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ABSTRACT

The initial growth of irregularities on an interface between two
compressible fluids is studied for impulsive (i.e., shock) acceleration.
It was found that the ultimate rate of growth is roughly the same as that
given by the imcompressible theory, if the initial compression of the

irregularities and of the fluids is taken into account.
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Chapter I -~ INTRODUCTION

G. I. Taylor developed a theory of the growth of irregularities
on the interface between two fluids of different densities when they
are in accelerated motion. The fluids are assumed incompressible and
the interface to have sinusoidal corrugations, so that the position of
the interface in a suitably-oriented cartesian coordinate system is

given by

z = a cos kx (1)

at some instant, where a and k are constants and where

k a << 1. (2)

Then if there is an acceleration of the system as a whole and if g(t)

represents the z-component of acceleration, the growth or decay of the

amplitude a = a(t) of the corrugations satisfies the equation,
2 P\ - P
L a(t) = ka(t) a(e) fl ) (3)
dat (+) 7 (<)

where P(+) and f_y ere the densities of the fluids, on the +z and -z
sides of the interface, respectively.

If viscosity, surface tension, compressibility are absent, (3) is
rigorous so long as (2) continues to hold. If the irregularity consists

of a superposition of sinusoidal corrugations, each satisfying (2), then

ke 3%
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each of them satisfies also (3) with its appropriate value of k. For
constant acceleration directed toward the denser fluid, (3) gives an
exponential growth of a(t). It is also known that after ka has reached
about 1, from there on the increase of a is more leisurely, at about
a constant rate (the shape is no longer sinusoidal). It is therefore
generally assumed that (3) describes fairly well the growth of long-
wave-length irregularities of small amplitude (ka <& 1), even though
irregularities of very short wavelength have gone out of the linear
range near the beginning of the acceleration, since the fuzziness of
the interface caused by the short-wave-length irregularities may extend
only over distances small compared to the amplitudes of the longer-wave-
length irregularities. {3) has been used for calculating the growth of
irregularities for practical purposes.

In some practical cases, part or all of the acceleration is im-
pulsive; i.e., g(t) is very large during a very short time interval
and zero or small outside that interval. Iet v be the inerement of
velocity imparted by this acceleration, = j1g(t) dt; then if the

situation before the acceleration is

da

=0 (vefore), (%)

the situation immediately after is:

- P
a=a, =kva, Efz;-:_T(-—)- (immediately after) (5)

88 can be seen by integrating (3).
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The limiting case of impulsive acceleration is acceleration by

a shock. 1In this case the compressibility of the fluids certainly can-
not be neglected, so that (3) cannot be used. The object of study re-
ported here is to compute the growth of irregularities when a shock
sweeps across a corrugated interface from a less dense to a more dense
fluid.

In Fig. 1 are schematic before-and-after pictures, showing the
incident shock, which is assumed plane, and the transmitted and re-
flected shocks, which are corrugated. Before the arrival of the shock,
the materials are at rest, in accordance with the initial conditions
(4). Pressure is assumed constant behind the incident shock.

It is clear that immediately after the passage of the shock, as
depicted schematically in Fig. 1, the conditions will not be as given
vy (5), above. Instead, the amplitude a will be somewhat less than a,
because of the overall compression of the fluids, and furthermore —%%—
will be zero, because the forward velocity imparted by the shock to the
crest of the corrugation will be the same as that imparted to the trough,
and -%%— is simply one-half the difference of these. Until there has
been time for communication, by sound signals, of effects over distances
comperable with 1/k, there can be no difference in behavior between

crest and trough. (In the incompressible theory, effects are trans-

da
3T cen acquire a

non-vanishing value immediately, as stated in (5) above.)

mitted instantaneously by fluid pressure, so that

But as time goes on, the amplitude of the corrugation of the
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interface begins to grow, because near the crests, where the heavy fluid
protrudes farthest into the light, the transmitted shock is slightly
converging end the reflected shock slightly diverging; this produces a
slight pressure excess in the heavy fluid and deficiency in the lighter,
vhereas at the troughs of the corrugations, the reverse situation holds;
and these pressure perturbations are in such directions as to hold back
the crests but accelerate the troughs into the heavy fluid. Our aim is
to calculate these pressure perturbations and from them the motion of
the interface.

