
 Series A

LOS ALAMOS SCIENTIFIC LABORATORY

OF
THE UNIVERSITY OF CALIFORNIA

July 16, 1951

This document consists of 16 pages

A NOTE ON THE CALCULATION OF NEUIRON MULTIPLICATION

Work done by:
Report Written by:
Group T-2

PUBLICLY RELEASABLE LANLClassification Group af facn 11/16/35

PHYSICS AND MATHEMATICS

PHISICS AND MATHEMATICS

LA-1273
AUG 61951
Los Alamos Document Room 1-20
J R. Oppenheimer 21
STANDARD DISTRIBUTION
Argonne National Laboratory 22-33
Armed Forces Special Meapons Project
Atomic Energy Commission, Washington
Battelle Memorial Institute
Brookhaven National Laboratory
Bureau of Ships
Carbide \& Carbon Chemicals Company (C-31 Plant)
Carbide \& Carbon Chemicals Company (K-25 Plant)
Carbide \& Carbon Chomicals Company ($\mathrm{Y}-12$ Area)
Chicago Patent Group
34
35-40
41
42-4.5
46

Chief of Naval Research
47-48

Columbia University (Havens)
duPont Company
49-50
$51-54$
H. K. Ferguson Company

General Electric Company, Richland
55

Hanford Operations Office
Idaho Operations Office
56

Iowa State College
57

Kellex Corporation
Knolls Atomic Power Laboratory
Mallinckrodt Chemical Works

Mound Laboratory

62-65

National Advisory Comittee for Aeronautics 66

National Bureau of Standards 82
Naval Medical Research Institute 83
Naval Research Laboratory 84
New Brunswick Laboratory 85
New York Operations Office $\quad 86=87$
North American Aviation, Inc. 88-90
Oak Ridge National Laboratory ($\mathrm{X}-10$) 91-98
Patent Branch, Washington 99
Sandia Corporation 100
Savannah River Operations Office 101
UCLA Medical Research Laboratory 102
USAF - Headquarters 103

U. S. Naval Radiological Defense Laboratory	104
University of California Radiation Laboratory	$105-109$
University of Rochester	$110-111$
Westinghouse Electric Corporation	$112-115$
Wright-Patterson Air Farce Base	116 -118
Technical Information Service, Oak Ridge	$119-133$
Aircraft Nuclear Propulsion Project, Dak Ridge	134-136

UNCLASSIFIED

A NOTE ON THE CALCULATION OF NEUIRON MULTIPLICATION

1. Definition of Neutron Multiplication.

We consider a spherical system with outer radius a cm comprised of a central core and $M-1$ shells arranged in a concentric fashion. With this system we associate a steady neutron source S which we assume to be locally isotropic as well as spherically symmetric in distribution. We denote the source S thus specified by $S(r), 0 \leq r \leq a$, and assign to it the dimension neuts $/ \mathrm{cm}^{3} \mathrm{sec}$. The multiplication M of the sphere Is then defined as the number of neutrons eventually emerging from the sphere per neutron emitted by the source S. M is clearly \& function of the source S as well as the properties of the spherical system. 2. Problems Considered in this Report.

The numerical methods based on integral theory and introduced in LA-1271 are applicable under very general assumptions to the problem of calculating M. The purpose of this report is to present a simple semi-analytical procedure applicable to one-medium spherical systems under the assumptions of one-velocity isotropic theory. This means that we limit ourselves to a small but important class of problems involving monoenergetic sources. We shall measure r in units of the mean free path l / σ, and denote σr and $c-1$ by x and f, respectively. The cases we consider are then fully described by x, f, and S. For the definitions of σ and c and the assumptions underlying one-velocity

isotropic theory we refer to LA-1271.
We shall also restrict the discussion to the particular source distributions given below. These are of considerable theoretical as well as practical importance.
(1) Central point source S_{c} of strength S_{o} neuts/sec, with

$$
S_{c}(r)=S_{o} \delta(r) \text { and } T_{c}=\int_{0}^{a} S_{c}(r) r^{2} d r=S_{o} \text { neuts } / \mathrm{sec} .
$$

(2) Uniform source S_{u} of strength S_{o} neuts $/ \mathrm{cm}^{3} \mathrm{sec}$, with

$$
S_{u}(r)=S_{0} \text { and } T_{u}=\frac{4 \pi}{3} a^{3} S_{0}
$$

(3) Surface source S_{s} of uniform strength S_{o} neuts $/ \mathrm{cm}^{2} \mathrm{sec}$ on the surface of the sphere with $S_{s}(r)=S_{0} 8(a-r)$ and $T_{s}=4 r a^{2} S_{0}$.

