CIC-14 REPORT COLLECTION REPRODUCTION COPY

CIC-14 REPORT COLLECTION

REPRODUCTION COPY REPRODUCTION COPY

UAHLASSIFIEI
:

Special Re-Review
FINAL DETERMINATIGN, UNCLASSIFIED, DATE: $7 / 1 / 80$

VERIFIED UNCLASSIFIED

UNCLASSHED

PUBLICLY RELEASABLE
Per fay fanour~ FSS-16 Date: $\frac{8-4-92}{3}$ By m ballegus CIC-14 Date: 3-18:9lu

VERIFIED UNCLASSIFIED
Per $\angle M 2$ 6-11-79
By Minui nellegos 3-18-95.

IA REFORT 110

LEAD SPHGRE INTEGRAL BXPERIMENT

WORK DONE BY:

Thio dooument containe 15 pages
JuIy 21, 1044

REPOKI WRITTEN EY:

W. Rarita
R. Serber
. W. Rarita
Classifitation chançed to TNCLASETFTED
by Euthority of the E. S. Ammic Energy Comminsion R. Sorbor
Per $A L D R, T 1 D-14 C O-52$ sept. - oct. 1974
by heport library - gitimanteneyt $1-8-75^{\circ}$

Gilf Rpplxpm

APPROVED FOR PUBLIC RELEASE

ABSTRACT

The setoup, the differential crosa saction date and tho mathometical tecmique of tho lead sphere integral experimont baar a close resemblanco to thair oounterparts in eritical~mos or multiplicationmate calculation. Tho successful intogration of the nuolear proportias of lead, 25 and 28 in this probien gives us confidence in our ability to treat tho more complex problem of tho gadget. The agreement botwean thoory and expsimont is satigfactory. The ratio R (defined on pagea 3 andlo) for the two detectors 25 and 28 are compared in the tabla belor:

	$R_{\text {sxp }}$	$R_{\text {theor }}$
28	1.36	1.40
25	1.77	1.93

INRLASSMFIED

APPROVED FOR PUBLIC RELEASE

LDAD SFIDRE INTGGRAI EXPERTMETT

It is a long road fron the woasuroment or differential nuclear pioporo tios to a dotailad prodiction of the behavior of noutrons in an setual gadgat. The nocumulation of mumerous errors, both oxperinental and chooratioal, migit bo feared to lead to large uncortainties in such a prodiction. It is in this light that the lead sphore integral oxperiment is particulariy interesting; tho sat-up itself, the differentjal data which must bo used and the mathomatical problem, all boas a close resomblence to thoij countorparts in a criticalmess or maltiplication-rate calculstione For axample, the nuclear proparties Whioh must bo known include the fission spectrum, the transport and inglastic cross sections in the lead temper, the speotrum of inelastically seattered noutrons, and the fission cross sections in 25 and 28. The successful intergration of all these data in the case of the laad sphere experiment gives some foeling of confidonce in our ability to treat the more compier problem of the gadgot.

We shall briefly describe tho experimental arrangimantin. A thin aphorical shell of 25 js bombarded with slow noutrons from a aarbon pilo. In the conter of tho 25 shell is placed a 25 or 28 fission detactor (shieldad by Cd and B). Innediately outiaide the 25 shell, the aphorical load tamper can be snugly fittod. Counts of noutron fiux are mado with enci without the tamper in place. The ratio R of the two counts is then a meesure of the reflection of the tampar.

Theory of the Exporiment

Iat us consider tho Boltamann treaneport oquation for a gtosdy stato. The loes in noutron density (n) per second for a relocity y due to strexming and total soattering (σ) out of the boam is sompensated by the elastic ($\sigma_{\text {es }}$) and inelastic $\left(\sigma_{j}\right)$ soattering and from the source S.

$$
\begin{align*}
& \nabla \cdot \nabla_{n}=\omega \sigma_{n}+\int \sigma_{\theta}(x) \nabla^{*} n\left(\theta^{\prime}\right)\left(\alpha \Omega^{\prime} / 4 \pi\right) \tag{1}
\end{align*}
$$

