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APPROXIMATION FOR SMALL ¥ =1

He A+ Bethe

$.1 GENERAL PROCEDURE

The solution given in Chepter 2 is only valid for an exact point source
explosion, for constant a’ » for constant undisturbed density of the medium
and for very hiph shock pressures. It is very desirable to find a method
which permits the treatment of somewhat more general shook wave problems and
thereby comes ;losor to describing a real shock wave. The clue to such a
method is found in the very peculiar nature of the point source solution of
Taylor and von Neumann. It 1is charncteristxc for that solution that the den-
gity is extremely low in the inner regions and is high only in the irmediate
neighborhood of the shock front. Similarly, the pressure is almost exactly
constant inside m radiis of sbout 8 of the radius of the shock wave.

It is particularly the first of these facts that is relevant for construct~
ing a more general method. The physicel situation is that the material behind
the shock moves outward with a high velocitye Therefore the material streams
away from the center of the shock wave and oreates a high wvacuum near the
centere The absence of any appreciable amount of material, together with the
moderate size of the accelerations, immediately leands to the concliusisn that
the pressure must be very nearly constant in the region of low density. It
is interesting to”note that the pressure in that rogion is by no means sgero,

L]

but is almost 1/2 of the pressure at the shock front.

The concontratinn ter*al.ag%r the shogk front and the corresponding
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evacuation of the region near.%#to* 1‘.*’ pronounced for valnes of
* A%
the specific hest ratio Y close to 1. It is well known that the density st

the shock inocreases by a factor

Jps Y ¢1 (1)

[

This bequae infinite as 3' approaches unity. Therefore, for 3/ near 1 the
assumption that all material is concentrasted near the shock front becomes

, - _
more and more wvalid. The density near the oenter can be shown to behave as

/(¥ -V,

,‘Tthidon of the method proposed here, is £o make repeated use of the
fast that the materisl is conocentrated near the shook front. As a consequence
of this fact, the velocity, of n.ulj all the material will be the same as
the velocity of the meterial directly behind the front. MNoreover, if Y is
near 1.‘Fgo material velocity behind the front is very nearly equal to the
shock velocity itself; the two quentities differ only by a factor 2/(¥ 1)
The acceleration of almost all the materials is then equal to the accelaration
of the shook wave; knowing the acceleration one can caloulate the pressure
distribution in terms of the material coordinate, i.e., the amount of air
ineide a given radiuse This calculation again is facilitated by the fact
that nearly all the material is at the shock front and therefore has the same
position in space (Bulerian coordinate).

+ The procedure followed is then simply this. We start from the assumption

that all material is ooncentrated at the shock front. We obtain the pressure

distribution. From the relation between pressure and density along an adi-
sbatic, we can obtain the density of each material element if we know its
prﬁnsurd st the present time as well as when it was first hit by the shock.

By intsgration of the density we' &% Sher’ 1M’ & mo

more accurate value for the

a- - .. - b.
. w ® -
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position of each mass elorncnti: f,};ﬁé. péépggi;,guld be repeanted if required;
it would then lead to a power series in powers of Y -1.

The method leads directly to a relation between the shock acceleration,
the shock pressure and the internal pressure near the center of the shook
wavee In order to obtsin a differential enuation for the position of the
shock as a function of time, we have to use two adéitional facts. One is
the Hugoniot relation between shock pressure and shock velocitye The other
is energy conservation in some form: in some applications such as that to
the point source solution itself, we may use the conservation of the total
energy which requires that the shock pressure decreases inversely as the cube
of the shock radius (similarity law/s On the other hand, if there is a cen-
tral isothermal sphere as desoribed in the last chapter, no similarity law
holds, but we 'may consider the adiabatic expansion of the isothermal sphere
anﬁ thus determine the decreass of the central pressufe‘ns a function of the
radius of the isothermnl sphers. If we wish to apply the method to the case
of variable J without isothermal sphere. we may again use the conservation
of total energy but in this case the pressure will not be simply proportisnal
to 1/?3;

As has alrealdv beer indicuted,the applicaticns cf the method are very
numercus, The case of nol verﬁ nigh shock pressures can a'so he included;
in this éagv the density behird the shonk wave does net have the lmiving
value ¢of Byuaticn (1) but depends itself Ln the shock pressure, This does
not prevent tﬁe applicaticn of our method A long as ‘he dengity increasé
at the shock is still very large so that most of the material is still near
the shock frout,

The cn;y lizitaticns of the mathod are its moderate accuracy and the

pessizle complications of the rumerical werk, The accuracy seems satisfac-

[} see o e ese .n.
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exact solution is posgsible, ¢ - - ; no
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2 GENERAL BQUATIONS

We shall denote the initial position of an arbitrary mass element by
r, and the position at time- t by R, The position of the shock.wnve
will be denoted by Y, The density at time t is ﬁenoted by;/?, the init-
ial density by /00, The pressure is p (r ,t) and the pressure behind the
shock is py(Y),

The continuity ecuation takes the simple form

PR 4R = /ao ,é,zgr | (2)
From this we have
OR ' ot 2 - ‘
w-G F (2)

The equation of motion becomes simply

d3R 1 2% R 2P (a)

ate ‘ﬁ w Pt

i

The pressure for any given material element is connected with its den-
sity.by the adiabatic law (conservation of energy). The particular adiabat
to be taken is destermined by the condition of the material element after it

‘ [
has been hit by the shock, If we assure constant & the adiabatic relition

gives

7
br,t) = By(r) (Pl ,t)) (5)
]

‘We shall ﬁse this relatiocn'mostly to determine the density from the given

pregsure distribtution, Using nq?ntion (1) for the density behind the shock

0

-Fs , and the contimuity Equat."on gz.)'. \vt- tind:
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L

BN

The three conservation laws, (2), (4) and (), must be supplemented by
the .Hugoniot equations at the shock front which are known to be,themselves,
consequences of the dame conservation laws, These Mticna_giﬁ: for the
density at the shock frént bheprevsult already quoied in lquatian (1), for

the relation between shock preQSum and shock velocity Y 3 CL
rM=peY S

: Pi_.s ¥) ~Ze  y2 e ¢ (7)
2 - = 1+1 Y= /‘*} - v

and for the relation between the material velocity behind the shock, é, and

-

' T e ‘}
the shock velocity, Y ~amc MaV / 2 ‘_au(”‘f

‘Ri= 2Y/(¥+1) (8)
The problem will now be to solve these sight equations for particular

cases with the assumption that T is close to 1, Then Bquation (4) reduces

" to
12 . _p L (9)
r® ?r ° ys

On the right hand side of this equation we have used the fact discussed in
the last section that practically all the gntarial is very near the shock
frcnt, Therefore the position R can be 'identiﬁed with the position of
the sheck Y, and the acceleratign .Ii vrith the shock acéeleraticn .Y..
Since the right hand side of Equation (9) is independent of r, it integrates

I3

immediately to give oo »

P( r,t) = PS(Y) + f 3 ’(Ta - rs ) (10)
3 12 '

If we use the Hugoniot relation (7) and put & = 1 in that relation we find

[ ] nase o m® B déba '»i.
further Dl S

>

X ] -
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o
B e .t) . Y (11)
2 = g2 + iy 8 ] ~
£ Y sys (Y7 -x%)

This equation gives the pressure distrimtioﬁ at any time in terms of the pos-
ition, velocity and acceleration of the shock,

Of particular interest is the relation between the shock pressure and the
pressure at the center of thé shock wave, This relation is obtained by put-

ting r = O in Bquation (1), Then we get
Pg_o,t)/Joo = ¥ -+ y'f/s' | - (12)

The pressure near the center is in general smaller than the pressure at the
shock because f is in general negative.‘

It can be seen that the derivation given here is aven more general than

P was stated, In particular, it applies also to a nzédium yvhich has initially
\ non-uniform density, It is only necessary to replace é rS by the mass en-

closed in the sphere r (except for the factor 4T /3).

From the pressure distribution (11) we can obtain the density or the
position R using Equation (6). Th; rermainingl\problem is now to calculate
this density distributiori explicitly; and to determine the motion of the

shock wave in particular cases,

5.3 THE POINT SCURCE

%

The simplest application of the general theory developed in the last
v*sec‘t.im is tc a ﬁoint source explosion, In this case, the theory of
von Neumann and G, I, Téylor is available for cOmparisori.
Bquation (12) gives a relation between various quantities referring

to the shock and the pressure at the center of the shock wave, To make any

further progress we have to use the ccnservation of total energy in the

APPROVED FOR PUBLI C RELEASE
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vV -8
‘ Table 63
¥ . 1 }( 11 | 12 14 | o1er) 2
P01 /8 . = | -BO0 | .462 | .424  .368,  .306,  .261
St : ! | . : : !
(B -V BB A . 2,004 | 20182 } 2.148  2.144,  2.05 1.9 |

Witﬁ tﬁi relation of interﬁal and shock pressure known, we cen now cale
oulste tho'tﬁtul potential energy content. We know that the potential energy
per unit volume is p/(¥ -1). We further know from Equaticn (il) that the
prossuro‘il constant nqd equal to p(0) over the entire regien which is near-
ly frees of matter. Noreover,we know that all the matter is concertrated in
a very thin shell near the shock fromt. Therefore,with the exception of a
very lmaii}fracticn of tho volume éccupied by.the shock wuve; the pressure

*

is ecusl t§ the intericr pressures The totel energy is then

ey

u‘g
£ ,
u’:

o : (7
. s gn £ S P - 2 LA
| 3 o1 3 -1

( ofs Bquntion (13) )

In the inst-lina of Table £.3,above, we give the exact numericel factor
in last expression in (;?), accordin;'to cnlculations of Hirschfelder. It
is seen that this factor is very olose to 28/3, for all velues of ¥ up to
led4e This is due to » cbmponaation of varicus erroree The internal pressure
is actually iyms'thgn 1/2 of the shook pressure, but this is compensated by
the fect ﬁhﬁﬁAtho pressure nesr the shock front is higher than the internsl
pressnro-. Inﬁaed, the ratio of the volume average of the pressure to the
shock prcsaur§ is much closer to 1/% than the corresponding ratic for the
internsl p}a;?ure (cf-Equations 31a, 31b/e A further error which hss ﬁean

made in Bquetion (17) is that the factor 2/( ¥ +1) hss been neglected in

APPROVED FCOR PUBLI C RELEASE
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shock wave. Since there is no characteristic length, tims, or pressure in-
volved in the problem, the blast wave from a point source explosion must
obey a similarity law as has been pointed out by Taylor and von Neumann.
In other words, the pressure distribution will always have the seme form;
only the pesk pressuré and the scale of the spatial distridution will change

#s the shock wave movoé oute Now the energy is mainly potential energy (1)

(¢ Y
This sssumption is not necessary for the velidity of the following
eauations.
. N ) /i

At

/
i

ir Y islclose to 1; the potentisl energy per unit volume is p/( ¥ -1)
and therefore the totel potentisl energy will be proportional to Ps Ys/( ¥ -1,
Therefore | pg and Y2 (ef+ Bquation (7)) will be inversely proportionsl

to Y°. This gives immediately the equation

¥ . A L (13)

where A 1s a constent relatsd to the totsl energy. Integrstion gives

i

Y (s/2%° Vo (5 (14)

and differentiation gives
YY - =(3/2) Y2 (16)

Insertirg this in Equation (12/ we find immediately

$(0,t! . 1l 2 1 Ps

Therefore in the limit of ¥ close to 1, the internal pressure is just 1/2
of the shock pressure. This cen be compsred with the numerical result of
von Neumsnn's theory which gives the follewing values for the ratio of in- -

terral pressure t¢ shock vressured

APPROVED FOR PUBLI C RELEASE
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- Equation (7). On the other hand, the kinetic energy has been neglected.

This kinetie energy is vary nesrly equsl to

2w 3 52 o 18)
Brn = S AR TY = (-1 E (

‘because all the material mowes almost with the shock velooity Y. It is
seen that this kinetic energy is small compered with the potential energy
! . by a fector J -1; this justifies our neglect df the kinetic enerpy along
with a large number of other guantities of the relative order ¥<l. It is,
of course, cnly an eccident thet there is almost exact compensa.tion of all
these negleoted terms up to velues of Y us high as 5/3.
~ Te o@n now use oir result to obtain the donliﬁy distridbution of the
matter behind the shook front. We need only apply Bquetiens (8) and (1)

to (16} and find

4

7 ) ¥ +1 P( r.Y)) - Y 4l (x(hx)_) . -
with
x = 3 /yS (19a)
Settirg also
‘ 3.8 '
y = r®N , (19%)
Bquation (6) becomes
/¥
dy , I= 2 | (20
_:i%. ¥ ol x(1+x7) -

%o iintegr.to this equaticn, it is convenient to distinguish two cases:

. (1) 1 x 1is not too small, more precisely for

2 " x> e Vg - (200)

APPROVED FOR PUBLI C RELEASE
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we may consider the expenent in (20) as equal to 1 sines
¥ =1 is assumed smalle Then, nmegleoting quantities of order

2 .
(¥ =1)7, integration of (20) gives

 lax Y .o
1= (-1 log =22 o 1= (¥-1) 1o ---3--;—- (21)
2 x 2p g
Ir

2 < 1 (21a)

we may peglect x compsred to 1 . Then, neglecting quantities

of relative order J =1, we get

dy = (3= x.l/_x dx

(22)
x(?‘-l)/x i + ’ A

Yy -

where A is a oonstent. The regions defined by (20s) and (21a)

overlap very considerably. Comparing (21) amd (22) we find
e :

that

A = O, (224)

neglecting a small term of order ¥ -1. This valus of A will

make (22) sensible for small valués of x. Inserting (1Pe),

(190) , we get |

R = 11/‘:- 1." (A . 7 (e8)
or .

R - (e/r) 3V (230)

From the position of any point we cen deduce the velocity by s simple

' %
differentiation with respect to time« 1In this process, the material coordinate

r should be kept constant. Equation (23) gives for the faterisl velcoity .

APPROVED FO? PUBLI C RELEASE
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(neglecting terms of order ¥ -1)

: ¥ -1
M Y | —— L) R
/

Over most of the volums the material velocity is nearly linesr in R which

. ’ ¢ '

is borne out by the numerical integrations of the exact solution (see Ghd&stor
2.  Over most of the mase the material velooity is nearly equal to the veloc-

ity of. the shoock wave. -

5.4 COMPARISON OF THE POINT SOURCE RESULTS WITH THE EXACT SOLUTION.
R

The results obtained in the last section can be compared with the exsct
solution described in Chapter 2. The results of that chapter can very easily
be applisd to the special case when X is very nearly 1.

In going to this limit one should keep the exponent of e éornet because
this quantity goes from O to 1, and if 1t is clese to 0 a factor @ ¥ -1
will matter. 1Imn all other factors the base o;t‘ the power becomes (8 + 1)/2
in the 1imit ¥ =1, whioh goes over the renge from 1/2 to 1 and therefore
never boco;\u very small. Consequently X =1 may be neglected in tﬁ exponent
of these other factors except if higher aecﬁracy is desired.

Negleot,ing smell quantities in this manner, Bguation (2.27) reduces to

r /Y - 2 . 9'«53.*1‘% 91/3 , (28)

Z and © being the notations used in Chapter 2. > bk

(26) may be rewritten

é - Z3 - (r /Y)a v (25.)

Eouvetion (2.38) becomss then
4 ?1‘

‘ 3-1
Y = F = 8% . (,m%4 (26)

This result for the Eulerian positicn is identicel with that cbteined from
)

S

-
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our approximate theory in mquation (23.)- A more accurate evaluation, keeping
terms of relative order ¥ ~1 throughout, gives
-1

. 20 +1 ‘
.26 .
Foe(5e) (eta)

For the pressure we find from Bquetion (2:41) in ihe limit ¥ 1 the re-
sult | |

FRNPUR KT S Y [1 .(;.)“] (27)

Thig again ii_,ﬁdﬁtionl wi}h wthnﬂlult of our approximate thoory'gi‘nu‘ in
jgui&ion (1Y end m\autict’;j‘?(lslo Agein, a more accurats eveluation, neglect-

. -, 2
ing only terms of relstive order (¥-1", gives:

b e | P 8l 1 Y
with the abbrevistion
§.%x | (284)
Of partieular interest is the relation between the total emergy and |
such quantities as the shoock pressure. We shall eh'o’rqraro calculate this
relation ineluding terms of relétive order ¥ - l¢ Pirst of all, we shall
caloulate the potentisl (heat) energy: | '

LY

Epoto 2 4T R ar Pp/(Z-1)

(29)

3 1
' P
g e g
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Using (26e) and (284}, we have

(29a)

‘6‘ o a6 | - 6+1
. [a G 'é';'{"'] Q-5b%L)

neglectinga) terms of, relative order & %. Inserting (29‘_) and P from

T ,

It is permiseible te set the factor e‘ which should appear in the
. second term in the Jousre bracket, equal to one; the error in (29) is
2 only of order of &

(28) into (29); we get

I s fd (¥ >—r b/l[“ ) -5 de] ) =

[1 + 5(& 9; 1 + 6:1 = %')] (30)

-

i

This integral can be evaluated very easily. We note that eg changes from

0 to 1 at very small values of @ 80 that in first approximstion for this

part of the integral, the intogrand should be taken at @ = 0O¢ (This
corresponds to the physical fact that most of the materiml is neer the shock
front, 1“3 = 9£ beacomes close to 1 already for relatively smell values

of & or of the ma_terial cooriinste Z = 01/3)- Eveluation of (30) ﬂ-ﬂt

1 = 105%%41—%)4£-£ (30.)

or . |
3

e+ F T (8 a0] W

This result, sxcept for the last factor, is identicsl with the result

APPROVED EQR PUBLI C REL EASE
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of our sppProximate theory, Bquation (17). The last factor is seen to differ
only iory slightly from 1, the factor of J being only =0.2. It is of
somw interest to define the m}orago pressure (volume nwrago); this is ac-

cording to (31)¢

o 8 1e, [1*8‘(: - fm z)] gk [1 . ,19,.,;] (310)

'rhs.a my be gompared with the contral pressure (of. (zs))

$(0) o é-,P, {1 * J’( 1_ 4)] z 21,9 {1 - .9868] (31b)

The" avorago promure is, of course, higher than the central pressure; it dif-
fors fron it only in the order & as is to be expected; and it is muoh closer
to ons=hall the shock pressure than the central pressure ise

‘Now lat us calculate the kinetic energy. According to (2.45), the ratio

of kinstic to potential energy in any mass element is O , therefore

‘ e |
Ekin ;-B- -%i;?——_fo d(p)-?—-e

r fsde( a)E)e o

7
-~
2T 3
T

re,

BT A m
The simplificetions in this integrul, 1.0+ negleot of the last square bracket

{n (30) and replacement of d (6 ) vy ng/B, are possible because of the
~£ac£3r € in the integrand. This also maku the integral of order & .

The racult (32) agrees with that of the approximate theory, (18).

BN
AMdding (31) and (32), we £ind for the total energy {%‘?
.7“ (13- R
E - 2% P Y ”1...3‘(3,' ..L.,z)} ' (33)

. r s t {’l‘f' ‘O‘ﬁs"}
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This gives the shock pressure as ‘a fumction of the radius including terms

of relative order ¥ -1 which will be useful for the calculation of the waste

energy. We my also replace Py by the shook valocity Y according to (73
_{pi‘ ? q)!v

E - 21|' x Y [1+£ (l-bn )] (33)

Here again the correction factor in the sqlare bracket differs only slightly
from 1, in agreement with the numerical results reported in Tgble 6.3.

A further quantity of interest is 3R/ dr « dF/da for whioh Bguation
(2.37) gives the result

: A -1
OR = AP £ -}/8(64.)
.2 F 6 ~
- Ea v+ =+ (34
From this expression or direstly from Bquation (2+39) we oan find the density
which turps out to.be 'd
3
3+l Y‘ht 15 Mz
2 ﬂ-?—‘" T
'é; ¥ -1 ,% * 5 -1 e (36)
e can also express this density in terms of the Eulerian boaition In whioh

case we pet from (26)
3/(g1) o
/o=g"1() 1(142°
- . 3 ) (350)
~Z2  ¥-1 | |
This eguation shows that the density becomes extremsly low for all points

away from the shock front even if they are only moderstely close to the

- center of the explosion. This is in agreement with our basic assumption

that most of the material is conoentrated near the shock front.

Finally combining (2.38) and (2.40) we find in the limit ¥ = 1

w2 : (36)
R .
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However, froni the similarity solution we Imow t}‘mt»‘

*

efs S -
Y w a % / LT S ‘ (361)
mr; a is a constant, and therefore |
4 Y
Y (38

This result is again identical with the result of our approximste theory

given in Equation (24). ‘ B |
We see,therefore ,thatAour approximate solution is identical with the

limit of the exact solution of the poin‘t; source for .3 = 1 if terms of the

reletive order ¥ «1 are consistently neglected.

5.5 THE CASE OF THE ISOTHERMAL SPHERE

Ve shall now consider th8 somewhat more complicated problem of the pro-
~ duction of a shock wave by a éj)horb i‘hich is inttially h;utod t; a‘high uni~
form tn;poraturc end then oxe@c pressure on its aurromdima. The relevance,
of this problon of the uotharﬂnl sphere has been dssoussed in (:hnmm-- and
4 and is connected with the grfut influence ‘of energy transport by radiations
The problem now no laﬁgcr permits th‘nﬁplioation of similerity erguments.
For this ruien we can mo longer use the ejomorvation'of total snergy to ad-
vantage. Instesd of this we can now assume sdisbatic expansion of the iso-
‘theml aphere. This is completely oﬁuiuhnt to an cppliontlop’bt the imrgy
conservation law bc»éauu the adiabatia lay itself is beased on the assumption
that there is no energy transprrt out of the isothermal sphers. |
_ Let us assume that the material coordinate of the surface of the 1so-
.thsrmal sphere is r . The initial pt;sitian of thiQ surface is then equal

—

to .r,» At a later time when the isotherial sphers has expanded to R, its

average density has decreased by a factor (r/llo) 3 . If we assume that the
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density and pressure in the isothermsl aMﬁcro uniform, the pressure will |

be egual to Y

a8
B, P, /Ry )

(37
where P 1is the initial pressurs in the isothermal sphere which ia related

to the total energy by the equation

3
: Ag It Ta)
. ey (37%

We shall now proceed in two steps. First of all wo shall conaider the
case when the radius of the shack wave is not extronmely great compared with

the initial radius of the isothermal sphere, more precisely

y@ay -

/e, K& m)

PE i

We shall show that with this sssumpbion the solutfon with sn Lsethermal sphere
approaches the point source solution as h‘ro ;mmuanr 'Mrd:. for large
values of Y/r, where (370 is not valid, the approximations used in the first

part of our calculation will Dreak down; but we ogp then use the results of

~ the last section to obtain R /Y for the surface of the isothermal sphere,

and this will onub.ilo us to solve the problem for the case of large waluss
of Y/roo |
(1) Case I: Y/ro Moderate

If Y/r° 1s not very grest we oan replace the exponent 3 ¥
in 'ﬁu.tion (37) by 3. At the same time we Gan use our general assumption
that practically all material is Mose to the shook front amd that,therefore,
Ry 1is very nearly equal to Y. With this up_proximtion we 'fihﬂ from -l;quat%ion
(12 ' | | |

LIPS | Pry’ 1 3 (s8)

APPROVED FOR PUBLI C RELEASE

»*



wry

APPROVED FOR PUBLI C RELEASE
Vel8

This equation can be integrated witheut diffieulty by setting

e, (38)

and o | S |
Pl"s#;j :A%u %) L (39w

Then | | | ; o
Y % %—%— | {390)

Then Rquation (38) becomes

| -3 | - |
P+ grel AT (40)
This can be integrated and gives

5DY5;; 2A Y%+ B

(41)
where B is a new constante
Kow the initisl condition 1e, for Y « r 1 .
~ Py . 12 2 %‘ )
y D { y (42)
o o , : ,
‘or, with (39) and (39a): , " e
P iro) oo w A ' : (62e)
80 thet
Ba -AT, Lo (42v)
b
and finally | ,
. LA ) 2 r § -
VAN YL
‘ (43)

- ¥-1) B (1_ roa)
i 2
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Equation (43) shows thatrfor large velues of Y/ro. the shock pr;osauro
Ps approaches the wolue riven 1n.3quaticm (17), 1.es the value corresponding
to the point sourco‘solution- _Thia result appears rather important because
it showss(1) that the point source solution is stable and is approached even
under conditions which initially deviate strongly from those assumed in the
point gource solution, and (2) that the simple and well=known point source
solution cen be used at late times for our pr'oblcm including the isothermal
| sphere.
(2) Case I1s ¥/r, Large
We know from the discussion of.Case I that our solution ap-
prosches the point source solution as .o?n as Y/z‘o) l. Ve ocan then use
Bqustion (23) for the position R, of the surfece of the lsothermal spiere,

and obtain, neglenting terms of sesond order in X -1
‘ r 3Y o r 3 ‘
oz P -;Q-;-;gm . P(-%-) - (44)

This is the same @uion which we used in Case I and which we then justi-
fied simply by nezleocting ¥ in the exponent of (25). Therefore the further
development is identical with that leeding to Bquation (43).

| We have thus shown that Equation (43) is walid both for small and for
large expansions of the isothermal sphoro-’ It is possible to derive the doz:-
sity distribution, the pcsitic;n and the velocity, as we did in the previous
gection for a point source cese. However, the analytical expressions are
fairly involved and there does not seem to be any particular application for
theme The retio of the shock pressure to the cemtrel pressure in the iso- |

thermal sphere is according to (43) and (36)¢

puﬂ-’o = 2 - "os/ r

(#4a)

-

& Y

APPROVED FOR PUBLI C RELEASE




APPROVED FOR PUBLI C RELEASE

V-2

N It changes from 1 4in the very early stages to’ 2 in the late stages.
At any reasonably late stage the energy in the blast is related to the weloc-

ity of the shock front in the same way as for the point souras solution.
' s
6.6 VARIABLE GAMMA

The theory developed here can be used to solve the problem of a shock
wave in a medium with varisble ¥ . The assumption is, 6f course, that X -1
btill remains small throughoute We also assume that the shock pressure is
high enough so that the Hugoniot relations hold in their limiting form.