One may surmise that by the time the shocks have moved to dis-
tances several times 1/k from the interface, the net result will be
qualitatively as for the incompressible case; nemely, the amplitude will

have acquired a rate of change of the same order of magnitude as

da_

dt
that given by (5), and thereafter a(t) will increase practically
linearly with time. If the limiting value of —%%— should be much
greater or much less than for the incompressible case, this would
perhaps be of practical importance in some problems, and would indicate
the extent to which equation (3) is invalidated by effects of com-

pressibility.
Chapter II - BASIC EQUATIONS.

Sec. 1. General. Referring to Fig. 1, we take a comoving

coordinate system, after the primary shock has crossed the interface,

in which the mean position of the interface is z = 0. Let vy and Vo

) “Tee o o
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be the mean speeds of the transmitted and reflected shocks. We repre-

sent the positions of the transmitted shock, interface, and reflected

shock by
z = - wt +a () X (6)
z= . ag(t) e (7)
2= wst +ay(t) et (8)

We call region O that of the undisturbed fluid to the left of the
transmitted shock, region 1 that of the shocked heavy fluid between the
transmitted shock and the interface, region 2 that of the twice-shocked
light fluid between the interface and the reflected shock, and region 3
that of the once-shocked light fluid to the right of the reflected shock.

ikx

*
Following A. E. Roberts , we write e and -:leikx as abbreviations

for cos kx and sin kx, respectively.

We let:
i
u = (ux, uy) = material velocity,

P = pressure,

*

Many of our equations are similar to those used by A. E. Roberts
(LA-299 Stability of a Steady Plane Shock, June 8, 1945) in his
discussion of the stability of shocks.
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specific volume,

e

specific internal energy,

specific entropy.

These are functions of X, z, and t.

quantities,
~
_ )
w, = u {(>0) in
) uzl(z,t)eikx in
w.° (<0) in
3
ux = 0 in
uxl(z,t)eikx in
P = Fp°° in
P, + pl(z,t) T
<
p,° + pr(z,t) X 1
o
p3 in
\

APPROVED FOR PUBLI C _RELEASE

region O
region 1 and 2

region 3

-

regions O and 3

regions 1 and 2

J

region 0O
region 1
region 2

region 3
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Then, to first order of small

( (9)

(10)

(11)
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v = Vo in region O
v1° + vl(z,t) e1BX in region 1
~ ‘ (12)
v2° + vl(z,t) el in region 2
o
v3 in region 3 s
- 4
[ o .
s = 8, in region O
slo + sl(z) o 1EX in region 1
: > (13)
520 + sl(z) elkX in region 2
o
s in region 3
3 ]
.\

This entire theory is a first-order theory. The first-order
quantities are assumed small in comparison with the corresponding zero-
order quantities, and higher-order quantities are neglected. Thus,
e.g.; pl(z,t) T4 plo, uzl(z,t) << w,, also a.o(t) ((% during
the period of time covered by the calculation.

Note that sl(z) does not depend on t.

Sec. 2. Equations of Hugoniot. If for either of the shocks shown in

Figure 2, we let So’ Po’ VO represent the initial specific entropy,
pressure, and specific volume, and if p and e are known as functions

of v and s, then the Hugoniot equation,

e CLASSIFIED
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(v,8) + P ’
_P;i_.é_:__‘l (v, - v) = e(v,s) - e(Vo,So), (k)

determines s (implicitly) as a function of v, and therefore also p

as a function of v. Let these functions be denoted by:

light fluid heavy fluid
p = §k) ’ P,(v), (15)
s = ) , Yu(v). (16)

Note that %(v) and Xfe (v) are Hugoniot functions starting from the
condition in which the light fluid was left by the primary shock. Ac-
cording to the Hugoniot theory, the relations among the zero-order

quantities are

n’ = p = W) = 9n) (17)
slo = \yh(vlo), (18)
5 = Y (v,), (29)
2
2 o o o
' P, -DP W, +u
( 1°> = _ia.___ga = (..];_.6..9..) ’ (20)
Vl Vo -Vl Vo
Py fam 3R
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Sec. 3. The Pressure Perturbation. The first-order quantities

satisfy partial differential equations in the regions between the shocks;
and boundary conditions at z = -wlt ,at z = 0O, andat z = wat.
We discuss the partial differential equations first.

