustrative of the manipulstions. The results above are based on single 80 minute Rossi run where determination of α was stressed rather than an evaluation of the intere oopt. It is planned to direot some experimonts speoifioally at this avaluation at a later dats.
2. Determination of $\mathrm{d} \omega / \mathrm{dm}$ and T_{0}

Measurements of α were made at various values of $\Delta \mathrm{m}$ removed from oritioal. These measurements wore aocomplished by ramoving 意 inoh oubes from the outside of the psoudosphere and replaoing them with tuballoy. It is true that these oubes were not always exaotly equivalent. In the psoudosphere type of assembly not all oubes whioh

APPROVED FOR PUBLIC RELEASE

were removed were in identioal geometry with respeot to the oonter. These differences were not great, however, and should cause very little error. Figure 24 gives the plots of Rossi data at the various oritioalities. The departure from oritioal was expressed in torms of oubss of Oy, in grams and in central souroe multiplioation. The data ars summarized in the following table.

TABLE IV

Cubes	Δm	$1 / M_{0}$	α	$1-K_{p}$	To
0	0 gm	0	$.367 \times 10^{6}$.0076	2.07×10^{-8}
-2	-76. 6	.00270	. 415	.0090	2.16
-4	-153	.00335	. 470	. 0103	2.19
-6	-230	.00505	- 542	. 0116	2.14
-8	-306	.00675	-607	.0130	2.14
-10	-383	.00845	-661	.0143	2.16
	\$426		00	0	

The value of Δm for $\alpha=0$ (2.0 . prompt oritioal) was obw tained as previously mentioned by positive period measurements. The value of $1-K_{p}$ was obtained by adding .0076 to the valus of $1-\mathbb{R}$ obtained from multiplioation measurements. To was oaloulated for each run from the measured value of of and $1-K_{p}$. The resulting values of T_{0} appear to bs

APPROVED FOR PUBLIC RELEASE
10^{9}
$\bar{\sigma}_{d}$

		T- -6
		$\because \because \%$
		\ldots. 0°

essentially oonstant with an average value of 2.14×10^{-8} seconds. One would not expeot T_{0} to vary muoh over the small range of oriticality considered here.

The data from Table IV are plotted in Figure 25. The slope of curve A gives a value of $d \alpha / \mathrm{dm} \geq .82 \times 10^{3} \mathrm{gm}^{-1} \mathrm{sea} .^{-1}$. This value is a faotor of two higher than a previous measurement (LA-374). In the previous measurement, however, lower enriohment Oy was used (79% ve. 94%). Also, the previous geometry did not permit ohanges of mass at the outside of the aotive sphere. Changes wers made in the oonter and a oaloulation was made to get the equivalence between inside and outside oubes. The present messurement then should be more reliable sinos it was more direot and was made with higher enriohment material.
3. Other measurements
a. Perturbation dus to ohambers An attempt was made to ses if the finite size of the ohambers seriously affeoted the ralue of ax. The deteotors used wers as small as oould fessibly be used. Two sizes of spiral fission chambers were available with diameters of $\frac{7}{8}$ inch and $7 / 8$ inoh. Moasurements of at delayed oritioal were made with eaoh of these. The ohambers were plaosd in the center of the aotive pseudoaphere in order to perturb the assembly as

muoh as possible. Within statistios, the data from the ohambers of different size were identioal.

A second seriss of measurements at oritioal was made by plaoing the $7 / 8$ inoh spiral ohamber in the conter and making a run and then plaoing the ohamber at the oralloytuballoy interface and repeating the measurements. Again no offeot of the ohamber oould be deteoted. It appears that with the small ohambers used in the present measurements, any perturbations due to the presenos of the ohamber are negligible.
b. Double ohamber operation: A few test runs were made at oritioal using separate initiating and ooinoidence ohambers. As was stated previously, in this type of operation ooinoidences ars observed betweon a pulse from one ohamber-amplifier comhination and another pulse from a seoond ohamber-amplifier oombination. Sinoe the pulses are completely independent of each other, the amplifier requirements are not so stringent and better resolution near sero time is possible. Exoept for this one advantage, single ohannel operation is preferred because of its greater simplioity. Tests with double input operation were made simply to assure ourselves that no error was appearing with the single type operation. Measurements at oritioal were identioal using either single or double input. About the only

APPROVED FOR PUBLIC RELEASE

differenoe one might expeot would be due to an error in the random oorreotion mentioned previously. No random oorreotion is neoessary with double input operation.
c. Suboritioal moasurements of α by removing oentral oubss: The variation of α with mass removed from the oonter was investigated in two ways: (1) Removing 黄 inoh oubes from the oenter and replaoing with tuballoys (2) removing意 inoh oubss from the oenter, leaving voids. In oach oase the oritioal oondition was obtained and then the desired number of oubes removed from this configuration. It was found that replacing oralloy with tuballoy yielded an appreaiably more oritioal assembly than with the corresponding oonfiguration oontaining voids. The variation of with m for (2) above is inoluded in Figurs 25. Comparison of the slopes for inside and outside oubss gives a value of 2.87 outside oubes equivelent to one inside oubs.

APPROVED FOR PUBLIC RELEASE

V. CONCLUSION

It should be remarked again that the purpose of this report is to serve as a primer for Rossi masurements. Apparatus and prooedures have been desoribed in great detail. The present report will be used as a referenoe for subse= quent measurements. In addition, possible experiments have besn suggested and it is hoped that they may be performed in the near future.

A few remerks should perhaps be made regarding the present measurementa. The value of α itself should be of considerable importanos. Although the measured values here are in a oritioality range far removed from that involved in atomic weapons, comparisons made at these oritioalities should hold qualitatively in the far superoritioal region. For example, if the α for an oralloy assembly is lower in a WC tamper than in a tuballoy tamper in the neighborhood of delayed oritioel, one would expeot this also to be true when highly superoritioal. Thus oomparisons of aotive materials and tampers made in the laboratory should be valid for bomb oonsiderations.

It is questionable whether the measured value of d o人/dm has muoh signifioanos. It would soem that a measurement of $d \propto / d p$ would be more appropriate in

consideration of implosion wapons. There is a possibility that $d \propto / d p$ oould be determined over a limited range by making Rossi measurements at different temperatures. The present Tapsy assembly would not be suitable for suoh measurements sinoe a ohange in density of the oubes might not result in a corresponding average change of density over the whole pseudosphere. A solid Oy oors would be necessary for temperature measurements.

It is not as yet oertain how muoh information oan be obtained from Rossi measurements about other oonstants af a critioal assembly. A pretty good avaluation of T_{0} oan osrtainly bs obtained. To is important for oaloulations of bomb effioienoies.

Any information about K or K_{p} is importent, and the Rossi apparatus seems to be the best tool so far devised for an absoluts measurement of K. Onoe K has been determined, other quantities immediately follow, suoh as X_{2} and γ or possibly even $f . \mathcal{X}_{2}$ is important since it enters dirootly in prodetonation probabilitiss. γ and f are of no partioular interest for weapon design but are very important in predioting pils bshavior.

It would be overmoptimistio to expeot to solve all the problems mentioned above. It does appear, however, that the Rossi measurements may open up interesting experiments whioh as yot have not been explored adequatalys..

onclassified

DOCUNENT RCOM

REC. FROM Eng-l. DATE $12-12-49$ REC. . . NO. REC.
UNCLASSIFIEB.

[^0]: * Oralloy $=0 y=$ Oak Ridge Alloy $=$ Uranium enriohed in U-235. The Oy used in these sxperiments contained approximately 94\% J-235.