We shall mgke the further simplifying assuéiption that ¥ is a function
of the entropy only, so that it remains constant for any given mass element
r as soon as that element has been traversed by the shocke This assumption
is fairly well fulfilled by air, with the value of X decreasing from 1.4
to about loé with inoreasing entropy, and lat;r oﬁ increasing again to 1.67.
The more general problem in whick XY 1is a function bothvor the entropy and
the dans,,!gy can also be solved by the same msthod, but the algebra becomes
so invol ;ed that it seems hardly worth-while to use the present method in-
stead of' direct numeriocal 1ntegra§ion-

‘r'h; ’preuuro distribution Bguation (11) will still be valid. However,
the relation between Y, ‘:', and Y wi-ll no longer be given by Bquation
(15)- W§ introduce the pressure at the front and the pressure at the center .

of the shock wave separately by writing

I N ¥ - 3 5
v O e
E (45)

0 ::-%:r '—Yx‘-/B ‘ .

where C and ﬁ are slowly variable with the shock radius Y. In the case

of constant ¥ we have (cf. 17)
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o = ¥l

(46)

RO

. -
It is our aim to calculate X and & for a given variation of & with
~ the materisl coordinate r.

Using Bquation (11) we have

P (o) 2 . d 47)
"ﬁ--—YNYY- ?’*%Ya‘g‘ (

vhoro SD is an abbreviation for YZ. Inserting the expression (45) and re-

npmberir‘g (7) we get the following relation between X and B .

- 1 deh (48)
e i o s o |
It will be shown in the following that = changes very slowly with log Y;
in fact do(/d log Y is of the order ¥ -1 relative to o itself. Therefore,

“in our theory in which ¥ =1 is considered as smll)we have

g « « (49)

e

' Therefore,even with varisble ¥ the ratio of the shock pressure to the in-

| Iternal pressure is equsal to 2.

| In order to find ¢ for a given function ¥ () we use the fact that

: both the g;omtrienl and the material ccordinate must be equsl to Y at the

| shock front. We shall calculate the geomstrical coordinate R as a function -
of r with the help of the density distribution- The required condition

is then
Y

/o
3(r - - . 8, ~o. - Ys ,
R (r - Y) = c/ da(rY) > ‘ (50)

As in Bquation (6), the density of the material element r at the time

when the shock wave is at Y, 1is given by
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Yel P 41 (. (¥ ‘33%’.“'
2o (350 3 (g o)

bl : 5\ ¥ (51)
VT Tty (‘*‘Er) ¥)

R

In this equation we have made use of the pressure distribution (11) and also

-

of (45) and (49). Purthermore,we have put ¥ in the axponentroqual to 1
in all those terms where this makes an error of the order ¥ -l. Inserting

(61) we find R as a function of r as follows

2x / 2 (. )s/xu(r)'l]q()(w-—-)

(62)

No ‘appreciable error 1s made by neglecting the last fector in this expression
because it is different from 1 onzy over a region in R of the order ¥ -1.
In fact, only by neglecting this last factor do we get the correoct result for
constant J » owing to other negleoted terms in our thoary; In any caseythis
last factor is no éifforont for constant and variable & end can, therefors,
not be relevant for the theory of wvariable Y . *

With this simplification we obtuin

s | | s/x(r),'
C e S “"7“‘:(:;«() " e @

and in pafticular for r « Y w-fl‘inﬁz. after dividing by Y

' 1
S gy PO fedao

“™ . This ie the desired equation determining o (Y)+ It is seen to be a linear

integrel eguat ion.
£ S
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Let us first oonsider the case of constant ¥ . 1In this cace,Bguation

(64) reduces to Y
3 -1) ~
r
~ (¥) :’/0((1') () | (56)

which is solved by o « constant, with the vslue of the constant arbitrery.
From previous considerations, particuvlarly Equation (1'7), we know that in
this case X = ¥ -1.

Let us now assume that J 1a constent and equal to 31 s for all velues

ef r upto ry; thenc(zo(l ";)/1 =1 1in that regicn. Further, for

Y > ry the inteprrl Bguation (54) reduces to

3(J, -
L xm z s (T
Y s : y (56)
-5+ 3/4(r) ,
¥ ’1/ ) T S (e e

In order to sclve this equation we proceed in two steps, similar to the cal-

' culetions in Section 6465 In the first step we shall consider Y/rl as

moderate so that the Y =1 power of the quantity ¢an be considered equal to
le In this ce® we shall be sble to obtain & general and rather simple dif-
ferentisl ecuation for o which oan be solved by nuadratures. As a second

step we shall then admit large velues, of Y/rl; in this case we shsll obtain

s solution only in the speciel case of having a ste'p-wiso veriaticn of X .
(1) Case I: Y/r, Moderate
In this cese we may replece the exponent S/a' in Bauation
(66) by 3. Also we shall expand the first term on the right hand side of
that equaticn in a ‘faylor series. Then Bquation (56) reduces to
L

kY

.gr " .
X (Y) =299 -'1’>()'1--1)cx'1 log (Y/ry) , (67

‘ Y
+ 3 I d log r (¥(r)-1)(r)
N
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To sclve this integral equation we need only differentiamte with respect to

Y or better with respect to

X =z 3log (Y/ry)

(88)
Then we obtain
%_;‘_ - -Q(I(bll-l)‘l'd(x)('ﬁ(X)'l) (59)

This equation can be integrated with the ruult

f‘(x 1 fm: )-1) ax*|
~(x) z e ') e’ ) -(8‘1) f a'e

(60)
The result (60) as well as the differential gquation (£3) show that of
doez not have & discontinuity mt a point st which J has one, but only
do{ /X hns s discontinuity. This may be set even more in evidence by |
solving (59) for small v;aluos of J&‘;‘ i.es for points just beyond the place

et which ¥ Dbe;ins to change. In thie case we find .

X ,
~ X)) z = [1 +of ax (¥(x) .2!1)] (61)

A special case whickh is of some interest because it is the simplo:é
possitle model ¢f a substance with changing i s is cbtained by assuming
thet ¥ has the velue ¥ for all values of r 5 ry. In this case (59)

cen be sclved exrlicitly with the result

. Yyt (¥p-1)X '
= -;2}—_-1—-[( '1\6 2 ‘1"1} (62)

Fer smell values of X this reduces to

‘ oo
o » .(x1-1) [u (¥,-¥) x ] (63)

Another result which follows from Bquation (59) is thet daﬁ/dx 1a of the
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order =X ( Y—l). This result hes been used above in obtaining the relation
B A
(2) Case II: Y/x':l Large
We thall consider thie problem only in the particularly simple
cese when Z has the constant value Xz for all velues of r ) rye In
this case EQuaticn (56) reduces to
3(¢y-1)
X A(Y) = X (ry/Y)
) 3%, -1) (64)
eIt x)
Similarly,as in Cnase I,we solve this equstion by dif‘forcntiating with respect

to X, Then we obtain

| | 5(11.1)
dH - - (r-l\ X .
5 = 1( ) +‘ i,?g_ (xR

e

s(x 1) B
- (a‘ -1) . d(r) X (r) - (65?

The irtegral in this equaticn can be expressed by means of Iqmtion (64).

Neglecting terms of hlgher order in ¥ -1 we get then
3(¥,-1)

%‘:g;c'(” : 1) (.__) | (66)

This eouaticn is actually even simpler than the differentie) Bquation (69)
which we obtained in the approximate theory of Case I. TUsing the boundary
conditicn <t = 1 =1 for Y = r, Byuation (66)' integrates immediately
to

'S(Xl-l)

c( : ¥pul - (B-Y) (/1) (e7)

For small velues of X this reduces to

68)
X = (Xl-l) (1+3 (82-7!1)&; Y/rl) (
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which is identical with the result (63).

Equatien (67) shows that the value of X goes gradually from the orig-
inal value 3&-1 to the value 3%-1 wﬁich corresponds to the new value cof
Y . 1t is seen that this asymptotic valug is reached only fcr extremely

large values ot_ Y/rlo As long as I/rl is moderate, the shock pressure
is still influenced largely by the previcus value of & instead of by the
present one. For air in particular we mey tal;e 51 = 1le2 and D’g. 1.4 The
shock pressure in a substance with Y constent = 1.4 should be twice ns
grest as thet for ¥ constsnt and equal to 1.2, for the seme redius Y of
the shock wave and the same energy E. Actually, when the shock pressure
falls low enough so that Y incresses to 1.4 thelcoofficient o does not
immedistely increase by a factor 2, but increases very slowly. Physically
the reason for this is that the interior part of the shock volume gtill has
the low value of ¥ and therefore has e high internal energy for a given
pressures Only when the hot geses which possess the low Y s 8 sﬁall
part of the volume included in the shock wave will the Ef in the outer re-

gicne of the shook determine the shock pressure.

5.7 THE WASTE ENERGY

Ge I. Taylor has introduced the concept of the waste energy, i.e. the
energy which remains in the hot gases traversed by the shock wave after an
-adiabatic expansicn to a pressure of 1 atmosphere. The knowledge of this
waste energy is useful because it permits one to calculete the energy which
remeirs available to the shock wave at small overpressures.

The waste energy cen be calculated very simply for the point source
solution. 1ot us consider a material element which is traversed by th0 
shock at a szhock pressure bs- When this element has been expanded edis-

batically to etmospheric pressure p,, its density will be
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1 (¢ A
P8 (52)
(69}
/)\
Its temperature will be Po/ﬂ“.nd its energy content per unit mass:
. ' ¥ -l 1

- XPO = .__L.—_. P X ;4 s ‘ 7
- = )

¢ AT ﬂomn(") ) el

In calculating the energy content, we have used the specific hert ot constent

\

prés‘suxf_gl_ the reason for this is that our final stete is obteined from normsl
air by heating it at constant proasuro‘ o to the temperature ‘Po/jo » Striotly
speaking, in c~der to get the waste energy, we should subtrsct from (70) the

#

» expression Z‘Po/_‘ﬂo (¥ =1), but we shsll confige our discussion to the case
when P 3 L

" The totsl energy wasted in the shock wave is then

w

: £
Wz amp jy dv (71)

We can now use the reletion between shock pressure and redius, (3.’5). Yo mre
using this fairly éxact reletion because it will turn out that we have to know
the waste energy including terms of reletive order Y «1. We solve (33) for

Y; inserting the result and (70) into (71) we obtain

, ,\x-l fw Vy |
Wozo Eipg) 2 ke, . ‘,_..2.._:?' (7
s
] with.
. , C = 2 (¥-1) [1- (¥-1) ( ‘S’ -Jlu 2)] Z(/(b/ﬂ) | (T2e)

~ @ [1- @D (1 -dn2)]
negl?cting terms of relative crder (3-1)2- | Equaticn (72) gives the energy
wnsted Qp to the time when the shock pressure hes fallen to the wvalue Kp,e
Equetion (72) can be integrated immedistely and gives

¥
Kpo (73)

= {1+(X-1}£‘n 2] E K -z_g_}.;}__
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Subtracting this expression from the total energy E we obtain the energy

which is still aveilable:

. Eypp, = E [1 - (x/2)” !g}"] (W
It is clear that for small velues of ¥ -1 and moderate K, this exj:xression
is proporticnal to ¥ =1. T:is shows the necessity of knowing the relation
between p, end E up to terms of the order Y -1; i.es of using (33) rpther
than (17).

It is souy(hat ‘problomtic what to use for K. Clearly the reletion (33)
will break down ;uft too low values of p.j namely, when the limit‘ing form of the

*

Bugoniot relations ceases to be valide This requires

kY -%{% | (75)
Setting -

K= 2n/(y-1) ’ ‘ | (76)
then n)) 1 '

and using the fact that_ ¥ =1 is smally Equafion (74) reduces to

]

n
Eeff. = E (¥-1) log goy | | (77)

Of course the svailable ensrgy will be further reduced as the shock pressure
is reduced closer to stmospheric pressure. In fact, Penney has shown that
the dissipation of energy continues indefinitely as the shock wave expande'

(see Chapter 8, JSiiction 8.7). It 1is therefore not possible to give any accurete
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‘ definition of the percentage of enarg.;y wasted but it would be necesssry to
opocir;' the shook pressure for which this statement is made. In order to
obtain the perceiitage wasted for shook pressures of the order of one atmos~
phers, it would be necessary to follow the shook wave through the region of
intermediate pressures which can adequately be done only by numerical methods
(ses Chapter 7).

However, it is cleﬁr from our Equation (77)' that the energy available
for the zhock wave is smaller the smaller ¥ =1. The fact that the eir has
e small value of Y at high temperatures lesds to inéraased dissipation nf

" energy at the shock and,therefore,to . i':latively smaller blast wave at large

distances. This iz the main reason why the blast wave from a nuclear ¢ xplosicn
is less strong at a given distance then from a TNT explosion libersting the
sane total energy. 1In the latter cuée the temperatures resched are only mod-
erste, and the energy wasted is,therefore, less than for the nuclear explosion.

The greater wastege of ;urgy for smaller ¥ uwa.h; related to the re-
sult ohﬁimd in Section £.8; nm;nly, that the shock pressure after a sudden
change of ¥ does mot oorrespond to the mew value of ¥ but is rather close
to the value for the original walue of Y . This elow variation of the shock
pressure is in turn lmportant 1f one wants to calculate the waste emsrgy for
a gas with variable ¥ « 1m .fact, if it were not for this gradusl chenge,
geses might occur in which the waste energy would be gresater thaﬁ the total
energy availeble which would be obvious nonsense. The change of o( derived
in Section 5.6 is just agrfic;ontly"’{g&éaugz to keep the waste energy alweys

below the total aveilable energy.
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\CHAPTER 6

EFFECT OF VARIABLF DENSITY ON THE PROPAGATION OF THE BLAST WAVE

i
i
g
i

Ke Fuchs

6+1 INTRODUCTION

We have seen in preceeding chapters that there is a considerable range

in which fairly reliable predictions about the propagation of thc;blist wave

may be mmde. The range extends from somewhat telow one million degree shock :

tempersture to about 6,000 degrees. Abhove 1,000,000 degrees the isotherrml

sphere extends up to the shook front. If r, is the radius of the shock

front at the time when the isothermal sphere separates from the shosk, then | i

the shock prgaauré st a given.radiua Y> ro 1is proportional to (see Xua~ ; =
Y ! i

tion E.43)

¥ )

[ W
et

. {1 - ’°3/2Y5) : .(1);

—

and therefore the effect of the isothermsl sphere is negligible even. for }

moderate values of Y/ro'&

Below 5,000 degrees the formstion of an opaque layer at a slight die-

tence behird the shock front may lead to absorption of radiation which might

otherwise escape, and therefore rediaticn trensport of energy has a censider~-
gble effect on the propagation of the shocke Furthermcre,below 5,000 degrees
the luminosity comea_fr;m some distance behind the shock front snd this makes
photogre«thic observetion of the shock front difficult.

Betwser about 200,000 degrees and 20,000 degrees shook temperesture tpo
icrnigation of the L-electrons proceeds snd within this range the variation

of 4 1is not very pronounced. This,therefore,appsars to be the most useful

VI -1
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ranges

The corresponding shock pressures are

T 1,000,000° 200,000° 20,000° 5,000°

Ta Pe 360,000 50,000 1,600 200 atmospheres

"?pserving that the shook radius is roughlj proporticnal to the inverse cube
?root of the shock pressure, this gives & fairly comfortable range of useful
observation.
However,there are gome factors which limit the rarge. C(ne fackor is
fho height at which the explosion tekes pleace. When the shock reaches the

| ground a reflected shook goes bsck and only those pafts ¢f the shock sphere
which have not been reached by the reflected shock, cen be compared directly
‘with the theorye This was particulerly serious at Trinity, but would also

‘present some limitaticn in future tests, since 1t is impracticable to raise
¥hh gadget to & great height without interfering with other experimants}

At Trinity the gadget was set off at a height of 30 meters.

The other limitstion arises from the fect that initially the propags-

' tion of the shook is affected by the material of which the gadget is composed.
Although the dimensions of the gadget ere rather smsll, the effect persists
over a considerable distance, sirnce it is the mess in the gedget 6ompared to
the mess of air engulfed by the shock which matters.

In particuler,with a visw toward an eveluation of the energ)y relesse
in the Trinity test, we shall attempt in this Chapter to get cver the second
limitatione We consider a blest wave originated by a point source, travel-

" ling through material of verlsable density. We shall make some simplifying
assumptions:

(1) The density is supposed to deperd con the redius cnly, and the

varistion of density is sssumed to be continuous. Te disregﬁrd,
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therefore,any ssymmetry in the constructicn of the gadget

and the exsect dotails of the transmission of the shock from
the gedget into eir are neglected. Neither of these two
factors cen have appreciable effect at » sufficiently large
distance.

We sssume that ¥ = 1 418 small compared to 1 and use the
essential idees on which the approximation of small ¥ -1,
discussed in Chapter &, ie based. Insofar as this epproxi-
metion cen be compared with exact csalculations of a point
scurce it was found to be very good, even if " is S/Sn
However, 1t does not necessarily follow from this fact that
the approximaticn is equally good in more general cases. At
present we have rno means of estimating the error.

We assume that ¥ 1is constant. Thig ie not a bad assumpticn,
since ws are mainly interested in the region from sbout

200,000 degrees to 20,000 degrees, where ¥ does not vary

toec muche

METHOD OF ESTIMATING ENERGY REIEASE BY OBSERVATICN OF THE

i ¥ -1

SHOCK RADIUS

BeTore proceeding to the snalysis of the problem with variable density,
let us consider the applicetion of the methed of estimating the energy re-
lease in the simpiest case when the similarity solution for constant density
The derivation given below is due to Bethe.
is small, the kinetic energy may be negleocted and the totel

energy is piven bty

- 2
E f 7 dv (2)
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a8 pointed cut in Chapter &, the preésure is constant and equal to 1/% the
shock pressurs p, over the greater part of the volume. Hence (1) cen be

repleaced by

E.%;!:T%'Iys | (3)

where Y 1is the shock rsdius. Using the Hugoniot conditicn for strong

gshocks
Pt ¥a Lo T (
we obtain for ¥ = 1
‘ 2.3
2 P U Y .
E [ T 07-—:1—-—- » U = Y (5)

Fere U is the shook velocity and A the normal demsity of air.

Since E 1s constent, we can integrate (5) and find

2
t - -5- L (6)

) e e
If the firite wvalue of ¥ =1 1is taken:-into account, the fector 2%/3

should be replaced by a constant B (¥ ) which differs but little from

" em/3. B(4) is the quantity tabulated in the last line of Table 5.3,

Chepter €.

.
1f, therefore, we plot the observed values cf Y°/? against the time

t, they should lie on a straight line and from the slope of the line we can

immediately derive the totel energy.

6¢3 INTEGRATION OF THE EQUATiORS CF ¥OTION.

We chall now turn to the case of variable density. If ¥ -1 is small

- the kinetic energy is small compered to the internal energy. The internal

- energy per unit volume is
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p/ (¥-1) (7

Now p is practically constent over the larger part of the volums of the
shocked sphere; it vari;s appreciebly only in the region where most of tho.
mass is sccumulated, i.e. near the shock front. If we integrate (7) over
the §olume. we caen disregard the small shell of variable pressure near the
shock front and identify 'p ';1th the pressure p{o,t) at the center of

the sphere. Then the total energy E is given by

L

Using Euler varisbles R, and Lagrange veriables r, the equation‘bf motion

is

P 7o R® ¥qpHr = 0 (9)
LS

where A is the original density of the mass element which was at the redius

r, befcre the shock reached it. Integrsticn of (%) yields

Y
p(r,t) = Py ¢ j (-g.z)t ,f’(x')x'2 dr (10)
. z.

where .Ii/R2 is to be considered as funotion of r for fixed time t. Py
is the shock pressure and Y +the shoock radius. ©Now, nesrly all mess is
near the shock fronte Hence .R:/Rz is practioally identicel with ?/Yz. '
This will no ggngar"bo true if r becomes very small, but then the contri-

bution to theiintagrnl (15) will be emall. FHence we may write approximstely

.y Y
p(r,t) = Py + %2 L( LPr) rZ  dr (11)
r
In perticular at the centre
p(o,t) = Pg + %; M (12)
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where

Y .
uy . \!f(r) rXar (13)

iz the total mass per urit solid angle within the shock radius.

The ehock pressure is given by the Rugoniot condition

Py = _.2.5 PO | (14)

and U ie the ehook valooity

U =« Y | | (18)

Since we sssumed ¥ nesr 1, we may omit the factor 2/(¥+1) in (14).

Considering U as funoction of ¥, we have

dau

Y « v % )
Y = (16
Substituting (14) and (16) into (12) one finds
U du 1 a4 2 :
t) . (LIPS GRS Y R a4 ~v¥) 17)
ple, S Y2 ay @ a7
Combining this equation with (8), we find
B
4w . B -1 X g (18)
dyY 2n Y
and therefore
. Y |
2 3 E . u(Y '
LA (¥-V 32 S ¥ (19)

The lower limit in the integral is derived as follows:
If Y is small, A may be coneidered constant ar equal to its value at

the center. Then (19) reduces to

¥ . 7;-'_ (¥ =1) }r% (2¢)
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which is the Eguation (5) derived for a point source and constant. donsity,
s it should be. If a conatent of integration were ‘added to the integra-
tion in (18) we iould not obtain the correct behsvior for small shook redii.
In addition,the kinetic enerpy W 102 would become infinite for Y - 0

contrary to the assumptions made.

6.4 EFFECT OF VARIABLE DENSITY WFAR THE CENTER ON THE AIR SHOCK

K4

We assume next that the daniity has an arbitrary distributicn (Y
up to a certain radius Y' and constant dénsity Po beyond. We wish to
know the propegation of the shock, sfter it has resched the region of con-
stant density. |

If Y>¥Y', wa have | .

