VERIFIED UNCLASSIFIED

UTNBLnUT…
144
NOT TO BE TAKEN FROM
CAT. NO. 1935

Special Re-Review Final Determination/80

DO NOT CIRCULATE Retention Copy

PUBLICLY RELSASABLE Per JAY BRowin, Fss-16 Date: $\frac{8-4-92}{3-72-96}$ By f(fDeE. CRC-14 Date: $3-22-96$

inCLLASSIFIED

UNCLASSIFIED

VERIFIED UNCLASSIFIED

LA REFORT 144

This document contains 15 pages

EFFECT OF ANISOTROPIC SCATTERING ON CRITICAL-MASS CALCULATIONS

REPORT WRITTEN BY:
K. M. Case

UHCLLSSSFIFE App fid

ABSTRACT

Formulas are developed to include the offect of anisotropic scattering in criticalemass calculations by the spherical-harmonio method. These are apo plied to the speoific case of a 25 oore surrounded by an infinite tungsten carbide tamper. The results of the calculations were found to be identical with those obtained by usinf, the transport cross seotion wherever equations derived on the isotropio assumption indicated the total cross section should appear. By arguments based on the numerical results it is shown that the use of the transport oross section throughout will also be an extremely good approximation when wo have multiplying media.

URCLASSIFIED

EFFECT OF ANLSOTROPIC SCATTERING ON GRITICALAMASS CALCULATIONS

This report gives the resulls of some investigations concerning the efe fact of anisotropic scattarinf on critical-mass calculations in tho one-velocitygroup approximation. Until the advent of the S.IF.M. (spherical-harmonic method) it had bean impossible to solve criticalmass problems exactly with the inclusion of anisotropic scattering. The recipe had been givon, thouph, and more or less justified, that the proper way to take this phenomenon into account was to use the trensport cross section whorever formalas dorived assuming isotropio soattering had the total eross seotion occurring. Usinp the S.H.M. it has proved posm aible to test the validity of the roolpe by fiving an exact solution, includinf: anisotropy, in the case of a 25 core surrounded by a WC tamper. It is believed that this case is sufficiently typical to warrant a gonoral conclusion about the recipe for all interesting cases. detually, numerical calculations ware made only for the oritical case. However, by examining the results obtained it is easy to draw inferences in the case of othor multiplication rates. The problem was done in P_{3} rather than in a higher approximation, since it is known that for the ratio of tamper to core oross sactions considered, P_{3} gives a result accurate to about 1-1/2 percent. Moreover, the primary aim was to see the rolative results of the transport recipe and the accurate solution, rather than to obtain an absolute figure.

In taking into account anisotropic soattering a prooodure completely analogous to the ordinary appliaation of the S.H.M. is followed. The Boltamann equetion is written in the form

$$
\begin{align*}
& \frac{\partial n}{\partial t}+\mu \frac{\partial n}{\partial r}+\frac{\left(1-\mu^{2}\right)}{r} \frac{\partial n}{\partial \mu}=-\sigma_{t} n+\int_{-1}^{1} n\left(r, \mu^{\prime}\right) d \mu^{\prime} \int_{0}^{2 \pi} \frac{\sigma_{3}}{2 \pi} d \phi^{\prime} \tag{1}
\end{align*}
$$

where n is the neutron density as a function of position and volocity; σ_{t} is the total cross section per unit volume; $\sigma_{s}(\alpha)$ is the cross section per unit Volume for scattering a neutron thrcugh an angle α por $d(\cos \alpha)$. μ is deo fined as cos θ, where θ is the angle between velocity and radius vectors. Symbols used for other cross sections per unit volume are: of, fission; $\sigma_{t r}$, transport; σ_{r}, capture; σ_{i}, inelastic scattarinf; σ_{θ}, elastic scattering. Without primes these quantities refer to the core; with primes, they refer to the tamper. It should be noted that the dimension of the foregoing oross sections ie reciprocal length, and that these crosa aections equal the cross seotion usually - given in experimental papers multipliad by N, where N is the number of atoms per unit volume.