For region 1, if p = fl(v,s) is the equation of .state of the

heavy fluid; then to first order, -
?f.(v,s) a1, (v,s)
1 1 ? 1 1’
p(z,t) = v(z,t) —%—;——- v=v1° + 8 (2z) ——-a—s—-—vwlo
s=sl° 8=8,
- (22)
e, \2
- (-}-> $(z,t).
v.°
1
y
where we define ¥(z,t) by:
of af
A 1
Vz,t) = vi(z,t) + sM(2) [é—i -a—,,i] vev,® (23)
s=s,°
1l
and where the sound speed is given by
' e
UNCLASSIFIED
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ey ar
(%) - | @)
v 1
1
s=8
The equation of continuity is
2
1 o]
du 1 A 1
o z 1)y _ v _ev_ (1 )ap
"1<az *ik“x)‘at = a5t (:1 )at (25)
and the equatiors of motion are:
1
1 du
N S s T (26)
oz v.° ot
1
1
au
i _ 1 X
1
By elimination, we find that pl satisfies the equation
21 2.1
2 p 2 /9" p 2 1)
= ¢ -3 - k™ p ’ (28)

which is no great surprise. In region 2 the same equation holds with
2 2
cl replaced by ey -

By the introduction of the effective specific volume /v\ defined

by (23) we have got rid of entropy. It is not necessary to assume an

equation of state independent of entropy, as was done by Roberts. Such

§ § : 5.13": .: :o *
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an assumption does not simplify (in fact does not alter) the form of
the equations -- it omly simplifies the calculation of certain constants
entering the boundary conditionms.

Equations similar to (23), (24), and (28) hold for regiom 2.

Sec. k. Boundary conditions at the shocks. The shock conditions

at the reflected shock are

ikx ikx

1 N
-u, (wat,t) e vy + aa(t)e

<) 1 ikx = o
Vo +V (wét,t) e V3

ikx a (o}

v, + aa(t) e 3

y (29)

1 tkx
Py + B (Wptstle - p°

o o 1 ikx
vy sV -V (wat,t)e

o

We expand each member of this equation in powers of first-order small
quantities and retain only zeroth and first powers. Actually, (29) is
only correct to first order because if the obliquity of the shock were
taken into account, the cosines of small angles would enter the first
two members, and these cosines differ from unity by quantities of the
second order, because the angles are themselves small quantities of the

first order. The zero-order terms from (29) give

b4 il‘#:. e ®
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in agreement with equation (21) above.

térms, we obtain the equations:

‘ o O
1 [. 1 Y2. 1 4/ P2 “P3
;—3{%2 -, (wat,t)} - Z;TSSZ v (wat,t) = I
2 2 3 2
1 1
E b (Vat’t) +‘l v (w2t’t)
2 o_o 2 v °-v o
P2 P3 3 )
1 .
v—o 8.2 = same
3

Similar equations hold for the transmitted shoek.
volume increment, vl, at the shock in terms of the

pl, there, by noting that from (15),

1
p(w t,t)

‘12‘(V)
= —d—v_——

] o
v=v,

vl(wzt,t ).

UNCLASSIFIED

By equating the first-order

(30)

(31)

We can express the

pressure increment,

(32)

This suggests that we introduce the dimensionless quantities

SICLASSRED
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aqg(v>]
L (c2;v2°>;=vao (33)

K, = - = (34)
1 . (cl/vlo )2

Then (31) and its analogue for the transmitted shock give us for one

set of boundary conditions,

o o )
v 'S W
- 1 Y3 V2 Jl 2 1
8-2 =3 °-v° "'2 - c2 D (Vat’t)’ (35)
V3 2 Ky ¢
1
v°w© ]’ w
. 1 1 1 1
& = 3o v, “ [ 7 (- tst)- (36)
Vo ° V1 1"1J

The factor multiplying pl is in each case a constant that is evaluated
at the beginning of the calculation.

Eliminating a,. from (30)then gives:

2
W,
+ —E5 1 pH(ugt,t). (37)

2 Ko

OV | o
o
=

1
u, (wat,t) =

<

(37) is an identity in t, and therefore,

hesr 1 R UNCLASSIFIED
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2,, 2 ) l.l,08 1, Y2 {(s .éL) 1 ]
(;t * ¥ az‘> Y2 =37 ) ¥2 + gt * Y23z )P atz=wust. (38)

The tangential component of the fluid velocity, 'U’, is continu-
ous at the shock. To first order of small quantities, this is

