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ABSTRACT

The initial growth of irregularitieson an interface between two

compressible fluids is studied for impulsive (i.e., shock) acceleration.

It was found that the ultimate rate of growth is roughly the same as that

given by the ticompressible theory, if the initial compression of the

irregularitiesand of the fluids Is taken into account.
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Chapter I -- INTRODUCTION

G. I. Taylor develoxd a theory of the growth of irregularities

on the interface between two fluids of different densities when they

are in accelerated motion. The fluids are assumed incompressible and

the interface

the interface

given by

to have sinusoidal corrugations, so that the position of

in a suitably-orientedcartesian coordinate system is

z = a cos M (1)

at some instant, where a and k are constants and where

ka<<l. (2)

Then if there is an acceleration of the systemas a whole and ifg(t)

represents the z-component of acceleration, the growth or decay of the

amplitude a = a(t) of the corrugations satisfies the equation,

d2 - P*
—a(t) =

+k g(t) a(t) j.

+)

dt2 + (-)’
(3)

‘here ~(+)and ~(.-)are the densities of the fluids, on the +Z and -z

sides of the interface, respectively.

If viscosity, surface tension, compressibilityare absent, (3) is

rigorous so long as (2) continues to hold. If the irregularity consists

of a superposition of sinusoidal corrugations, each satisfying (2), then

:: :..4.: ;0 ::”::00

iiiiiiii
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each of them satisfies also (3) with its appropriate value of k. For

constant acceleration directed toward the denser fluid, (3) gives an

exponential growth of a(t). It is also known that after ka has reached

about 1, from there on the increase of a is more leisurely, at about

a constant rate (the shape is no longer sinusoidal). It is therefore

generally assumed that (3) describes fairly well the growth of long-

wave-length irregularities of small amplitude (ka <C 1), even though

irregularitiesof very short wavelength have gone out of the linear

range near the beginning of the acceleration, since the fuzziness of

the interface cauaedby the short-wave-lengthirregularitiesmay extend

only over distances small compared to the amplitudes of the longer-wave-

length irregulsxities. (3) has been used for

irregularities for practical purposes.

In

pulsive;

and zero

velocity

some practical cases, part or all of

i.e., g(t) is very l~ge during

or small outside that interval.

imparted by this acceleration, .

situation before the acceleration is

a= a.,

the situation immediately after is:

calculating the growth of

the acceleration is im-

a very short time interval

I.& v be the increment of

fdt)dt;then if the

(before),

da
P
(+) - ‘(-) (immediatelyafter)a= a.,

E=kvaop
(+) ‘p(-)

as can be seen by integrating (3).

(4)

(5)
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The limiting case of impulsive acceleration is acceleration by

a shock. In this case the compressibilityof the fluids certainly can-

not be

ported

sweeps

fluid.

neglected, so that (3) cannot be used. The object of study re-

here is to compute the growth of irregularitieswhen a shock

across a corrugated interface from a less dense to a more dense

In Fig. 1 are schematic before-and-after pictures, showing the

incident shock, which is assumed plane, and the transmitted and re-

flected shocks, which are corrugated. Before

the materials are at rest, in accordance with

(4). Pressure is assumed constant behind the

It is clear that immediatel~ after the

the arrival of the shock,

the initial conditions

incident shock.

passage of the shock, as

depicted schematically in Fig. 1, the conditions will not be as given

by (~), above. Instead, the amplitude a will be somewhat less than ao,

dabecause of the overall compression of the fluids, and furthermore ~

will be zero, because the forward velocity imparted by the shock to the

crest of the corrugation will be the same as that i~arted to the trough,

da
— is simply one-half the difference of these. Until there has

and dt

been time for communication,by sound signals, of effects over distances

comparable with l/k, there can be no difference in behavior between

crest and trough. (In the incompressible theory, effects are trans-

damitted instantaneouslyby fluid pressure, so that ~ can acquire a

non-vanishingvalue immediately, as stated in (5) above.)

But as time goes on, the amplitude of the corrugation of the
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interface begins to grow, because near the crests, where the heavy fluid

protrudes farthest into the light, the transmitted shock is slightly

converging and the reflected shock slightly diverging; this produces a

slight pressure excess in the heavy fluid and deficiency in the lighter,

whereas at the troughs of the corrugations, the reverse situation holds;

and these pressure perturbations are in such directions as to hold back

the crests but accelerate the troughs into the heavy fluid. Our aim is

to calculate these pressure perturbations and from

the interface.