Expand σ_{8} so that:
$\sigma_{8}(\alpha)=\sum_{\ell=1}^{\infty}[(2 l+1) / 2] \sigma_{l} P_{l}(\cos \alpha)$ where the $\sigma_{l}{ }^{\prime}$ s are constants. Lat θ^{\prime} be the angle which the velocity vector makes with the radius vector before colliaion and θ be the angle after collision. Similarly ϕ and \varnothing are the azimathal angles before and after collision.

Then: $\cos \alpha=\mu \mu^{\prime}-\sqrt{\mu^{2}-1} \sqrt{\mu^{2}-1} \cos \omega$
where $\mu=\cos \theta, \mu^{\prime}=\cos \theta^{\prime}, \omega=\phi^{\prime}=\phi^{\prime}$.
With this change of variable:

$$
\int_{0}^{2 \pi} \frac{\sigma_{\delta}(\alpha)}{2 \pi} d \phi=\int_{\phi+2 \pi}^{\phi} \frac{\sigma_{B}}{2 \pi} d \omega
$$

The addition theorem for Legendre polynomials tells us that, if

$$
Z=X X^{\prime}-\sqrt{x^{2}-1} \sqrt{x^{12}-1} \cos \theta
$$

then

$$
\begin{equation*}
P_{n}(2)=P_{n}(X) P_{n}\left(X^{\prime}\right)+2 \sum_{m=2}^{\infty}(-1)^{m} \frac{\Gamma(n-m+1)}{\Gamma(n+m+1)} P_{n}^{m}(x) P_{n}^{m}\left(X^{\prime}\right) \cos m \infty \tag{3}
\end{equation*}
$$

Hence

$$
\int \begin{aligned}
& 2 \pi+\phi \\
& \phi
\end{aligned} P_{n}(\cos \alpha) \mathrm{d}_{\infty}=2 \pi P_{n}(\mu) P_{n}\left(\mu^{\prime}\right)
$$

and

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{q_{g}(\alpha)}{2 \pi} d \phi^{\prime}=\sum_{2=0}^{\infty} \frac{2 \tilde{c}_{2}+1}{2} \sigma_{l} P_{l}(\mu) P_{l}\left(\mu^{\prime}\right) \tag{4}
\end{equation*}
$$

With this simplification (3) becomes:

$$
\begin{align*}
& \frac{\partial n}{\partial t}+\frac{\partial n}{\partial r}+\frac{\left(1-\mu \mu^{2}\right)}{r} \frac{\partial n}{\partial \mu}=-\sigma_{t} n+\int_{-1}^{2} n\left(r+\mu^{\gamma}\right) \sum_{0}^{\infty} \frac{2 l+1}{2} \sigma_{l} P_{l}(\mu) P_{l}\left(\mu^{2}\right) d \mu^{\prime} \tag{5}\\
& \quad+\frac{\nu \alpha}{2} \int_{-1}^{1} n d \mu^{\prime}
\end{align*}
$$

Asaume a time dependence of the forin $n \sim \theta^{\delta \sigma} \mathrm{tr}^{t}$ (actually our form is $e^{\text {Zotrvt }}$ but time units have been taken so that $\nabla=1$). Substitutinf, this time dopendence. oancelling factors of $e^{\gamma \sigma_{t r} t}$, and introduoing $n=\sum_{0}^{\infty}[(2 \ell+1) /(2)] n_{2}(r) P_{\ell}(\gamma-)$, Eq. (5) becomes:

$$
\begin{align*}
& =\frac{\mu \sigma_{f} n_{Q}}{2}+\sum_{0}^{\infty} \frac{2 \Omega+1}{2} \sigma_{l} n_{l} P_{l}(\mu) \tag{6}
\end{align*}
$$

lultiplying by $P_{l}(\mu) d \mu$ and integrating from -1 to +1 there results the infinito set of differential oquations:

$$
\begin{align*}
& \frac{1}{22+1}\left[0_{n, 1}^{\prime}+(2+1)_{n=1}^{\prime} \ell+1\right]+\frac{1}{2 l+1}\left[\frac{(l+1)(\ell+2) n_{\ell+1}}{r} \frac{2(\ell-2) n_{\ell-1}}{r}\right]+\left(\sigma_{t}+\ell_{\infty} \sigma_{\ell}\right) n_{\ell} \\
& =\operatorname{vof}_{f} n_{0} G_{O L} \tag{7}
\end{align*}
$$

where $S_{0,}$ is the Kroneokor delta.

