APPROVED FOR PUBLIC RELEASE

UNCLASSMED

PUBLICLY RELEASABLE

Poor fay Muon. Ps. 16 Date: $\frac{8-4=92}{24}$

VERIFiED UNCLASSIFIED
Per $\frac{10 R R \quad \text { b- } 11-29}{\text { yonosin Sblegn } 3-2-9 l l_{\text {IA REPORT }} 31}$ SETTER

Classification changed to UNCLASSIFIED
bs authority of the ri. S. Atomic Energy Commiseton,
Per ALPR, TID-1400-S2 Sept-00x 974
By REPORT LIERARY

October 18, 1943.
. This document contains θ
pages

TUE MULTIPLICATION RATE FOR UNTABPED CYLINDERS

Work done by:
S. Frankel
E. Nelson

Report Written by:
S. Frankel
E. Nelson

Fission Phypies

APPROVED FOR PUBLIC RELEASE

ABSTRACT

The determination of the critical dimensions of untamped cylinders, infinite and finite in length, and of the multiplication rate for non-critical sizes, is treated by an extrapolated end-point method and verifies for a few sfecific leagths and diameters by the variation method with a three-parameter trial function.

UNCLASSIFifed

UNCLASSMFIFD

The sige, shape; chapositien;"alit multiplication rato of untamped
masses of active material are related by the interral equation

$$
\begin{equation*}
n(\underline{x})=\frac{1+f}{4 \pi} \sigma \int d x^{\prime} n\left(\underline{x}^{\prime}\right) \frac{e^{-\left(\underline{x}-x^{\prime}\right)(\sigma+\gamma / v)}}{\left(\underline{x}-x^{\prime}\right)^{2}} \tag{1}
\end{equation*}
$$

where the integration is carried over the volume of the active material. A rumber of different methods of treating this equation have been developed for use with spheres and slabs. (Cf. LA Report 8 and a future report in this series). The tro most useful and accurate of these, the variation and extrapolated end-point methods, are here applied to untamed cylinders.

For the variation method cylinders differ fron slabs and spheres orly in that the interrals involved are more oumbersome The evaluation of the interrals is so laborious that the variation method has been applied only to a fow special cases, the results being used to ceck on the accuracy of the more easily applied exarapolated ond-point method.

The use of the extrapolated end-point method depends on the fact that the interral equation (2) can be solved exactly for the plane solution in a half infirite medium by the methods outlined by F. Saithies, London lath. Soc. 46,409 (1939). The detsils and results of this treatment are riven in IA Report 8. The solutions so obtained ara usefully characterized by the phase and wavelength of the asymptotic sinusoidal or hyperbolic solution. The phase has usually been speaified by giving the "extrapolated end-point", the distance beyond the boundary of the first root of the asymptotic solution. The slab has been treated by the approximate method of applying this boundary condition indeo pendently at the two boundaries. The accuracy of this approximation has beon checked by the use of the viriation methode The two rosults check to better than one percent in thiokness tourhout the useful runge.

trimped sphere depends upon the fuct that.by, the transformation $n(r)=r u(r)$ the intesral equation (1) for solution, $u(x)$, in an untamped slab. The extrapolated end-point soluaion for the sphere can therefore be expected to be muoh more accurate than that for the slab as the two boundary conditions which are assumed independent are about twice as far aparte Λ comparison with the variation method solution shows that the error made is completely negligible for any useful radius and rises to about one peroont for a sphere of zero radius.