1l ikx
u, (w2 t, t) e

Just behind the shock, and ug tana just ahead,
vhere tan & is the inclination of the shock front to the x axis

and is given by

tan & = 5% 2w21'. + a2(t) eikxg = ika2 eikx, (39)

according to equation (8) for the form of the shock front. Therefore,

1l ..
ux(w2t, t) = lmug a2(t),

or _
1 2 o
ikwou = -k u3 Wy 85 at z = w2t. (L40)
If we add (38) and (40), the material velocity components, ui and

ul may be eliminated by use of the equation of continuity, and the

z
equation of motion, similar to (25) and (27) for region 2. It is con-

venient to introduce a notation for the shock pressures:

Pty t) )

Pl( w2t’ t) S.

p(s),(t)
p(s)2(t)

(41)

The result is:
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¢y Wy ) dp(s), 2, [ap"
g"’z + 2w, + 2, E dt (" - cp") g—lz)_Jz-wat '
k2 2 o
+ ‘2 °u3 "2 92(t)’
V2
[ (42)
2
¢ ¥ | dr(e) 2 2 [ !
§w1+2wl+2Ki dtl ") -g—lz)_ =-wt+
ke 24y :
+ 1 5 1 al(t)-
vy J

These boundary conditions give the rate of change of the shock pres-
sures. The first term on the right arises from pressure gradient be-

hind the shock and the second term from convergence or divergence.

Sec. 5. Boundary conditions at the interface. From continuity

of the normel component of fluid velocity, and hence of acceleration,

across the interface;

ufs
N|

TN LK [ PV : (43)

z==0 z=40

The equality of the second and third members of this equation is what
is needed by way of boundary condition for the partial differential
equation (28) for the pressure; the first member is used to determine
the function ao(t), which is the principal objective of the calcu-

lation.
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Sec. 6. Oblique shock transmission. In preparation for writ-

ing down the initiael conditions, we consider the transmission and re-
flection of a plane shock crossing a plane interface as depicted in
Fig. 3. We look for solutions of the hydrodynamical equations such
that conditions are constant in each of the five regions shown in that
figure. For the purpose of this discussion we suppose the fluids
initially at rest, and we later transform to the comoving coordinate
system used in connection with Fig. 2.

One Hugoniot relation says that the effect of a shock on the
material velocity W is to impart to it en increment AQ whose di-
rection is normel to the shock front end whose megnitude is AFPAV .
Therefore (see Fig. 3 for the notation used in this section; the

angles indicated there are regarded as positive):

=0 Y2 = '\/(Pl'Po)(Vo.Vl) ’

Uy, = J(Pa-Pl)(Vl-Va) sin ay, vy, = Uy + \I(P2-P1)(V1-V2) cos Ot r(hh)

Uz =-\I(P3-P°)(Vi-v3) sin &), Uz, = = \I(P3-P°)(Vi'-v3) cos o), -

Let Uo’ Ul’ U2, U3 be the velocities of the various planes as
indiceted in Fig. 2, measured in directions normel to these planes. 1In
a8 time At the intersection moves & distance Ué&t/sintxl along

the interface. Therefore, the reflected shock moves a distance

U_ At
= sin(, - &@,) normal to itself. From these and similar
sin (xl 2 1l

relations,

..19. T “&(‘\_;\SE\E\?D |
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L A U
1~ Yo sin o ’
1l
sin(q, -«,)
a 1 y
Uy = U, sin @ ’ ) (45)
o = U sin(o:l - a3)
3 (o] sin 0&
P

The Hugoniot equation for the velocity of a shock relative to

the material ahead of it gives, for the three shocks;

\
P, - P
1 o
U = v | —2,
(o] (o] V° - Vl
U, -~ (u, cos&, + inx,) =V P—2-—P-]; ' (46)
1 1z CO8 Np + Uy, sina,) = V) v, -V’
Y
2 o Vl -V *
o~ '3 y

The velocity of the interface must agree with the normal component
of fluid velocity on either side, or;

U3 = -(u2z cos ot3 + u, sin q3) = -(u3z CO8 Oy + ug, sin q3). (47)

Lastly, since the fluids are assumed to have no acceleration except by
shocks,
P,=P_. (148)
From equations (LL4) through (48), we can draw the following
conclusions (details are omitted):
1) The component of the f£luid velocity :: tangential to the

interface is not in general the same on the two sides. That is,

PE T oy UHCLASSITED
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there is slipping along the interface. This effect will not concern
us directly.