One -y surmise that by the ti~ the shocks

them the nmtion of

have moved to dis-

tances several tim?s l/k from the interface, the net result will be

qualitatively

have acquired

that given by

linearly with

as for the incompressible case; namely, the amplitude will

daa rate of change ~ of the same order of magnitude as

(5)j and thereafter a(t) will increase practically

time.
da

If the limiting value of ~ should be much

greater or much less than for the incompressible case, this would

perhaps be of practical importance in some problems, and would indicate

the extent to which equation (3) is invalidatedby effects of com-

pressibility.

Chapter II - BASIC EQUATIONS.

Sec. 1. General. Referring to Fig. 1, we take

coordinate system, after the primary shock has crossed

in which the man-position of the interface is z = O.

a comoving

the interface,

I.etWI and W2

● m ● * ● ● * ●●** ● ●
● 0 ;-7.: : :.O
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be the mean speeds

sent the positions

shock by

of the transmitted and reflected shocks. We repre-

of the transmitted shock, interface, and reflected

z = . Wlt + al(t) eikx (6)

z,. so(t) eih (7)

z = w2t + a2(t) eih (8)

We call region O that of the undisturbed fluid to the left of the

transmitted shock, region 1 that of the shocked heavy fluid betveen the

transmitted shock and the interface, region 2 that of the twice-shocked

light fluid between the interface and the reflected shock, and region 3

that of the once-shocked light fluid to the right of the reflected shock.

Following A. E. Roberts*, we write eib and -ieiw as abbreviations

for cos kx and sin kx, respectively.

We let:

a= (Ux, Uy) = material velocity,

P = pressure,

*
Many of our equations are similar to those used by A. E. Roberts
(LA-299 Stability of a Steady Plane Shock, June 8, 1945) in his
discussion of the stability of shocks.
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v= specific volume,

e = specific internal energy,

s= specific entropy.

These are functions of x, z, and t. Then, to first order of small

quantities,

Uz =

u=
x

Uoo (>0) in region O

Uzl(z,t)eih in region 1 and 2

‘3°
(<0) in region 3

0 in regions O and 3

Uxl(z,t)eiti in regions 1 and 2

P=
I PoO in region 0

plo + pl(z,t) ei~ in region 1

Pa” + pl(Z,t) eih in region 2

in region 3

● ✘ ● m ● . . ●●** b ●
9*

::

““: .:.-?: : :.”● ●0 ●
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v= ro
v

o
in region O

1

Ivlo + vl(z,t) eikx in region 1

v20 + vl(z,t) eikx in region 2

I

[
‘3°

J
in region 3 ,

0
s

o
in region O

81Q + sl(z) e
ikx

in region 1

s20 + sl(z) ei- in region 2

0
S2 in region 3
J

This entire theory is a first-order

quantities are assumed small in comparison

theory.

with the

I
UMCIAJJIFIED

(12)

(13)

The first-order

corresponding zero-

order quantities, and higher-order quantities are neglected. Thus,

e.g.; pl(Z,t) << Plo, Uziz,t) <<WI, also ao(t) <<~ during

the period of time covered by the calculation.
.

Note that SL(Z) does not depend on t.

Sec. 2. Equations of Hugoniot. If for either of the shocks shown in

Figure 2, we let so, Po, V. represent the initial specific entropy,

pressure, and specific volume, and if p and e are known as functions

of v and s, then the Hugoniot equation,
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p(v,s) + P.

2 (V. - v) = e(v,s) - e(Vo,So), (14)

determines s (implicitly)as a function of v, and therefore also p

as a function of v. Let these functions be denotid by:

limt fluid

P= ~ (v)

s= yj (v)

Note that ~(v) and

condition in which the

Hugoniot

was left

heavy fluid

ph(v ),

~h(v).

(15)

(16)

functions starting from the

by the primary shock. Ac-

cording to the Hugoniot theory, the relations among the zero-order

quantities are

P1O

‘1°

~2°

s p20 = j?j@20)= !?hh~o),

‘ ~h(v~o),

= V’&”),

2

()
; .(-)2,‘1 . %0 - Po”

o
‘1°

v
o -v”

● ● ☛ ● ✎ ● ● m

9*
:: ●°0
:: ●.: .;;%; : ““.● ● 9 .*

9** --:;● 0 ● : ‘*. ● *. .

