CIC-14 REPORT COLLECTION REPRODUCTION COPY

LA - 607
 c. 3

September 19. 1946
This document containgL pages
(α, n) CROSS-SEGTIGISS OF BERYLLITM, MAGNESIUM AND ALUMINUM

PUBLICLY RELEASABLE LANL Classiflcation Group $\frac{370 c t m b e r}{3 / 3 / 96}$

Work Done By:
Io Ralporn

Report Written By:
I. Halpern

APPROVED FOR PUBLIC RELEASE
UNLLAJJIIIV相

Abstract
The (α, n) crossosections for $B e$, ig and $A l$ were measured as a function of α energy up to the full energy of poloniumz? sections were determined by counting the neutrons released in the reactions in a graphite block with a slow neutron counter. The energy response of the counting apparatus was reasonably "flat" as it would have to be to give significant results。

(x, n) CROSSTSICTTONS OF BFRYLLIUM, VAGNLSIUS AND ALUYYNM

A number of excitation curves for ($(0, n)$ reactions in light 1,2,3,4) maclei appear in the literature。 ${ }^{\text {a }}$ The emphasis has usually been placed on the location of thresholds and resonances rather than on the measurement of crossesections. This is due in part to the difficulty of measuring the necessary neutron yields to determine the cross-sections. In the present experiment an attempt has been made to measure the neutron fields. The method used was such that some sacrifices in energy resolution had ta be made (eapecially in the cases of Kg and Al) and the identipia cation of resonances was made more difficult.

In some (α, n) reactions, it is true, the final nucleus is left radioactive and a measurement of the intensity of docay allows the 3.4) calculation of a crossescetion. But even in some of these cases it might be preferable (and for other nuclei, it would, of course, be neceso sary) to measure the neutron pield directly, in order to datermine the crosbosection. Such a measurement requires the ability to count neutrons with a known efficiency and this officiency nust be independent of neutron energy。

In the present expariment, a fair degree of energyoindependence of counting efficiency or aflatness", was obtained by placing both the
crosemsection chamber (1,0 , the source of neutrons) and a slow neutron counter at appropriate positions in a large graphite block. The degree of flatness of any particular arrangement of source and counter in a block can be calculated to good approximation by means of elementary pile theory. Throughout a block in which there is a small source of fast neutrons of energy E, there will be a distribution of thermal neum trong which have originally come from the source and have been slowed down. This distribution depends on the siae and shape of the block and upon F_{n} For every distance from the source, a value of E, F_{n} can be found that renders the thermal $f 1 u x$ at F^{7} a maximum. This maximum arises from the combined effects of the slowing down and absorption of neutrons in graphite。 To count neutrons with a given energy spectrum, one mould place the thermal noutron counter at ouch a distance from the source that E_{m} falls somewhere within the spectrum. A detailed calculation for the size of graphite block used in this experiment ($5^{\circ} \times 5^{\circ} \times 10^{\circ}$) showa that with a source at the middle of the block, and the counter $55 \mathrm{~cm}_{0}$ amay along the long axis of the block E_{m} is 05 Mev and that the counting efficiency for 4 Mev neutrons would still be over 90 af maximum.

The counting was done by a conventional $\mathrm{EF} \mathrm{g}^{-1 i l i}$ d countingtube whose palses were mplified and fed into a dizcriminator and scalar. A BF_{3} counter is essentialiy a counter of slow neutrons and the above discussion applies. The overall counting officiency of the apparatus was determined by means of a stancardized RaBe neutron cource whose total neutron yield had been carefuliy measured to within 2% 。

The cross－section chamber was spherical（Fig。1）and contained and source in the form of a thin layer of polonium plated onto a small nickel sphare．The source was accurately held at the center of the chamber． Fnclosing it were tiro hemispherical stoel spinnings onto the inside surface of mich were evaporated the targetso．The pressure of gas in the chamber was varied so that the crossasection could be determined as a function of quenergy．The stopping gas used was nitrogen for its neutron gield from polonium α_{0} e is harmlessly amall．A few remarks about the energy reso－ Iution of such a spherical crossosection chamber are given below．