-k " 3 3 .
¥ LY gy . .;. Po (7 + Y) (21) v
! |
where Y, 1is the radius of a sphere oocupied by the excess msterial at the
center, if it were spresd out at the density J°o s feee
. -

1opov) . ‘f {f'(r) -.ﬁ,} Y2 av (22)
3 by
Sinilarly ' p
e ) 3 . d §
f%‘" ar . 2 P ¥ fi;’- I {f(r) - f%rz aY (23)
) ) o 0

Partisl integzration yields

f}"_g,} ay % So Yo % Po Yos(«eﬁ Y - IH;} (2¢)

0

wherae Y is the logarithmic average rsdius of the excess material

oy - Y
An T - ){Jan:r(,f’(r)' .-'fo)an/J(f(Yf - P ¥ ay (28

Substitntion of (21) and (24) into (19) ylelds
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i ; 1) s Py
U . %;E—%)——lﬁs £ (Y)*© ‘ (26)

3V

where

i) 1« 3 0 /Y e (YY) (27)
v il {1 v (Yof ¥)°

If £ = 1, tre formulae (26) reduces to the equétion (5) for constant

density. f, therefcre,is the correcticn fector by which the shock velocity

is changede.

‘ It is of interest theat the factor f depends strongly on the radius
Yo+ The latter depends only on the totel mass of excess material at the
center, but not on its distributicne This is rather fortunate, because the
distrigutivn of matter in the gadget is changed during the implesion and
it weuld not be simple to celculate the correct distributiene The radius
Y on the other hand depends on the distribution of matter. Howéver, since
it is only a logarithmic aversge, it is nct very sencitive to small errors
in the assumed distribution of matter.

For the Trinity test the gadget was loomted on a tower and we are most
interested in the expernsion of the shock before it hit the ground. The ef-
fect of the tower on the‘averagc shock radius may be bracketed between two
limitss On the one hand we may neglect it. On thé other hand, ws may as-
sume thnt the matier In the tower is spread -with spherical symmetry around
the gadgete This leads te the following problem:

The densiity distribution is arblifrary up tc a radius Y' as before.

Serond thet radius the density is gliven by

P . A {1 s Y, 2/1'2} for Y > ¥ (28)

The formilae can be evalusted for this case in a menwr similar to that em~

gloved shove; one Finds Tor the enrrection factor ¢

APPROVED FOR PUBLI C RELEASE

-~




APPROVED FOR PUBLI C RELEASE
VIe3

143 Yo {1:\ 7 WU S R SRR (1+0n L)]
3 2 T,

Yo Y, Y ?
L] 2 v
13  ye '
1+ 0 11+ 2 (Y -J ) (29}
¥3 Y2 Y, Yo

In order to be able to neglect the effect of the Lowser, we require that in
the regisn in which nessurements are used, the formulm (29) should be for
practical purposes iden%ical with the formula (27).

If Y 1is sufficien™r large compared to Y , the excess mass near the
oen€qr becomes negligible compered ta the total mnss within the shock rudius
and the sslution must approsch asymptotically the similarity solution. This
is indeed the case since f tends to 1 for large Y.

For the similérity solutlon we have the exact formula valid for any

value of ¥ . It can be written in the form

Uz E ¢ Y- )
= E—??;jj;i:ﬁgg (30

where B (X) differs only little from the value Zﬂyﬁ- B as function of
Y is tabulated in Chapter 5. It is identical with the quantity given !n
the last line of Table Ee3.

it seems ressonable to fix -p the fornula (26! in"8uch a way that it

4gives the correct asymztotic behavior; ie.s» ws put

2 _E (-1 2 :
J " T A £ . (31

In particular, if the formula is used in the region where f apoproaches 1,
the effect of a finite (¥ =1) on f will be a small order effect and then
it is perfectly justified to include the linite (¥ -1) in the msin term but

to neglect it in .
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665 APPLICATION 70 THE TRINITY TEST

The ocorrectinn factors f have been evaluated for the conditions in
the Trinity tests TFour functinng f have been caloulated as follows:

In the first instance only the matarial in the gadget.itsolf was in-
cl:ded» For the second turve the X- unit wés ineludede This unit does
not have spherical symmetry. However,the difference between the two cuarves
was found to be suall.

Next,the platforﬁ on wnich the gradget was located was taken into seccount,
and finally the towers Again thess two curves did not differ appreciably

#
from each other.

Yowever thers was quite an appreciable difference between the curves
which 414 or did not include the platforme Since the platform has no spher-
ical symmetry, the diff'erence between the two ourves represents an unavoid-
able experimental errore Clearly for future tests it wonld be desirmble to
eliminate this source error.

Values of the shnck velocity on an arbitrary scele calculated with the
help cf these four correction factors are shown in Figure 1. For compsrison

a curve whish neglects the variesble density is also shown. The numerical

data for thesa curves are:

)

Gadpet only: Yy = 858 m, ?' = 0«36 m

Gadget and X-unit: Y, = 875 m, Y = 037 m
Gadgzet, X-unit and platform: Yo = 11.9m ¥ = 1.0 m
Tower: Y' = 2 m, Yy = 543 me

It will be notlced that the corraction factor £ 1is below 1 for small

shock vradil and aﬁova 1 for large radii. The explanation is as follows:

When the shock passes from the gadget into air, the shock velocity inoreases

rapidlys  The radgzet mmterial, which was shocked by a slow shock, must now

i
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Figure 1

Shack Velocity as Punction of Radius
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be spoeded up and this regquires thet the presaﬁro qradient behind the shock
be reversade. Thus the average p}essure, instesd of being one half the shock
pressura, (seo equatioms 5=168) , will now be higher than the shock pressure.
Eventuslly,as the air shock slows down,the gadget material must aggin be
decelersted. 3ince there is now more material, the pressure gradient re-
quired to do so must be larger and the average pressure drops below one half

the shock pressurs. Hence the equation (8) may be written in the fora

3 YS
4n Y n 2 .
E — s - f 32)
E 3 r -1 P average 3 7—.7 p./ ' : (

whare f <1 at small distance and f > 1 at large distance. With the help
of (14), it is found immediatley that f£ as defined here is ideatiosl with
thé correction factor f»

In the early ntagoé the heavy materlal at the centar has,therefors the
tendency of holding the shock back, until it 1s accelerated sufficlently to -
follow the shocke In this stage the assumptioﬁé on which the theory is basca

are not very well satisfied. Combining (31) and (27) one finds for Y << Y,

-~

3R (Y-
2 3R (¥ -1 y

Y ,
= 5 — Y 33)
U B(¥) A, ¥, n(? )3 for YLL Y (

end the shock velocity varies little with tho&;hook radius. However, the
essential reamson for the sccumulation of matter near the shock front lies

in the rapid decreass of shock velocity with radius, which is accompanied

by a corresponding decreﬁse in entropye Hence,there is normally a region

of high entropy and low density in the inside of the sphere. This is no
longer correct if the shock velocity remains constnt over an epprecisble
distance. For this reason tho'Fheory iz not reliable until the second phase
is reached, and the shock slows down eagaine In this phase thes heavy material
continues to press outward and,therefore,raises the shock velocity above the

value exrected from the similarity theorye The magnitude ~f this eftect

-
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can be judged from Figure 1 by the fact that the shodk velocity ourve at
one point touches the similarity curve for 2.8 times increased energy
release. It is,therefore,easily possible that the energy release be over-
estimated by a factor of this order, if the effect of the gadget on the
propagation of the shock is n;glected- | ‘

From the shock velocity we obtain the shock radius as function of time

By means of one integration. Using the factor (27) we find

1 B(¥) A y,5 1/2 Y ¥ |
t - JE dY - =5 (X‘_’DQ} F(-.;:o, -;;) (34

)
_ 3
F (2, 28, = S(;\,rl‘ *32.: ‘/zo)l/z ds (35!

If 2z 1is large compared to 1, we obtain asymptotically the formula for

the similerity solution

/,

1/2

F = -2- 3 if 2> 1 (38)

L5/ T oL 2lB0 P v’
£y 1)

’ 5
The function F has been eyslugted by numerical integration for two
vnlues of 1o, obtained if either the effect of the gadget only is included
or if the platform is also taken into accounte They are shown in Figure 2

where YS/2 is plotted agrinst ¢ for an energy release of 21,0500 tons

of TT." 1/( ¥ -1) was assumed to be 4.5. The value of 21,000 tons was

chosen in order that the experimental points for shock radii between 20 -

end 30 meters should lie between the two theoretical curves. In this re-
- .

zlon the experimentsl points lie on the dotted straizht line shown in

Pigurs 2.

The experimental data were obtained by Meck's group from photographs

of the ball of fire by means of Fastsx cameras (sce Chapter 18J.

The shock pressure is obtained from (14) a= soon as the shock velocity
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Figure 2
Y5/2 a8 Punctions of t.
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e is knowne It varies between 15,000 = 25,000 stmospheres at Y = 20 nmeters
to 4,000. = §,000 atmospheres at 30 meters and is,therefore,wsll within the

range postulated in the introduction.
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CHAPTER 7

THE IBM sowu.@ F THE BLAST WAVE PROBIEM
K. Fuchs -

7,1 INTRODUCTION
The diawaaio.n in the pmcodiné' chapters showmsthat the problem of
the propagation of the blast wave from a nuclear explosion is quite complicated,
Bven if we disregard any transport of radiation, appreciable cemplications arise in
view of the large variations in temperature and entropy, We may roughly divide
the range of shock temperatures into two regions, Firstly,the region fromsbdnt

one million degrees to sbout three thousand degrees absolute, Here dissociataion,

of molecules and ionization of the atoms takes place, Consequently K-» | is .,
fairly small but;varies with temperature, Below 3000° Y is less variable an:d
approaches eventually the value 1,4 in normal conditions. ’ t

The temperature varies of course also along an adiabatic, quever. the
total variation betueen%tihe shock pressure and one atmosﬁherb is not excessive - |
aboyt a factor 2 at shock temperature of 30_00° and slightly more than a factor
10 for a aﬁock temperature of 1,000,000°, The effect of decreasing temperature
along the adiabatic on‘the glegree of ionization or dissociation is partly
balanced by the decrease in density, For this reason the variation of -4 along
an adiabatic 1s not as pronounced as one might expect from the change in
temperatyre, For this reason qualitative statements made about the conditions at
the shock front hold to a large degree also for the subsequent expansion behind
the shock,

A temperature of 3,000° K is reached in the shock when the shock pressure
is abou; 80 atmospheres, (For an energy release of 10,000 tons of INT the

shock mdius is then 80 meters). We are however more interested in the pressure

region from sbout one atmosphere down (corresponding to shock radii of 500

meters and more). It was felt that the sxact energy distribution at this early

Vii -1
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ﬂmld not have an appreciable effect on the pressure distribution in

x m&r stages as long as the energy distribution is at lsast roughly correct,
Pob/ this reason it was decided to start an IBM calculation at this point and o
V Wto the initisl conditions for this instant by means of the approeimations
Wd in the preceding chapters, The approximtions made includes

flae d'otalls see section 2)
S (1) An approximte treatment of the isothermal sphere, In

aawal faet the isothermal sphere at this late stage has no significant influence

m' w prbpagution of the shock, However, in the first instance we were
med in the isathemal sphere as suchs in the secand instance the

(2) Y was assﬁned to be constant and an mverage value of 1.25 mas
This is probably the lsast satisfactory of tm asstmprbims made; but
‘ M’ the fact that we did not requirs a very acemt«o asthute of the initial

i “:%amm.aa or a great amount of cam;tatian. this uwmption seemed justified
(3) ¥~! was assumed small, Tnta aaamptim is not essential, but

. “:H"”‘fﬂil"rar introduced thereby is small and it has ‘the advamgo that the
ithiermal sphere can be included as an integral part of the calculation,
| Fw the IBM run it 1s of great advantage if tha variat.ion of the pressure
_ad.iabat*c is a simpls runct!.on of the density, Wthe variation from

gidb'atic tc another may be given in numerical form. The reason is tmat in
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It would be difficult to find & simnl_qprsaentation of the equation
of state covering the whole region of adi_nb@tics between the shock p:l'assuré
curve and norral pressure, However, with the limitation to ahoek pressure -
below 80 atmospheres the demand of a simple representation becmes reuiﬁlo;_
In particular this is true for the adiabatics which start at shock pressures
below 80 atmospheres, since then no fonization or dissociation occuri. Ye
require of course also the adlabatics of the immer mass points, which were
shocked by stronger shocks, However we require only the tail end of these
adiabatics.‘ Furthermore, the highést entropies ;re eliminated by the equalisation
of entropy inside the isothermal sphere, The equation of state which has been
used 1s discussed in Chapter 3, |

The requirement of a simple equation of state is the principal reasm
for starting the INM run at such a comparatively hte‘ stage,

Although radiation transport has been taken into accomt‘“‘imoﬁx as
it 1s responsible for the formaticn of the isothermal sphere, no allowance has been
made for the radiat..im transport frgm tho‘:laotheml sﬁhere into the region in which
NO2 is formed, As axplﬁined in Chapter 4, 8ection 4, this transport of energy
becomes important when the shock radius has re_ached about 100 meters and it
should affect the propegation of the shock short]j ﬁhemft.e‘r; e opacity da;t.a
required for the purpose of calculating this transport are not sufficiently well
known, In neglecting the radiation transport altogether wa are pcasimistic. since
it is of advantage to have the energy close to the shockfremt, Then the shocE
pressure decreases less rapidly than it would otherwise, The increasad shock |
pressure would naturally lead to a greater degree of dissipation of energy by the
shock so that at larger distances the shock pressure might drop 'again more rapidly
and at sufficiently large distances the effact of the radiation transport on the

shock pressurewould be reversed, At present we are not in a pmsition to make any
definite statement about this possibility, ‘
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The IBY run was intended for an energy releass of 10,000 tong of INT,
Owing to some unfortunate circumstances related in Section 3,$n§ definite snergy
can be attributed to the run throughout its whole history, At sufficiently large
distances the energy should be .assumed to be 13,000 tons; Other energiea can,

of course,be obtained by the usual scaling laws,

7,2 THE INITIAL CONDITIONS QF THE IBM RUN

The initial conditions of the IBM runwere prepared by Hirsohfelder and
Magee, The principal data are summarized below without going 1nt.o the detaila
of the r‘alcula*ion All data are for an energy release of 10,000 tona of TNT.

7,2-1 The Isothermal gpheré

The lagrange radius ro of the isothermal sphere is given in terms of the
shock radius Y by Equation 4 of Chapter 4, Section 3, It can be written in the
form o

3
_._[ 11.85 yr 000 -601.5] /3 00 em
, : (1)
Here botnh r  and T are given in centimeters, It was convenient tq chodse a
simple value of Y/r, and the value 4 was chosen, which corresponds to a shock

pressure very near to 80 atmospheres, Then

: (2)
o= 1937 om, Y w 7987 cm. Y/ro = 4 (

The actual radius R of the isothermal sphere is obtained from tha conservation

of mass, Since we assume constant density _A° am‘ constant preasure in the

isothermal sphere one has

J’o rd 2 PRo® . (3)

r, as function of Y i1s shom in Figure 1 of Chapter 4, It will be seen that r,

.varies very slowly after the shock radius has reached about 10 meters and the

effect of the isothermal sphere on the shock is negligible a short while

thereafter, Beyond a shock radius of 80 meters r, varies very slowly indeed,
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According to Figure 2 of Chapter 4, it increases froiii 20 meters to 27 meters as
the pressure in the sphere docreaéés to 1 atmosphere { the analysis is no longer"
valid for such small pressures, but it indicates the order of magnitude).

For this reason it is h good assumption to assume that r, is constant,
The actual radius Ry then varies in accardance with Kquétim 3 only because the
air in the iscthermal sphere expands, ‘he initial value of R, is 60 meters (see
Figure 1 Chapter 4), |

The initial condition of the isothermal sphere is given by the :¢119wmg‘_.,

[
\

quantities:
Temperature = 49,000 K
Pressure. = 37,0 atmospheres 7; o
Density = 0,0392 x normal density
Bntropy.AB/R = 85 iy

Internalenergy and enthalpy B/R = 1,487 x 10°, H/R = 1,782 x 10°
Ro - = '60.23" meters, ro."=‘19.9? ‘meters,
These data were cbtained fram a calculation indicated below,

7,2=2 Initial Pressure and Density Distribution

It ms been shown in Chapter §, Section § that the isothermal sphére ¢an be
treated on the assumption of small ¥-1. The small ¥~ | approximation has been -
checked for a point source solution {see Chapter 5, Secticisd !md 4) and it was
fourd satisfactory. in the region in which we are interested, Since the solation
which we requim is in any case very ‘c,iou to the point source sclutions except in
the noighborﬁood of the isothermal sphere, the errar of the small(¥-fapproximation
is smil; ~ ' }

Wo snall not go into the déhih of the calenlation, The analysis is rather
involved, but the lines along which it proceeds are sufficiently irdicated in
Section 5 of Chapter 5, The resulting equations had previously been evaluated
for two values of ¥ in order 10 see how aer}sitive they were to a change in Y .

The vaiues chosen were Y =12 amd ¥=1.8, .
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The values for ¥ = 1,26 were then obtained by interpolation, In this way
we find the initial pressure and density distribution as well as the velocities
and the Buler coordinates of all mass points, |
. Some adjusﬁnents had to be made on the initial conditions, A minor

adjustment arcse from the fact that the small ¥ -/ treatment of the isothermal
sphere does not agree exactly with the treatment given in Chapter 4 Section 3,
The érro’r. which imay be due to eithér method, may be seen from the values of
lfo/Y;_ the small ¥ — ) treatment gives Ro/Y = 0,850 compared to O‘; 761 by means of the
other :#:ethod. The latter value was assumed to be more reliable,

f‘u‘rtl;ermore , at the start of the IBM calculation the valus of 7 at the
sh'ockfroﬁ't is larger than 1,25; instead of a. compression ratio in the shock "
7 - 9,as would be expected for ¥ = 1,25, the value obtained from the correct
Hugoniot curve for a pressure of 77,25 atmospheres is R/ A =7.24, The
density contour ns,therefore,#djusted'to give the correcf. compression ratioc at the

shock, and the correct radius of the isothermal spnere, This required also an

adjustment in the Buler coordinates R, since it is essential that the initial

conditions satisfy the equation of continuitys : .
A R® 4R
-— T B
/o e dr (4)

where 'r is the lagrange coordinate,

‘The initial velocities were then calculated directly from the equation

3Cr-Nfy
w :.Y/ L+ /YY) /
Coan® T g(;,,,/y)ﬂ"ﬁ/*]%

(5)

4

i which follows from the small ¥ —.| approximation. Here the correct shock

velocity Y for the given shock pressure was used,
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7.3 THB TOTAL ENERGY

The methods used to establish suitable initlal conditions are in parts
somewhat arbitrary, For this reason it is not surprising that the total energy
corresponding to these conditions turned out to deviate appreciably from the
assumed value of 10,000 tons of TNT, Unfortunately the energy was recalculated from
the initial conditlons only after the IBM-run ‘hid been completed, It was then found

/

Since the initial shock pressure of ?7.25 atmospheres at the initlal shock

that the total energy was 13,500 tons TNT,

radius of 79,9 keters corresponds to an energy release of 10,000 tons, we have no
remedy for the discrepancy, All that can be said, is that the shock pressure versus
distance curve corresponds to 10,000 tons up to 80 meters shock radius and to _];_5,5'00
tons for large radii, ¥For intermediate radii it should slowly change between these
values, | e
Actually the discrepancy is slightly less, A check of the total energy‘
at a shock radius of 2000 meters gave only 13,100 .tons, The "loss® of 400 tons is

entirely due to errors of the Is8M-run and is of the order of magnitude to be

expected from this source,

For most purposes the total energy in the IBM-run should be assumed to be

sbout 13,000 tons, except at small shock radii, where 10,000 tons is more gppropriate,

. » .
7.4 THE IBM-RUN 4 -
The hydrodynamical equations are
¥R .BTZ' 2P .z 0 - |
A 72 T o -. - (8)
: /O /JO = R? ¢R - £7)
o r dr ; '

In addition we have the equation of the adiabatics, which were put in the form

P
o (8)

. 1.5
‘%‘; =8 (“‘;/g”) +h 3
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by means of the IBY machines are explained in Volume 2 of this series, 'I'he
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where g and h are numerically known functioﬁs of the entropy,

The boundary conditions are that the velocity OR/J ¢t vanishes at. the
cent.er ahd that at the shockxudms the Hugoniot conditions are aatisfied The
latter determine also the entropy of any mass point as it passes through the ghock.
front, The entropy is assumed to remiin constant, so'that essentially g and h are
given functions of the lagrange variable r:, | | |

The methods employed in solving the system of partial dii‘femnbm equations |
method used first was suitable as long as the shock pressure differed appreciably
from one atmosphere, but it becams erratic as the overpressure bacm small, The

method was therefore changed, 3o a8 to calculate changes in density and pressure

rather than their absolute values, This oha'nge of procedure quickly suppressed

the erratic behavicr of the pressure,

The run was continued until the shock radius had reached a ulm of 6’270

"meters. At that instant the overpressure in the shock was 0,0251 atmoepheres. The

positive pulse was 290 meters long and the negative pulse 760 meters, . Since the
further propagation of the shcck is influenced #t these low overpressures only
by the positive pulse, the approximations on which the semi-acoustic theory of the

next ohapterarg based,are well satisfied, They are (1) that the overpressure be
" !
small compared | 1 at,mosphere, and (2) that the length of - the pmaaure pulse be
»

small compared to the shock radius, Bven the application of ths semi~acoustic
theory to the negative phase is not bad., Hence, the IBM-run was discontinued and.

the semi-acoustic tneorywas used for the purpose of continuation,

w

7,5 RESULIS

—— X ~

The shock pressure ‘as a function of the distance of the shock front from the
Center of the explesion is shown in Ffigure 1, |

In this graph all date have been collected from the warious chapters, From
a shock radius of 10 to 80 meters the similarityAsolution has been used, The
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Figure 1

* Shoek pressure ‘vors..ua distance ?or
nuclear explosion. Time is given
in eseconds, T = 0 1»s 0,012 after

start of "-_;;pldaion.
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Vil =10

dotted lines show upper and lower limits foz; the effect cf the gadget material on
the propagation of the shock, as calculated - for the Trinity gadget (sealed down
to 10,000 tons of TNT), In this region the curve corresponds to an energy release
| ef 10,C00 tonsg,

For shock radii from 80 to 6300 meters, the shock pressures are obtained from
th‘e.\IBM run, Here the total energy is between 10,000 and 13,000 tons, the upper
véiﬁe being corréct at sufficiently large distances, The time of arival of the
shock is indicated at various points, t = O is the start of the ISM run which was
0,012 second after the explo‘sion.‘

Beyond a radius of 6300 ‘meters up to 67,000 meters, the semi-acoustic
theory of the next chapter has been used,

A number of curves showing the pressure at a fixed distance as function of
~ time are shown in Figures 2 to 9, 'Grapha of the pressure versus distance at a
fix;d time are shown in Figures 10 to 18,

The duraticn of the positive phase of the pulse as functicn of the shock
‘pressure is given in Figure 19, |

For compariscn with measuremen@s at Trinity we have also made a graph of
the arrival time of the shock at varicus distances, It is most convenient to plot
the shock radius divided by the arrival time as function of the shock pressure
divided by the normal pressure, since such a graph is independent of the energy
release; This graph is included in Chapter 19, It depends,o? course,
on the normal velccity of sound in the given circumstances.co, For the IBK-run
Co = 347 centimt_eré: per secord, |