2) We may define the compression of the interface as the amount
of purely geometrical compression in the z-direction that would be re-
quired to turn the interface from its imitial orientation into its final

orientation. This is tan O(I/tan x It gives the initial compression

3:
by the shock of the corrugations in our problem. It can be calculated
from the above equations, by means of a little algebra, in the limiting

case in which all angles are &1 so that we can approximate by writing

\'
sin qr o, cos & & 1. It turns out to depend on the ratios ‘—,-2 s
2
Vl v
o] o
v and 7o
3 1
We might have hoped to be able to express the compression,
\'
dlﬁx3, of the interface, in terms of the compressions, Vg and
vl
Vg of the fluids on either side of it, but the initial compression,
3
Vo
;— , of the light fluid by the incident shock, also enters. Of course,
1
Vl is not arbitrary: (Pl’ Vl) is a8 point in the state space of the

light fluid that must lie on the Hugoniot starting from (Po’ Vo); and,
in turn the Hugoniot starting from (Pl’ Vl) must pess through (P2, V2).
Thus the point (Pl’ Vl) is determined as the intersection of two
Hugoniot curves. But & consideration of the thermodynamic properties
of the fluids is required to f£ix this point, and we must despair of

computing the compression of the interface in terms of puiifmpk%gﬁﬁg§¥EX)

3 RS
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These two conclusions are mentioned only incidentally. Below,
we shall derive initial conditions for our problem from the consider-
ations of this section. The reasoning is as follows: the amplitudes
ey, 8, 8, =ppeering in equations (6), (7), end (8), are understood
to be ‘41%3 At sufficiently early times after impact, Fig. 2 is as
shown schematically on an ehlarged scale in Fig. 3. The separations
of the surfaces are small compared to the wavelength of the corrugations,
and sound signaels have only begp able to travel distances small com-
pared to a wavelength since the beginning of the impact. Therefore, a
region, R, sufficiently small that the surfaces are very nearly plane
in it, is still unaffected by the fact that the tangent plenes have
slightly different positions in some other region, such ss R'. There-

fore, in either of these regions the collision problem reduces to that

of Fig. 2.

Sec. 7. Initial condition. Each of the inclined planes in Fig.

2 is to be thought of as a very small piece of one of the corrugated
surfaces in our problem; the tangent of the angle of inclination is,
therefore, proportional to the emplitude of the corresponding corrugation.
Specifically
ten o, : ten &, : ten ag ten Q) = ao(-o) : a2(+0) : a°(+0) : al(+0)
(49)
where t = +O and -0 refer to Just after, and Just before the shock

crosses the interface. The correspondence in notation between Sec. 6

SR RN UHCLASSTHED
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Notation of Sec. 6 Notation of Previous Sections
o
Ul w2 - uo
o
U2 wl + uo
o
U3 uo

This correspondence is correct down to small quantities of first order.

Therefore, if we assume a., A, a3, o), all &1, (45) gives

[ 1 9
° a2(+o)
Yo - v2=Us |1 - g1y
o
e, (+0) ] L
o 1
Uy +w; = U |1 5.(-0 (50)
u? U (1 o(+0) |
(] = - -
o | 8, 0 4]
Furthermore, the pressure P2 of Sec. 6 is the pressure
ikx

pg + pl(z, t) e Clearly this is an even function of the angles in
Fig. 2 and, therefore, P2 is independent of the angles to first order

of small quantities, so
1
P (0,0) = 0. (51)
As noted in the introduction, the forward speeds imparted by the

shock to crest and trough of the corrugetions are equal, so

a,(0) = o. (52)

lastly, we need initial values of the pressure gradients, because these
are needed to compute the rate of change of shock pressures by (L42).

These initial values will be denoted by:

LSS
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= 1im - | 2] 9
Bl t-» O+ [32 dz=u v’
¢ (53)
B = 1im |2
2 t- O+ 9z Jz=w2t. J

In (42), we write out the total derivatives; e. g.

dp(s),(t) [, J
—_— = (2p! ap' (54)
[ dt ]t -0 t ¥ oz 220

1]
and eliminate 3—5— to give

\
2 2 2 o
X2, 2)g K 2% ¥ 00
2w2 2K 2 o
2 Vo
2 =
v+ 2, T2
2" B, T X, r(55)
3c§ l) K2 ci ug Wy al(+0)
(5=, 3
2
S S |
l 2wl 2Kl J
(43) gives
o o ~
v, A+ v, 52— 0 (56)