The primes label the neution $\left(\nabla^{*}, \theta^{\prime}\right)$ inelestically or elastianlly ncativared to velocity v, e. Also $X_{0}\left(E, E^{\prime}\right)$ ia the probability of a noutron being inelsstically ecattered Prom energy E ' to onergy E. Intromuce

$$
\begin{aligned}
& n(\theta)=w_{k}(\theta) e^{j k r \cos \theta} \equiv w_{k} e^{j k r \mu} ; n_{k} \equiv \int w_{k} d \Omega ; n_{k} \equiv \int w_{k} \cos \theta d \Omega \\
& S \equiv S_{k} \theta^{i k j^{\mu} \mu}
\end{aligned}
$$

ana lot us suppose that

$$
\sigma_{\theta}(x) \equiv \sigma_{\theta}^{0} * \sigma_{\theta}(1) \cos \delta
$$

Then Eq. (1) becomes

APPROVED FOR PUBLIC RELEASE

We navo assumed sphericsl acattering for tho inolagtic collisions. Rewriting $\mathrm{Eq} \cdot(2)$

$$
\begin{align*}
& T(\sigma+i k \mu) m_{k g}=A+B \mu \\
& A \equiv\left(\nabla \sigma_{\theta}^{\theta} n_{k}+\int_{E}^{\infty \theta} X_{i} \sigma_{i}^{\prime} \Psi^{\prime} n_{k}^{\prime} d E^{\prime}+S_{k}\right) / \Lambda \pi \tag{3}\\
& B \equiv \nabla o_{Q}^{(1)}\left(m_{k} / 4 \pi\right)
\end{align*}
$$

$$
n_{k}=\int_{k} d \Omega=\frac{2 \pi}{v} \int_{=1}^{\pi 1} \frac{A+B \mu}{0+i k \mu} d \mu
$$

$$
=\frac{2 \pi}{v}\left\{\frac{A}{i k} \ln \frac{\sigma+i k}{\sigma=i k}+\frac{B}{(i k)^{2}}\left(2 i k \circ \sigma \ln \frac{\sigma+i k}{\sigma \sigma i k}\right)\right\}
$$

$$
\begin{equation*}
5_{k}=\int_{k} \cos \theta d \Omega=\frac{2 \pi}{v} \int_{0-1}^{+1} \frac{A \mu+B \mu^{2}}{\sigma+i k \mu \mu} d \mu \tag{5}
\end{equation*}
$$

$$
=\frac{2 R}{v}\left\{\frac{A}{(i k)^{2}}\left(2 i k=\sigma \ln \frac{\sigma+i k}{\sigma \omega i k}\right)-\frac{B \sigma}{(i k)^{3}}\left(2 i k \text { o } \sigma N \frac{\sigma+i k}{\sigma-i k}\right)\right\}
$$

Solving for $n_{1 r}$ Erom these equetions, wo got

$$
\begin{equation*}
n_{k}=(2 \pi / v) A\left(F_{k} / i k\right) \tag{6}
\end{equation*}
$$

whero

APPROVED FOR PUBLIC RELEASE

Transposing the first term on right and solving for m_{k} TO,

$$
\begin{align*}
& n_{k} v \sigma=\left(s_{k} / \sigma_{k}\right)+\left(1 / G_{k}\right) \int_{E}^{\infty} X_{i} \sigma_{i}^{2} \nabla^{\prime} n_{k}^{\prime} d g^{\prime} \text { where } \tag{8}\\
& G_{k} \equiv\left(2 i k / F_{k} \sigma\right)=\left(\sigma_{\theta} \% / \sigma\right)
\end{align*}
$$

By difforentiating both sider of Eq. (8) with respeot to E and intos grating the resulting difforential equation, we get

$$
\begin{align*}
& n_{E^{*}} V^{\sigma}=-\frac{2}{G_{K}} \int_{E}^{\infty} \frac{\partial S_{k}^{\prime}}{\partial E^{\prime}} e^{\int E E^{\prime} \frac{x_{i} \sigma_{i}}{G_{k} \sigma^{\prime}} d E} d B^{\prime} \tag{e}
\end{align*}
$$

Eq. (8) may also be solved by iteration:

$$
\begin{equation*}
n_{k} v \sigma=\frac{S_{k}}{G_{k}}+\frac{1}{G_{k}} \int_{E}^{\infty} x_{i}\left(E, E^{\prime}\right) \frac{\sigma_{i}^{\prime}}{\sigma^{\prime}} \frac{S_{k}^{\prime}}{G_{k}^{\prime}} d E^{\prime}+\ldots \ldots \ldots \ldots \tag{10}
\end{equation*}
$$

The neutron flux given by Eq. (10) clearly sepsrates into a first torn ooming directly from the source, a second term from single inelastic collisions, a third tern from double inelastic collisions, otc.