(17)

(18)

(19)

(20)
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(-)‘2 2 . p2°

v2° ‘3°
;;= (W’v;?oj-.

(21)

Sec. 3. The Ressure Perturbation. The first-order quantities

satis~ partial differential equations in the regions between

and boundary conditions at z = -wlt, at z = 0$ and at z

We discuss the partial differential equations first.

For region 1, if p = fl(v,s) is the equation of-state

heavy fluid; then to first order,

the shocks;

= w2t ●

of the

pl(z,t) = ;(z,t,[w]v=:+.l(.)~-]v-:

S=s
1°

S=s
1°

()’12A=-— V(z,t).

Vl”

where we define ?(z,t) by:

[/1$3fl afl
:(z,t) = vl(z,t) + 81(Z) ~ ~ V=v o ,

1
(23)

and where the sound speed is given by

\

Uww]n)
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The equation of continuity is

and the equatiom of motion are:

-$=2/!!!!,
‘1

By elimination, we find that pl satisfies the equation

(25)

(27)

(28)

which is no great surprise. In region 2 the same equation holds with

C12 replacedby C22.

By the introduction of the effective specific voluum? $ defined

by (23) we have got rid of entropy. It is not necessary to assume an

equation of state independent of entropy, as was done by Roberts. Such

● ● ☛ ● ✎ ● ✍ ✎
✚

:-13ro : “o
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an assumption does not simplify (in fact does not alter) the form of

the equations -- it only simplifies the calculation of certain constants

entering the boundary conditions.

Equations similar to (23), (24), and (28) hold for region 2.

Sec. 4. Boundary conditions at the shocks. The shock conditions

at the reflected shock are

W2 + &2(t) eikx - uz1(w2t,t) eiti=w2+&2(t)ei&- u“

ikx
=

v20 + vL(w2t,t) e
‘3°

/’ ikx= pno+pl(wnt,*)e - P.”

‘3°
v1(w2t,t)e

ikx
-v

2° -

We expand each member

quantities and retain

only correct to first

(29)

of this equation in powers of first-order small

only zeroth and first powers. Actually, (29) i~

order because if the obliquity of the shock were

taken into account, the cosines of small angles would enter the first

two members, and these cosines differ from unityby quantities of the

second order, because the angles are themselves small quantities of the

first order. The zero-order terms from (29) give
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‘2

T

.+= ‘2°-p30 ,

‘2° ‘3 ‘3° - ‘2°

in qgreement with equation (21) above. By equating the first-order

t~rms, we obtain the equations:,

[

10
- uzl(w2t,t)

}

‘2

r

P2°-P30 ,
T a2 - nvl(w@) =
‘2 (V2 )

‘3°-v20

Similar equations

volume increment,
.

[

~P1(w2t,t) ~ v1(w2t,t)

2-—+Z! —
P2“-p30

‘3°-v20
1

1=
%a2 = ‘-
‘3

(30)

(31)

hold for the transmitted shock. We can express the

V1, at the shock in terms of the pressure increment,

PA, there, by noting that from (1!5),

[]

d%(v)
P1(w2t,t) =

dv VW 0 vl(w2t,t).

-2

This suggests that we introduce the dimensionless quantities

b ● 0 . .
● *
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● * : ●b*

:: 95*0 : ‘.
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[Jd44(v)dv VW O

%=-

-2

(c2/v20)2

[1d @h(V)

-=r-vTo
-.

I

(34)J.

‘1 = - (+10)2

Then (31) and its analo~ for the transmitted shock give us for one

set of boundary conditions,

E1‘2
[

1—-

‘1

is in

‘2

1

P1(w2t}t))
$ C2*

. 1 ‘3° ‘2°
a2=2

‘3° - ‘2°

(35)

‘1
2
I

Plwlt,t).

‘1 c1

. 1 ‘0° ‘1°
al=-zvo-vo

o 1

(36)

J

The factor multiplying pl each case a constant that is evaluated

at the beginning of the calculation.