(55) and (56) can be solved for the constants /31 and ﬁ2.
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Sec. 8. Statement of problem. The problem to be solved is that

of the differentiasl equation (28) in the wedge t70, - wlt$ z £ 0; the
seme differential equation with cl replaced by 5 in the wedge
t20, 0%z £ w,t; subject to boundary conditions (35), (36), (42), end
(43) end to initiel conditione (50), (51), (52),(55), end (56). Among
desired results is a graph of éo vs. t carried far enough that an
approximate'asymptotic value of éo is evident. Paremeters in the
problem are: the thermodynaemic properties of the fluids, their initiel
states (e. g., densities - their initial pressures are, of course,
equal), end the strength of the incident shock. The wave number, k,
is not really a persmeter, because the problem is invarient to multipli-
cation of all lengths and times by & common constant, so that k cean
be taken equal to unity without loss of generality.

This is & linear initial-boundary value problem and can possibly
be solved by analytic methods. Consideration of the work of A. E.
Roberts (op. cit.) on a similar but considerably simpler problem suggests
that the analytic solution is likely to be very complicated; therefore,

we chose to use numericel integration.

Chapter III «= FINITE DIFFERENCE METHODS
The time increment is At; we allow for different space increments

Alz and Aaz is the regions 1 and 2,but these are assumed so chosen that

viAt =y, Az, WAt =y 4, 2 (57)
E.E ..: .§. .-2 .§ ..
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where ;l and ;l are positive integers - then the transmitted (re-
1l 2

flected) shock arrives at a mesh point exactly every ;i cycles

(every ;i cycles) which simplifies the procedures for adding mesh |
points. At cycle n 1let J = Jl(n) denote the greatest integer

less tﬁan yyn and similarly for J2 so that the number of mesh points

between the shocks is Jl + J2 + 1.

Calling
ap
replacing pl by simply p, and adopting the convention that for any
function £(z, t), f? denotes f(jl&lz, nAt) for J <40 and
f(,j4,2z, nf&t) for 320, we can write for the partisl differential
equation and the boundary condition at 2z = O:
- K13 Ky
AR AR (CFRLE TP -
LS K16
<< (59)
-3;< 3 <0
for s 1 or 2
lo < 544, ]

(The expressions for the constants, such as K13, coey K16* are collected

in Teble II). For the point on the interface,

n-1/2
o = 9

n+l/2

q +Kyq(e2) - Bg) + Kiglp) - Bg) - Kyg po. (60)

( This equation was obtained by writing:

— UL
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[3t2]2=0 c] z_vi = v, az]z=_o p(0, t) S
2 S'L B ﬂ] k2 (0, t) 2;
22_"; 9z 2 Z{,ev0 S

by replacing the second space derivatives by expressions of the form

n n
1 1 Pr) ~ Po ( ap ,
v Az]2 [v Az “\V 5z 2<t0)

end by eliminating the (v —'3—5 by use of equation (h3)>.
z=10

The last mesh point in either direction has a mesh point on one
side of it and a shock on the other, and generally the spatiel intervals
are different on the two sides of it. Pressure gradient is centered at
the midpoint of the intervals, the difference equation will be centered
halfway between these two midpoints, rather than at the last mesh point:

n+l/2

therefore, a correction is appliied to compute qj at J = -jl or

J= 52. Call

pn - pn pn - Pn
(S)l 'Jl * n (8)2 J2 . X n
) =A P, : = A,p. (61)
YRty y2n T J2
The pressure halfway between the two midpoints is
(3.1, . ] n o, [, Y T
p-'j]_ = [H + E(yln Jl) P_Jl + _E-(Jl +1 yln)‘ P_jl+l
or , (62)
*n 13 .1 . n 1 ) 1 n
sz = [H‘ + H‘(y2n J2)] sz + -E'(J2 +1 yzn)- pjg‘l

)53‘!{" .‘f'l'n-:.--
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and the temporal increment of q halfway between the two midpoints is

X n n
A _ (B P - Pyt Py *n ]
Ly, ” - " %15 Py
1 1l + ¥yn '.jl 1l
(63)
*
or 2K, (A, p - Py +D; )
% ! 2 o *n
U, ~ " %16 7
2 1+ Yo I - J2 2 /