A simpler and perheps preferable expesssion for G_{k} than that derived above is

$$
\begin{equation*}
G_{s c}=\frac{2 i k}{c_{i} \ln \frac{\sigma_{i}+i k}{\sigma_{i}-i k}}-\frac{\sigma_{Q}^{n}}{\sigma_{t}} ; \tag{19}
\end{equation*}
$$

Henre of is the transporc cross section. (This oquation can be formelly obtained from Eq. (8^{\prime}) by actting $\sigma_{\theta}^{(i)}=0$ and chenging σ into σ_{t}) Thrae ressons nay be invoked: a) the actual elactic scettering is mora compliatcc than the assumed $\left.\sigma_{e}=\sigma_{0}{ }^{0}+\sigma_{\theta}^{(1)} \cos 0 ; \mathrm{b}\right)$ for small k / σ, tho araivad $G_{i j}$ reduces to the iorin of Ea. (11); end c) for larger k / σ : the numericel mork of frankel snci Nelbon (of. LA-53A) indicate that (11) and (B^{\prime}) agree quite moll.
int the center of a spherical cavity the noutron flus reslacted by a iompar ($a \leq x \in \mathfrak{a}$) is

$$
\begin{equation*}
n(o) v=\int_{a}^{0}\left\{\sigma_{0} n(r) v+\int_{E}^{\infty} \chi_{i}\left(E, B^{0}\right) \sigma_{i}^{y} n^{2}(r) v^{0} d s^{\prime}\right] \frac{\theta^{0-\sigma_{t}(r-a)} d r}{4 \pi r} \tag{12}
\end{equation*}
$$

Herf egrin for non-Epherical scattering the transport crose section replaoes the sotal cross section.

Fis shell, introduce an orthomormal cet of functions $n(k, r)$ defined in tho interval $a \leq x \leq b$. Tho form of $n(k r)$ assumed in the derivation of the Boltamann equation was easentiaily e-jkru $+i 5$. But the result for n_{k} do does not depend on the direction of k. The appropriate angle-independent sphericel solution for $n(k r)$ becones then

$$
\begin{equation*}
\pi\left(x_{i} r\right)=c_{j} \frac{\sin \left(k_{j} x+\delta\right)}{r} \tag{13}
\end{equation*}
$$

The conditions to be imposed are three:
(a) normalization, $0 \int_{a}^{b} r^{2} n(x, r) d r=i$
(b) $\frac{\operatorname{an}(2, x)}{d r}=0$ for $r=a$ and
(o) $n\left(k_{j} b_{j}^{I}\right)=0$ whore $b_{j}^{\prime}=0+\frac{\operatorname{pios}}{\sigma_{t}} \frac{\arctan \left(k j / \sigma_{t}\right)}{\left(\operatorname{la}_{j} \sigma_{t}\right)}$

Thees b_{j}^{\prime} is the nxirapolated ond-point.
Condition (b) can be proved wo give the correct asymptotic phase of tho solution far from the cavity by using the conservation theorem for a steady states: neutrons created inside tho radium leak thru the outside surface:

$$
\left.d \eta r^{2} \sigma(\lambda-2) \frac{d n}{d r}\right|_{r=b}+\sigma_{i} \int_{0}^{b} n(k r) 4 \pi r^{2} d r=0
$$

$$
\operatorname{and} 1+f=\frac{k / \sigma}{a \operatorname{ratan} k / \sigma} \equiv A
$$

Substituting Eq. (13) in Eq. (15), Fe finally get

$$
\begin{equation*}
\left.4 \pi x^{2}\left[\frac{\cos (k r+6)}{k r}-\frac{\sin (k r+\delta)}{(k r)^{Z}}\right]\right|_{r=a}=0 \tag{47}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
(\mathrm{d} \sqrt{2} / \mathrm{d} r)_{r}=a=0 \tag{array}
\end{equation*}
$$

The $n\left(y_{j} r\right)$ given by Eq. (15) and (14) are not exact solutions of the Boltrmann equation for a iinite modium, but differ from the eract bolution by small terms which fell off exponentially from the boundaries. But since Eq. (12) depends on an average of the density over the whole region, the neglect of such adge corrections is not likely to be serious.