Eliminating & from (30)then gives:

1
uzl(w2t,t) = * v20 ,*+-&jpl,w2t,t). (37)

(37) is an identi.tvint, and therefore,

WCWJ!IED
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(a ) J 1 ! 1 ‘2
ax+w2a3 z= r%” —+—

i

/( a

!
)

~ #
2 ax + ‘2 az atz= wt. (38)

. ‘2 2
‘2C2

The tangential component of the fluid velocity, ~, ia continu-

ous at the shock. To first order of small quantities, this is

ux1(w2t, t) eib Just behind the shock, and

where tan U is the inclination of the shock

and is given by

0 tancx just ahead,
‘3

front to the x axis

tan Q != ~~ w2t + a2(t) eikx~ ikx

i \
= ika e ,

2 (39)

according to equation (8) for the form of the shock front. Therefore,

U;(w2t, t) = iku~a2(t),

or

1 -k2uo ~ a
‘h2ux = 322atz=w2t* (40)

If we add (38) and (40), the material velocity components, u: and

F
z

may be eliminated by use of the equation of continuity, and the

equation of motion, similar to (2s) and

venient to introduce a notation for the

(27) for region 2. It is cOn-

shock pressures:

P(s)Jt) = P1(-wit, t) /

P1( Wzt, t) \
.

P(42(t) =

The result ia:

(41)
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2
‘2 W2 j dp(s)2

!
w2+~+K

!
dt = (W22 -.22)

2 [1al
az

Z=w t
2

~2c 2 0

+
2 ‘3 ‘2 ~ (t),

. 2
%

~2c2uo

+
10 ‘1

o
v,

These boundary conditions

sures. The first term on

J.

give the

[
C12)-

al(t).

rate of

the right arises

+

al
az 1

+
z=-Wlt

change of the

from pressure

hind the shock and the second term from convergence or

Sec. 5. Boundary conditions at the interface.

UNCLASSIFIE

(42)

shock pres-

gradient be-

divergence.

From continuity

of the normal component of fluid velocity, and hence of acceleration,

across the interface;

(43)

The equality of the

is needed by way of

second and third members of this equation is what

boundary condition for the partial differential

equation (28) for the pressure; the first member is used

the function so(t), which is the principal objective of

lation.

to determine

the calcu-
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sec. 6. Oblique shock transmission.

ing down the initial conditions, we consider

uTIASJfFED

M preparation for writ-

the transmission and re-

flection of a plane shock crossing a plane interface as depicted in

Fig. 3. We look for solutions of the hydrodynamical equations such

that conditions are constant in each of the five regions shown in that

figure. For the purpose of this discussion we suppose the fluids

initially at rest, and we later transform to the comoving coordinate

system used in connection with Fig. 2.

One Hugoniot relation says that the effect of a shock on the

material velocity ~ is to impart to it an increment A% whose di-

rection ia normal to the shock front and whose magnitude is ~~.

Therefore (see Fig. 3 for the notation

angles indicated there are regarded as

used in this section; the

positive):

~(pl-po)(vo-vl) ,‘lx= ‘~ ’12 = -

I

U2X = ~(p2-pl)(vl-v2) sin U2} U2Z = Ulz + JP2-P1)(V1-V2)cos a2,

us =-~~sh dh, U3Z = - ~- cos ah.

Let Uo, Ul, U2, u
3

be the velocities of the various planea as

indicated in Fig. 2, measured in directions normal to these planes. In

a time At the intersectionmoves s distance UoAt/sin~l along

the interface. Therefore, the reflected shock moves a distance

U.At
— sin(w2 -al) normal to itself. From these and similarsin al

relations,
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:: : :98 :.O
● ●0: .:. . ●: ●,

9**
●

●m.*m

(44)
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sin ((x:”:;.): ““”:0 :0

UNCLASSIFIED

-c
~.

‘1 = U.
sin a )

1

sin(Q1 - &3)

‘3
= U.

sin q “
1

)

The Hugoniot equation for the velocity of a shock relative to

the material ahead of it gives, for the three shocks;

r‘1 - ‘ouo=vo~
o -Vl ‘

/

‘2 - ‘1
‘1 “ (Ulz Cos W2 + Ulx sin*2) = VI ~

1 -v2’

= v:
/

‘3-P0.
‘2

V1 - V3o
4

(45)

(46)

The velocity of the interface must agree with the normal component

of fluid velocity

‘3
= -(U2Z

Lastly, since the

shocks,

on either side, or;

c0sd3 + ‘2x sin~3) = -(u3Z cos~3+uwain~3)0 (47)

fluids are assumed to have no acceleration except by

‘2= ‘2”>

From equations (44) through (48), we can draw the following

conclusions (details are omitted):

+
1) The component of the fluid velocity u tangential to the

interface is not in general the same on the two sides. That is,

● ● ☛ ✎ ✎
● ☛

✚✚
9*

:

● *
●9*

● 9
: 4oz0 ●.