Finally,there are shmm in Figure 20 the poeitive’ impulse I+ and the
fraction of the total energy which is left in the blast as functions of the shock
pressure divided by the normal pressure, The latter is independent of the
energy release, The positive impulse has been scaled to an energy release of
40,000 tons in free ai;' (or 20,000 ions on the ground) for the purpose of

ccfumrison with cobservations at Trinity,
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| Figure 2
. Pressure versus Time for Radius 170.7 meters
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o Pigure 3
Pressure versus Time 'for Radlun 223 .4 moters
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. Figure 4
Pressure versus Time for Radius 332 meters
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Figure § |
Pressure versus Time for Radius 466.5 meters
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Figure &
Pressure vorsus Time for Radius 682 meters
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Figure 7
Pressure versus Time for Radius 1224 meters
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Figure 8

Pressure versus Time for Radius 2031 meters
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Figure 9

Pressure versus Time for Radius 3566 meters
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Figure 10
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Figure 13

APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE

1.2} -

220 240 260 280 300 320 340 360 380 400 420 440 460
R (METERS)

APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE

VII-23

Figure 14
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Figure 15
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Figure 16
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Figure 17
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Figure 18
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Figure 19
Deviation of the positive pha‘se of a pulse at &
" fixed distance
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Figure 20
The positive impulse and the energy in the blast.
(IBM) run scaled to 40,000 tchl.
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7,6 COMPARISON WITH TNT EXPLOSION, EFFIGIENCY OF NUCLEAR BOMB

One purpose of the IBM-runwas to find the effi ciency of a nuclear bomb
compared to an explosicn from anequivalent charge of TNT, In the nuclear explogion
a greater amount of energy is used for the purpose cf heating the air near the center
of the explosicn to high temperatures, A large fraction of this energy is useles;
for the propagation of the shock,

S8ince no comparablg IBM-run exists for a TN! explosion, we compared the
results for the mli:lear explosion ﬂth experimental data, For this purpose, the
experimental curve prepared by Hirschfelder, Littler and Sheard was used, It is
based on experimental data for charges fired on the ground, and for shock pressures

in the range from 15 to 2 pourds per square inch, The charges varied from 67

to 550 pounds, The curve is given by the expression

38 85 15760

Ap :

X

(9)
‘.(/w V3

"
[H

(10) =
Here Y is the shock radius in feet; w,the weight of the charge in pourds, ard
Ap the overpressure in psi,
For lower pressures Hirschfelder, Sheard and Littler used the asymptotic

formula

35.4C
Ap = x"V lclglo x - Co%28

(11)
The constants were obtained by fitting tc the low pressure end of the curve (9).
The a§ﬁ1ytica1 ferm of the equation follows from the semi-acoustic theory presented
in th: rext chapter, provided the pressure pulse has reached its nymptoti'! linear
ghape,

From these formulae we calculated the weight of the TNT charge required to
give the same shock pressure at tbek same qistance as the nuclear explosion,

Dividing this charge by tne weight of 13,C00 tons assumed for the IBM-run, and
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rultiplying by a factor a, t0 take care of tﬁe fact that the TNT data apply to an
vexplosion on the grouhd so that practically all energy is in a half sphere, we obtain
the efficiency of the nuzlear bomb compared to an equivalent charge of TNT;

The efficiency defined in this way depends on the shock pressure chosen for
comparigen, and it 48 not surprising that it should ﬁary with the shoek pressure;
aowever, it is surprising that the efficiency should increase with decreasiﬁg shock
pressure as ghown in Figure 21 over the range in which experimental data for TNT
exist, However, the individual experimental points scatter appreciably, especially
for aigh shock pressures and,therefore, this variation of efficiency with shock
presjure is not necessarily correct, The most reliable data are those at the lower
end of the experimental range, which would indicate an efficiency cf about 0,8,

The curve ha3 heen extended on either gide to higher and lower shock pressures,
The extengion to higher shock -ressures by means of formula (9) is guite arbitrary
and has been performed only since experimental data for the Trinity test have
usually been compared with this formuls, The extension to lower pressures depends
on the assumption “hat thé asymptotic fn;nula is valid in this range, which is not
necessarily correct, Again,the main reason for performing the extension is
the fac: that experimental data have been analyzed oy means of this curve,

A similar comparison has been made by using the e¢xperimental curve of

A.H.Taub,(l} for half-pound TNT charges in free air, These differ quite

(1) o
Report NDRC-A-2076

appreciably from the curve of Hirschfelder, Littler and Sheard, as may be seen from
Graph 21, This discrepancy shows the difficulty of assigning any definite wvalue
to the efficiency of the nuclear “omb for the purpose of producing blast and makes

it degirable to have a comparable IBM-run for TNT,
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Figure 21
Efficiency pf nuclear bomb as compared to an equivalent
charge of T.N.T.
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It sheuld be noted that two factors, which might be important, have been
disregerded in the IBM-calculations. One of these is the radiation trensport
of energy from the ball of fire into the NOp layer, discussed in Chapter 4.
This has the effect of equaliiing the temperatures in the interior of the shock
sphere and it will make the nuclear explosion more similar tc a TNT explosion.
Consequently, the efficiency of the nuclear bomb Mis improved. The other effect
is the radiation which escapes to large distances. The arguments px;santod in
Chapter 4 show that this radiation occ;.urs at a time and place where it cannot
affect the shock vaeasure'in the region of practical interest, i;t. down to

about one psi. However, it could reduce the efficiency at very low shock prespurss.

wg NG_LAWS

The IBM-run was made assuming 2 nbrml‘ density of a,ir%, = 1.163 and a
normal pressure P, = 1 bar (10 dyn/ca®). The sourd ve‘locit.y of normal air is
then c, = 347 centimeters per second. The total energy was Q = 13,000 tons.

For the change to a different energy release we have exact se;ling laws,
we keep all pressures and velocities fixed, but change all radii and times in
the ratio of  the cube root ot the energy releass.

For the change to different normal densities or pressures no’ exact scaling
laws exist. Homver;‘ within the accuracy of the primary data which enter the
IBM-run, we can use the following scaling laws, which relate the deshed quantities
for arbitrary normal conditions to the iBil-qulntitioas |

L R' = AR
Py P,

) ¢t ,...94. At
' =z _u cd
) o " -

Q. BX g

L = L Po .
AL -
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i,e, we scale all pressures, velocities and den;ities in the ratio of the:lr
ncermal values, Thé linear dimensions are scaied by an arbitrary factor A » the
times by the same factor A and the inverse ratio of the ndmal gound velocities,
and,finally,the energy release is scaled by XS and the ratio of the normal
pressures, The scaling laws for pressure,velocity and density are,of course,not
independent of each cther, sinc{.e'c; //f; CO%: gpé// Po \

These scaling laws are baéed on the as"su;nption ‘i‘.hat the equation of state
of air can be written in the form

—g—; = funation of (J_....—? )and FF?)

which is true for a ¥-law, but only approximately correct for the true
equation of state of air ,(E is the intervall energy per unit mass),

For the Tx'j‘.nity test the scaling changes are appreciable, because of the

low value cf the normal pressure (See Chapter 19),
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CHAPTER 8

ASYMPTOTIC THEORY FOR SMALL BLAST PRESSURE

H. A. Bethe K. Fuchs

€.1 INTRODUCTION

It is very desirable to have a theory of shock waves which is valid
for small over-pressure. One purpose of such a theory is to provide a
natural transition to the uell—knauh acoustic theory, and to set in evidence
the limitations of the latter. Another purpose is to give practical results
for the pressure up to arbitrarily large distanceslﬁnd to make it possible
to stop the numerical calculation with IBM machines (see Chapter 7) at some
finite low pressure., This humerical calculation would become increasingly
inaccurate ani cumbersome with increasing radius of the shock wéve; the use
of asymptotic formulae therefore improves both the accurzcy and the ease of
the calculation.

The theory presented in this chapter represénts the first terms of an
expansionmin'poyera of the ratiévl/f where Y is-the radius of the shock wave !
and L its length, i.e. the distinc;mfrcm the first shock to a point at which
the pressure has decreased to a imall fraction of the peak pressure. Ve shal

in general retain the first and second power of L/Y and neglect the third,

Cne strong reason for stopping at just this point is that the entropy in the

shock is proportional to p3, where p is the over-pressure at the shock front

which in turn is proportional to 1/Y. Therefore,if we neglect terms of order
(L/Y)3 we can consider the entire process as adiabatic which involves a great
simplification. At one point in our development, however,(Section 7) we shall

calculate the actual energy transformed into heat at the shock front and at

111; el
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this point we shall,of- course, carry terms of order (L/Y)3..

Ordinary acoustic theory does not represent the first term in an expansion
of the type considered here. We shall find that the length of a spherical
shock wave increases gradually as the shock wave moves away from its center,
whereas an acoustic -av; retains its wave-length all the time. Similarly, the
decay of the ';x'essﬁre at the shock front is somewhat faster than that of the
pressure in &n acoustic wave. However, acoustic theory is very useful to
provide some guiding ideas for owr theory; and we shall therefore start by a

recapitulation of the acoustic theary of an outgoing spherical wave,

8,7 ACOUSTIC THECRY

In the ardinary hydrodynamic equations (see below, Equation (12))all terms
should be neglected which are of second or higher order in pressure p or
material velocity u. Then the hydrodynamic equations become

du ag
W:'O r

A o (B ri)

» (1)
where O~ is Riemann's quantity, (cf. Equation (lO))which for amall pressures

is given by

L

(2)
Combining the two equationa (1), we get the wave equation
2 C 2
22 2L 2 L. AS
DO"-—,arz'l-r br'c 2t v
B ) E:
(3)

which haa the solution
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in which ¢ 18 the scund velocity which itself depends on the density.

In (10) we lLave used the definition

o? = dp/dﬁ (11)

Inserting (10} into (9) we obtsin

>
3t Y ST >r

%_9:.+u .%L'; -o g: +2ru) | | (12)

e
s 4
<

"
[
a
i

In the ecoustic limit the terms centeining w as fector can be neglected

and {12) reduees to Equation (1).
WNe know from the mcoustic theory that ¢= and u behave epproximstely
as l/r at large distances. We therefcre introduce the abbreviaticns

%

@ ‘ :i - ro

.(13)
U = ru
o With this roteticn Eousticns (12) become
v . S dU p U py u?

--—E' + e %—F + 'b""'r" c ""r - - 0
“.
P ovU 0 2 U u % 0 ( 14)

e 4+ U +e —— - H

It + o 5 r 2r r 1.2

fe knew further from sccustic theory that u becomes ssymptoticslly equaml

to & feor large disterces. We therefore further set

. U pd Z + D | v(ls')
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and we expect tnat D will become mall compared with | for large r.

Equations (14) now becone

ﬁ.'_ﬁ- (cﬁ*g’) i—g- +c(%—§+-€—) - 2;_%:. = 0

,'\/

. /
R R TE NN

In the first approximation we may neglect the hat three terms in the
first equation (16). We should expect that d/dr of any quantity is of the
order of that quantity divided by L. Therefore the term U/r, which is

_approximately equal to /v, is ssall) compared d2 /dr, the ratio of the
two terms being of the Qrdcr L/r The term D/ r is small because D

is e@pected to. be arall compared to ¢ as will be proved below, The last

term is in turn smell compared to the second last term,

In the first approximation, therefore, the first equation (16) reduces to

-%% + (c +u) -%% = 0 i o , | | (17)
m; oquaticn means that ¥ propagutes t:rith the velocity c t Ve This is
the analogus of acoustic theory in uhicll, z propagatu with v-locity e,
'rho replacesent of the ordinary sound vdlocit.y ¢, by the effective sound .
nlocity c % u is physically obvious and is malqsou: to the well~knm
Riexan method for treating plano problena

The solution of (17) is |

2 ‘Z(T)“ , : (18)

d , | .l ) .
Tet - f P ‘ (19)

with

&
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The integretion in the expression (19) is to be extended cver s path
aleng which 2 is constante The integral therefore depends on 1 end
the equstion does not give an explicit soluticn of the Equaticn (17)- The
lower 1imit in the integral may be e function of Z. 1If we chonse the
anme lowsr limit r_ = for all 2, then T is the time when the value of
& to which it belongs passes the point r,e For the prese:nt we shall
not ;pecify the lower limite The function 2 (T) must be determined
from the shape of the shock wave at some initisl time. This will be dis=

cussed irn Secticn 2.10.

B8e4 SECOND APPROXIMATION

We shell now try to determine the function D from the second Bqua-
N
tion (16) and alsc to get a better approximsticn for I.
In the seoond Equaticn (16) we can certainly neglect the last term.
The first two terms can be transformed by ihtroducing instead of t the

variable T defined in (19)- e have then

' Y.,
(32) = (§%),

20 \ [
.%mg... = [ ,1.1.,,,.)1. (_.é

D
AT /r T 4u (20)

and the second Equation (16) becomes

2 o d . 202 D (bv)t D~ 9D
te (B R (e (B - 3

(211'

»
Neglectirg all terms of smaller order of ;hgnitude,tﬁb right hend side re-
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duces to 2 ¢ 4/r snd the factor on the left to 2. Then.(21) car be inte-

grated and gives

D = ’;’ S ,:; aT
(22)

Thie rasult shows that D 1is actually of the order ]El/%y snd isvthoro-
fore small compered to 2 according to our assumptions. This justifies the
first approximaticn gilven in the last section, aé well as the trestment given
in this secticne It is, however, of interest to write down the right hand

sice of Equaticn (2i) to the next approximstion. For this purpcse we note

that sccording to (22)
<'h D ) s - ol
r
¥y | (23)
Therefore (21) becomes

‘%‘%)r: (ot )‘;' e (24

in which on]y{terms of order uD/r are neglected, but terms of order cD/r

and u Z/r have beenbtgkon into acoount.

The form of Egustion (22) shows that D ﬁas the character of an after-
flow term and therefore corresponds in all respecte to the sfter~flew term
in Section 2.

The integrel in (22) must be extended from the shock front to the point
at which D 18 tc be caloulatedes To prove this, it must be shown thet D
behind the shock front is of smaller order then (22). This cern easily be
done by using the Hugonict relations snd the definition of @™ « We have

behind the shoock front

u2 - (p-po) (vo - V) (25)

APPROVED FOR PUBLI C RELEASE




APPROVED FOR PUBLI C RELEASE

r

VIII=9

3 I L]
where the subscrirt o refers to the undisturbed materisl, and V 4s the

specific volumee Further, we have generally
(28)

The velue of D behind the shock front is by definiticen
D = r(u-0) , (27

To evaluate (25) end (26) it is convenient to introduce the quantity

Vo =¥
X = o A )
-~ (28
and to express thLe pressure in terms of this quantity:
2 2 3 3
d v d 2 _V d 3
a - o ¥ a0 CP x®4 aees
PP v"ﬁx"'T‘ ﬁ% T 4 v3
(29)
Using the definiticn of the sound velcecity we have
v - ————
o Vo2 ,
and we write
dy
2l oal? . 24
d u T’"3 Ve N
£ (]
diz l 6@30 2 oo ( %ﬁ\ (31)
a— H L‘I - '/(.g_, } g ¥ !
av & vo ‘ Ve '

wrere ol and /3 are dimensicnleas coefficientse If the adisbatic law is

of the ususl form,

Pz p, (V/ Vo)-x (32)

[

the values of X and ﬁ are
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pdz(k‘i-l)/l.

A = (ye)(ye2)

(33)
6
With these abbreviations Bquation (29) becomes
.o 2 2 .
PPy =2 (x+ol x“+ Su...
s} vc\ ( ‘ ﬁ x" ) (34)

Inserting (34) and (28) into the Hugoniot relation (25) we obtain

Wz oo x (1hoixe ($0-do®) L2, (s

Further we find,

j ] 33 2, 2
\f 9_2'. s 9 (l+ol x4+ ( -0k Yx“4..-) ‘
4 v A z -779 (36)

or for the sound velocity

c = o [1+(c<-1) ,x‘+(3ﬂ/2-u2/2 -d)xz+.-.]-

(37
' '
Inserting (36) into the expression (26) we find
0= o x i:1-+~ & /2) x+ o2 2 4 ...]
[+] ( / ) X (p/z /6 ) x (38)
and subtracting we get
(39)

u = g- =acCq &2 x3/24ﬂ
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This relation holds ganeruily behind the shook front. It is interesting
g that it depends on the quéntity of , i.e. on dzp/dvz which is also the
quantity determining the entropy chenge at the shock front (see beléw,
Section 8.5). For our present purpose the important point is that u-o~
‘is proportional to xs and therefore t.o 0‘*3. and therefore falls off as
*1/Y2 where Y 1s the shock rsdius. The quantity D just behind the
shock front will therefqre fall of as ]./Y2 which makes it of sma'llor
order of magnitude than the expression (22).
We note in passing that, according to (35) end (37), the velocity

of wave propagaticn is in first epproximation

C+u = Co(l+dx) (40)

We shall now insert our expressicn for D back into the first Fque-

b 4
Oy tion (16). We have to celoulate the quantity
-
Bn)
dr/y (41)
. ysirg (20), (23) end (24) and the definition of T , this becomes
2.2 = .3
T T (42)
As was explpined above, cnly quantities of the orcer (v/e) (D/r) are neglected
Mm ) in this expressione
Inserting (42) into the first Equation (16) we see that the terms U/r
- cancele Therefore the first Equation (16) becomes, neglecting the very
small term DZ/ra : 1
C"*“)(am AT I A (43)
. ’ . :
Neglecting u in ¢ + u, this can be integrated to give
1 | !
— T o 44)
7 < Cn (
A )
A °
W
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In other werds, along a line of constant T, not I itself is a constant

but the somewhet more complicated quantity
3 yons o
L itself therefore increases ss the wave propagates outwards.

8.6 THE “YOTICON OF THE SHOCK FRONT

let us assume that the shock front moves from a redius Y to a redius
Y + dY. The shock velocity can easily be shown to be in first approximetion
midway between the effective sound velocities ahead and behind the shock.

The former sound velocity is 'co, the latter ¢ + u so that the sheck velcc-

ity is . 5
) :
Y =4 (e +¢ +u)
(45)
snd the time needed for the shack to travel the distance dY is
dt . 24Y .
GREY-R XY _ (46)

The shock veloeity is smaller than th; velocity of sound ‘wavu behind
the shook, ¢ + ue Therefore these sound waves will catch up with the shook
. wave, and if' the shock is followed by a rarefaction as it is in the case of

e blast wave, then the rarefaction will gradually out down the strength of
the shocke In our notation, the velus of T at the shook will gradually

changes if it has the value T when the shook is at Y it will have the

value T + d T when the shock hes moved to Y + dY. |

In order to telculate the wvariation of T along the shock front, we

have to complete the def‘inition of € which was left somewhat arbi.trnry.
It is convenient to define the arbitrary constant of integrstion in (19)

as follows
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n
, A 0
T=¢%~ 'g;‘a_ g

where Y is the shoCk radius st the time when the signal 2 reaches the
shock fronte Y  therefore is a function of 4 and this is permissitle
since the constent of integretion was nllowed to depend on <. If we use
the definition above thenT + Y/c_ is the time when the signal i reaches
the shocky or T 1s the difference in the actual time and the time which
would be required for a signal traveling from the origin with normel sound
velecity c,- |

The time difference dt between the arrival of the signals T arnd

T +dT at the shock front is therefore
dt = dT + éc;Y (47)

Comparison with (46) yields

dt _ 2 L =S -\A G-C-u
Gy CITTuE C Stevew ¥ per 9

This equation describes the catching up of the rarefaction wave with the
shock front.

From (40) and (38) follows

Y :c.-*“(a’

140)
Hence (48) becomes
_d;.?_ = -da- = - “'g‘:‘"z“'
dY  ack . o2ac}Y (500
P

where we have also used the definition of 2 « o Y.
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8.6 RNESULTS FOR VERY LARGE DISTANCES

Up till now we have not made any special assumptions about the function.

2(T), i.e. about the shape of the shock waves e can get further results

- if we assume thet initially (at small distances from the origin) the ashock

wave was of short duration, and that most of the duration et shock radius

Y is dggwggwxggmgzggggwQx;xhqwahggkmxnlns4§yﬂn1nz~thamunpaztunhud~§gggg_

velocity ¢4+ This as‘aumption is quite well justified for blast waves at

iuff’icientl;y large distance. If t, is the time at which a given value
of 1 exists at a given small radius r_, then we have for the arrival time

Y
of this vslue of Z at the distance r (cf. (40)) {»@

n A
e [dn dn
cru ' C+ot 2 /;;,
n”n R’G
3 (51)
- A ’v'bo t - Z_gx ' lo h Jmﬁt—-ff’{
-— 'E: c& + [ C“l A g /7,. /'10 E A

=]

If we neglect small difference in the values of t, and ro, for dif-

ferent velues of 2 1t follows that for fixed r, I 1is a linear functinon

of t and therefore also the pressure assumes a linear shape.
We apply the equation (61) in particular at the shook front r = Y,
Then ¢

is the time of arrivel of the signal 2

Zs= Zs- at the ahook

radius Y. However,this time was also equal to'ts +Y/-c.(. whe re “l‘s is the

value {t‘ 1 cérrd!ponding to 2« Negleoting again r, and t, as small
quanti:iea, we find therefore ‘ -
<z r . (62}
- In the approximﬁ;on in which r, and t, are neglected l'tsl is by

definition the difference in the arr?nl time of the shock and of the signal

-
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1 = 0, since the latter travels with sound velooity o, ; i-c-,l‘l’s! is

identical with the duration of the positive pressure pulse. This is easily

verified from the Equation (51). .
In ordar to obtaln ‘V:s as function of 25 sonly, we have to express

the shook radius Y in terms of Z, . For this purpose we substitute (52}
into (50). Then we get

d'zs - 2: .
d.vY 2y log (Y/n) | (63)
. . |
which can lmmediately be integrated to give
A
D . SEN—
s J1og {Y/n) “ ()

where A is a constante 1In other words, the value of Z at the shock front
{s not constant but decrsases due to the catohing up of the rarefaction.
This decrease is very slow; it goes only as the inverse square root of the

logarithm of the shock radjus. ' :

The derivation given above may pive rise to the 1mpr§ssion thet r, may
be chosen arbitrarily as long as i*l;. is small compared to all values Y for
which the formula (54} is appliede This is not so. In fact, it is easily
shown that we are led to :‘gntradictions if wo allow r, to vary over any
sppreciable range?

' We ahall see later that aAdetailod analysis will ellow us tn determine

the correct valus of r_ which should be inserted in the equation {54).

°
For the present let it auffi@e to point out that a pressure pulse of the
asymptotic shape, requires t\m parameters to determine its initial conditions,
nemely the, strength and durption of the pulse. We require, therefore, two
constents in the ilymptotiﬂl law and ;thul both the constant A and the con=

stant r, sre determined bythp properties of the pulse.
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Going back to Equation (51}, we fisd then that the duration of the
pressure pulse will incresse as the square root of log Y. The product
of peak pressure Pg and duration 6 , or the so-called impulse of the
wave will therefore behave exactly as. I/Y, namely . ' |

P’ &= comt-./\( (65) ?

We have thus seen that in our epproximation a shook wave will spread
out gradually, in contrast to the acoustic theory in which the wave retains
its shape for all timee The spreeding of a shock wave in 3 dimensions is
very sglowe It would be‘.condldorably faster in two and sfill faster in one
éimn.élqn- On the other hand, for a space of more thn three dimenslons
this effest will not ooeur. . | |

Commscted with tho spreading of the wave thare is a decrease of the
front pressure whish is gnfztor than l/Y- Again, 1n ‘thres dimensions this
effect is small; in one dimension,elemsntary aceustic theory would give
constant front pressure whereas the actusl behavior is as INY . The
éaso of two dimensions is again intermediate, and for nofe than three
dimensions,ncoustic theory becomes the correct asymptotic limit.

Another interesting phenomenon which is connn;tod with the variation

of the sound velooity ¢ ¢ u is the fact that a second shock must be formed

in the negative phase of s shock wavee The regions of negative pressure

~ have a particularly small propagation velocity, ¢ 4 u,which is smaller than

normal souni velocity o,. Therefore the very end of the shook wave tends
to cateh up with the rc‘gioﬁu of negative pressure and & second shock will
result. This will be discussed in more dstail in Section 8.9.