The allomable value of k_{j} detormined by (b) and (o) above ore obtained from

$$
\begin{equation*}
k_{j} 2 \text { ont } k_{j}\left(b_{j}-a\right)=-1 \tag{15}
\end{equation*}
$$

We now expand $n(r)$ vo or

$$
\begin{equation*}
n(r) \text { vo }=\not \ddot{M}_{j} n_{k} \text { vo } n\left(k_{j} r\right) \tag{16}
\end{equation*}
$$

The oxpression for $n_{k_{j}}$ wo has already boen given in Eq. (8), (9), or (10). The source function $S(r)$, an infinitoly thin shell of total streragth Q end located at x^{11} is

$$
\begin{equation*}
S(r)=\frac{Q}{A \pi} \frac{G\left(r \cdot r^{r}\right)}{r^{2}} \text { or } Q=\int_{0}^{b} S(r) d r \tag{17}
\end{equation*}
$$

Further

$$
\begin{equation*}
S(x)=\frac{-}{j} S_{k_{j}} n\left(k_{j} r\right) \text { and } S_{k_{j}}=(0 / 4 \pi) n\left(k_{j} r^{\prime \prime}\right) \tag{18}
\end{equation*}
$$

Ths basic Eq. (12) 5oquires for ita evaiuation but a oinglo numorical integrao tion over r and a sumation over j. The series is rapialy convergent. Three terne grve adequate accuracy.

The noutron $n_{S}(0) v$ flux whieh comes directly from the soureo is

$$
\begin{equation*}
n_{s}(0) \nabla=\left(0 / 4 \cdot \pi r^{56}\right) \tag{19}
\end{equation*}
$$

The reflection coofficient G_{η} for thengle energy is then

$$
\begin{equation*}
\bar{c}_{D}=\frac{n(0) v}{n_{8}(0) v} \tag{20}
\end{equation*}
$$

We atill have to average over the fission spectrum ($\mathrm{dQ} / \mathrm{dE}$) of the source and over the cross soction of tho deteotor α (either 25 or 28) to avaluaio the ratio of counte R with and without the tamper in plase.

$$
\begin{equation*}
R=1+\frac{\int(\alpha Q / d E) C_{T}}{\int(d Q / \alpha E) \sigma} \frac{\sigma(\alpha) d E}{(a) d E} \tag{23}
\end{equation*}
$$

Sororimontal and Thoorotical Results

The lead tamper choeen by Dollire, Wilson, and Woocward for the experio ment кas $7^{\prime \prime}$ in outer, and $3^{\prime \prime}$ in inner radius. The 25 souroo was $1 / \chi^{\prime \prime}$ thick

Sho fission cross sections for 25 and 28 used in the saleulation are shown in Fig. 2. The ratio of $\sigma(25)$ averaged over the fission spectrun to σ (28) averape oror the same spectrum is uscd in correcting the "25" foil to pure eij. This value is thooreticaily somputod to be s.7. The experinental

value of 6.5 ± 20 porcent is not eonsidered very accurato as the foils uned were not vory thin. The fission spectrum adoptad is reported by Staub in LABS-75 and 95. The lead dita wore basod on values given by Olum and Weisskopf (LAMSol05). Tho assumed inelestic spoctrum, choson to give a simple fit to Kanley's biasing oxperiments (IA-51 and LA-57) is reprosented in Fif. 3 and Fig. 4.

Fig. 5

The curyes for $\sigma_{j}(I)$ and $\sigma_{i}(I I)$ dofined in Fis. 3 and Fif. 4 are givon in Fig.5.

It niny be interesting to quote the results for C_{a} the reflection coefificiont for a singlo onorgy E. C.: is the same quantity neglecting inelasticu n11. depraded noutrons. Theso values are plottod in Fig. 6.

Finelly, the theoretioal and experinental values of the ratio R (aee Eq. 18) for detectors 28 and 25 are listed in Table I. R^{*} the value when inelasticaliy degraded noutrons are megdontot ofs ofog giterei,

APPROVED FOR PUBLIC RELEASE

TABLE I

$R_{\text {exp }}$	$R_{\text {theor }}$	R^{3}
28	1.36	1.40
25	1.77	1.93

The agroenent is aatisfactory although the numbers seam to indicater that the inelastio contribution has been somewhat overestimated.

Curbicit ROOM
REC. FROM..
Ein