● ●0: .*. ● ●: .0

(48)
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there is slipping along the interface. This effect will not concern

us directly.

2) We may define the compression of the interface as the amount

of purely geometrical compression in the z-direction that would be re-

quired to turn the interface from its initial orientation into its final

orientation. This is tan~l/tana3: It gives the initial compression

by the shock of the corrugations in our problem. It can be calculated

from the above equationa, by means of a little algebra, in the limiting

case in which all angles are <<1 so that we can approximate by writing
v

sinoi=rx, cos a= 10 It turns out to depend on the ratios # ,

v’
2

0
V.

—Jand—*
‘3 ‘1

We might have hoped to be able to express the compression,

d /~ , of the interface, in terms of the compressions,
13

v:

q
of the fluids on either side of it, but the initial

v

V.

~ and

compression,

“o
of the light fluid by the incident shock, also enters. Of course,

~’

(p~> VI) is a point‘1
is not arbitrary: in the state space of the

light fluid that must lie on the Hugoniot starting from (po, Vo); and,

in turn the Hugoniot starting from (Pl, VI) must pass through (p2, V2).

Thus the point (Pl, VI) is determined as the intersection of two

Hugoniot curves. But a consideration of the thermodynamic properties

of the fluids is required to fix this point, and we must despair of

computing the compression of the interface in terms of Pur i@@?%? ~~\~
fi;&L@~ ‘

quantities.

—
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These two conclusions are mentioned only incidentally. Below,

we shall derive initial conditions for our problem frcxnthe consider-

ations of this section. The reasoning is as follows: the amplitudes

a ? ao) a21
appeering in equations (6)> (7)} and (8)> are understood

tobe <<~. At sufficientlyearly times after impact, Fig. 2 is as

shown schematically on an enlarged scale in Fig. 3. The separations

of the surfaces are small compared to the wavelength of the corrugations,

and sound signals have only been able to travel distances small com-

pared to a wavelength since the beginning of the impact. Therefore, a

region, R, sufficiently small that the surfacea are very nearly plane

in it, is still unaffected by the fact that the tangent planes have

slightly different positions in some other region, such as Rt. There-

fore, in either of these regions the collision problem reduces to that

of Fig. 2.

Sec. 7. Initial condition. Each of

2 is to be thought of as 8 very small piece

surfaces in our problem; the tangent of the

therefore, proportional to the amplitude of

Specifically

tan al : tan% : tanq~ : tanq~=

where t = +0 and -O refer to just after,

crosses

and the

the interface. The correspondence

the inclined planes in Fig.

of one of the corrugated

angle of inclination is$

the corresponding corrugation.

ao(-O) : a2(+O) : ao(+O) : al(+O)

(49)

and just before the shock

in notation between Sec. 6

preceding section$ is:
●* ●=::*. ●* 4

:

:: ; -92-: ~.”
● ●*: ● “ ● * ,.

*o*

ljlKlM5\IED

s
● . .

● .
● se
● O ● 0

● *. .

—
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I
U“CiAJIIFIED

Notation of Sec. 6 Notation of Previous Sections

‘1

‘2

‘3

This correspondence

‘2 - u:

‘1
+ u:

~o
o

is correct down to small quantities of first order.

Therefore, if we assume C?l,0$, Q3,CY4 all 41, (45) gives

ouo -w 2 = U.

U:+w
].

= U.

Uo
o = U.

Furthermore,

&kx
P: + P1(z~ t) e .

Fig. 2 and, therefore,

of small quantities, so

the pressure ‘2 of Sec. 6 is the pressure

Clearly this is an even function of the angles

As noted in

shock to crest and

(50)

in

‘2
is independent of the angles to first order

pl(o,o) = o. (51)

the introduction, the forward speeds imparted by the

trough of the corrugations are equal, so

;.(0) = o. (52)

Lastly, we need initial values of the pressure gradients, because these

are needed to compute the rate of change of shock pressures by (42),

These initial values will be denoted by:

● 0 ● 8●°0 ● . ● * ●: ● .
::. :
● o -23-: ●“.

● co: ●:0 ● 0 ● . . .