We have not been able to find a corresponding identification or the interral equation for the infinite cylinder (i.e., infinite in lenoth) with a slab problem with a displacement kernel, so that no equally justifiable extrapoa lated end-point method has been found for the cylinder. However, the success of the extrapolated enc-point method for the slab and sphere and the identity of the end-point distance in the two cases sugests that the end-point distance for an infinite cylinder minht well be approximately the same as the end-point distance for a slab or sphere of the same material and multiplication rate.
:dak'ng use of the hypothesis, we computed critical radii for fafinite cylinders for various values of f in the following manner: The form of the solution in the interior was taken to be $J_{0}(k r)$ where k is determined by the condition $\tan ^{-1} \mathrm{l}_{k} / k=1 /\left(1^{\circ}+f\right)$. This condition is appropriato in the dosoription of the solution far frcm any boundary. The radius was taken less than the first root of this $J_{0}(k r)$ by the extrapolated end-point distanco determined proviously for spheres and oylindirs. Ihe radius as a function of f so determined has no rigorous theoretioal justification. Horever, when compared with the variation-method results obtained by Inglis with a parabolic trial function (Cf. LA Report 26) it proves accurate to less than one percent throughout the useful range.

UNLLAJDITILU

The same precedure has been used for cylinders of finite length, Here the interior solution is $J_{0}\left(k_{1} r\right) \cos \left(k_{2} 2\right)$ where $k_{1}^{2}+k_{2}^{2}=k^{2}$ and as before $\tan ^{-1} z_{2} / k=1 /(1+f)$. The radius is then taken less than the first root of $J_{0}\left(k_{1} r\right)$ by the extrapolated end-point distance (a funation of falone) as before and the half-length less than the first root of $\cos \left(k_{2} r\right)$ by the ame amount. The results of these calculations are presented in Fig. 1. Here again a oomparison with the variation method results shows no appreciable discrepanay.

For finite cylinders, Fariation-method radii were determined by the maximization of the expression

$$
\frac{I}{N} \frac{(2 / 4 \pi) \int d x d x^{*} n(x) n\left(x^{\prime}\right) e^{-1 \underline{x}-x^{4} /\left(x-x^{2}\right)^{2}}}{\int n^{2}(x) d x}
$$

whore $n=1-x r^{2}-\beta_{z}^{2}+\epsilon x^{2} z^{2}$
To perform the integration the following representation of the kornel
was used:

$$
\frac{e^{-\left|\vec{z}-\vec{x}^{\prime}\right|}}{4 \pi\left|\vec{x}-\vec{x}^{2}\right|^{2}}=\frac{1}{8 \pi^{3}} \int_{0}^{\infty} d y \int_{1}^{\infty} d z e^{-2^{2} y} \int d \vec{k} e^{-k^{2} y} e^{i \vec{k}\left(\vec{x}-\vec{x}^{0}\right)}
$$

With this representation, the integral I integrates to

$$
\begin{aligned}
& I=4 \pi a^{2} z_{0} \int_{0}^{\infty} \alpha y E_{2}(y)\left\{K _ { 0 } (\frac { y } { z _ { 0 } }) \left[\frac{(1-\beta-\alpha+\epsilon)^{2}}{2} G_{0}\left(\frac{y}{a}\right)+2(1-\beta-\alpha+\epsilon)(\alpha-\epsilon) G_{1}\left(\frac{y}{a}\right)\right.\right. \\
& \left.+(\alpha-\epsilon)^{2} G_{2}\left(\frac{y}{a}\right)\right]+4 E_{1}\left(\frac{y}{z_{0}}\right)\left[\frac{(1-\beta-\alpha+\epsilon)}{2}\left(\frac{\beta}{2}-\epsilon\right) a_{0}\left(\frac{y}{a}\right)+\right. \\
& \left.\{\epsilon(1-\beta-\alpha+\epsilon)+(\alpha-\epsilon)(\beta-\epsilon)\} G_{1}\left(\frac{y}{a}\right)+\epsilon(\alpha-\epsilon) G_{2}\left(\frac{y}{a}\right)\right] \\
& \left.+\frac{8}{3} K_{2}\left(\frac{y}{z_{0}}\right) \cdot\left[\frac{\left(\frac{\beta}{2} \epsilon\right)^{2}}{2} a_{0}\left(\frac{y}{a}\right)+2 \epsilon(\beta-\epsilon) a_{1}\left(\frac{y}{a}\right)+\epsilon G_{2}\left(\frac{y}{a}\right)\right]\right\}
\end{aligned}
$$