Another intereating problem is the motion of the point Z « 0, which
marks the end of the positive pressure phase ( p> P, ) and the beginning of

the negative phases In our approximation the propagation velosity of this
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point is just the normal sound velocity o,. Actually, however, u is
somewhat greater than o by the amount /r. Therefore the point I « 0
propagates with a velocity slightly greater than normal sound velocity.
Since the very tail of the shock wave moves with _veiocity ¢,s» the end of
the positive phase I =« 0 moves with a velocity slightly grester than the
end of the negative phase. Conseguently the positiwe phase will tend to
become somewhat shorter and the negatiwe phase somewhat longer than the
elementary theory indicates. This corresponds to obumt;iom.

A very important !;omark abdut the shape of shook Wav;’s has been made
by Penney. It is most easily deduced from the fact that the total mass of
air behind the shock must be egual to the origimal mass ‘of air within the

radius Y. This means

Y ‘ )
B 3 i
f Pa*dr = £ Y/ | (56)
L - :
There are two regions in which the density is appreciably different from
the normal density f, . One is the central regzion in which the gases
have been left at high temperaturs by the shock and therefore have low den-
sity., If the shock wave is far out, these regions have returned to atmos-
pheric pressure and therefore te a definite density. If X denctes a
radius small compared to Y , but large compared to the region of the hot
gases, we shall have
% .
f a 3 M . » }
. LPatda = p x [2 - M 3 (67
where M is a constant independent of X and of the time. Subtracting

(57) from (66 ) we get
Y - ’ '
xj (P-A)hfld’* =M (58)

The shock .'rogian itself mey be assumed to be small in extension compared
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to Y. Therefore we can replece,in this region, r by Y. Purthermore the
deviation of the denéity from normsl, P -,00 » is proportional o O

Therefore we obtain from (88) ;

Y" o—d"___Y zdkr -'-'M

hoclk hock (59)

From this follows that
f S dn ~ Yy (60)

_However, we know that the value of I at the front is nearly constantes
Therefore the integral in (60) mumt consist of tweo contributions which nearly
cauc‘enblmeaeh other. ‘I‘ﬁo thock wave must consist of a phase of positive o
(ovor-‘preesun) and a phase of negative o (under-pressure) such that the
impulses of the two phases cancel each other in first approximetion. This
argument is also a proof of the existence of the negative phase; it was first
given by Penney using the energy rather than the amount of materisl. \
In periicular, in the limit in which the pressure depends linearly on
the time, the shape of the shock wave becomes symmetrical, with equal shocks

at the beginning and at the end as illustrated in Figure 1.

8.7 THE ZNERGY

The energy flux through a given surfeace consists o;‘ two parts, namly'
(1) the work done by the material on one side, ;:1 the material on the other
side and (2} the energy transported with the material itselfe Sinoe we
have proved at the end of the last section that the pressure pulse in a
shock wave has # negative phase balarcing the positive phase, the final

displacement of any polint is zero in first approximation

fudr zoy/my 6
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Figure 1

' Symmetrical, ‘I‘unal‘ Shock Waves
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‘This means that the net transport of energy with the materiasl is gero of
higher order than the work term mentioned as (1) above.
V'Thtro'tor‘e'-tho -energy flux in the shock wave through a sphere of radius

¢ .
Y is in sufficient approximetion:

2
W= 4TY f pudt
(62)
If we set u = g and p = PCO"  and a’:Z/Y'. and if we further assume
‘that the pressure distribution is as indlcated in Figure 1, the energy flux

becomes

(63)
-1

-‘ W= 4T pec jz dt ='+TTS’c§€8 fx dx

4

where 0 1 t!‘n duration of the positive phase which, according to Equation

(52), has. the value -
LZf, Y |
e (64)
[ o - .
80 that = .
L 8T, < b
Vt 3¢ Zf 10g}é (66)

Using the relition (54) for L - this becomes
- 5

W= 3¢,  Vieg(Y/n,) (66)

Equation (66) shows that the totel energy in the shock wave decreases
alcmly'as the shock wave propagates. This fact was first pointed out by
Penney and means that it is impossible to define in any general way the
enerscy wasted in the shock wave, but that this waste will depend on the

distance to which the shock wave has gone. It is interesting to determine
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the doody of the energy in the shook wave also in a different way.
---- This way is based on the fact that energy is irreversibly converted
into heat at the shock front at all times. To determine this wasted energy

or increase in entropy, we use the Hugoniot equation fer the energy

= Jo A a Y VvV -V
E-E, =L CPHRICY, V) (67
where the quantities without subsoript are behind, those with subseript o
in front of the shock wave. The energy can be expanded in a Taylor seriﬁs

in the chang;o. of volume and of entropy, as follows
'L 2
E-E.= 3 G V-V L TP V-V

O JURALFS IS LI (s8)

If wo remember that : :( S S e

(3%h=-*

.13
PS4z e (69)

“Re

and intreduce the ahb:oviattgg_ (28), (88) becomes
' I 2P
' E-ED;‘.??QVO* *'237 o '

kY
+ A .b

3
‘ 3\{,L\/ X +- +T, (5~ 5)+.- (70)
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Further, -u'hava
2 &

Inserting (70) and (71) into (87), we find
. L op 3
T (5=5)=T2 3yz2 V, x (72)

This is the energy wasted per gram of material swept over by the shock.

If we now use (31) and (38) we obtain
| | 3 2
¥ - ympY T, (8-8)= - 2 wpcrxY

=2 - 27 .P« o-aYz

3 g (73)
. ‘\r‘“"
. In our shoock wava. at wry large distances, there are two shocks of { 2

équal atrongth and thergfore the energy loss (73) occurs twice. Therefore 5
we find for the decrease of energy in the shock wave itself

a\Ww “u-Tr‘A‘ 2

dYy T 3T, Y (74)

Comparing this with the expression for the enorgy‘ itself, (66}, we find

AW ., _ W |
PRz N7 )

which integrates immediately to

const.
‘W . (78)
©
This result 1s exsctly the same as deduced above by explieit evaluntion of

W, Equation (66). We .therefore, have found the decay of the enerzy by two

entirely independent methods. Both methode are only a};plicable if the shape
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of the pressure pulse remains unchanged. >

8.8 THE PROPAGATION OF THE SHOCK AT INTEPMEDIATE DISTANCES

The asjmptotic form of the pressure pulse behind the shook is ususlly
reached only st very large distances when the shock pressure has decome ex~
tremely smalle There is an intermediste region, in which the shock pressure
is quite small, but thes pressure distribution behind the shoek is not yet
linear. We shall now consider this intermediate regione J.e., we make all
the assumpﬁions which 1ed.to the fgrst approximstion considered in the pre-
ceding section, but we allow, within certain limitations, en erbitrary shape
of the pulse.

Since we are interagted to apply the thsofy to the IBM,calculationsgv
we shall slightly change the procedure used in the preceding sectisnss In=
stead of infréducing a8 initial conditicn the shape of the pulse ot a fixed
point asg fun&tion of.time, ws introduce thé pulse abt a fixed tiﬁ@ te ag
fun@tic;n of i‘:hé‘ md:'u}as y » Hence we write the soiu%;ion of (17} in the

form o ‘ .
2 =2 | o

- +
y,zh.-*f (eruydt
SR

(78)

Then 2 as function of Y is given by the initial pressure distribution

at time t,e Us@mga(49} one finds .

yﬁm”‘-co (t»i&* f R o dt

\tb

(79)

The remeining integral is a small term and thersfore we may replace dt by

df;jcm o Also cr‘::aj&uanﬂ 5 is constant for the purpose of integration.
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Thus ; : 5
Fon-coee -ty banjy

(80)

Alternatively we might have replaced r in the integral by ¥ -+ ¢ _ (t-to)

and found
) oﬁz ¥al (-t
y:ﬂ -:b Ct-‘to)-— C' % o'y ,°

(81)

Since ZL/C.‘> must be small compared to y <the two equations differ only by
terms of the order (2/1 < )2,

- We introduce the abbreviation

3(2): gix-iﬁvy-k | iz o)
which is a constant. For convenience we define k in such e way that
<{g(0)=0 o (82a)
Then .quat.tori (80} takes the form
n-.c,(t-t,)+%:[‘3(i )+2 j""’“k} (83)
In particular, if L, is the value of . at the shock fronmt R |
Rcf—,(‘t*o‘*%:[g(z's)* 2 dn R‘k} | (84)

Differentistion yields

%{\-%—%]’Cﬁ»%ﬁ%‘ %[?1‘+I"R] (86)

)

& ]

The shock velocity is also soual to the average value of ¢ + u in front

and behind the shock, i.e.

] |
8. [arendes v (86)
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Here we have made use of the Equation (49). Comparing the two equations

for d.R/dt and observing that Z/‘-‘,R is a small quantity, one finds
> dZ, T4 | |
“s .t %<5y + b R] =0 7)
2R * co It [I%S (8

2
2R 4’2

or

(7]

I% + bR 20

(88}

This is an inhomogeneous linear equation in %UR and can therefore be solved

with the result '

, p3 d , Z;
a - R N
R = < 2 2 d di * «R
IR 2, j E R ° (89)
2, ,
Here I, is the value of 2, at time ¢ « t, , when R « Ro*
Partial integration yields
Bk z.[?s- - % °g(z)4z]+ % R
N D JD s‘s by ° (90)

s
This form of the equetion s more convenient if g 1is givea as function
of L 4n numericsl form, since it avoids numerical differentiation.

Either of the two eguatipns .giveu the shock radius R as functiom

of L =Ro o+ Now from (10) o ¥
op=f,%T (91)
and, since -
C;. =¥ :F“ (92)

1t follows that

.%E o 1 %S x-é_:b (93)
rym
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Thus we obtain the shock pressure A4pg as function of the shook redtus.
Since g, (2) and Z are finite the right hand side of (90) is finite

except for 22' a0 . H.ﬂoo l. Ly tends to zero as R “*_l_:endl to infinity.
Lot us write (89) in the form ‘

. N : ’ &
2, 4 5 , o 23 (33)
Bk JEE% “Z+§f‘ﬁ““r(%l:%[zgﬁ'&ﬂm&dz
[=] . e I f—“"“"m—»-.._j

(89a)

Te
Qz'zo‘d
-z, 4

Then the last term tends to o 1r 22. tends to szero and we have asymp-

totically
2= [EnLR]R")
. (94)
where ° , 2
A= 2 )2 %%L 2 *2 ,&\ Ro
[4]
» d
bk - (53), .,
(96)

This is eassentially the equation depived proviq:uly for very large distances.
" However, we have obtained here the §bnst.nt A h in terms of the initial con-
ditions and furthermore we have nw‘a definite radius R* in terms of which
the radius R should be measured. The contradictions which arose previously
are therefore avoided.'

It will be observed that the asymptotio law (94) is obtainodnonly ir
I is sufficiently small; if we plot I sgainst y 4 it will have some shape

of the form shown in Figure 2, avproximating roughly the initial pressure
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-.;F:igure 2

Initisl Prétqur-c Pulse

e
%
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pulse. As time goes on various 2 vwalues catch up with the shock front
and the range of valmg which initdally extended to Zo contracts and ex-
tends only to g +« The asymptotic law holds only if 2, has becoms small
compared toc I, or more precisely if I, 4is so small that 2 may be con-
sidered a linear function of y between 2 -0 and i « L, + The
smaller & <the longer it takes for this & to éatoh up with the shock
front, and theref'ore it may take an appreciable time’ before the aa‘ymptotic
law is established, unless the initial pulse is already close to a linear

functhion-

The pressure distribution behind the shock in space is most easily

- obteined from the Equation (81)

e y+c, (t-ty) + tz ,&1 J+0o(t-t,y) (96)
o] y .

Asymptotically & <tends to sero. (We have proved this only for the positive
phase, but previous considerrtions have shown that asymptotically the pos-
itive and negative phase become symmetric. Ve shall consider the negative
phase Yin scme detail below). At the same time Y tends to a fixed value

Yo + Hence I and, therefore,also the pressure, becomes linear in r.

The length of the positive phase is obtained from (96) by subtracting r

for L = O from R for =ig ; 1eo.

L e seyesSyod In Yaroo (*%o) (o7

-+

Asymptotically we have Yg —» Yo and

Yot 0o (tety) =z R-L ¥R (98)

i

Inserting this expression into the ,&-,_or (97) and using (94) one finds

A :
L, — ‘:‘o An (R/yq) (99)
An (RAR*)
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If we wish to obtain the pressure as function of time at a fixed point, it

is more convenient to use the Equation (80) instead of (81)

S (tﬂta) 2P ey - c:'oz % l‘/y (80)

" Following the sams arguments a¢ sebove one finds thet the pulse is asymptot-

icelly linear. The duration of the positive pulse if given by

- 3 - °_$..§:l._. An R/y
' or asymptotically
A B iRY) 1
— Lo

a8 it should be. Altomtiwly we may use Equation (83) to determine the

length of the pulse; with (82a) we find
0‘ .
L, = = [g (Zs)fi-‘,ln R]

(99s)
‘and for Vthe duration
T oz ;?‘;5 g 2+ 2, In R] (1008)

; The shaps of the pulse is obtained from (83). If At is the time
‘*  interval between the arrival of the shock and the arrival of the signal
Z at the point r, one finds '
a4t - -—-2:‘ [S (Z.) '5'(2)* (2.-2)&1!‘] (102)

o

8.9 THE NEGATIVE PHASE. DEVELOPMENT OF THE BACK SHOCK.

We assume that the initial conditions are as indicated in Figure 2,

se that the negative phase gredually returns to normal pressure. The value
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L « O travels with normal sound velocity, whereas all other 2 wvalues in
the negative phase travel more slowly. In fact, throughout the whole region
in which di/dy; is negative, the L - values have a tendency of catehing
up with each otéor- At some stage a Z- value in this region will overtake
another and then a shock starts.

As long as r incresses with increamsing Y the 2- values are in the
correct initial order. If r as function of Y has an extremum, some -
values have already overtaken others. A shock starts at the boundary between
the two cases, when r as funoction of ¥ has & point where both the first
and second derivatives w;gnish. |

From (83) follows for fixed t

ar {1 .t 2 | ldg ,a2 J ' )
AR A ne

The condition that dr/dy « C gives

de 4% 0 (104)
AR A

Now from (82)

.‘}5;% [1-:‘23’]- ddz Bny
Vo o T (108)

and (since ol Z /0oy is small), dg/dy and a2 /dy ocemnot venish simultan-

eously. Henoe thay must both be finite in (104) and we may write

%&i*‘e“r: o (108)

1f we differentiats (103} once more and put dr/dy ':-.‘dzr/dyz 20 , we find
r

. ’ (107
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If we neglect smgqll terms of the order Z/Co)/ and L/f » this con-

dition can easily be reduced to

& -
d Z/d' - 9, {107a)
end similarly (106) ylelds with (106)
21\ "-/'1 ;‘.9. df | (106a)

The Eauation (107) determines the value 2 « I, , at which the baek shook
starts. Substitution into (106) gives the redius r = ry and finally (83)
gives the time ¢t = t3 .

The back shock starte somewhere inside the negative phase and for some
tims st least the pressure in the rear and in front of the ban shook differs
from normal. If 3 , 2» are the corresponding 2 wvalues, m‘hgvo
for the shock velccity in‘nnalogy to (86)

' e
4x c,[\ + o i{,'*zn} )
d % ';""""C‘Y'" (108

where Y 1is the position of the back shock: In addition ws have two squa=-

tions similar to (84) .
AN ﬂw k=9(Z)+ 2, £nY+k
Ry [Y R t)] %( “r 3 rhes (109)

-
Following the procedure used for the first shock, we find equetions similar

to (88)

26720, dY L dg BnYs0
.1'\( df'f difl

5-% 4y, 49 BaYeo -
LY ds,  &Z, |
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Combininyg the two enuations we find

42, | ImY.dg[aZ

P

= 0.
dz{ b’nY-&-d.g/d. Z (111)

Eliminting Y by means of (109) one finds

4%, 9z -9 % ATHITEEN
dZg 3(1,)-36;‘)\»(2; z)d.g/dZ ~ (112)

This equation requires in general numerical integration. |

Since dboth I, and 2p are negative the shock travels with a veloc-
ity below the velocity of sound. Hence the vplue L =0 will eventuslly
catch up with the back shocks and then the back shock leaves the material
behind at nérml pressure. Then the equations for the propsgation of the

back shock take a form similar to those for the first shodk

R
with the solution
/12. wiy zl
x g KE J d' E— * """:
) MR } i 5; A Yo (118)
. %

Here I,, ngyare the values of Zf and Y at the time when i, reaches O .
Just as for the first sheck it follows that g approaches zero for

large Y and one hes asymptotioally

2 mv/v S (126)

_ 2 :

@, (= é_ﬁ 43+ 2, ﬂnY (116)
o | )
h\/#: (3% ) :jn R# ' (117)

S-.0 :

—
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We have seen previously that asymptoticelly the strength of the back shoek
must be the same as that of the first shocke Fence A should be equal to
Bo Io‘o

2, d 2
2 f 553 4545, HR,-T Y20
z,l

(118)

Using the expression (82) for g we find by means of partisl integration

by .
2 f b ?—i d2 = B YAN f%{"‘z {2'%}“.‘! (119)

-
O

The lest term in the integral is small and we riqniro therefore

2, 2
TS R AT
zz

(120)

Rere Y, is the value of \ corresponding to Lz and we have made use of
the fact that y = Ry for 1 = I, If we chocse our initisl conditions
at the time when L Jjust vanishes behind the beck shock, they y, = Y2
and the integral cf 2 teken over the whole pulse vanishes. The same i=
true if we choose the initisl conditions at sny later time.

For later application we shall finally write down the equations which

result if the initial pulse has linear shape. I-e-,y we assume

)l+ Lo - RQ

2 = Zo MWMI:NM ’ {" Tt & Q;-?.L‘( Y < R‘ (121)
°

where» R, 1is the shock radius and L, the length of the positive pulse

at tims t = t o Z, 1s the value of Z at the shosk front, which is related
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to the shook pressure by the Bquation (93)
- R, ¢ 4
20_ . *Ps |
& (122)
Differentisting the funotion g(Z) defined by (82) one finds with the help
of (121)

-igw (l~w} ,8...)(

dZ (123)

Feglecting the second term in the bracket, which is smel}l and observing that
b 4 is for precticsl purposes constant and ecual to Rys wo find that _iu‘/d: b3

is constant .

dwg | - S'& }:..!' -" &Q': - /&& R‘

45 « I, ' (124)

Here we have used the definition (956) for R”.

For the constant A2 defined by (96) we find

| K- X (gh+4R)= 4 L2 5, A(R/a)

(125)

The pulse is charscteriged by the two constents R* and A2 3 }2 it esséntially
the product of the duration 8= L./chnd the shock prossuu ﬂu?s, mzltiplied

by the radius R. More preclsely

LHps-
A= ;2'%/6 P, R _ (126a)

The redius R " is s.’milarly given by
. ¥ . , |
R'=R e T R( )

(124a)
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Here the subsaripts o have been dropped,; since these quantities are con=

stente and apply therefore at any time.

8.10 TWC PRESSURE PULSES CATCHING UP WITH EACH OTHER

If the explosion of the 'gadgat takes place at soms considersble height

and the presaure pulse is messured by airborne instrumente, the problem a-.
rises whether the reflected shock from the ground catches up with the first
shook, and what hapvens if it does.

| We sesume for simplicity that both pressure pulses have reached the
asymptotic forme As long ee the front of the second pulse hse not reasched
the resr of the first pulie the two pulses behave independently and the cel-
sulations of the preceding sections applye. The mid-point of either pulse
travels with sound}{ velocity o, and they keep, therefore, st s cbnstant
diztent (apart fro?p é’;ometrical factors arising from the faot that the re-
flsoted shock has a oemr different from that of the first shoek; these
ai-e mglooted in the following considersticns). However, the length of each
pulse increnses indefinitely snd therefore the reflected shock will some
time catch up with the rear of the first pulse. e thonfhnve three zhoocks
as shown in Figure 3. '

_The ecuetion for the first shock, of course, remsins unaltereds i.e.
. - * o ‘

T

(128}

where the suffix 1 refers to the first shook, and the suffix o to some
specified time, e.g. to the time when the second shock just cstohes up with
“the first pulse. R* is given by (124). Obu‘rving that the lengtih of the

positive pulse at time ¢t iz equsl to 1/2 (Ro - Yo)o we find

LR = dp R, -5 &2 “"{: | (127
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Figure 3 -

Three Shocks where the reflescted shook will
sometine catch up with the rear of. the first pulse.
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Similerly we have for the back shock of the second pulse

W5 AR
S, = -2y AT

Anzfz
' : (128)
8 7 . Y.-2Z,
Bl L, -1 S
: 30
(129)

For the central shgok we have to uge the equaticns devised for the case
when both the air in fromt and in rear of the shock deviate from normal.
These occurred previcusly in the treatmﬁﬁt of tﬁe back shoock and ere given
by (110}

.Z.&E}_ é..y +d1% +AnY s 0
: dZ dz,

1Y (130}

CTa-2; 4y L d v -
S35 333», ﬁadw\( 0

in the first of these eousticne ¢g/& Zl . is to be taken from the g=-funoction
of the first pulse; i.e. it is enual to -/4» R* (see Equation (124/).

‘ ) *
Similarly, in the second enuation dq /d- Za-AnZ, Thus

aY | LY SR 20

Z,-2y 4Y

Cay dZ,

23-2,1 4d.Y +'Bw\(‘_lnz*=0
2Y d 23 |

(131}

These equations may be combined to giie

2aY 42, "'E'J.) » ey & O
5,3, Y Y EBIRT BT

(132)

Integration yields.

(3 -2 ) IRt (Yo/
E?‘—zx (239 25 Jﬁ?ﬁi‘%{;ﬂ—é]/z)

(133)
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If we substitute this expression into ome of the Fquetiens {13} and
{

integrete, we obtain 22 and 215 separatelyve

\/E;C\r/z )- f,&.(y/n )

z n - T s + B

The result is

A ’ V.‘\.L\(!P*
(134)
. A ¥ \
/
4
where
A=(Z, -3, DV Az mcv.,/ R*) )-
A(p.‘/i’\ ) f\
B = Siovin Yo /R + mew/m (1;5)

‘ . N
‘\.7__,, P

JinCY. 1YY + Jum OY,, /z*)

it Bn (1/2%) > > | A, (R°/2* ), the equations can be simplified

/B O TR CY, /253
ZL (2 Zlu) _&JL /w) +
] AL ),snc*/,/z ) (138/
23: Ji-(zao Zlo e CY/E‘) +B

i3 = 4pe  According

-~ 4o (133) it dreps much faster than either ths rear shock or the front shock.
However, the pressure level at which this shock occurs tends, according to

(136/, to & finite I valus.

catch the first shoock (if B) 0) or the rear shock must catch the central
shock {if B<O).