●**

●

uNcu55fi\ED

●e... ● 9. .
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●
b

:● :
● ● *

=lim-
[1

$
t+ o+ z=-Wlt‘

= lim [1as
t+ o+ az z=w2t.

we write out the total

(53)

derivativea; e. g.

and eliminate as
at

to give

(
3C; W2

)

k2 C; UO W2 a2(+O)

—+? b’ -
‘2 v:

c

2
‘2 ‘2

w+—2
“

‘~

t=o

=

(54)

1(55)

(43) gives

(55) and (56) can be solved for the constants #, and #m.
J. c

(56)
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sec. 8. Statement of problem. The problem to be solved is that

of the differential equation (28) in the wedge t7/0, - wlt$z SO; the

same differential equation with c1 replaced by C2 in the wedge

t%O, 06z< w2t; subject to boundary conditions (35), (36), (42), and

(43) and to initial condition (50), (51), (52),(55), and (%). Among

desired results is a graph of 60 vs. t carried far enough that an

approximate asymptotic value of &o is evident. Parameters in the

problem are: the thermodynamic properties of the fluids, their initial

states (e. g., densities - their initial pressures are, of course,

equal), and the strength of the incident shock. The wam number, k,

is not really a parameter, because the problem is invariant to multipli-

cation of all lengths and times by a common constant, so that k can

be taken equal to unity without loss of generality.

This is a linear initial-boundaryvalue problem and can possibly

be solved by analytic methods, Consideration of the work of A. E.

Roberts(op. cit.) on a similar but considerably simpler problem suggests

that the analytic solution is likely to be very complicated; therefore,

we chose to use numerical integration.

Chapter III -- FINITE DIFFEREWE METHODS

The time increment is At;

~lz and A2Z is the regions 1 and

wlAt =

● ✌ ● ✎●☛☛ ● ✎

✚✚
●
✎✍

we allow for different space increments

2,but these are assumed so chosen that

YIA1 Z, w2At = Y2A2 Z (57)

● 9*
● .O.

● 0 i
=pJj ‘.-

● co: ●me ● ●* LNCIM.WED
●’*

●
●

●0 ● : ... .eo● :
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where ~ and
Y~

J are positive integers - then the transmitted (re-Y*

fleeted) shock arrives at a mesh point exactly every ~
Y~

cycles

(every ~ cycles) which simplifies the procedures for adding mesh

points. At cycle n let jl = jl(n) denote the greatest integer

A.

between the shocks

Calling

less than yln and similarly for j2 so that the number of mesh points

is j1+j2+l.

~=ad
at ‘ (58)

replacing pl by simply p, and adopting the convention that for any

function f(z, t), f! denotes f(j~lz, nAt) for j <0 and

f(j42z2 nAt) for j?O, we can write for the partial differential

equation and the boundary condition at z = O:

(59)

(The expressions for the consijants,such as K13~ ● ..} K16~, are collected

in Table II). For the point on the interface,

n+l/2
q.

n-1/2 +
= q.

(
This equation was

K17(P!!l- Pa) + K18(P; - P:) - K19 Pg. (60)

obtained by writing:

● ● ☛ ✎ ✎

● 9
::

:: : ..EILY::”
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●
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by replacing the second space derivatives by expressions of the form

()aPand by eliminating the v —az Z=*O

The last mesh point in either

side of it and a shock on the other>

are different on the two sides of it. Pressure gradient is centered at

the midpoint of the intervals, the difference equation will be centered

halfway between these two midpoints, rather than at the last mesh point:

)by use of equation (43) .

direction has a mesh point on one

and generalQ the spatial intervals

therefore, a correction
n+l/2 at

is applied to compute qj s = -jl or

J= J2” Call
n

P7S)1
n

- P-jl ‘7s)2 - ‘j2
= :1 Pn, “= ~’ Pn.

yln - jl Y2n - j2

The pressure halfway between the two midpoints is

%-l
‘-jl = [ 1 [ 1 1

~+i(yln - Jl) P~jl+ ~(jl+ 1 - yin) ‘Rjl+l

or

*n
Pj2 [

. ~+~(y2n -
d %2 ‘[~’” + ‘ -4 &

● ● ✌ ● 0

● m::
● 0

: -&” ::”
● * ●

● ●o* .:*, ●: ..

.*9
●

. . .