3. Approximate Formulae for M.*

In the simple cases we consider here, it is possible to give an approximate but nevertheless quite accurate formula for M, the error being in most cases of the order of a few per mil. From the definition of M we have immediately:
(4) $\quad M=\left(1-P_{1}\right)+(1+f) P_{1}\left(1-P_{2}\right)+(1+f)^{2} P_{1} P_{2}\left(1-P_{2}^{\prime}\right)+\ldots \ldots$.

[^0]where $P_{k}, k=1,2,3, \ldots$, is defined as the probability that a source neutron, after k-l previous collisions in the sphere, will have at least $a k^{\text {th }}$ collision. P_{k} evidently depends on x and S. Moreover, P_{k} approaches P_{n} as k goes to infinity, where P_{n} depends on x alone. This follows from integral theory considerations. A so-called normal mode distribution is established characteristic of the size of the sphere. Once a collection of neutrons are distributed in the normal mode they remain so distributed though their number may change.

The approximate formula for M is obtained from the assumption that the distribution of first collisions can be written as a combination of the source distribution and the normal mode. This gives rise to the following formula for $\mathrm{P}_{2} \mathrm{P}_{2}$:

$$
\begin{equation*}
P_{1} P_{2}=\left[\beta P_{1}\right] P_{1}+\left[(1-\beta) P_{1}\right] \quad P_{n} \tag{5}
\end{equation*}
$$

where \mathcal{P} will be determined by a procedure to be described later.
The above assumption implies that the distribution of $k^{\text {th }}$ collisions likewise can be written as a combination of the source distribution and the normal mode. This in turn leads to formula (6) below for the probability $\mathcal{\rho}_{k}$ that a source neutrons will have at least k collisions in the sphere:

$$
\begin{equation*}
\mathcal{P}_{k}=\boldsymbol{l}_{=1}^{k} P_{\ell}=\left[\beta \mathcal{P}_{k-1}\right] P_{1}+\left[(1-\beta) P_{1} P_{n}^{k-2}\right] P_{n}, \quad k=2,3,4, \ldots \tag{6}
\end{equation*}
$$

An interpretation of the two brackets in (6) can be given. The first represents the fraction of the source neutrons which after k-l collisions
are given the distribution of the source. The second represents the corresponding fraction given the normal mode distribution.

From (6) we deduce the following simple recursion formula for P_{k} :

$$
\begin{equation*}
P_{k}=P_{n}+\beta P_{1}\left(P_{k-1}-P_{n}\right) / P_{k-1} \tag{7}
\end{equation*}
$$

The approximate formula for M can now be derived. As a first step we rearrange the terms in (4) obtaining:

$$
\begin{equation*}
M=1+f\left[\mathcal{\rho}_{1}+(1+f) \mathcal{\rho}_{2}+(1+f)^{2} \mathcal{\rho}_{3}+\ldots .\right] \tag{8}
\end{equation*}
$$

The sum of the terms in the bracket of (8) are then found analytically with the aid of (6). The resulting expression for M is given by:

$$
\begin{equation*}
M=1+\frac{P_{1}}{P_{n}} \frac{1-\mathscr{P}(l+f) P_{n}}{1-\mathscr{R}(1+f) P_{1}} \frac{f P_{n}}{1-(l+f) P_{n}} \tag{9}
\end{equation*}
$$

where P_{1} and \mathcal{B} depend on x and S, and P_{n} on x. In particular, if S is a so-called normal mode source, i.e., a source having the same distribution as the normal mode, we find that $P_{1}=P_{n}$, and $\beta=1$. Hence:
(10)

$$
M_{n}=1+\frac{f P_{n}}{1-(1+f) P_{n}}=\frac{1}{1-\frac{P_{n}}{1-P_{n}} f}
$$

4. Calculation Procedure for P_{1}, P_{n}, and β.

The values of P_{1} were obtained from the following analytic formulae:

$$
\begin{equation*}
P_{c l}=1-e^{-x} \tag{11}
\end{equation*}
$$

$$
\begin{align*}
& P_{u l}=1-\frac{3}{8 x^{3}}\left[\left(2 x^{2}-1\right)+(2 x+1) e^{-2 x}\right] \tag{12}\\
& P_{s l}=\frac{1}{2}-\frac{1}{4 x}\left(1-e^{-2 x}\right)
\end{align*}
$$