‘1et us consider first the exceptiomal case B = 0. Since 220'-‘*‘*' Zm,
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B a9 1mplias thet

z, Jin Y, /RY cv/a*) - Z, fﬁn(Y/ZJ

(13 7)

Noglocting the small difference between Y, and Ro» these quentities are
identice) with the quantity A defined by (125), which jn turn is related
to the "impulse" of the pulse & APy muitipnea with the shock radius (see
Fquation (126a//e We conclude that B = 0, if the impulse of the two pulses
is the seme at the ssme radius. It will be noticed that R‘ and Zl.l mui |
nevertheless differ. Thus,qnz‘pulee may have long duraticn and low shook
pressure; the other shert durstion and éomparutively large ghock pressure.
If B « 0, then both 2 and I3 tend to O more rapidly than either
L, or 24+ Thus the positive phase of the second pulse and the nagstive phase
of the first pulse are aventuelly eliminated‘ﬁnd there remains the positive
phase of the first pulse, which combines with the negative phase of the
sescond pulse. All ﬁ%is, of course, tak?s some time, until )zn&(Y/R'.)>)
A (Yo,/R Jo 1f R* and 2% differ from esch other the pressure grad-
fents in the positive and negative phase will also differ, only the product
of shook pressure and duration will be the same. If the two pulses were
completely identicml, the remeining pulse would be indistinguisheble from
either, so that the reflected shock has simpl& d}sapneared. l
If B is positive, we require thﬁt th; impulse in the second pulse
is greater than the impulse in the first and in this case the central shoek
catches up with the first shocke Eventually the first pulse has disappeared
and only the second pulse remains. Similariy, if B 1is negative, the sec~
ond pulse will eventually diaoppen; and only the first pulse remsin «

Asymptoticelly the energy in the blaet wave is therefore not equal to

the sum of the energy in the two pulses hut';qual to the energy in either

K
b
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the first or the second pulse, whichever is the grerter. 'fhe roma_indcr of

the energy has been dissipated at the central shocks This inoreaséd snergy |

dissipation is dus to the fact that the sheck front of the second pulse

must go threugh the negative phese of the first pulse. E.g. the enargy dis-‘

sipetion just before the seoond pulse catghos up with the first is propor-
tional to “4(Ap.)3. assuming for simplicity equel shook strengths in both

pulses. The factor 4 arises from the 4 shocks. Just after the second

rulse ceught up with'the first, there are two shocks of strength 4Apg and

~ons of strength 24p, and the energy dissipation is proportional %o

LAV

3 3 s
2(bpg) + (aaps) = 1o (Bp,)

and haa,tharatore,ﬁncreaéod by a factor 2.5. = . o *
If B> 0, the radius at which the central shock cstchas up with the

first shock is given by the condition Zp = &y A;ter aom;_manipulqtinnv.

.one finds as consecuence that Iz & 24 = 0, 1.s. the fromt shook, which u

now I3 hes the same value it would have had if there had been no first

-

‘pulse. Ailso one finds for the radius R the condition

2L IR /R 2 T, Sy Bl £ 2T Ba(2. /2
VB (R[8") = Sl (R TR") S A )T -TGRRY

(138)

8.11 THE CONTINUATION OF THE IBM~=RUN

The methods developed in the preceding aectioni have been used to con-
tinue the IBM results of Chapter 7. The IBM machines give us the pressure
p a& funoticn of the radius et a fixed time. From these data we obtain
immed fately the function E(z}) snd we can deduce the function g (i) de~
fined by (82). This function shouid;éf_courte,be independent of the tire.

It is shown in Figure 4. The circles refer to the last IBM cycle when the

-
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shock radius is 314.7 (we use here the "IBM=-unit" for the rn'dius whioch is
19.97 meters). The crosses refer to an enrly oycle, when the shoek radius
is only 200.2.

For the numerical evalustion it wes ccnvenient to introduce ,instead of

Y. the quentity .

5 = ‘u = _.....iRA .
<, )
(139)
and instead of g
’ oe (140)
then the positive phase crn be represented in the form
g% 2.2 84 075 &2
(141)
_ A0°F
e o d . ’2‘ -
Substituticn into (89) yialds A T o
e, MY & Ap, 5
L.R;;ﬁ;_mg& I[z.z.p,oss],w:.m:f
5 P, R
F (142)

where SF {s the walue of & at the shock front. Here we have used the

‘ = 2,86
boundery oondition that at R = 314.7, 4Ap; « 0251 Po * \.N‘;.ﬁ 2,86
; e
Eow
A8 S becomes small, we have approximstely ',’v* .
F v
4 =
a) .
AP‘ = pa——— 3 % R Z:Y "&"1-'- 13003“/
P P%ﬁnCR R*) (143)
° (R in IBM units)
, - |
Introducing the meter ss unit, one finds
(144)
(R in meter)
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The date from the earlier cycle are better represented bty the formula

»

£ 3 1e€ s+ 0.12 8

(141a)
<)
which leads to &2 :
InR e 1946 ¥ [y 6..0867 8,
" [ T ) (142a)
end asymptotically,
Aps . " (R in meter)
P R n (] Fe
(144e)

which differs. by about 6 per ocent from tﬁc pfeviaus formulas This 1s the
error to be expected, since st the smaller redius the over-rreassures is 4.4
per cemt. The dats from the larger radius should be more reliable nnd heve
been used for all calculations;

For the nlga%iv. phase, we peat a good approximestion by the formula

£ (114 0.38 n)&{ 3. i‘l""" s}«r 5.78 s

, (s <0)
The constents in this representation have been chosen in such a way

(145)

that we et not only a good represertetion of the numericel data, but thret
slso the slope of the function g 1is continucus st = a2 0 nand thet the
integrerl of the pressure taken over the pulse vanishes. In sctusl fect,
the data from the last IBM-cyocle sre somewhat erratic im the neizhborhood
of 8 = o+ Thie nust be due to an error in the IBM-run, since the data
from the earlier tycle are quite smeothe For this resson nc attention
has been paid to this erratic behsvior and the condition thet da/&t-:-

be continupus st s = o has been uged instead, in order to get a reascnabdle
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function g.
We have seen before (see Frustion (107)) thet the back shock will start

st ; value of s Ffor which

dz% /d s§=0

v (146)

If we use the rresentation (146) we find that this condition cannot be setis-
.fied for any negstive s. Howsver, this is due to the analytic representation;
if we go back to the numeriosl data, we find thst the curvaturas ohanges signe.
The exact value of s where the change of sign ocours 1s not easily deter-
mined; hmﬂvcr the minimum slope can be dotermined fairly sccurately end
is B+2¢ The 8lope determines the radius at which the back shock starts

(see Equation (106))

,ﬂn i “gy(?ﬂ_)minim: %‘%; 8.2

(147)
r = 1,4 x 10* IBM wits = 2.8 x 10% meters
¥e shall not be interested in such large distances.
For the duration of the nositive pulse we find from (1N0a/
= 9:L [2 5 2mR.gisp)
ey 5 3noF (148)
or'with (142) »nd (141)
cL [ Mot wss’] -
8- L L% o %S5 s¢ | (148a)
o .

The shape of the pulse at a fixed distance as function of time is sinilarly

giwan‘by the formula (see Eemation (102})

T .- LT R- g (s)]
z ["X 5 Rw R-¢( )J

{149)
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where & veries from its wvalue 5; at the shock front to -3 et the vres-
sare ainimum and back to zero. In order to obtain the time in saconds, we

2

should use for c¢. the "IBM-value" ¢_ = 17.38e

o o

The pesai pressure versus shock redius curv;" is showm in Figure 5, using
"IB¥-units". TFor comparison some points obtained, if we stop the IBM-run
at an en‘rliar instent, are also shown.

The duration versus peak pressure is shown in Figure 19 of Chapter 7.

The equations for the shape of the pressure pulse are used in the next

chapter, to obtain data for the two combat bomhs.

{
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'Figure 5 -
Peak Pressure versus Shook Rsdius

eeevs= Semi-Acooustic theory plotted at R 314.7
)( ‘Seml-Agcoustic theory plotfo.d at R 200.2

- we Im R‘lult‘ ‘ ;
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CHAPTER 9

THE EFFECT OF ALTITUDE
Ke Puchs

9.1 INTRODUCTION ' i oo

Cne of the easiest measurements of the .oftcet of a nuolear bomd in‘con—
bat conditions is ¢ measurement of the pressure pulse by ninna of niijorm
gauges. The instrumnt: used for this purpose are described in Chepter 18.
Safety consldorationa tor the planes from which these gauges are rclanaed

meke it impossible to get close to the bonb- Furtharmore, since these gauges

are released at great height at about the same tim the bomb 1s released,

but are attached to parachutes, they will still be at ﬂ conaidornblo l\oight

when the blast reaches them. |
The information Ncoind from the airbprno gauges was in fact the only

quantitative informqt,ion on the bombs dropﬁo’;l over Hiroshima and mgnaki. :

until scientific tenms could enter those,-;,._ims .f'tor the cessation of Bhos~

tilities. The inatrumonts recorded at a height of about 30,000 feet, whon
the -tmocpheric proseure is conaidorably reduced. They were at a dist_a‘ngo,

of 36,000 to 40, 000 feet from the bomb.

Such large distanoos can be covered by the semi-g ..wm;
OWW- Homver. vn have to estimate alao the orroot

of the change of prossuro ‘and tcmpornturq with altitude in order to inter- |

pret the records. | ‘ _ ‘
fie shall make the nnuuption that the Omrgy is Ouittod unit‘omly iu

all directions. This usumption appoars eninently moomhle, since tlu

eltitude effect will become .pronounced only nft.r‘tht shoeck w.vo hu d,«yod"» | 57-.,4‘

T IX -1
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into a pressure pulse of length small compared to the distance from the bormbe
If in eaddition we asaum_a“tm acoustic treatment, we obtain the Rayleigh

correction factor for the over=-pressure

op [ VI
sp, 1 &e, W

whore/f’ c,V'JAP éra der;aity, sound v'elocs,ty and ove.r-proasurg at a giwg height,
and ,f:‘ co’Apoaro the same quantities for a uniform atmosphere. The duration
of the puige nad the energy in the pulse are unchangede. The latter follows
imdiqtely from the faot that in the scoustic theory the enerdy in the pulse
is crmstant.

| We have seen in Chapter 8 that the energy-dissipetion in the pressure

pulse is important. Cleerly, if the energy dissipstion is taken into account,

the pressure pulse at ,_.QM&LM&M&A@&JLlLdgm.ndwnnh._A.Q_nlv on the conditions

at thet altitude, but slso on the paat bistory of the pulse. For a linesr

pulsc'wo shall find that the correction factor is composed of two factors.
The first is identioal with (‘1)- The second fector represents s change in
the form of the snergy dissipation tei'm, which ir: a uniform atmosphere is
(tog (R/r )" Y2

a function which depends on the varistion of the atmospheric conditionse.

. The log is replaged by the integral dR/R, weighted with

The resilt is R N
PR
AP P (4 (R Sy ,{5_% dR
4 P, ‘E‘;& ] 03.( /%) / Lii\"@cf R (2)
Clearly T - ‘y ' L
(et B (L
Ei-(ﬁﬁi) ¢ AP, ‘ ’%g°) | (3)

The duration of the pulse, which in the acoustic theory is "qnchanged,

also undergoes a change, if dissipntion of energy iz teken into account.
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We shall find for e linear pulse

R
6 . cs ,‘7’,% "dR [leg (RfR DA
) /E‘f- £e R/ 3 /

o (4)
so that ‘/
0 % (L%} |
' < ‘é“o ( c (Jpc ) - (5)

The duretion of the pulse therefore insreases with altitude.

In Seotlon 9¢4 these f'ormulse are generaliged for an arbitrary shape of
the pulss.

Compared to the acoustic theory the pulse ie therefore less strong, but
longeres In principle it 1s therefore sasy to cleck the theory by considering
the distortion‘of the pulse shapey which is approximately independent of the
energy relegse.

However, if we try to do so, we are confronted with the embnrr;sslng sit-‘
uation that the Hiroshima record and Negasaki record oontradict each other.

This is the more mysterious, since they were taken at exactly the same alti-

tude and approximetely the seme distsnce from the explosion. THence, we should -

expec’, the shepe of the pulse to be approximately the same in either csse.
In actual fact ths Negssali record gave m higher peak pressure but exactly
the seme dursnticn as the Hiroshima record. |

If this result is real, it cannot be expleined as an sltitude effect,
unlese tte verietion of temperature end rressure with altitude diffarod.com-
pletel; in the two ceses. Neither cculd it be explained on the basis of
any effect which obeys the usual sceling laws.

If we trust the pesk pressure measurements, the Nagasaki Lomb was ebout

times es powarful et the Firoshiome bont, in moderate agréement with the

factor 4 deduced by Pernney from the tlast damage. If the duration of the

™ :
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.

f‘pulae is used, the two bombs were equally powerful.

The Hiroshima recorc gives a shape ¢f the preszure pulse in fairly clcse
agreement with the theory; the Kagasaki rulse, however, is much steeper thran
exrecteds

< The velues of the nucleer aerergy release derived from either theory,
vsing the peak pressure cr the duration of the pulse as critericr are given

in the following teble:
Table Fe1

Energy relesse cof combat bombs ir tons of TNT

obtained from
pesak pressure : duraetion
Nagasski
) Acoustic theory 35,000 ! _ 20,000 :’
Thecry with enerpgy dissipation £1,000 i “11, 700 .
| Biroshima :
:Acousﬁic Theory 7, 700 | 19,500
‘Thecry with energy dissipetion 1¢,600 . : 11,400 -

9.2 ACCUSTIC THEORY

ﬁh meiw the following assumptions:
| (1) The pulse is weak; mcre preciselyt;P <</0c‘l
(2) The length of the pulse is small compared to the radius to
which it has peretreted.
(3) The length of the pulse is small compared to a distance cver
which the atmosphere changes apirecisbly.

(4) The energy is emitted unifornly in all directions.
An importent conseguence of the assumption (3) is that the distortion of

the pulse is confined to a chenge of scele only. In particular the retic
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of the mearn square of the pulse to the square of the shock pressure is un-
changede This is not true if enerpy diselpaticn is tsken into account, un-

less the pulse hes the asymptotic linear form.

————————

(ap? . (BR) o
(A P;)L (APSn)L (@

Fere the suffix o refers to the same quantitles in a uniform etnosphere.

In the acoustic theory all eignals travel with the velocity of sound.

If at time t = o0, the end of the positive phase wes at r « then
at time t it will have reached the radius r, where
, A [ ® 1\*
t - -d—v}i-\' ' ‘\(‘
‘ c(A) K
~
[+
Similarly for the head of the pulse
el A
£ dy. N
cind
Moty

where Lo, 1L 1is ¢the length of the pulse at time t « o', and at time %o

Subtracting the two equetions we find

A+ '."0 A+
Q. A
dt. = ar -
O e(n (7)

hy, ‘
Thess irzteg_ralls. Lhowever, are identical with the duraticn of the pulse.

‘Hernce we fird that the duration of the pulse is constant.

6-86, (5)

The energy per unit solid angle .in the pulse is given by

w —Q‘/A pu dt i

to be integrated over the path of & volume element. For s weak pulce, we

can integrate keeping the position in space fixed. Also Ap=z OCW «Hence

w- 2R ("K‘;)’ O/fc, (10)
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The fector 2 arises from the negative phase.
‘Since in the acoustie theory the energy per unit solid angle is constant,

it follows with (6) ard (8) that »
. .,p <
LDy, ° o |
This is. the Rayleigh correction for the presgure.

9.2 THEORY INCLUDING ENFRGY DI:3IPATICN

In order tu include the effect of energy dissipaticn, we shall make

one additicnal mssumptiom to those mentioned in Section 2. That is

(6} The pulse has linear shape.

This assumption is et least apprroximgtely true for the positive phase in
the region in which we are interested. Sinee the positive and negative
phasesdo not interlere with each other, the essumpticn is therefore spprox-
imntely correct.

one of the shock conditicns is

AP‘ z Pc U (12)

in view of assumpticn (3), we can treat the history of any given volume
olemrrh\' on the besis of a theory in a uniform atmosphere. Then the equation

(12) 1s satisfied throughout the pulse

AF =pev (13)

The energy per unit solid angle is again given by (9); for & linser pulse
we £ind

- Y 2
. n* it F24R* (A efPc
w=R J{ AF“ N3 ( P'S} / (14)
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The energy dissipaticn in the shook and back shook can be eoxpressed in the
form (compare Bquation (74} Chapter 8)

dw . - £ “an‘.c.éj)‘)a el = ?,:;,:_'_,

iR T3 T pEe (18)
Combining the two equations we find
2 SR onY ofpe] + R (B pie 0 e
The shock velocity is given 'by the Rugoniot conditiom
%’[? = C+ %ﬁ%‘ | | (17)

So far we have been concerned only with the local conditions at the point
wﬁore the pulse happof1£ to be. We require one more oquaf.ion. in whiech the
variaticn of atmospheric conditions appears.

For this purpose we observe that the average veloqity of the pulse is
given by the sound wlo&ﬁty- This follows from the fact that the veloclity
o£ the back ehook lags as midh below sound velooity as the welocity of the
front shock is above sound velocity, and that trh. pulse is symmetrice. The
latter was shown in chupéar 8 by means of the genersl arpgument that .th’o
total displacemsrt of any volume element decreases as l/_Rz and t}urcforo

asynmptotically

Thus the midpoint of the pulse, which is elso the end of the positive phase,
travels with soumd velocity. If O is the duration of the pulse at radius

R, we have therefore
R
= g - :
t / = ~® (18)

where t 1is the time when the shock front reaches the redius R.
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.
We nur have all necessary equaticns and procesd to solve thom- Dif-

ferentiaticn of (18) yioldc

dt _ 1 . de |
woTTdR 19

Cbserving that the second term is small, we find

flfz R S ¢ 5'.’:,.92.

Comparison with (17) yields
_.d'e - % (21)

dR =~ 2pc3
Thiz eguation can be used to eliminste Ap’ from (16), with the result

d@“"' g -3
G [Rpefe CqR) | +RP e (G002 0

dR (22)
Integration of this equation gives
2 _§a32,d0 ¥ 1 n¥
"\f" 9(@).-—00«1:0 ~qB (23)

<t

A second integratien yiolds

-B/ R RS
Wc (24)

where r, 1s ancther constent of mugnticno

‘Substitution inte (21 gife& the shoek préssure

: .
&p, - e.ms/r 9_&3] s |
’ 3
Ps AP R (25)
°,
In a uniform atmosphere of density Ja and sound velocity o,, we find the
asymptotic lsw of Chapter & 3/
(AP)_.BU’"‘)‘% | > .
s " oL Rylm (Rjn,) | P
thus r, should be identified with.the redive R* in the ssymptotic law

gl
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for s uniform atmosphers. The altitude correction factor iz the ratio of

(265) end (26)
Aps - [P &

(ZSFS)O “WpLe 8 (27)

where 9/ 6, 1is the altitude correction factor for the duration, which is

ginn by R y
8 - et X dR [ s
o U € J3E R[wm®RY (29)
R#

9e4 ALTERNATIVE DERIVATION

We sha;\l now give an alternative derintipn of the formulae given sbove.
This derivation follows closely theat given in Chapter & for a uniform atmos=
phare.

In thiz derivation we use the concept of p signalse In & uniform

— atmosphere 2 remsins constant along a'chncteriatic- If atmospheric con-

ditions change, this is no longer true. We shall make +ha usumption‘ thet
81l 2 - values change with the distance from the center of the explosion,
by a common factori&;(\ , the same for allZ . This weuld seem to be a reason-
sble assumption ae long as the length of the pulae is amall compared to the
distance over which the atmosphere changes appreciably. Howewer, the oo;.ploto
equivelance of the assumption about the behaviour of the Z- signals with
tﬁo spproximation of a small pulse, is only demonstrated by the fact that we
shell obtain the seme results as in Sombim 9+3. For this reason we preferred
the previous derivation, quite apart from iﬁé“aiimplicity.

The derivetion which we shall give below has on the other hand tre ad-
vantage that it aprlies to an arbitrary shape of the pulse and allows us teo
meke a prediction about the shape of the pulse. The pulse is distorted by

the change in the 2 -~ "alyes by the factor k5~ ‘s The shook pressaurs, however,
-

-
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is changed in additicn by another feotor, expressing the fact that the enercy
dissipation has changerd and, therefore, the > — yalue at the shock front ‘is
no lenger the sams as befcres This second fector has no influence on the
'Qﬁapo of the pulse, except insofar as it outs off the pulse at s different
S = value- The derivetion of Section 9.3 gave us only the product of theae
two factors. Now we shalll obtein each factor separutol}.

Furthermere, in the derivation of Section 9+3, we had an arbitrary con-
stant of integration r,, which represented the radius at which the atmss-
pheric conditions could still be considered uniforme We should have expected
that we should take r, = O Howsever, in order to get correct results
we. found that r, 8hould be identified with t;m radius R* in the asymptotic
lew for n uniform stmosphere. The treatment given below will resolve this
difficultye

Our assumption ocan be stated in the form
5.5k
(29)
where £.° is the value of < at the radius r = r, eand k is a function
of the redius. Boustion (29) holds along the path of a characteristio,
which roes with velooity c ¢ us The excess velocity of the charscteristic
ebove the loosl sound velocity is given by o(Z/R-- If at time t « t°,

the characteristic is at r =« r,, the eqimtion of the charascteristic is

n ) o
i s A & X
S = =20 = — T K (n')

t‘t / c - // c cb

o Mo ‘ (30)
n -
M3
K = ] C; k d
n Cz ) ‘
[

(31)

13
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. Here r_ is astumed = fixed rsdius end t° is then evidently a functien
‘of :i °. K appears only in a srall term snd instead of integrating over the
path of a charscteristic, we csn integrete over the path of the shock front.
Then the integrel is independent of Z ©. |

At the shock front we have

R .
t--to;/ Q.E_'g _ ot Zo K(R)
Pa%

. (32)
Differentistion yields .
R o
dt:_L-(s%E-é_to)¢_Z_s-i§; 4K
d ¢ ‘¢ dz°/ dR % dR (23)
The shock velocity is givern by o
dR ¢ + _".’:.2;5 = <+ 0(2"( = C+ ?..(.._(:'.; .é'..!.g EQ
dt 2R ' 2R 267 AR T 3y
Compariaon yvields .
2 ° q,a i
(K __59_ 4‘i 425 + ’é" :’_ d'K_ = o
« da3°/ dR AR (38)
Letnus introduce instead of Kk the variable Z defined by
R .
Y SN, d . - |
i s L7 0, (36)
then
K= in (Z/2,) S
/% (37
am * C 2 c .«O ZC
| e 4t ydgs L 2s =0
(Mz/zo~ = d.i") ad ) (38)
¥ 38

In this form, trne veriation of tre atmosphere has been elimineted. MHerce
[+]

fis is the same function of Z, as :i for a unifors stmosphere is of R,
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i.e. . o
L s . )
s -3,
(39)
where :E“ (R} 1is the :ZS for a uniform atmosphere. In crder to celculate
© . .
k we use again the energy dissiretione The werk done by the pulse per unit

solid angle is

o w:,ﬁ/(md«t - klpc [(Z")zdf

(40}
Howgvor, for fixed r we have from (30)
% =- (ol & < i; )di (a1)
Hence 2: N : . .
woklpe [T EV(AE - 42T)aZ ”

" We assume theat the back shock has not yet started; then the integral
. Q
extends to the minimum valus of 3 in the negative phase and then back

- -]
to> = O . Differentintion of (42) yields

ZO
dw . dkiPe W | akiPe )43,
) 4R K poc <
. 2 dt df° (43)
+(ZS)(K- dd.i.‘ } .