(61)

(62)
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and the temporal increment of q halfway between

or

&
qj2

Therefore, by

the last mesh

2K13(~1T n
)- p~jz+ ‘-jl+l - K

= 1
l+y.n-j.

the two midpoints
.

linear extrapolation of the temporal increment of q

point,

&
( )(

n+l/2 - qn-1/2

-J~
-~ jl+l - yln

q-jl+l
ni-1/2

-Jl+l)n-1/2 +
q, = q,

iq ( X
n+l/2 - n-1/2

J2 -+ j2+l - y2n qj2-1 qj2-1
n+l/2

)n-1/2 +
qj2

= q~

2
i+i(y2n - 32)

Now that the new q is known for each mesh point, the new

is found by simply

n+l n+l/2 At=p;+qj for
‘j

-Jl & S

The boundary conditions at the shocks

simultaneous linear equation pair:

n+l n+l \
P(s)l = P~s)l -tK5(al .#

+ a~~ + ‘9{

or

!
n+l

n+l n+l
P(S)2 = P75)2 + KG(S2 + a:) + KIO +

t

● ●* co ● ●e
● 9.:: ●

***
:: ● %28< **

● *S:●ba ●* ●.

<“\ J2”

is

(63)

to

(64)

P

(65)

are put in the form of the

- a3
az

S)l

+ ax
az5)2

—
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or

where

● 99*

● :9:
b ** : :0 :0

(s)1

(s)2 =

::
●

(67)

(1 Yln - J,
F+ )- Alz2

The procedure for adding mesh points

nyl = jl+l, the transmitted shock has just

.-...* ● 0-

● ● * . .

::*

::.
+9-.: ;“ ::”

● ●** ●OO *. .:O~. ●

●
●m

●

A2Z
I

is as follows: if

reached the (j.+l)st mesh

point so that this point must be included in the mesh

is done as follows: at the end of the cycle, a value

supplied by the equations

[- ]
a?)
‘Z (s)1

n+l 2K
5 n+l

[1

eq(s)l=AT al ‘Kll- ~z
(s)1

n+l/2
‘-(jl+l) =

( 1 n+l 1 n

)

Yl n+l/2
z q(s)l + z q(s)l + .5- q-j,

Y1

henceforth.

n+l/2
‘f q-jl-l

This

is

<

(69)
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the quantity p
n+l n+l/2
-(J~+l) = ‘~s)l ‘4t ‘-(jl+l)

is also supplied and then

the substitution Jl+lj j, is made. A similar procedure is used for
.L

adding mesh points behind

Finally, the quantity

Study, is calculated from

&

the reflected shock.

so(t), which is the principsl object of the

the equation

n+l
a = 2a~ - a~-l + ~l(pnl - p:)o

The calculation as described here

MANIAC, and is called

tape giving values of

and most of the K’s,

CHARTER IV -- RESULTS

problem L-36.

+ %2(P: - P:) + K23 P: (70)

was coded for the Los Alamos

The code requires an input data

At, Alz, A2z, Yl, Y2, 41) #2j al(-), a2(+o)

‘rem ‘5 ‘hrough ’23

FOR 7-LAW GASES

The code described in the preceding

on the equation of state, provided only

chapter places no restriction

that the values of several

constants are known. But the only calculations performed with this code

so far were for ~-law gases, initially cold, both having the same

value of 7.

By suitable choice of units (note that we are free to choose dif-

ferent units of length for infinitesimal lengths like ao, al, a2

211’
and for macroscopic lengths like z, ~) we can make Uo,

-lo
ao(-o)~ Vo? ~ equal to any given value, like 2 , for convenience.

Then the dimensionless parameters characterizing a problem are 7,

and R, the initial density ratio at the interface. The further param-

eters At, Yla Y2 fix the method of integration used.

●e ● .●*8 .
40-.: ;“::” DNCU5JIF1ED::

● a.
● ●.. .:. ●

●

●
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A separate routine (cel>~dO~-j6

the various constsnts needed in the

punches out a

The input

after each of

● e ● *

● ● e
b ● *

9 . .

:* ● *

set-up) &as coded which calculates

main calculation for this case, and

data tape for L-36.

to the set-up consists simply of placing a number in R4

six special stop instructions, as follows:

SPECIAL STOP NUMBER TO BE
INSTRUCTION PLACED IN R4

11111 Problem Number

11112 (?-1) (~+1)

11113 R

11114 At

11115 Y~

11116 Y.2

Therefore, a problem can be started without having prepared a data tape

in advance.

The problems run are summarized in Table 111 and Figs. 4, 5, 6, 7.

Problems lC and lE are the same except thst lC has twice as fine a

space-time mesh for the numerical calculation. 111is presumably less

accurate but could be carried further before the numerical storage

requirement exceeded the capacity

solid and dashed curves of Fig. 4

of the MANIAC. Comparison of the

suggests that the truncation error

is not large.