The successive values of P_{k} and hence P_{n} were，on the other hand， obtained numerically using the integral theory methods of LA－1271， splitting the interval $(0, x)$ in four equal parts．The distribution of the neutrons emerging from first collisions could，however，be derived analytically for each of the three sources under consideration．For the sake of greater accuracy these distributions were used in the inte－ gral equation in place of the corresponding source distributions．It would have been quite inaccurate to use the latter especially in the case of the δ－sources S_{c} and S_{s} which for large x would be spread considerably in a four－interval scheme．

The formulae for the distributions $S_{1}(t, x)$ of first collisions are given below：

$$
\begin{align*}
& s_{c l}(t)=x e^{-t x}, \quad 0 \leq t \leq 1, \tag{14}\\
& s_{u l}=3 t^{2}\left\{1-\frac{1}{2 t x}\left[E_{3}(x(1-t))-E_{3}(x(1+t))\right]-\right. \tag{15}\\
& \left.-\frac{1}{2 t}\left[E_{2}(x(1-t))-E_{2}(x(1+t))\right]\right\}
\end{align*}
$$

$$
\begin{equation*}
S_{s I}=\frac{t x}{2}\left[E_{1}(x(l-t))-E_{1}(x(l+t))\right], \tag{16}
\end{equation*}
$$

where $t x=\sigma r, 0 \leq r \leq \sigma a=x$, and $\int_{0}^{1} S_{1}(t, x) d t=P_{1}$.
The values of P were calculated from the following formula:

$$
\begin{equation*}
\beta=\frac{P_{n} K+1}{P_{1} K-1} \tag{17}
\end{equation*}
$$

where K is defined as the limit as k approaches infinity of $\mathcal{\rho}_{k} / P_{n}^{k}$. 5. Approximate Formulae for $[d(1 / M) / d m]$ and $[d \alpha / d m]$.

Other quantities of particular interest in connection with critical mass determinations are $[d(1 / M) / d m]_{m=m_{0}}$ and $[d \propto / d m]_{m=m_{0}}$, where m_{0} is the critical mass in kg and ar the exponential growth (or decay) factor in reciprocal shakes. The system becomes critical when M approaches infinity which occurs when x goes to x_{0}, x_{0} being the root of the equation $(l+f) P_{n}(x)=1$. Consequently, we have $m_{0}=\frac{4 \pi}{3000} \rho\left(\frac{x_{0}}{\sigma}\right)^{3}$, where ρ is the density in $\mathrm{gr} / \mathrm{cm}^{3}$. From the formula for M given above and the procedure for time-dependent problems (See LA-1271, Section VI) we obtain:

$$
\begin{equation*}
\left[\frac{d(1 / M)}{d x}\right]_{x=x_{0}}=-\frac{1}{f x_{0} P_{1}} \frac{1-(1+f) P P_{1}}{1-P} \frac{x_{0} P_{n}^{\prime}}{P_{n}}, \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\left[\frac{d \alpha}{d x}\right]_{x=x_{0}}=\frac{\sigma v}{x_{0}} \frac{x_{0} P_{n}^{\prime} / P_{n}}{1-\left(x_{0} P_{n}^{\prime} / P_{n}\right)} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\left[\frac{d x}{d m}\right]_{m=m_{0}}=\frac{1000 \sigma^{3}}{4 \pi \rho x_{0}^{2}} \tag{20}
\end{equation*}
$$

where v in (19) is the average neutron velocity in $\mathrm{cm} / \mathrm{shake}$.
The average number of collisions $\overline{\mathrm{w}}$ generated in the sphere per source neutron emitted is also of some interest. Since each collision gives rise to f new neutrons we may write M in terms of $\bar{W}, M=1+\bar{w} f$, from which we obtain:

$$
\begin{equation*}
\bar{w}=(M-1) f \tag{21}
\end{equation*}
$$

The number of fissions in the system is then given by $\frac{\sigma f}{\sigma t} \bar{w}=$ $=(M-1) /(\nu-1)$.