Therefore, by linear extrapolation of the temporal increment of aq to

the last mesh point,

) ) n+l/2 _ n-l/2)
aaje | afe Kq 5 (90 yl) ( -3 T ga 1
" n 2+ % (yyn - 3y)
FT L Wy 1 ‘ (64)
(o1 - 9m) (5242 - 52%)
qr}+l/2 - q31-1/2 . J2
’2 2 3 F (y2n - J5) ’

Now that the new q is known for each mesh point, the new p

is found by simply

At for -j; € J € (65)

The boundary conditions at the shocks are put in the form of the

simulteneous linear equation pair:

. S 3 n+l n
SoL = Pl * Ks(e1T 8D+ Koys g b 7o
. > (66)
s n+l n 2
Ba)e = Pla)e * Ke(3 * #3) + Ko 2 o l )2 3 (612) )
o e
“CLASSIFED
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and
n+l ~ n n+l n )
8 =8+ Klpgyy + Pgyy)
or - { (67)
n+tl _ n n+1 n
82 =8y + KS(P(S)z * P(g)2)
L,
where p -P .
s)l -
(s) . J1<},n_3+%>_6) - ¥ =3y
_ _ yr - Jy 1 1 -Jl =Jy+l —
(S)l 1 yn-vj1
§ + _l_._"'Az
2 1l
(68)
p(s)2 B pJ2 ) ( >y2n - J2
—_..-__.___.. yn-J - T—_
, 8P _ Y22 -9 2 Fip  Tapl
(s)2 1
2 * E — ) 822
The procedure for adding mesh points is as follows: if
ny, = jl+l, the transmitted shock has just reached the (jl+1)st mesh
point so that this point must be included in the mesh henceforth. This
is done as follows: at the end of the cycle, a value of qn;l{§ is
1l
supplied by the equations
qn)=f; aI£+Kl[.§PEJ w
(S 1 1 z (S)l
n+l
n+l 5 n+l
q At @ + K- }
(s)1 ~ At 1l ll[. ER (s)L S (69)
bl
1 n+l 1 n 1 n+1/2
=q +=q ) + 5= q_.
qn+l/2 ( 2 *(s)1 7 2 ¥(sh 2 Jq
-(3+1) T Y J

URCLASSIFIED




APPROVED FOR PUBLI C RELEASE

oty G LSS

n+l _.n n+l/2
the quantity p'(Jl+1) = p(s)l.+”4t q-(jl+l) is also supplied and then

the substitution J1+L—9jl is made. A similar procedure is used for
adding mesh points behind the reflected shock.

Finally, the quantity a o(t), which is the principal object of the
study, is calculated from the equation

n+l n n-1 n n n n n

8, =285 -8, + Kél(p-l - po) + K22(p1 - ) + K23 Po (70)
The calculation as described here was coded for the Los Alamos

MANIAC, end is celled problem L-36. The code requires an input data

tepe giving velues of At, A1z, 4,2, Yy, Yo Aps Ay 8 (+0), 8,(+0)

and most of the K's, from K5 through K23

CHAPTER IV -~ RESULTS FOR 7 -LAW GASES

The code described in the preceding chapter places no restriction
on the equation of state, provided only that the values of several
constants are known. But the only calculations performed with this code
so far were for ‘1-law gases, initislly cold, both having the same
value of .

By suitable choice of units (note that we are free to choose dif-
ferent units of length for infinitesimal lengths like 8, al, by
and for macroscopic lengths like 2z, E%L) we can make Uo’
ao(-O), Vo’ E%L equal to any given value, like 2-10, for convenience.
Then the dimensionless parameters characterizing a problem are %,

eand R, the initisl density ratio at the interface. The further param-

eters At, Y32 ¥p fix the method of integration used.

el pee o UNCLASSIRD
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A separate routine (cai&gd°t-§6 séﬁ-&b) ﬁ;s ccded which calculates
the various constants needed in the main celculation for this case, and
punches out a data tape for L-36.

The input to the set-up consists simply of placing a number in Rh

after each of six special stop instructions, as follows:

SPECIAL STOP NUMBER TO BE
INSTRUCTION PLACED IN Ry
11111 Problem Number
11112 (7-1) (v+1)
11113 R
11114 At
11115 ¥y
11116 Yo

Trerefore, & problem can be started without having prépared a data tape
in edvance.