For our purposes P_{z} is sufficient and sc we break off the sot at $\ell=3$. (whon the set is broken off at Q_{0}, it is salled the $P_{\mathcal{R}_{0}}$ approximetion.) This givez for: the oquations:

$$
\begin{array}{ll}
\ell=0 & n_{1}^{\prime}+\left(2 n_{1} / r\right)+\alpha_{0} n_{0}=0 \\
\ell=1 & n_{0}^{0}+2 n_{2}^{\prime}+\left(6 n_{2} / r\right)+3 \alpha_{1} n_{1}=0 \tag{8}\\
\ell=2 & 2 n_{1}^{\prime}+3 n_{3}^{\prime}+\left(12 n_{3} / r\right)-\left(2 n_{1} / r\right)+5 \alpha_{2} n_{2}=0 \\
\ell=3 & 3 n_{2}^{\prime}-\left(6 n_{2} / r\right)+7 c n_{3} n_{3}=0
\end{array}
$$

For convenience in comparing our results with calculations not oxplioitly inoluding anisotropy we will choose our units so that $\left(\sigma_{t r}\right)_{\text {core }}=1$. In these units we have for the core:

$$
\begin{aligned}
& \alpha_{0}=\sigma_{t}+\ell-\sigma_{0}=v \sigma_{f} \\
& \sigma_{i}=\sigma_{t}+\ell-\sigma_{\ell} \quad \ell=1,2,3 .
\end{aligned}
$$

Similar equations hold for the tamper where:

$$
\alpha_{i}^{2}=\sigma_{t}^{\prime}+\gamma-\sigma_{l}^{\prime} ; \quad \mathbb{L}=0,1,2,3 .
$$

It is interesting to note that the transport recipe leads to exactly the same equations but with a's having the following values:

$$
\begin{array}{ll}
\alpha_{0}=\gamma=1 & x_{0}^{\prime}=\gamma=f^{\prime} \sigma_{t r}^{\prime} \\
\alpha_{i}=\gamma+1, i=1,2.3 . & \alpha_{i}^{\prime}=\gamma+\sigma_{t r}^{\prime}
\end{array}
$$

where f iv ($\left.(v o l) \sigma_{f}-\sigma_{r}\right) / \sigma_{t r}$, and $v=$ number of noutrone omitted per fission. Thus very little additional complioation is introduced by taking anisotropy into account. (In aotually applying the rocipe it is customary to start with the Boltzmann equation in a form that can be obtained from (1) by the substitution of $\sigma_{t r}$ for σ_{t}, zero for σ_{s}, and $\sigma_{t r}(1+f)$ for $\left.\sigma_{f} \cdot\right)$

The amount of enisotropy and the form of σ_{g} in the core and tamper mey be seen in Figs. 1 and 2. These curves were determined as follows: for 25 the