6. Numerical Examples.

(a) Find the critical mass of an oralloy sphere with $\sigma=.28$, $f=.30$, and $\rho=18.8$. From Table I we find, corresponding to $P_{n}\left(x_{0}\right)=$ $=1 /(1+f)=.7692$, the value 2.435 for x_{0}. Using the formula for m_{0} given above we obtain $m_{0}=51.79 \mathrm{~kg}$.
(b) Find $\left[\frac{d\left(l / M_{c}\right)}{d m}\right]_{m=m_{0}}$ and $\left[\frac{d \alpha}{d m}\right]_{m=m_{0}}$ for an oralloy sphere of mass 51.79 kg . From Table I we find $P_{1}=.9124, P_{n}\left(x_{0}\right)=.7692$, $\mathcal{P}\left(x_{0}\right)=.6387$ and $x_{0} P_{n}^{\prime}\left(x_{0}\right) / P_{n}\left(x_{0}\right)=.337$. Substituting these numbers in formulae (18), (19), and (20), letting $v=9.5 \mathrm{~cm} / \mathrm{shake}$, we obtain $[\mathrm{d}(1 / \mathrm{M}) / \mathrm{dm}]_{m=m_{0}}=.00532$, and $[\mathrm{d} \alpha / \mathrm{dm}]_{m=m_{0}}=.0087$.
(c) Find M_{c}, M_{u}, and M_{B}, and M_{n} for an oralloy sphere with $\sigma=.28, f=.30, \rho=18.8$, and $a=7.143$. We than have $x=2.000$ and $m=28.70$. With the aid of Tables $I, ~ I I$, and III we find the
following values of P_{1}, P_{n}, and β :

Source	P_{1}	P_{n}	\mathcal{B}
M_{c}	.8647	.7155	.5946
M_{u}	.6676	.7155	.4654
M_{s}	.3773	.7155	.4093
M_{n}	.7155	.7155	1.0000

Substituting these in the formula (10) for M we obtain $M_{c}=6.01$, $M_{u}=3.73, M_{s}=2.26$, and $M_{n}=4.07$.

Selected References

LA-191, J. H. Manley and R. L. Walker, "Multiplication of a 2-1/2 Inch 25 Sphere as Measured with 28 and 25 Fission Detectors".

LA-235, W. Rarita and R. Serber, "Critical Masses and Multiplication Rates".
LA-267, C. Richman, "Multiplication of Neutrons in Small Spheres of Active Material".

LA-335, R. Serber, "The Definition of Neutron Multiplication".
LA-464, C. L. Bailey, A. O. Hanson, J. M. Hush, and J. H. Williams, "Multiplication of Neutrons by Tamped and Untamped Spheres of 25 and 49".

LA-465, R. Serber, "On the Theory of Neutron Multiplication".
LAMS-227, A. O. Hanson, R. Serber, and J. H. Williams, "Multiplication by Small Spheres of Active Material".

LAMS-230, A. O. Hanson, R. Serber, and J. H. Williams, "Multiplication of Large 25 Spheres".

LAMS-235, A. O. Hanson, R. Serber, and J. H. Williams, "Multiplication of Spheres of 49 ".

TABLE I CENTRAL SOURCE DATA

x	$P_{1}(x)$	$P_{2}(x)^{* *}$	$P_{n}(x)$	$K(x)$	$\mathcal{P}(x)$	$x P_{n} \cdot / P_{n}$
0	$1.00000 x^{*}$	$.8651 x^{*}$	$.7828 x^{*}$	1.5136	.3600	1.000
.4	.32968	.2893	.2584	1.5763	.4084	.820
.8	.55067	.4918	.4352	1.6292	.4571	.676
1.2	.69881	.6356	.5596	1.6729	.5047	.563
1.6	.79810	.7387	.6493	1.7099	.5509	.472
2.0	.86466	.8129	.7155	1.7405	.5946	.400
2.4	.90928	.8664	.7654	1.7661	.6353	.342
2.8	.93919	.9048	.8038	1.7872	.6728	.294
3.2	.95924	.9325	.8338	1.8053	.7069	.256
3.6	.97268	.9522	.8577	1.8201	.7376	.224
4.0	.98168	.9663	.8769	1.8318	.7650	.198
4.4	.98772	.9763	.8927	1.8422	.7895	.176
4.8	.99177	.9834	.9057	1.8507	.8111	.157

* For small values of $x .{ }^{* *}$ From four-interval integral theory calculations.