The problems run are summarized in Table III and Figs. L, 5, 6, T.
Problems 1C and 1E are the same except that 1C has twice as fine a
space-time mesh for the numerical calculation. 1E is presumably less
accurate but could be carried further before the numerical storage
requirement exceeded the capacity of the MANIAC. Comparison of the
solid and dashed curves of Fig. 4 suggests that the truncation error

is not large.
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From Fig. 4 one can resd off an approximate asymptotic value of éo
with some confidence: in decimal notation this value is = 0.164 - 10-3.
We wish to compare this value with one given by equation (5), but there
is a certain ambiguity in the interpretation of that equation because
in our compressible case the amplitude ao(t) and the densities Fk+)

and P(_) change discontinuously at t = O. If we substitute values

appropriate to t = -0 into (5), we find

5,@) = I8 ke (-0) (T1)

but if we substitute values appropriaste to t = +0, we find

vo - v°
2

. o 1
80@)N uo 'Tvo' k a°(+0). (72)
2 1

Values obtained from these formulas are 0.347 :1073 and 0.151 - 10'3,
so that equation (72) is in rough agreement with our result, but (71)
is wrong by about a factor 2. As seen in Table III, similar results
were obtained for the other problems.

The conclusion is that if the initial compression of the interface
and of the fluids is taeken into account, the ultimate rate of growth of
the corrugation is about the same as that given by the incompressible
theory.

The waves in the curves of Figs. 4, 5, 6, and 7 are real and are re-
lated to the phenomenon discovered by Roberts (op. cit.), namely that
corrugations in a shock are supersteble -- they oscillate in a damped

fashion. The two shocks in our problem are executing such oscillations
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with different natural frequencies and with complications due to the

coupling, end these oscillations influence the motion of the interface.
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TABLE I -- SUMMARY OF NOTATION
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Region O 1 2 3
u = 0 ui(z, t)eikx ui(z, t)e:.ka 0
u, = u >0 ui(z, t)eikx u]z'(z, t)eikx u§<0
v = vg vi + vl(z, t)eu‘x vg + vl(z, t)e:ka vg
P =g by + pH(z, t)eM™™ pp + pH(z,8)e™™ 14
(p] = p3)
s = sg si + sl(z)eikx s; + sl(z)eikx sg
(eq. of state)] p = fl(v, s) P = f2(v, s)
c\2 ( ) _( )

() - (#)-
(Hugoniot) = @ (v) P = @y(v)

5= 4, (v) - #y(v)

Py = PH(-wyt, t) Do = p2(w2t, t)
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TABLE II -- CONSTANTS IN THE FINITE-DIFFERENCE FORMULAS

8 w 2
1 1 2 2
Kyp =W, + 54—+ 55— K, =w = + 55—
3 1 2wl 2K1 (! 2 2w2 2K2
(see Eq. (34) for Kl) (see Eq. (33) for K,
k2c2w u° k202 °
c - = 11% A LA QY

(See Egqs. (17)-+=(21) for u and u

. MUY (‘) 1 |at A I(‘j}_ at
- 2c2(v -v X 2 2c2(v° v;) X5

(2. B At L2 - 2 At
Kg = (wy - 1) 2K, Kjp = (w3 - c3) 2K,
2 - 2 -
Ky = ag K9 - ¥y Ko = &t %50 " ™2
cl 2 c2 2
K13 = (A lz) At Ky =<Z 22) at
K. = (c,k)2At K, = (c.k)ZAt
15 = ¢ 16 2
Vo Vo
K = 1 At o o e At
{ A OA 12 OA 2 18 Doz viA z v°A2z
+ +
2c§ 2c§ 2c§ 2c§
o o 2 2
lelz + val z i c5 c]

2 2 1 PA%
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Table II (Continued) fee B Eree

2
i (clAt/Alz) . (cAt/Az)
21 Koo 22 K0
3-q
Kan = kAt)
23 Ko
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TABLE IIT -~

SUMMARY OF PROBLEMS RUN
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PROBLEM NUMBER 1C 1E 1D 2 2B
1 3/2 3/2 3/2 9/7 9/7
R 1/8 1/8 1/16 1/16 1/16
At 1/16 1/8 1/16 3/6k 1/8
103 & o’ Bsymptotic O.:[6l& 0.168 0.16k
103 ue %ig k 8 (-0) 0.347 0.312 0.371

vO - V0
103 ud -%-——{% k 8, (+0) 0.151 0.173 0.170

e )

".7'2 o: .
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