APPROVED FOR PUBLIC RELEASE
5
CIC-14 REPORTCOLIECTION REPRODUCTION COPY

This document consists of ? jan-
...:- . Distributed: September 20. 1944
...:~. 3 Distributed: March 17, 195;
an equation of state in the condensed phase for arbitrary pressures

Classification changed to UNCLASSIFTED by authority of the U. S, Atomic Energy Commission t
 By RBPORT LIRRARI Fr. $72 /$ artie

APPROVED FOR PUBLIC RELEASE

Abstract

An equation of state for compressod nattor is derlved after assuming that its onergy consists or vibrational onergy which is f function af temperature only and of compressional energy winich is a olausiblo runction of rolume onlyn

UNCLASSIFIED

Ne choose as independent parameters the volume v (ol one mole) and the temperature To lot a denote the irternal energys S the entronyo and p the pressure the former two quantitios again referred to one mole Then

$$
\begin{equation*}
d G=\frac{p d \nabla}{T}+\frac{d u}{T}=\left(\frac{p}{T}+\frac{1}{T} \frac{\partial u}{\partial v}\right) d v+-\frac{1}{T} \frac{\partial u}{\partial T} d T \tag{I}
\end{equation*}
$$

From the equality of the two conseruent second partiuls nf j_{0}

$$
\frac{\partial}{\partial T}=\left(\frac{p}{T}+\frac{\lambda}{T} \frac{\partial u}{\partial v}\right)=\frac{\dot{\partial}}{\partial v}\left(\frac{i}{T} \frac{\partial u}{a \tilde{L}}\right)
$$

we get:

$$
\begin{equation*}
\frac{\partial u}{\partial v}=\tau \frac{\partial p}{\partial T}-p \tag{2}
\end{equation*}
$$

We mike now the first assumptiou: The enargy of the colid is representable as sum of two furctions of one visis ie eac: ; tne urerg.y af
 of temperature only)

$$
\begin{equation*}
\mathrm{u}=\mu \mathrm{Hi})+\mathrm{G} \cdot \mathrm{RT} \tag{3}
\end{equation*}
$$

(The constant or may assurmi $=3$; if one wantio to tuke into acoount additional degrees of freedom α may be nodificed ecoorisrglyr)

Fram (2) the asumetion (g) :

$$
\Delta w^{2}=T \frac{\partial p}{\partial T}-p
$$

The integral of this differentisl equation for p gives us:

$$
\begin{equation*}
p=w^{\prime}+T a(v) \tag{4}
\end{equation*}
$$

where (v) ia an arbitrary function to be determined by a further assumption.. In faot, general thermodynamics can give us only a reletion vith one unknowni functiong even if one uses an assumption like (3)。

One can get the form of $a(v)$ by the following addltionel hypothesie: We assume tiut if the volume of the solid is chinfod, all vibretional frequancios in the lattice change by the same factor fe further sasume that the vibrational frequencios do not depend on the temper:xture as lung as the volume is constant. The lotter assumption is sutisfied only if fhe vibran tions aro harmonic (so these assumptions will not be justified at ilgh tempera:tures)

Ho shall ostimate the common fuctor by which all fesqucncies change by calculating the time scund takue to tracel from are atom to its neighbor".

This gives the proportionallty

$$
\nu \cong s \sigma^{1 / 3} \quad(\gamma=\text { tho irerquenc: }
$$

The sound velooity δ, is piven by:

- $=\sqrt{\frac{\partial p}{\partial \rho}}=v \sqrt{\frac{\partial}{\partial} \frac{2}{\partial}}$

Uaing (4): we have

In the approximation in which γ is independent of T we can neglect in this expression the term Ta'(v)。 In an adiabatio oompression the number of quanta is unohanged. This means that the ternperaturem dependent part of u_{n} namely $\alpha \mathrm{Rr}_{\mathrm{p}}$ varies as $\boldsymbol{\gamma}$. For our adiabatic ohange wo have therefore

$$
\begin{equation*}
T \sim p \sim \cdot v^{\frac{1}{3}} \sqrt{\cdot \sim w^{n}} \tag{5}
\end{equation*}
$$