● ● m ● *

:: “+31-0: ;O::”::
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●
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From Fig. k one can read off an approximate

with some confidence: in decimal notation this

liewish to compare this value with one given by

asymptotic value of

value is =0.164 .

equation (5), but there

that equation becauseis a certain ambiguity in the interpretation of

in our compressible case the amplitude so(t) and the densities P
(+)

and ‘(.-)
change discontinuously at t = O. If we substitute values

appropriate to t = -O into (5), we find

but if we substitute valuea appropriate to t = +0, we find

Liobh u:
‘;-” :— kao(+O).
V“+v

o
21

(71)

(?2)

Values obtained from these formulas are 0.347 ●10-3 and 0.151 . 10-3,

ao that equation (72) is in rough agreement with our result, but (71)

is wrong by about a factor 2. As seen in Table 111, similar results

were obtained for the other problems.

The conclusion is that if the initial compression of the interface

and of the fluids is taken into account, the ultimate rate of growth of

the corrugation is about the same as that given by the incompressible

theory.

The waves in the curves of Figs. 4, 5, 6, and 7 are real and are re-

lated to the phenomenon discovered by Roberts (op. cit.), namely that

corrugations in a shock are auperstable -- they oscillate in a damped

fashion. The two shocks in our problem are executing such oscillations
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with different natural frequencies and with complications due to the

coupling, and these oscillations influence the motion of the interface.
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re ion O

u
x =0

u = 1$>o
z

v

P

s

o
=V o

= P:

o= so

(eq. of state

Hugoniot)

TABLE

● ☛✍ ✛
● ● m : ● 0 :0

I -- SUMMARY OF

1

u~(z, t)eikx

u~(z, t)eikx

v; + vl(z, t)eikx

P; + P1(z} t)e
ikx

s; + sl(z)eikx

P = fl(v, s)

P = h(v)

s = #h(v)

Psl = Pl(-wit, t)

N(YI’ATION

● ✚ :0 ● : :.: ●
●

8** ● O ● m*m
●9-* - ● 004 ●9●

es

UNClA5SlFlED● -: ● *b ● *.%.● O*-o %
● *--

● moe ●. . .

● 9*..-*

● .mm

u~(z, t)e
ikx

u~(z, t)e ikx

v: + vl(z, t)e ikx

$ + p1(z2t)e
ikx

(P: = P;)

s; + sl(z)eikx

P = f2(v, s)

P = 9A(V)

s = #l#(v)

P#2 = P2(w2t, t)

● ● 9 ● .

::

:: :44-.: ;“ ::”

3

0

II”<
3

‘;

P;

‘;
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TABLE II -- CONSIMTS IN THE FINITE-DIFFERENCEFORMUIAS

2
c1 ‘1

wl+~+q

2
C2

w+—2
‘2‘3 =

Eq. (34) for Kl)

22 0
k CIWIUO At
● o—

‘1 ‘3

(see

K6 =

M. (33)(see for K2

k2c:w2u;

‘5 =

(See Eqs. (17)---(21) for u: and u;)

(

‘9 =

AK ‘WlAt 9

()

c1 2 *t
x-p

’12 = 7%%0-W2

154 =(-~At

’11 =

’13 =

(c,k)2At ’16 = (c2k)2At
’15 = J.

‘;
Zp

2C: 2C: 2C: 2C:
J.

2 2

k2At
‘2 c1

% = #A2z + VOA z
—.

11
%9=

—.
2+2
c1 C2

● ● ☛ ● 0

:: “ 35-*: ;“ ::”
::. .

. —
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Table II (Continued)-”-““ “
83 ●e ●

( clAt/Alz )2

’21 =
’20

’22 =

(c@@2@2

’20

22
C2 - c1

’23 =
(kat)2.

2K20
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TABLE III -- SUMMARY OF PROBLEMS RUN

PROBLEM NUMBER lC lx Ill 2A 2B

‘1 3/2 3/2 3/2 9/7 9/7

R 1/8 1/8 1/16 1/16 1/16

bt 1/16 1/8 1/16 3/64 1/8

> 4 s 4

103 :., asymptotic 0.164 0.168 0.~64

103 u~ ~k ao(-O) 0.347 0.312 0.371

v; - v:
~k ao(+O)103 u: o 0.151 0.173 0.170

‘2 + ‘1

—
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