form was taken to correspond as closely as possible with sxperimontal values at about 600 kev. The curve was then normalized to give an elastic transport cross section of 3.75 barms - determined by Serber and Rarite to be the likely oneo velocity-group value. Other constants of 25 employed were: $\sigma_{f}=1.56$ barns $x \mathrm{~N}$, $\sigma_{i}=0.15$ barma $x{ }_{x} \sigma_{r}=0.15$ barns $x \mathrm{~N}$. These give an f of 0.39. The ino elastic crose bection was treated as an additional spherically symmeric contrio bution to the olaatic scatcorinf. cross section. In the tamper the cross sections were due to contributions from b and C. The V was treated in exactly the same way as the 25 normalizing ($\sigma_{\text {elastic }}$ transport. $^{\text {to }} 3.79$ barns x N. For carbon, spherjcally symetric scatterinf; in tho centoraofigravity system was assumed. This seeme a fairly reasonable assumption and fives a curve that, although not fitting very olosely to Nanley's experimental values, does lie within the limits of error of the experimontal points. For the wC, σ_{i} was taken as 0.78 barns $x \mathrm{~N}$ and treated as spherically symmetric olastic. or was 0.23 barns x N, fiving an \hat{i}^{2} of 0.03 . After determining those constants all cross sections were converted to units such that $\sigma_{t r}(25)$ (which was 5.61 barns $x \mathrm{~N}$) had the valuo unity: v was taken 982.5.
$U_{\text {ging }}$ these figures and fitting the σ_{s} curves as well as possible the following values are obtained for the coefficients σ_{2} (in berns x N).

$$
\begin{array}{ll}
\sigma_{0}=5.05 & \sigma_{0}^{\prime}=7.96 \\
\sigma_{1}=1.153 & \sigma_{1}^{\prime}=0.611 \\
\sigma_{2}=0.494 & \sigma_{2}^{\prime}=0.277 \\
\sigma_{3}=0.0992 & \sigma_{5}^{\prime}=-0.0598
\end{array}
$$

Solving our differential equations subject to the requirements of
 H_{2} are constants still. to be detormined).

Core:

$$
\begin{aligned}
& n_{0}=\left(A_{1} \sin k_{1} r+A_{2} \sinh k_{2} r\right)_{r} r \\
& n_{1}=\alpha_{0} A_{j}\left[\frac{\cos k_{1} r}{k_{2} r} \cdot \frac{\sin k_{1} r}{k_{1}^{2} z^{2}}\right]-\alpha_{0} \Lambda_{2}\left[\frac{\cosh k_{2} r}{k_{2} r}=\frac{\sinh k_{2} r}{k_{2}^{2} r^{2}}\right] \\
& n_{2}=\frac{c_{1}}{2} A_{2}\left[\left(\frac{1}{r}-\frac{3}{k_{1}^{2} r^{2}}\right) \sin k_{1 r}+\frac{3 \cos k_{1 r}}{k_{1} r^{2}}\right] \\
& * \frac{93}{2} A_{2}\left[\left(\frac{1}{r}+\frac{3}{k_{2}^{2} r^{3}}\right) \sinh k_{2} r \cdot \frac{3 \cosh k 2 r}{k_{2} r^{2}}\right] \\
& n_{3}=o_{2} A_{1}\left[\left(\frac{2}{k_{1}^{2} r^{2}}-\frac{5}{k_{1}^{4} r^{4}}\right) \sin k_{1} x=\left(\frac{1}{3 k_{1} r}-\frac{5}{k_{1}^{3} r^{3}}\right) \cos k_{1} x\right] \\
& +c_{4} A_{2}\left[\left(\frac{1}{3 k_{2} r}+\frac{5}{k_{2}^{3} r^{3}}\right) \cosh k_{p_{2} r}-\left(\frac{2}{k_{2}^{2} r^{2}}+\frac{5}{k_{2}^{4} r^{4}}\right) \sinh k_{2} r\right]
\end{aligned}
$$

Tamper:

$$
\begin{align*}
& n_{0}=\left(B_{1} e^{-\nabla_{1} r}+B_{2} e^{-V 2^{r}}\right) / r \\
& n_{1}=x_{0}^{\prime} B_{1} \theta^{o v_{1} r}\left(\frac{1}{v_{1} r}+\frac{1}{\forall_{1}^{2} r^{2}}\right)+x_{0}^{1} B_{2} \theta^{o \nabla_{2} r}\left(\frac{1}{v_{2} r}+\frac{1}{v_{2}^{2} r^{2}}\right) \tag{9}\\
& n_{2}=\frac{c_{5} B_{1}}{2} e^{\operatorname{cov}_{1} r}\left(\frac{1}{5}+\frac{3}{v_{1} r^{2}}+\frac{3}{v_{1} r^{3}}\right)+\frac{c_{7}}{2} \mathrm{~B}_{2} e^{-\nabla_{2} r}\left(\frac{1}{r}+\frac{3}{v_{2} x^{2}}+\frac{3}{v_{2}^{2} r^{3}}\right) \\
& n_{3}=o_{6} B_{1} e^{-V_{1} r}\left(\frac{1}{3 \nabla_{1} r}+\frac{2}{\nabla_{1}^{2} r^{2}}+\frac{5}{v_{1}^{3} r^{3}}+\frac{5}{\nabla_{1}^{4} x^{4}}\right) \\
& +c_{8} B_{2} e^{o v_{2} r}\left(\frac{1}{3 v_{2} r}+\frac{2}{v_{2}^{2} r^{2}}+\frac{5}{v_{2}^{3} r^{3}}+\frac{5}{F_{2}^{4} r^{4}}\right)
\end{align*}
$$

where:

$$
\begin{array}{ll}
c_{1}=-\left[1+\left(\left(3 \alpha_{0} \alpha_{1}\right) /\left(k_{1}^{2}\right)\right)\right] ; & o_{2}=2 \alpha_{0}-(5 / 2) o_{2} c_{1} \\
c_{3}=\left[\left(3 \alpha_{0} \alpha_{1}\right) /\left(k_{2}^{2}\right) ;-1\right] ; & c_{4}=2 \alpha_{0}=(5 / 2) \alpha_{2} c_{3} \\
o_{5}=\left[\left(3 \alpha_{0}^{2} \alpha_{1}^{\prime}\right) /\left(v_{1}^{2}\right)\right. & -1] ;
\end{array}
$$

IHCLIASSFIFEP

k_{1} is the absolute value of the imarinary root, and k_{2} is the positive, real root, or: $k^{4}=\left[3 \alpha_{0} \alpha_{2}+(28 / 9) \alpha_{0} \alpha_{3}+(35 / 9) \alpha_{2} \alpha_{3}\right] k^{2}+(35 / 3) \alpha_{0} \alpha_{1} \alpha_{2} \alpha_{3}=0$ v_{1} and ∇_{2} aro the positive, real roots of:

$$
v^{4}-\left[5 \alpha_{0}^{5} \alpha_{1}^{\prime} 4(28 / 9) \alpha_{0}^{1} \alpha_{3}^{\prime}+(35 / 9) \alpha_{2}^{\prime} \alpha_{3}^{\prime}\right] \nabla^{2}+(35 / 3) \alpha_{0}^{1} \alpha_{1}^{3} \alpha_{2}^{1} \alpha_{3}^{1}=0
$$

Equating the $n_{g}{ }^{\prime}$ B of core and tamper at $r=a$ (a is the radius of the core) gives four homogeneous equations for the $A^{\prime} s$ and $B^{\prime} s$. The condition that these equations have a nontrivial solution is expressed by sottine; the determinant of the coefficients equal to zero. This, for specified γ, gives us an equation for the radius. Dividing column 1 of the determinant by sin k_{1}, column 2 by $\sinh k_{2 a}$, column 3 by $e^{-v} l^{a}$, column 4 by $e^{02^{a}}$, multiplying row 1 by a, and row 3 by 2 gives the following oquation for a.

APPROVED FOR PUBLIC RELEASE

Setting γ equal to zero (aritical) and using the cross sections onumerater above the cxact anisotropio solution yields: $a=1.427 \pm 0.005$ in units of the transport mean free path of the cora. Using tho transport recipe, 1.430 ± 0.005 is obtained. That is, the two resuits are indistinguisiable.

This extremely close agreoment is not surprisinf when the constants entering into the calculation are examinod. Putting the differential oquations for the n_{l} 's of the recipe method and of the exact solution in the form (8), wa oan, by comparing the various α 's sea by about how much the solutions would be expected to differ (the $\alpha^{\prime} s$ are the only quantitios in the two sets of equations which are not identical).