The physical reason for the chanje of γ is of oourse the siange or volume during adiabatio compression. From (5) and fram (1) wo :en ret two exprossions for $\left(\frac{d T}{d v}\right)$ a at constant entropy. Assuming therciore in (1) that $d S=0$ we get

$$
\begin{equation*}
\frac{d q}{d v} i_{s}=-\frac{p+\left(\frac{\partial u / \partial v)}{(\partial u / \delta T}\right)}{} \tag{6}
\end{equation*}
$$

Eore $p=w^{\prime}+T a(y) ; \quad d u / \lambda v:=w^{\circ}$, and $\partial u / \partial T=a R$. Thus

$$
(d r / d \nabla)_{i j}=-T a / \alpha R
$$

On the other hand from (5)

$$
\left(\frac{d \Gamma}{d v}\right)_{S} \sim \sum_{j}^{\Sigma} \cdot 3 \cdot-N^{\pi}-\frac{i}{2} \frac{v^{4 / w^{41}}}{\sqrt{N}}
$$

This lact proportionaity has the eame factor es in (5). He cun virite trae equality

$$
\left.\left(\frac{d x^{\prime}}{d v}\right)_{S^{\prime}}=r^{\prime} \frac{2}{3 v}+\frac{2}{2} \frac{w^{1+1}}{v^{\prime}}\right)^{\prime}
$$

APPROVED FOR PUBLIC RELEASE

Compering this with the expression above ws get:

$$
\begin{equation*}
\frac{-k}{a \cdot k}=\frac{2}{3 \pi}+\frac{2}{2} \frac{w^{\prime \prime}}{w^{\prime}} \tag{7}
\end{equation*}
$$

This relation fives the function $x(v)$ in terms of v and the function w(v) Our equation of state can be obtained it wo take a plausible expression for the energy term $w(v)$. wo shall use as an example the ecuatior

$$
\begin{equation*}
w^{\prime}=p_{0}\left[\left(\nabla_{0} / v\right)^{6}-I\right] \tag{8}
\end{equation*}
$$

It should be noted that this approaches the elistic equntion when $v / v_{0} \sim 1$: and that $w{ }^{\prime} \cdot \rho^{\gamma}$ when $v / v_{0} \ll 1$ From this equetion wo obtain

$$
\begin{aligned}
& w^{\prime \prime}=p_{0} \because\left(\nabla_{0}^{\gamma} / \nabla^{r+1}\right) \\
& w^{\prime \prime \prime}=p_{n} \eta_{:}(\gamma+1) \frac{v_{0}^{r}}{\nabla^{r}+2}
\end{aligned}
$$

Therefore

$$
\begin{gathered}
a(v)=\alpha R\left(\frac{2}{3 v}+\frac{1}{2}-\frac{w^{\prime \prime \prime}}{w^{\prime \prime}}\right)=-R\left(\frac{2}{3 v}-\frac{6+1}{2 v}\right) \\
a(v)=\frac{a R(3 x=1)}{6}
\end{gathered}
$$

he now get ins our equation of stute

$$
\left.\mathrm{p}=\mathrm{P}_{0}\left[\left(\frac{v_{2}}{\nabla}\right)^{\gamma} \because 1\right]+\frac{\alpha(3 \sigma}{6 V} \mathrm{I}\right) \mathrm{RT}
$$

For the internal energy

$$
u=-w(v)+\alpha R I
$$

Or

$$
u=-\frac{\rho_{0}}{\gamma} \underset{\sigma}{\frac{\gamma}{r-i}} \underset{p_{0}}{\gamma}-\alpha R T
$$

From (1) we get by integrating

$$
S=\alpha R\left(-2 / 3 \log V-1 / 2 \log w^{n}+\log T\right)
$$

or since $w^{\prime \prime}=\cdots p_{0} \gamma\left(v_{0}^{\gamma} / \sigma^{\sigma+1}\right)$.

$$
S=\alpha R\left[-\frac{2}{3} \log \nabla-\frac{1}{2} \log \left(\frac{20^{5} 0_{0}^{5}}{r^{\prime+}}\right)+\log T\right]
$$

UNELASSIEIED