In the first integral the negative phase does not contribute and the pos-

itive phase giver (:g)% .« Utilizing (35) we find
dw = ¢i“(J°G) W k,!gt’ :E _d
R 4R Kipe ~&c= ( o) "'Pl (44)

The energy dissipation occurs at tre shock front end can be expressed in

the forr (ses Chepter 8, Fousticn (73))
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3 03:3
PINSVINVSS SR : 1y
a R 6 eR ¢R

(45)

Using the definition (31) of K it is found thet this is identicel with

the last term in (44). Hence the first term in (45) vanishes. This requires

sz o o

A (46)
and
< L‘CZ/Z)‘/ % (47
The shock pressure is given by
Ap, = pckZ /R o
With (48), (47 emd (39) we find
f’ Lok - ;
APs S se, Z., (2) (49) |

and the mltitude correction factor is

_éh_;& 2‘5(2) |
(A‘Ps)o /gc' Zos CR) i (e0)

The equation (49) can clearly alsec be written in the form
= Z , ,
- £ {_____?c b b, (z2) «
Ze, (40)

where Apg, (R)_ is the shock pressure in a uniform atmosphers.
From (30} follows that the arrivalwef the signal Z° at the redius

r 1is delayed with respect to thsﬁ shook by the time interval
ot = z"(z")-z’(z‘) 45 K () [5."- ] (52)
= (&%) t’c‘i‘h- o A (Z[7 )[Z -2 ]  (52)
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For a uniform atmosphere, we can replace ¥° by & and 2 by Re Compurison

witi  Bguaticn . (102) of Chapter 8 shows that
Cz '8 5
—e. % (Z)+Z£}/axn=%(/-i
) o

(63)
where g(i) is the function introduced in Chapter 8. Hence
ot = %i [%(2: _?(§°)+(E;’_2.°)MZ] (50)
In view of (39) this can alsc be written in the rorx;a
ak=n (35 2) . (s

where At~ is the corresponding funotion for a uniform atmospheres The

durstion 6 1is obtained by putting E° x O« Then

oS 3’ “nl]:8 (3°
8= 2 [.‘XC SRR Z] . (2 (55)

£

The enustions we have derived no longer contain the radius r, except in

Z- It is clear that the equations should be independent of r_ provided

(o)

we can find a velue of r, sufficlently large that the semi-acoustic theory

aprlies and at the sume time sufficiently small, so theat up to the radius
r, the atmosphere can be considered uniforme With that assumption we pro-

ceed to get rid ¢f r_, in the expression for Z. We write (43) in the form

R *
g o [ e2 5e, 4nv - M R f ¢ .g_i'ﬂw;}_d__._tg
[’“Z "'L""‘z“'mj TE z' N ‘ *m {U-J'Jo;! 'R (56)

Since the atmosphere is assumed uniforn for r<r,» the integrand vanishes
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in this region end we can extend the integral to & = o

=2 (67) |

1t remains to show that our equations coincide with those derived in Section

9+3 for a linear pulse. For this case (see Chapter 8, Equntion'(Qé))
A
z ‘J'as (R[R;T _ (58)

1t should be noted thet the R* here has nothing to do with the r_  whiech

0
ws had before, but is determined by the properties of .the pulse as shwn
in Chepter 8.

From (57) follows

Lﬁ(Z/R*):QMR-!-/ { j_— } ----- - Bur* 159)

If the atmosphare can be considered unliform up to the radius R* this caa
i~

be written in tha form

.i;m,(Z/Ps* [ ‘:2 CIL: : ‘ '(60)

C.

Substituting (58) and (60) into (50), we obtain the formula (27). (28), witn

the correct radius R* . It is now clear that the nacassity whirh arose
previously of identifying rg, with R* was artificial, introduced by the

limitations of a theory which assumes the pulse to be linear throughout.

‘The results which we have obtainad can be expressad in termns of cimple scale

changaese Define
R r Sp—— :
Meew [ {150 - | (s

since R 1is proportional to the altitude K , it can also be written as

h
) - @,;0/ {%{F_j—g’.-—f\}% | (52)
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and depends olearly only on the altitude, but not on the properties of the
pulses Then the altitude correction is taken care of by changing the radius
acale by X , the pressure sosle by )JR/IE; and the time scale remains
unchanged. The factor A appears in the pressure scale becausefc ix RAp
and the i-gcals is changed by the factor k -vjco/ﬁ. Hence the soale
fmotor for RAp is the acoustic correction factor m% » but the scale
factor for Ap itself containe the length scsle factor PN {s8® also Equatien
(499/ )«

9.5 EVALUATINON OF ALTITUDE CORRECTION FACTORS

The temperature T 1is a linear function of the eltitude up to about

10,000 = 12,000 meters. It is given by

 (63)

To. l-sh (63
T o

e x 2426 x 1078/ moters (64)

1t follows that the density 2 is given by (8ee for example Durand,
Aerodynamic Theory, Volume I, pp 319-223),
| P ) 2k
jz‘ = (l-ah) (65)
g"u
k - 2.128
- (e6)

The ‘sound velocity 4s proportional to the square root of the temperaturs

67
—-z-— 2 (l-ah )1/2 (
o

L
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Substititicn into (62) yields
ah

In - { W, -1}9%2- | (88)

o

Usunlly ah  will be sufficiently small so that an expansion of the in%egral

can be used

x a = ‘;‘ ) gi .
o= (K+§) ah + (K*:;z.-)gxg 1) (an)? + AKX 4)433:11 ~3)(h+ ) (an)3r

(69)
Also
{
k =JLfReC . ( l-ak )'(k”*) :
Fe | (70)

9«5 APPLICATION TO ﬂIROSHIMA AND NAGASAKI

r

(] k]

The experirental data for Hiroshima and Nagasaki are given in Chapter 18.
Using the semi-acoustic continuation of the IBM‘runvand the formulae for the
altitude effect, wo can dotermiA; the nuclear energy release required to give
the observed peak pressure or the observed duration of the pulse. The energlss
ocbtained in this way have been recorded and digcussed in ths introductisn.

The altitude correction is quite appreciable. The scale factor A for
the length is 2.527 and that for the pressures is 1¢442; i.s., the’ pulse
at that altitude was the same as that expected in a uniform atmosphere at
2.527 times the distance, except that the pressures have to be increased
by the factor l.442.

The predisted pulse shape is shown in Chapter 19, Figures 5 and §,
essuming 11,000 tons energy relsese for Hiroshima amd 30,000 tons for
Negnsakls The Hirvshima record agrees quite well with the theorye The
experimental Nagasakl record, on the other hand, looks quite different from

the expected curvee. This, of course, is not surprising, in visw of the

large discreprncy in the energy release estimated either from the peak pressure
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or from the duratione.

A strange feature of the Nagasaki record is the fact that the shape of

the negative phese agrees very well with the predjeticn, as is shown By the

dotted curvey which is identical with the predioted ourve oxcent that it e

disnlaced by Os4 seconds.
At pressnt we have no explanation for the shape of the Nagasaki pulse.
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CHAPIER 10

THE MACH EFFECT AND THE HEIGHT OF BURST

J. von Heumann and F. Heines

10.1 _ GENERAL CONSIDERATIONS ON THE PRODUCTION OF BLAST DAMAGE

i
Bomb damage to structures is largely caused by reflection on the structures

of the Shqck wave generated by the bomb, and in the case of long blasts such as

causad by‘an atémic bomb, by the ensuing blast wind., In this article we will

cansidér the pressure criteria which determine the height at which the bomb

should be burst so as to maximize the area of blast damage, The problem of

maximizigg the incendiary effect of the atomiec bomb is treated elsewhere in -

this”volume. | | | | ?
The first conelusion one reaches in studying the problem of blast damage

is- tha& the problem is extremely complex and can only be solved in a statistical

or averag@ manner, This is so for two reasons; first, the detajiled descrzptien

of a militafy target can never be completely glven, and se¢ond, the complete

analy@icalnsolution of even such a relatively si@plevpfoblem as the beﬁa#ior of

a blast wavé incident on a wall at an obligque angle has never been'obtained for

all angles. As we shall see later, a solution of the basic problem of shock

reflection from a rigid wall can be obtained by a combination of theory and

experimen;.k‘This_éolution is, however, not readily adapted to yielding the
effect of'?last in better than an average sense in 2 more complicated situatii
As to ihekdetailed description of the target, not only are the siructures of’:
odd shape, but they have the 2dditional complicating property of not being r:g

This means that they do not merely deflect the blast wave without absorbing

L= 1
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energy from it, but take a tariff on the blast at each reflection.

In addition to being weakened by destroying structures, the blast may,
of course, also be weakened by imparting kinetic energy to the debris. The
removal of energy from the blast as it does its job decreases the blast pressure
at any given distance from the point of detonation to a value somewhat below
that which it would have in the abaence of \dissipative objects such as buildings.
The presence of such dissipation makes it‘necessary to consider somewhat higher
values of the pressure than would be required if there were only one structure
set by itself on a rigid plane, The ideal would be to determine for a given
explosion and given target cmfigumticn the required pressures by treating .
these diffractional and other losses theoretically and from first principles.
Syen this, however,would probably be too difficult in any well defined but
realistic special case, and, furthermore, the necessary statistical theory to
derive valid #%erage results for the actual irregular and variable target con-
figuration is not known. The next best procedﬁre would be to derive from theory
or from experiment the lethal pressures for a given isclated structure, to
average this properly over various actual structures, and then to cempare this
with the average pressure level at which the damage under consideration has
been empirically found to occur. The ratio of these two pressure levels would
then express the losses in question, This procedure is not practical either,
mainly because the first mentioned pressure criterion is not sufficiently well
known or sufficiently reprodgpibly defirted. These influences must therefore
be accounted for in qualitat:;vé ways, noi on an absolute basis, but rather in
the sense of comparing them in two situations - one, the situation of actual
interest, and the other cne, a standard wh;re the presgure level corresponding
to the observed damage radius is empirically known. o

The pressures which are actually inflicted upon a giv:m structure will

have been amplified by refliections from its own or nearby surfaces and decreased
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by diffractions around openings and corners. The latter forms part of the
losses referred to above. The former may cause local increases in pressure
which will, under suitable cmditiohs , be quite considerable, For over-
pressures of less than, say, 10 pounds per square inch, the acoustic theory
applies in the main satisfactorily, except for rather glancing reflections.
According t.o it any reflection, head-on or oblique, doubles the overpressure
at the surface. (Coneerning the limitations of this assertion - cf. Section 10.3.)
It is not difficult to find geometrical arrangements where as meny as three |
such reflections superpose their amplifications without any losses, e.g. the
phenomenon of a shock running into a'90° corner.’ (Pigures la, 1b, and lc.)
Thus, in such a case there is a local increase in pressure of four times the
initial overpressure in the shock, even in acoustic theory. (The exact shock
theory gives even higher increases, cf. below.) The case cited is a special
example of the more general problem of the pressure increase which may be
obtained when an acoustic shock runs into & corner having an angular opdfiing &
at an angle of incidence o, In this general case it can be shown that the
proasure' increase to be expected is np where p is the overpressure in the shock:-
wave, n is the number of shocks that have traversed the region; n is deteramined
by the angle of the wedge O and the angle of incidence ol . Reasoning from
the fact that infinite pressures arevexpect,ed in a convergent cylindrical shock
as: |

@ —>» 0 for o = 9/2, n — oo

The actual pressure amplifications that can be attained are limifed by the
rarefaction wave from the edges of the necessarily finite wedge.

These local increases are real and well-known: indeed the blast is noto-
riously erratic, and frequently affects some parts of a structure much more

than other closely adjacent ones. In spite of its reality, it is clearly
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hopeless to attempt to follo;l this effect into all its ramifications. On the
other hand this is not absolutely necessary, since what is really needed,is an
average statistical theory. Now these local reflection amplificatiqns and the
opposite diffraction shielding effects which necessarily accompany them in
neighboring areas, are clearly all perturbations of the main blast phenomenon,
caused by the irr«éularities represented by the target and other structures.
Consequently what must be estimated is this: Which formations can be dis-
regarded as local irregularities not materially affecting the main, average
evolution of the hlast wave?

We do not possess an exact theory of this phenomenon. There exist, however,
good guiding analogies with acousties and optics - that is, with linear wave
theory. It is well-known (cf., e.g. Wood, Physical Optics) that irregularities
with di@easions of less than 1/16 of a wave length leave reflection "perfect”
from the "optical® point of view, Probably a good deal less t.han‘ this, as
much as 1/l wave lang‘t.hi will not affect average intensities significantly, i.e,
they are negligible in the sense outlined above., The linear dimensions of
typical hom;ses‘ are of the ordgr of 30 feet to 50 feet, they may conceivably &0
up to the order of 100 feet. Hence they are negligible for wave lengths of
120 feet to 200 feet or ov‘:}, and even in extreme cases for wave lengths of
400 feet or over. In the case of a blast wave, a certain difficulty is caused
by the absence of a well-defined wave length in combination with departures from
linearity for higher shock strengths. It is clear, however, that Fourier
analysis, "aa well as any other poésibly preferable decombosition procedure, will
have to assign to the length of the main blast the essential role of a wave
length. This main part of vt.he; blast wave is the so-called positive phase of
the blast, Hence, it is felt to be Justified in treating houses as statisti-
cally irrelevant perturbations, if the pcéitive phasé has a spatial tension of

at least 120 feet to 200 feet, or perhaps at least LOO fest. It is clear that
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these arguments are loose and rather qualitative, but they probably do justice
to the main features of the situation.

The length of the positive phase of the blast due to an explosion caused
by W tons of INT - or any other explosive of‘cquivllent blast energy - varies
slowly with the shock pressure level at which it is taken, and is proportional
to W3, 1In the significant region, which will turn out to be at 5 to 10
pounds per square inch, the duration of the positive phase is about 0.025 seconds
for W« 1 ton,

The shock velocity in this range averag;s about 20 per cent higher than
sound velocity, i.e. it is about 1.2 x 1100 feet per second = 1320 feet per
second. Hence the length of the positive phase is 0,025 x 1320 feet = 33 feet.
For a nuclear explosicn, say 20 x 103 tons fﬁT~blast equivalent this becomes
(20 x 103)Y/3 x 33 feet = 900 feet.

To sum up: For the nuclear explosions under considera® on (and actually
even for much smaller explosions) houses and other obstructions of comparable
dimensions may be treated as small perturbations which do not appreciably
affect the main evolution of the blast. For a lgter application it is useful
to point out,that houses, quite apart from their established "small" sisze, are
also & feeble overall influence because they cover only a small part of the
,ground. Even in "built-in areas®" they hardly ever cover more than 25 per cent

of the ground, and therefore,the progress of a blast wave along the ground

k4

takes place in the main over a smooth surface.

o

"

This being understood, the one 6bstruction which cannot be disregardgd on
these counts will now be considered since its dimensions are more properly
described as infinite. This is the ground itself. In other words: In follow-
ing the main evolution of the blast, the reflections and diffraction of a blast
from everything else but the ground can be neglcct@d, but its reflection from

the ground must be taken into account. According to these prineciples, -
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the ground can be treated as a plane refiecting surface as long as its formation
is plane from an averagé topographical point of vie:v. (Focussing, shielding,
and other gross effects of hills, valleys, etc. are well-known, but we do not
propose to consider them here.) Also, since its density is 1,000 times that

of the air, the transfer of energy through the air into the ground is negligible
and it may therefore be treated as a rigid reflector.

There is a great deal of direct experimental evidence confirming these
views (cf., e.g. data obtained at Woods Hole and Princeton on high burst).

Thus we have reached a standpoint where the reflection of the blast frim
the ground, idealized as a rigid, reflecting plane, is taken fully into accéunt,
and all target structures are then viewed as immersed into the average pressure
fi?ld thus produced. Two situations (in two different explosions, at two
different positions) for two targets will be viewed as equivalent, if the
surrounding pressure fields obtained in this manner appear to ba equivalent.

Thus far nothing has been saidl about the characteristics ofv a pressure
field which debermi;e damage.v A static pressure, i.e. cne which lasts forewerJ
will damage a given structure in a given way, if it exceeds a certain minimum
value pg, which is easily do.t.erngtod experimentally. A pressure which lasts
only a shorter time, eay t, will élearly have to exceed a higher minimum value
Pt,in order to cause comparable effects, Clearly py will not differ signi-
ficantly froﬁ p eo , if t exceeds some time T characteristic of the structure
in question, being essentially the elastic half period of an elutié structure,
or the time in which irreversible basic deformation occurs in the case of an
inelastic structure. For o\rdj,,nary houses, etc, this T 1is of the order of
15 milliseconds® For the 900-foot long nuclear explosion blast (cf. above),
which therefore lasts about 3/L second, this limit is clearly far(exccoded.

In actual blasts p veries with time: p = p(t). When the dl;;-ation L7,

experience shows that the significant damage criterion is the impulse f pdt.
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fqr a duration which is» £ , the beginning of the peak pressure curve up to
o 1is in the mair p(o), and it is known that the significant quantity f;om "
the point of view of damage is the peak pressure. Thus for nuclear explosicns
(gf, above ), the da@age eriterion is the peak pressure viewed statically and

the situation boils down to something fairly simpie: reflection from the ground

and then only the peak pressure to consider.

10.2 THE HE;GHT OF DETONATION AND A QUALITATIVE DISCUSSION
OF THE MACH EFFECT

A bomb detonated on the ground is certainly closer to the target than an
air burst. For an air burst bomb, the height of burst has.no profound effect
on the blast receivcd at a point which is several times the height of burst
{roﬁ the bomb. At distances which are small or of the same order as the height
of burst, the fact that the botb "is air-murst has a profound effect on the blasat
chﬁracteristic. In the immediate neighborhood of a gréund burst & target suffers
éxtremely high preésures which it pould not receive if the bomb were air burst.
For‘big charges this is, however, not an advantage because it means that the
idmediata neighborhood would be destroyed more radically than is necessary, and
the énergy so wasted would not be available elsewhere. In other words, the
inmediate neighborhood would be overpulverized.

It is actually practice when using smaller bombs to try to make a full hit
and detonate it exactly on the target. When using larger bombs, however, one
does not try to make a full hit, but ralher to wreck an entire area. In this
case there is some point in trying not to detonate it on the ground, but at a
certain altitude, In this way the area nearest the bomb is not overdestroyed,
.more energy is not used on it than is required, and the air burst does not
permit nearby structures to shield those which are remote.

For nuclear bombs there is a further reason for detonaticn at an altitude.
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It is not desirable to let the enormous temperatures (about 10% to 10° degrees)
immediately around the explosion get in contact with matter in bulk, in
particular with the ground. Such contact would allow the wastage of much
energy in evaporsting the earth.

An example of the loss of energy from the explosion by evaporation of
matter in bulk can be found in the disappearance of the tower which carried the
atomic bomb at Trinity. Figure 2 indicates the asymmetric shock-ball, as
actually shown in several Fastax photographs of the explosion. 1t shows that
the progress of the shock wave has been visibly retarded where it intersects
the tower, presumably because of the loss of energy incurred in evaporating
the steelwork.

There is a further advantage in air burst, a discussion of which constitutes
the bulk of this report. An air burst is accompanied by certain forms of blast
reflection which would not cccur in the case of a surface burst.

As an orientation let us first consider the case of a bomb detonated on the
ground, It might at first be thought that because the shock has a hemispherical
‘shape and always touches the ground at right angles there would be no reflection
from the ground. Actually, this is not true. If the ground were an absolutely
rigid reflecting surface, then the energy normlly transmitted to the lower
hemisphere will not disappear but will be sent into the upper hemisphere in
coincidence with the energy ncrmally sent there in the absence of the ground.

In other words, a bomb detonated on the ground is equivalent to two bombs insofar
as the blast in the régim above the ground is concerned. Now twice the charge
weight means, if one considers peak pressure,‘: that all pressures are the same
for the grourid burst charge as for the same c;harge burst in free air if all

distances from the charges are in the ratio of the similarity(l) factor 21/3.

(1)
The similarity factor comes from the fundamental hydrodynamical equations
in which the distance, R, always occurs in the cambination R/l1/3 with the
blast energy W; i.e. the unit of length is determined by the blast tonnage,
The time scale is similarly extended, '
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Pigure 2
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Comparing pressures at the same point, in the region in which preasure decreases
as 1/R or 1/R3/2 (R = digtahce ffom the bomb) peak pressures are obtained in the

presence of the ground which are 21/3 to 21/2 higher because of reflection.

The 1/R law holds roughly at large distances, i.e. low pressures, but the variation

is like 1/33/2 in the region of interest, at 5 to 10 pounds per square inch. ‘

It is clear that one would not get the indicated pressure increase if there
were cratering because cratering means that some energy does go into the lower
hemisphere, In other words: If the bomb is burst on the ground the peak
pressure is increased to anything from 1.26, (21/3) to 1.41, (21/2) times its
original value provided that no cratering occurs, and less than this if there
is cratering. |

let us now consider the effects of air burst, at distances which are great
compared to the height of burst. It is common sense to expect that at such
distances this height itself, and all phenomena caused by it, ought to have a
small influence, and as the distance increases become entirely negligible.
Hence one should expect, that for air burst at distances which are very large
compared to the height of burst (as for ground burst at all distances) the
pressure is amplified by 1.41 at most if there is no cratering and by appro-
priately less if there is.

Now one must observe that this pictﬁre is in disagreement with the acoustic
theofy. This is of importance since the above picture is plausible and will

turn out to be the correct one.

10.2-1 Acoustic Picture of Air Burst

We will now describe the action of an air burst charge in the acoustic
approximation.

Independently of this approximation, the shock which emerges frem the bomb
bursting above the grcund,will be spherical and remain so until it mskes contact

with the greund. Ing;od, up to that time it is effectively in free space and
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behaves accordingly.

When the shock sphere hits the ground, it produces a reflected shock. 1In
the acoustic approximation this reflected shock is a part of another, which is
congruent to the first one, and behaves as if it were the blast wave coming
from a "virtual bomb", which is situated at the image point of the real boab,
reflected with respect to the ground (Figure 3). When the shock first hits
the ground, it does 30 at normal inciden¢e, and hence, by acoustic theory
doubles the overpressure, i.e. the pressure increases over atymosphere in this
region. Even later, when the shock sphere intersects the ground at oblique
angles, the laws of acoustics also call for"a doubling of overpreashrtﬁpr» S
presanrcsincreasc above atmosphere in the twice shocked region}at(the'rttlbttinx
surface.(Figures 4 and 5). In other words: At all angles o(#® 0°, < 9&‘; 
the reflected overpressure is independently of & equal to 2p (p = the incident
overpressure). For o = 90° the‘incidence is glancing and no reflection in the
senss of lcouatici“éccurave!t. however, the discussion of ground burst above;
cf. also the non-acoustic discussion of nearly glancing 1ncidence_in the
succeeding pages). .

let us now try to give a complete chronological accouﬁt of the sequence of
events as the blast wave expands, gets reflected, etc. Figure & shows the

appearance, in the acoustic approximation, of the blast pattern as it travels

" outward from the air burst bomb,

The essential features of the reflection phenomenon are:
(1) Incident and reflected waves make equal angles with the ground.
(2) The pressure increases in the incident and reflected waves are
equal.
(3) The total pressure increases exerted by the blast at any point
on the surface is twice the pressure increase to be.expectod at

the same distance in the absence of the ground.
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FMigure 6
Reflection of a blast wave in the acoustic limit
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(4) The incident and reflected waves have a constant separation,
equal to 2h; i.e. twice the height of burst at the zenith. At
an angle 9 from the zenith the separation is smaller; it tends
to 2h cos § as the wave expands out from the bomb (real and
virtual). For 9 ‘= 90°; i.e. on the ground, the separation is
of course 0, since the incident and reflected waves are neceasarily
in contact there. Correspondingly, the separation tends to O

(S)-—-—) 90°; i.e. as the ground is being approached.

(5) As the wave expands, ©, the angle of incidence (and reflection)
starts at 0° and approaches 90° in the limit of large distances.

Figures 7 to 10 indicate -the p, t dependence (ov“er‘p;e:sure versus time -
dependonco). at eelorct.Od positions in the blast pattern: Figure 7‘ shows the
single rise to 2p everywhere on the ground; Figures 8a, b and c, the double rise
to p and to p + p' at a fixed height above the ground for increasing mjo';:wd
-distances from the bomb; Figures 92, b and c, the correSpondiz;gv double riaeA at
a fixed genith a‘ng‘ie and increasing distances from the bamb; Figure 10, the
double rise anywhere at the zenith, p is the free air overpresst;re at the point
under consideration; p' is the additional reflected blast overpressure which is
describable as originatipg from the "virtual bomb™ - since any point above the
ground is closer to the reali than the "virtual bomb" p>p', but this difference
tends to zero (even relative]; to p) as the distance frdin the bomb increases.

In Figures 8a, b and c, the time interval A\ t between the two shock
(pressure rises) tends to zero. In Figures 9a, b and ¢, At tends to 3..‘.9!32.'.11
where C is the velocit.y of sound. In Figure 10 At is %

All these sketches are atrictly valid for shocks uit.h overpﬂaams of'
infinite duration only (Fiam 1la). Actually a decay of t.he omprouuro occurs
behind. the shock because of the finite duration of the ‘explosien‘ (Pigire 11b).
Consequently Figure 7 is ch;ngod in t.hé manner indicated in Figtu‘:s'lt’z, and
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Figure 7
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FPigure 9
a,b,c
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Figure 1l
a,b
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Pigure 12
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Figures 8 to 10 are affected as shown in Figurée 13.