Interpolation: Find K and P by quadratic interpolation, P_{1} from $P_{1}=1-e^{-x}$, and P_{n} from $P_{n}=P_{1}[(1-\beta)+\beta K] / K$. Quadratic interpolation $\ln \log \left(1-P_{k}\right), k=1,2, \ldots n$, is also good.

APPROVED FOR PUBLIC RELEASE

TABLE II UNIFORM SOURCE DATA

x	$P_{1}(x)$	$P_{2}(x)^{* *}$	$P_{n}(x)$	$K(x)$	$\mathcal{P}(x)$
0	$.75000 x$	$.7770 x$	$.7828 x$.9468	.2213
.4	.24536	.2555	.2584	.9318	.2761
.8	.41045	.4289	.4352	.9176	.3280
1.2	.52508	.5498	.5596	.9045	.3774
1.6	.60713	.6363	.6493	.8925	.4234
2.0	.66758	.6997	.7155	.8816	.4654
2.4	.71333	.7475	.7654	.8718	.5032
2.8	.74881	.7843	.8038	.8631	.5367
3.2	.77693	.8133	.8338	.8555	.5664
3.6	.79966	.8365	.8577	.8489	.5924
4.0	.81834	.8555	.8769	.8431	.6153
4.4	.83394	.8713	.8927	.8380	.6357
4.8	.84714	.8846	.9057	.8335	.6542

* For small values of x. ** From four-interval integral theory calculations.

Interpolation: Find K and $\mathcal{\beta}$ by quadratic interpolation,
P_{1} by linear interpolation in Table IV, and
P_{n} from $P_{n}=P_{1}\left[(1-ß)+\beta K_{K}\right] / K$. Quadratic
interpolation in $\log \left(1-P_{k}\right), k=1,2, \ldots n$,
is also good:

APPROVED FOR PUBLIC RELEASE

TABLE III SURFACE SOURCE DATA

x	$P_{1}(x)$	$P_{2}(x)^{* *}$	$P_{n}(x)$	$K(x)$	$\mathcal{P}(x)$
0	$.50000 x$	$.7399 x$	$.7828 x$.5841	.2056
.4	.15583	.2405	.2584	.5325	.2504
.8	.25059	.3998	.4352	.4893	.2941
1.2	.31057	.5084	.5596	.4531	.3356
1.6	.35012	.5853	.6493	.4228	.3741
2.0	.37729	.6418	.7155	.3972	.4093
2.4	.39669	.6850	.7654	.3756	.4409
2.8	.41104	.7192	.8038	.3571	.4692
3.2	.42200	.7471	.8338	.3412	.4945
3.6	.43061	.7706	.8577	.3275	.5171
4.0	.43752	.7908	.8769	.3155	.5370
4.4	.44319	.8084	.8927	.3053	.5543
4.8	.44792	.8240	.9057	.2967	.5688

* For small values of $x . * *$ From four-interval integral theory calculations.

Interpolation: Find K and ∞ by quadratic interpolation,
P_{1} by linear interpolation in Table IV,
and P_{n} from $P_{n}=P_{1}[(1-\beta)+\beta K] / K$.
Quadratic interpolation in $\log \left(1-P_{k}\right)$,
$k=1,2, \ldots n$, is also good.