The curve for berylilium（Fig．2）gives the（ $\alpha_{,}$n）crossesection as a function of the average residual Orange at the target．The counting $^{\text {a }}$ rate was such that the statistical probable error could be kept below \％\％ for mast of the points on the graph．The $*$ source for this part of the experiment was 0.496 curies of polonium uniformly plated onto the nickel ball of Figo l_{0} The target，too，was fairly uniform in thickness（ $0.22 \mathrm{mg} / \mathrm{cm}^{2}$ ）。 Tungsten coils of several shapes and sizes were tested for avaporating the targets and one with reasonably＂point source＂properties was chosen．The evaporation was done into one hemisphere at a time from this coil properly centered．The curve of Fig。 2 can reasonably be regarded as a thin target excitation curve for the（ $(0, n)$ reaction in Be inammach as the target was only 0.25 cm （air equivalant）thick．The shape of the curve resembles 1）2）
closely that obtained by Bernardini and by Bjerge．These two papers do not，however，locate the curves in the same way with respect to the energy axis．In the first papar the first resonance peak，for oxample，occurs

at 2 cm o range，whereas in the second it appears at 1 cmo The present results tend to agree with those of Bjerge and whon integreted are in very close agreement with the recent thick target results of Segré and 5） visegand。

The vertical lines through each point in the curve for magne－ sium（Fik．5）indicate the statistical probable error based on the number of counts taken to determine the particular point．The cross－seotion for the (α, n) reaction in $!g$ is considerably smaller than that in Be。 To assure adequate counting rates a thicker target（ $0.50 \mathrm{mg} / \mathrm{cma}^{2}=032 \mathrm{~cm}$ 。air） and a thicker source（ 1.14 curies $=010 \mathrm{~cm}$ air）had to be used．This thickening of source and target for heavier olement targets（necessitated largely by the Coulomb barrier recuction of crosa－sections）reduces the energy resolution of the apperatus．This is rather unfortunate aince for heavier elements，resonance levels are closer together and good energy resolution is very desirable．In the present experiment the extent of the smoothing out of the curve 13 auch as to make the location of resonance levels rather uncertain．There may be resonances（F1g．3）at 3，0，3．25 and 3.5 cm

The target for alumimun（ $0.63 \mathrm{mg} / \mathrm{cm}^{2}: 034$ crio Air）had to be made oven thicker than for magnesium and no resonances are apparent．The crosso section plotted in Figo 4 azy bo regarded as an average crossagection in the noighborhood of any point on the avscissa．

5）LA 136

In this type of experiment there is a spread in energy of those \times particles causing transformations which is due to the varying fractions of their range spent by different $0 \mathcal{X}^{\prime} s$ in the source and target. In addition, the finite sime of the source ball makes it possible for varying path lengthe through the gas in the chamber. Difficulties may also arise from improper positioning of the source and target. Superimposed on all these is the natural straggling of \times particles when passing through matter. The problem of positioning can be overcome and the inherent stragging amounts at most to about 2% of the maximum range。 But the other causes of decreased energy resolution are more serious. Under normal circumstances, the required counting rate and the maximun size of the crossosection chamber would be given. From these it is possible to calculate the optimum size of the source ball and the optimum thickness of polonium and target for best resolution. In the Be experiment such a calculation showed that the narrowest distribution of α energies with the chamber filled to half an atmosphere had a width at halfo maximum of 5% of the α energy. (It should be mentioned that if the crosssection chamber were made reksonably larger, or if several counters were used simultaneously at proper distances from the source, the resolution could be slightly improved.) It should also be pointed out that the straggling in the present arrangement gets increasingly bad as the pressure is raised. As a result, the resolution at low energy (high pressure) is much worse than at the high energy end.

I should like to thank Prof. Ho H. Barschall for suggesting this experiment and MroR. Lo Falker for prepering most of its instrumentation。 Prof. D. Lipkin kindly offered several helpful suggestions for the evaporation of the targets. I should also like to thank :pr. Lo Treiman for the very fine polonium sources he prepared for this experiment.

PIG. I EXPLODED VIEW OF CROSS-SECTION CHAMBER

DOCUMENT ROOM

REC. \qquad man

UNCLASSIFIED