α	Exact Anisotropio Equations	Rocipo Equations
α_{0}	$\gamma-0.3900$	$\gamma-0.3900$
α_{1}	$\gamma+1.000$	$\gamma+1$
α_{2}	$\gamma+1.1258$	$\gamma+1$
α_{3}	$\gamma+1.1873$	$\gamma+1$
α_{0}^{\prime}	$\gamma+0.0414$	$\gamma+0.0414$
α_{1}^{\prime}	$\gamma+1.3515$	$\gamma+1.3515$
α_{2}^{\prime}	$\gamma+1.411$	$\gamma+1.3515$
α_{3}^{\prime}	$\gamma+1.4711$	$\gamma+1.3515$

We note that the quantities to which the caloulations are most sensitive $\left(\alpha_{0}, \alpha_{1}, \alpha_{0}^{\prime}, \alpha_{1}^{i}\right)$ are exactly ripht, winilo even the higher α_{s} (which are in the nature of corrections themselves) are never very far off. In fact it is easily shows that the equality found must bo true in goneral. Thus for the exact solu* tion: $\alpha_{0}=\gamma+\sigma_{t}-\sigma_{0}-\mu \sigma_{p}$. But

This yields: $\quad \sigma_{t}=\sigma_{0}+\sigma_{r}+\sigma_{I}$
and

$$
\alpha_{0}=\gamma+\sigma_{0}+\sigma_{x}+\sigma_{f}-\sigma_{0}-\nu \sigma_{r}=\gamma+\sigma_{r}+(2-\nu) \sigma_{f}
$$

The reolpe solution gives: $\alpha_{0}=\gamma=f$, but in our units $f=(v-1) \sigma_{f}=\sigma_{x}$ and so: $\sigma_{0}=\gamma+\sigma_{r}+(1-\nu) \sigma_{f} \cdots$ exactly the same as above.

$$
\text { For } \alpha_{1} \text { the corroct solution gives: }
$$

$$
\alpha_{1}=\sigma_{t}=\sigma_{1}+\gamma . \quad \sigma_{1}=\int_{-2}^{1} \mu \sigma_{s}(\theta) \mathrm{d} \mu . \quad \text { and }
$$

$$
\sigma_{t}=\int_{-1}^{1} \dot{\sigma_{B}}(\theta) d \mu+\sigma_{\rho}+\sigma_{\rho} \cdot \text { This loeds to }
$$

$$
\alpha_{1}=\gamma+\sigma_{p}+\sigma_{r}+\int_{-1}^{1}(2-\cos \theta) \sigma_{s}(\theta) d(\cos \theta)
$$

or

$$
\alpha_{1}=t+\sigma_{t r}=\gamma+1 \quad \text { (in our units) }
$$

This last is just the α_{I} given by the recipe. Exactly similar considerations prove that α_{0}^{\prime} and α_{1}^{\prime} are given correctily by the recipe. (This is, of ourse, the well-known result of differential diffusion theory.)

From the table useful information as to the results that would be obtained with γ^{\prime} is groater than zero (i.o., multiplying modia) con be estimatod. It can be seon that with increasing γ the percentage difference between the two sets of constants decreases. This would indicate that for $\gamma>0$ it could be ox-pected that the results obtained by the two methods would be even closer than those found for $\gamma=0$.

In ooncluding, the following remariks oan be made. It is but slightly yore trouble to inolude angular dependence of the sattoring cross section than to leave it out: On the other hand, the simple recipe of substituting the transe port cross section whenever the total cross section appears in the equations gives

APPROVED FOR PUBLIC RELEASE

results that ars identioal with the correct method for all practical purposen. Certainly considering the accuracy with which other quantities involvod in critical-mass calculations, suoh as cross sections, are known any error introa duced by using tho simple recipe is oompletely nopligiblo.

\% 300°

rec. from Sezerber MATf.