APPROVED FOR PUBLIC RELEASE

x	Central source	Uniform Source	Surface Source
. 00	. 00000	. 00000	. 00000
. 05	. 04877	. 03652	. 02418
. 10	. 09516	. 07116	. 04683
.15	. 13929	. 10403	. 06803
. 20	. 18127	. 13525	. 08790
. 25	. 22120	. 16490	. 10653
. 30	. 25918	. 19308	. 12401
. 35	. 29531	. 21987	. 14042
. 40	. 32968	. 24536	. 15583
. 45	. 36237	. 26962	. 17032
. 50	. 39347	. 29273	. 18394
. 55	. 42305	. 31473	. 19676
. 60	. 45119	. 33573	. 20883
. 65	. 47795	. 35573	. 22020
. 70	. 50341	. 37481	. 23093
. 75	. 52763	.39304 .41045	. 24104
. 85	. 57259	.41045 .42708	. 25059
. 90	. 59343	. 44298	. 26814
. 95	. 61326	.45819	. 27620
1.00	. 63212	. 47275	. 28383
1.05	. 65006	. 48668	. 29106
1.10	. 688331	. 50003	. 29791
1.20	. 69881	. 52508	. 31057
1.25	. 71350	. 53684	. 31642
1.30	. 72747	. 54812	. 32198
1.35	. 74076	. 55898	. 32726
1.40	. 75340	. 56937	. 33229
1.45 1.50	. 776543	. 57937	. 33707
1.50	. 778775	. 588988	. 344593
1.60	. 79810	. 60713	. 35012
1.65	. 80795	. 61569	. 35407
1.70	. 81732	. 62394	. 35785
1.75 1.80	. 826233	. 63189	. 36146
1.80 1.85	. 834470	. 63955	. 36491
1.90	. 85043	. 65407	. 37136
1.95	. 85773	. 66094	. 37439
2.00	. 86466	. 66758	. 37729
2.05	. 87127	. 67400	. 38007
2.10 2.15	. 877754	. 688019	.38274 .38530
2.20	. 88920	. 69197	. 38776
2.25	. 89460	. 69758	. 39012
2.30	. 89974	. 70300	. 39240
2.35	. 90463	. 70825	. 39458
2.40 2.45	. 90928	.71333 .71826	.39669 .39872
2.50	. 91792	. 72303	. 40067

x	Central Source	Uniform Source	Surface Source
2.50	. 91792	. 72303	. 40067
2.55	. 92192	. 72766	. 40256
2.60	. 92573	. 73214	. 40438
2.65	. 92935	. 73650	. 40613
2.70	. 93279	. 74072	. 40783
2.75	. 93607	. 74483	. 40946
2.80	. 93919	. 74881	. 41104
2.85	. 94216	. 75268	. 41257
2.90	-94498	. 75644	. 41405
2.95	. 944766	. 76009	. 41549
3.00	. 95021	. 76365	. 41687
3.05	. 95264	. 76711	. 41822
3.10	. 95495	. 77047	. 41952
3.15	. 95715	. 77374	. 42078
3.20	. 95924	. 77693	. 42200
3.25	. 96123	. 78003	. 42319
3.30	. 96312	. 78305	. 42435
3.35	. 96492	. 78600	. 42546
3.40	. 96663	. 78887	. 42655
3.45	.96825	. 79167	. 42761
3.50	. 96980	. 794.40	. 42864
3.55	. 97128	. 79706	. 42964
3.60	. 97268	. 79966	. 43061
3.65	. 97401	. 80219	. 43155
3.70	. 97528	. 80466	. 43247
3.75	. 97648	. 80708	. 43337
3.80	. 97763	.80944	. 43424
3.85	. 97872	-. 81174	. 43509
3.90	. 97976	. 81399	. 43592
3.95	. 98075	. 81619	. 43673
4.00 4.05	. 98168	. 81834	. 43752
4.05 4.10	. 98258	. 82044	. 43829
4.10 4.15	. 98343	. 82250	. 43904
4.20	. 988500	. 82451	. 43977
4.25	. 98574	.82841	. 44129
4.30	. 98643	. 83029	. 44187
4.35 4.40	. 98709	. 83213	. 44254
4.40 4.45	. 98772	. 83394	.44319
4.45 4.50	. 988889	. 833741	. 44383
4.55	. 98943	. 83914	. 44506
4.60	. 98995	. 84081	. 44566
4.65	. 99044	. 84244	. 44624
4.70	. 99090	. 84403	. 44681
4.75	. 99135	. 84560	. 44737
4.80	. 99177	. 84714	. 44792
4.85	. 99217	. 84865	. 44846
4.90	. 99255	. 85012	. 44898
4.95	. 99292	. 85157	. 44950
5.00	. 99326	. 85300	. 45000

DOCUMENT ROOM

REC. Feor: AY, DATE SNH~SI

REC... No. REC. \qquad

[^0]: * For other reports on the calculation of neutron multiplication see references on Page 10.