$a \quad$ a radins of gylinder
UNCLASSIFIED
$2 \varepsilon_{0}=$ length of oylinder

$$
\begin{aligned}
& X_{0}(y)=-y\left(1 \cdots e^{-1 / y^{2}}\right)+2 \int_{0}^{1 / y} d x e^{-x^{2}} \\
& z_{1}(y)=\frac{2 y^{3}}{3}+\frac{y}{3}\left(1-2 y^{2}\right) e^{-1 / y^{2}}+\left(\frac{2}{3}-y^{2}\right) \int_{0}^{1 / y} d x e^{-x^{2}} \\
& \mathbb{K}_{2}(y)=y^{3}-\frac{2 y^{5}}{5}+\frac{y}{5}\left(2 y^{4}-3 y^{2}+1\right) e^{-1 / y^{2}}+\left(\frac{2}{5}-y^{2}\right) \int_{0}^{1 / y} d x e^{-x^{2}} \\
& G_{0}(y)=1-{ }_{1} F_{1}\left(\frac{1}{2}, 2, \frac{2}{y^{2}}\right) \\
& G_{1}(y)=-y^{2}+\frac{1}{4}+y^{2}{ }_{1} F_{1}\left(\frac{1}{2}, 2,-\frac{1}{y^{2}}\right) \\
& O_{2}(y)=-y^{2}+\frac{1}{6}+y^{2}{ }_{1} F_{1}\left(\frac{1}{2}, 3,-\frac{1}{y^{2}}\right) \\
& E_{r}(y)=\frac{2}{\sqrt{\pi}} \int_{y}^{\infty} d x e^{-x^{2}}
\end{aligned}
$$

UNCLASSIFIED
${ }_{1} F_{1}$ confluent hyporgoometrio function
The integration ovary y was done numerically.
The maxirama was determined subject to variation of all three parameters of the trial function n. The results compare with the extrapolated end-point method as follows:

length	diameter	$\mathbf{f}_{\text {var }}$	P $_{\text {endpoint }}$
4.0	2.0	.702	.70
4.0	1.60	.892	.89
4.0	1.33333	1.086	1.03
2.0	2.0	.857	.85
2.0	1.60	1.046	1.04
2.0	1.33333	1.239	1.23

The values in the last column ago iakgi from fig 1.

In Fig. 2 is presented the dependence of the oriticel uess of finite oylinders on thoir shape. The curve gives the oritioal mass, measurod in unite of the oritioal mass of an untamped sphere of the same material, as a function of the ratio of the length io diameter. The curve given was oaloulated for $P=.5$, however the dependenoe of the ourve on the value of f is so slight that it seems unnecessary to give further curves.

The same approximation method of oalculating oxitioal sizes by the extrapolated end-point method has been applied to reatangular solids. The linear dimensions so deternined check with those calculated by the variation method by Olum and Davis to within about one peroent. The sucoess of the andpoint method in giving reasonably accurate results for problems to which it is not obriously applicable suggests that this method may prove of vaiue in oslculating oritical sizes for still more irregular shapes.

The ourves of Fig. 1 can bo used for non-critical conflgurations by the use of the similarity transformation (of. L.A. 8). If the multiplication rate is γ then the quantity $1+f$ is to be replaced by $(1+f) /(1+\gamma)$ and the linear dimensions are measured not in units of the mean free path but the mean free path divided by $1+X_{\omega}$ The multiplication rate γ is so defined that the number of neutrons increases (or decreases if γ is negative) in one mean fres time by a factor e^{\varnothing}.

UNCLASSIFIED

UNCLASSIFIED

DOCUMENT ROOM

REC. FROM
 DATE \qquad 6 $6 / 1$ REC........ NO. REG:

uNCLASSIFIED