The situation depicted in Figure 13 is of sufficient importance,as a

consequence of the finite duration of the shock overpressure, to deserve one
" more comment. Depending on the height of burst ;t is quite possible that no
amplification of the original (free apace)‘prcasure by the reflected shock occurs
everywhere, ~.

The drop shown in Figure 13 between the pressure rises p and p' may well
exceed the second pressure rise p'. However, at or near the reflecting surface,
because of the (exactly or approximately) simultanecus arrival of the two shocks
in that region, amplification must certainly occur.

10,2-2 Critieism of Acoustic Picture - Formetion of a Mach Stem

Certain parts of the above acoustic description of the blast pattera from

a charge burst above srigid gx;omd are in disagreement, first of all with our
intuition and, secondly, with the facts.

As to the first point, we have tlr,oid&}pokcn of replacing the sourcé ,
wall system by & real and virtual source - an explosive dipole. Kow one would
expect that from large distances, such an explosive dipole having the combined
mass would look like a single charge. This conclusion is analogous to the result
in electrostatics, according to which the field produced by two equal electric
charges of the same sign is essentially the field of the total charge when the
distance to the point of observatiom is great ::anpared with the separation
between the charges. As to the se bond point, ;.'n reality for shocks of finite
strength, the situation is like the one expected intuitively in the preceding
section, for the following reascn. The permenent separation of the original

and the reflected ahockl ﬁﬂ_géoustie theory (cf. above) is clearly due to their

having the sm velocif; +e. sound velocity. Actually shoeks.of finite
atrength are: faster than ‘md Purthermore, the rorlcctcd shock is faster than

the original one hecause it travels through air hont‘d by the former, and hencc,
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has its speed increased relative to it. In‘fact, we know from hydrodynamics
(cf. Section 10.3) that if one shock follows another, and is in the region of
positive overpressures behind that sheck, i.e. in the positive phase, then it
travels faster than the first shock. Consequently, while acoustically the
reflected shock ibm not abie to catch up with the incident shock, if the shock
has a finite size it will in reality catch up in regions where the positive
phases overlap. 3ince the two shocks are close together~noar the ground and
in contact at the ground, the positive phases certainly overlap in this region.
The reflected shock is therefore faster than the direct shock and since they
are getting more and more parallel as time goes on, & merger should sooner or
later take place here, ‘

We'know in fact from the theory of oblique refl;ction and from experiment
that the abov:is the case and that the overpressure at the fusion shesk is
about twice that at either of the two original shocks. As the spherical shock
expands conditions béome suitable for fusion further and further from the
ground. Consequently, the fused portien gradually rises and covers more and
more aof | the shock sphere and it is possible to show that eventually the merger
is complete and the two shocks are finally everywhere fused and form & single
shock front. In other words, the shock due to the virtual bomb will have
everywhere overtaken the shock of the true bomb; the two shocks will have

merged over the _spheré(z) which corresponds to the double charge. Figures 14

m - l @
If the charge is burst at such a height that the merger occurs at great
altitude, say 30,000 feet, because of the variation in density of the
pre~shocked air neither the original nor the fused shocked front will
be apherical. (3ee Chapter on Altitude Effect.) Since we are here
primarily concerned with the merger near the ground we will not discuass
thi' point.

s

and 15 show the appearance for a wave of finite amplitude, of the blast pattern‘

as it travels outward from the air burst bomb. The essential features of the
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Figure 14

Reflection of a spherical blast wave of finite amplitude
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Figure 15
Growth of Mach stem”
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reflection phenomenon are:

(1)’

(2)
(3)

W)

(5)

:f[;xc:idcnt and reflected waves do not intersect on the ground

for all angles of incidence greater than a eritical angle SDC .
When incident and reflected waves intersect on the ground they
do not make equal angles with the ground. |

The overpressure in the incident and reflected waves are unequal,
The total overpressure -éxerted by the blast at any point on the
surface varies with the height of burst, the projected distance
from the bosb, ang the blast energy released by the bomb. It

i3 not obtained as in the acoustic approximation, by ﬁultiply-
ing the free air pressure at the point in question by a factor
of two. |

The incident and reflecteci waves have a sepa!ation at the zenith
whichyas the waves expand, at first varies little froam the value
2h and then decreases to zero as the fusion process proceeds., At
an anéle from the zenith the separation in the early stages of
the expansion is smaller and becomes zero as the two waves fuse,
forming the Mach stem.

At distances which are large compared to the height of burst, the
direct and reflected waves from an &ir burst bomb have fused and
proceed cutward as a single shock. From complete fu'sion on, the
shock wave appears to have come from double the charge detonated
on the ground, |

As the wave expands, © , the angle of incidence starts at 0°
and the stem becomes perpendicular to the ground in the limit of

large distances,

Figures 16 and 17 indicate the p, t, dependence (operpressure versus time

dependence) at selected positions in the blast pattern. Figure 16a shows the

. b ki
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Figure 17 a,b,¢.
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single riss to o p everywhere on the ground. Pigares 16b, ¢, show the
dependence of X on the angle of.”inciméa for strong &nd weak shocks respec-
tively. Figurea 17a, b, and c shaw the double rise to p and them to p + p' at |

a fixed height stove the grownd for increasing projected distances fruli.the bomb.

Figure 17; s b, and ¢ also apply to the corresponding double rise at tf:bmd

zenith tngl‘ and increasing distances r;-&;tm bomb., All these sketches are

valid only for shocks of infinite duration, If the pressure has a finits dura-

tion, Figures 16 sd17 should be modiﬁied in 8 manner similar to the modifications

(Figures 11 to 13) of Figures 7 to 10.

10.2-3 Obljque Reflection =~ Dev ti_ _dk Acoustic Behavior

A detailed theoretical discussion of the shock wave pattern produced by the
reflection of an expanding tspherical shock wave from a‘rigid plane surface must .

start with a description of thaf. happens exactly on the ground where the incident

-and reflected shocks always intersect each other, and where the reflected shock

was originally produced. It will be recalled that according to the acoustic theory

~a reflection almays pfoduoeé the same increase in overpressure as the incident shock.

This result is independent of thevanglo of in'&:j.donco up to, but not includ-
ing 90°, at which it ceases to be valid. If the shock is of finite strength,
there will bd deviations from the acoustic result. Since the acoustic behaviom is
discontinuons at 90°, one would expect deviations from acousticity f.g set in
earlier than 90° for the true shock must exhibit some kind of continuous behavior

in the mighbor_hood of 90°. There are, then, two factors which pert.urb the

_acoustic behaviar: the finite strength of the shock and the obliguity, especisally

in the neighborhood’ of 90°.
10.2-4 Head-on Collisien |

let us first consider the true behavior oi‘ a finite shock for & head-on
reflaction. (Ses Section 10.3 for detailed calculations.) The result is usually
stated as follows: A shock which hits on absolutely rigid wall will be

strengthened more than the acoustic theory predicts. The acoustic theory
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predicts a doubling of overpressure at the rigid wall. This is an incomplete
description because there are two diffe;:ent ways to measure the strength of a
shock. One measure is the absolute ovex;pressure in the shock; i.e., the
difference in pressure immediately before and immediately behind the shock

front. The other measure of shock strength is given by the relative overpressure;

i.e., the ratios of the pressures immediately before and behind the shock froat

‘minus 1, Now, in the limit of émll overpressures, it does not matter which

criterion is adopted because the reflected shock is squsl in strength to the
incident shock if moasuréd either by the pressure difference or bj the pressure
ratio minkus l. For finite shocks, however, the reflected shock is stronger
than the incident shock if measured by the pressure difference and weaker if
measured by the pressure ratic minus 1.

The clearest example of this is the case of a very strong shock. Here it

‘is well-known (cf. Section 10.3) that for air the reflected shock has an over-

pressure eight times greater than the original one. On a relative scale
although the reflected pressure is eight times as great as the incident pressurs,
the incident pressure is very great compared with the initial pressure of the
unshocked air and thei;fore the s?rengux of the reflected shock as deurni;}.@

by the second criterion is very much less than the strength of the incidd_'x‘tfgv ‘. '

shock. To summarize, the absolute overpressure is greater and the relu.ﬁl; \

overpressure is smaller. We will measure the shock strength by the tbmh‘m‘
overpressure and on this basis the reflected shock is stronger than the incident
shock.

10.2-5 Simple Oblique Reflection ' .
In the acoustic limit the incident and reflected shocks form a stable

configuration regardless of the angle of incidence regardless of the shock
strength, Since the two shocks have the same velocit.y component parallel to

the ground as their point of intersection, O, the angles of incidence and
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retlcct.ﬁu vili 81lso be equal. This is, of course, just the application of.
Snell's principle in a very simple case.(Figure 18).

Let us nom comaider the case of a fimite shock, where the reflected and
incident shocks may be of unequal strengths and hence have unequal velocities
relative to the air and ground. If the intersection of the éwo shocks is to
resain on the gi.iomd this difference of velocities requires that the reflected
and incident shocks make unequal angles with the ground. If we set up the

eqnat.io{:a of motion (cf. Section 10.3) we find that there are as many equations

" as there are veriables and, in general, there are solutions.
; »

We must qualify this last statement. In the first place, when there exists
a soiution, there exists, in general, another one as well, 'mukaA there are. two
solutions; i.e., given an incident shock the reflected shock can be in t‘.uo)
éonitiom, one less and one more inclined to the surface (Fdgure 19). The ,
reflected shock which is steeper, turns out to be faster. This is eas'y' to see
both qualitatively and mathesmtically. One, therefore, has to ask which of
these two shocks exists in reality. It is relatively easy to see that under
these conditions it is the less strong shock which exists because if we continue
to decrease the strength of the incident shock and go over to the acoustic ease
we find that the less steep shock goes over asymptoticalldy to the same strength
as the incident shock at the same angle, whereas the steeper shock goes over
into a finite non-acoustic shock and becomes vertical; i.e., as p incident
— 0, 03-—~> 0, 9 —> 'TE'T-. Now since this latter does not happen, and is
energetically impossible without an external source of energy, we assune at
least in the case of a weak shock that“rit is the less steep, weak solution
which exists. One might assume by continuity, although this arguaent is not
quite safe, that the strong reflected shock is forbidden for all incident shock
strengths. The experimental observat:‘;:: bof all who have worked on this subject,

in particular the very detailed observations of L. G. Smith, support this
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TFigure 18

= 6, acoustic case
# 0, non-acomtic case

2 0

kK

APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE

INCIDENT REFLECTED

IS TS T 7T 77

APPROVED FOR PUBLI C RELEASE




APPROVED FOR PUBLI C RELEASE

X -3¢

Figure 19

APPROVED FOR PUBLI C RELEASE

.



APPROVED FOR PUBLI C RELEASE

INCIDENT f /

NN N NN N NN N NV NN NNY NN NN NN NV N NN NN

APPROVED FOR PUBLI C RELEASE




APPROVED FOR PUBLI C RELEASE
X- 3

conclusion. If we consider this oblique ahéck thedretically‘uhd let the angle
at which the incident shock strikes the wall increase from 0° touérds 900,
the gldncing.value, we tind'that as this happens, tqe less steep bfiﬁbeltwo
reflected possibilities gets steeper aédiotocper, the initially sit‘pnr
solution becomes less steep. In othor-i;rdu. the tw; solutions fqr-tbe re-
flected shock move toward each other. We are satisfied thlt it 1» .t-ho less
steep solution which is rezl. Hotav&; ‘tt;on the incident shock has reached a
sufficient obliquity the two solatiéns tbi the retideted shocks merge; i.e.,

become identical, and beyond this there is no solution;{3) so there is an

[£))

For shocks of reasonable strength this obliquity is far from 90°

(cf. Chapter ;?3, e.g., for a shock strength of about an atmosphere this
angle of incidence is about 50° and even for & shock strength of 0,1
atmosphere this extreme angle is around 80°.

extreme angle below which there exist two solutions for the reflected shock,
an angle at which thers is just one solution and beyond'which there ig no solution,

10.,2-6 The Critical Angle - Irregular Reflectioa

There is then, an extreme angle below which there are two solutions. We

choose the lower solution for tolerably good theoretical reasons which are vérj
well confirmed by experiment, but beyond this extréme angle there simply is no
reflection of this type. There must, however, be a reflection of aoms’kind.
We call the reflection of the first kind, the reflection which really is the
extrapolation of the acoustic case, regular reflection, and all kinds of other
reflection, irregular. From the above, one can see that the region of regular
reflection is limited to angles of incidence below & certain critical angle.
Now the varj.;tiona with shock pressure of the limiting angle for regular
reflection are of some interest (Figure 20). It is quite clear that as the
shock strength is decreased, the acoustic limit is approached and, therefore,

the limiting angle must be nearer and nearer to 90°, For reasens previously
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Figure 20

Critical angle at which regular reflection

ceases to be possible, as a function of the
overpressure in the incident shbdck

Ideal gas ¥ =1.40,
Normal pressure = 14,7 psi
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mentioned, &s the angle of incidence becomes close to 90°, deviations from
acoustic behavior' should be expected no matter how weak the inciden;t.*ahof;k is.
Theory as well as experiment show that such deviations do occur. As will be
shown later (cf. Section 10.3) the critical angle converges to $0° ;at.hcr: slowly,
as »the square root of a shock strength. More interesting is the fa.',i‘:vt. that as
the shock strength increases, the critical angle decreases from 90°|'. For a few
atmospheres overpressure it gets into the neighborhood of 40°. For?ma and
one-half atmospheres overpressure it reaches 4A0°. After this it does a peculiar

thing. It drops a little below 40° to something like 39° which it reaches at

| 6 atamospheres overpresaure and then it rises again to 40°, which value it retains

for infinitely strong shocks. This means that for shocks of 1,5 atmospheres or
greater, the critical angle has already practically reached its limiting ;;allue
of 40°, For h#].f an atmosphere overpressure, it is 50° or 60°. Since no:t
blast damage by large bombs is based on comirolled pressure m'iteriai and likely
to occur between 3 and 6 pounds per square inch overpressure, that is, between
& quarter and one-half atmosphere, we must expect regular reflection to bscome
impossible in the neighborhood of 50° to 60°. ‘

Another interesting characteristic of regular reflection is the vatiation
of the absolute overpressure on the surface as a function of the angle o.f'in-
cidence and the strength of the‘ incident shock. Figure 21 gives the ml#tive

overpressure as & function of the angle of incidence for acoustic, weak and
.

+WN

strong shocks.
10.2-7 Mach Reflection
Now we must ask what will happen' if we go past the extremes sangle of -

regular reflection. There is a very simple argument which uses the anq;logy of
this phenomenon with the collision of a blast with a wedge.

10,2-8 Collision of a Supersonic Flow with a Wedge
A plane supersonic flow is incident on a wedge of semi-angle 6, . As the
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Figure éh

Relative overpressure on gurface due to reflection
versus: angle of incidence
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Figure 21b

Relative overpressure on surface due to reflascticn
versus angle of incidence

Ideal gli X 1.4
¢- .t. g-_._ __E.
where p = pressure in front of incident shock
P, = pressure behind incidemt shock
p! = pressure in front of reflected shock

.

For acoustic oas‘ § = =
% £+¢A ""’_ i P*n ' P
A 4 '
Ap = p = p —
"F

D = overpressure in incident shock
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, ’ ﬁﬂ
flom collides withr the wedge it is deflected through an angle\%/-r e, ) by
a shock S0S becoming parallel to the plane side of the wedge. The conditions
are 'ghqﬁltant throughout the regions A and B which are separated by the shock
disceatinuity S0S. It is found experimentally, and could be shown by theoretical

consideration of an oblique shock,(") that depending on the wedge angle 9,

(&)
Taylor and MacColl, "The Mechanics of Compressible Fluids" in W. F. Durand
"Aerodynamic Theory", Guggenheim Fund, 1934, Vol. III, Section H.

there is a critical value of the supersonic material velocity for which no shock
exists which is capable of deflecting the stream so that it becomes parallel to
the wec'igoﬂwall. Above this critical value of material velocity there are in
general_tmo theoretical solutions(“) for each wedge angle., Only the solution
with the smaller value of Oy actually occurs. At the critical value there is
JuSt ﬁe‘i;}olution and below it there are no solutions of the type pictured in
Figuré éZ.. Instead, experiment shows a detachment of the shock wave from the
top of tha Iedge such as pictured in Figure 23. This is the so-called "detached
headuan" This means that there is no solution of the type pictured in Figure 22,
that comidering a given value of supersonicity, there exists an upper limit on
the mglo of incidence (0p - Ow} for which the flom can be rendered parallel

to tho"uedge face immediately behind the shock. Beyond this angle a new type

.of phonmenon is in evidence. This is the gdetachment of the shock. It is of

particular interest because it means that signals are sent back from the tip

at 0 into the region bounded by a now curved shock: there is a propagation of
‘ T E o

*

aj.gngls.back against the impinging stream.

The connection between this phenomenon and the reflection of a blast wave
from Q phno surface can be shown in a simple way‘.‘ In Figure 24, the Iincident
shock impinges on the wall giving rise to a reflected shock. If we adopt the

frame of reference which reduces the motion of the point P and the two shocks
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Pigure 22 .
Flow past wedgs

APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE

2

SUPERSONIC

STREAM

SHOCK

APPROVED FOR PUBLI C RELEASE




APPROVED FOR PUBLI C RELEASE
X - i

Figure 22!
3upersonic flow past wedge
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Figure 23
Detached headwave
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Figure 24
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to rest then the mmterial will appear to flow f.héoggh the shocks from left to
right as shown. The incident shock causes the matérial origi‘nally flowing
parallel to the wall to be deflo.cud toward the wall in the direction of X.

The reflected shock renders the flow again pai'allel to the wall. If we identify
the flow in the region between the two shocks with the supsrsonic stream of
Figure 22, the reflected shock with 30 and the wall to the right of P with the
wedge wall in the same figure, the analogy is complete (Figure 22'). The un-
applicability of Figure 22 under the certain conditions discussed above is
reflected in the failure of Figure 2, under corresponding cenditions; i.s,,

there exists a critical angle of reflsction (and hence of incidence) for a ,'ginn -

strength shock. Beyond these crit-iéll‘ conditions we expect from the mloy
that a signnl propagates back tron the reflected aho@k into the region het'«u
the shocks and causes a fusien of tho inefdent and reflected shocks aurtiu
in the neighborhood of P. : 4 ‘ - ~

This analogy therefore, shows that the reflected shock must be_ exptcta:d
to overtake the incident shock wheneyer © > @.. This process of overtaking
originates at the wall and gradually spreads into the volume of the gas. As
it spreads the two shocks merge and form a singlo shock for a certain distanco
from the wall, beyond which they are separate. In the case of irregular
reflection, then the two shoeks will no longer look like a V but like a Y
standing on the wall. (See Pigures 25a and b.) '

In Mach reflection it is as if reflection were no longer caused directly
by the wall but rather by a cushion of air mung on the wall. Mtl‘lttbis
species of irregular reflsction really occurs, it is a sevent.y ym old axpcri—- :
mental observation of mnstqnch(S) after whom it was named. It has been

7 ' - — -
Paper of E. Mach with various collaborators appeared in thl Vienm Am "
"Sitzungsberichte™ Vol. 72 to 92 (1875-1889), cf. in plrtakculnr K
Vol. 78 (1878) page 819.

.

—
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FPigure 26,a,b,

25a Regular »eflection
25b MNach x"eflection

APPROVED FOR-PUBLTC  RELEASE



APPROVED FOR PUBLI C RELEASE

250

OV ANV A AN AN A Ve G GV i G i & G A G i G 4 4

MACH STEM
(FUSED SHOCK)

B

25b

APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE
X~ 49

¥
@

explored in great detail by hydrodymamical resesrch done during this war.(6)

~

(o)
J. von Neumann, "Oblique Reflection of Shecks®, Bureau of Ordmance E.R.R.
No. 12  (1943). \

H. Polachek and R. J. Sesger, "Interaction of Shock Waves in Waterlike
Substances", Bureau of Omtunee E.R.B. No. 1k (1944).

P. C. Keenan and R. J, Saeger, “Apalysis of Data on Sheck Intersectiems,
Progrua Repcet No. 17, Bu‘un of Ordnance E.R.R. No. 15 (194h)+

H. Polachek and R. J. Seeger, NavOrd No. 88-46, *Analysis of Deta m' wx‘
Shock ‘Intersections,” Progress aoport No. 2* (1946) .

NavOrd Report No. Tk-46, "fWenical conrorcnm - epttal Phcnwm u
Superamic Elw“ (19145) p (Widentiql)

1incoln G. Snith{ “Photmphie Inwst. ntion of the Rerlocum of Pl&m
Shocks in Air® (19&5) (Fina) Report) osm: Ropnrt. No, 6271.

' o i

The qusliutin pict.ure of Mach rcflt«cﬁ&on is quite simple for the cu!

.,mv‘

of a plane shock incident on a wall, H!m @e incident shock makes a eoaawnt

angle with the wall. The situation is more oonplielt.ed 1n the cage of bmt
produced by a bomb. Piret of all, - the angle of incidence chanéeo as the blast
wave proceeds outward from the bomb. In addiuon, the sphericity of the blast
waﬁ makes & quantitative difference where uach reflection occurs, while it

introduces no additional features in the cass of regular refloction. This iu

so because regular reflection takes place entirely in the’ neighborhood or a

single point of the wall and, therefore, only local conditions at that point.

ent.or. The definable sigze Y type reflect.im, on the other hand, extends over

a finite area and grows up ‘on the shock. Therefore, the properties cf miihcek

in the large area now bocone relevant. As iu:licated earlicr, the nruma :
shock merges with a cmtmumuly incrouing tractim of thn incident uhoet, ¢nd
eventually the incident and reflected shock may even coincide completely. ‘Most.
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of the thecretical and experimental work on the phenomenon, bﬁt not all of it,
was done in the case which is somewhat simpler; i.e., a plame wave incident

on & plano wall. It is found that, in general, the dimensions of the Y in

this case are not constant, but that they grow with time. In other words, while
the regular reflection, which produces a V, is stationary, that is, the V never
changes, this new kind of reflection is not stationary, i.o.,' the Y grows as

time goes on. Of céurse one must admit that the Y contains a length, and hence

& size can be attributed to it, in a manner which {s nct possible for the V.-
The length associated with the Y 1@&9 wmh of'ft.ho stem; the V has no stem
and definable size. Since all exmim‘.pntat.im, as well as theoretical consider-
ations, show that in the plane case the stem of the Y grows propertionally in
time, the Mach effect must have a well defined beginning. The length of the Y
stem at any moment defines the duration which the phenomenon must have had from
the time of its inception to the time of observatiem. |

10,2-9 Difficulties with Irr ar Reflection

As was gshown at a certain obliquity 6., regular reflection ceases. All

forms of reflection occurring after this, i.e. for 0> %, are by definition,

irregular. It is believed that irregular reflection at its very inception, i.e.

for the ¢ immediately following G, belongs to the type described above as Mach
reflection, although if one goes into the minutiae, there is an interval of a
few degrees where one might conceivakly have doubts. These douhts as to the

nature of early irregular retlcction are based on experiments by X. G. Sad the (7)

[6)) | ) I
lincoln G. Smith, ®*Photographic Investigation of the Reflection of Plain
Shocks in Afr®  (1945) (Final Report) OSRD Report No. 6271.

We would expect that the small angle between the trajectory of the triple point
and the wall should be zero exactly where regular reflection ceases. According
to Smith's experiments the triple point is hot visible for sbout 2° after
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‘: rb;u]nr reflcctieg -Ma. If the angle bétween the triple point trnjictwy

: And the wall is measured in the region of 2° to 15° past the critical angle of
incidence and then ?xf;ra‘polate back to gzero, it hits zero at about 1° from the
extreme aAngle. Whether this effect is real we cann;:t be certain as yet. It

s | my be that a higher resolution will settle this point.

o A further complication is caused by the fact that the reflection phenomena
k n;ut necessarily have a beginning at a definite point, where the shock first
‘meets the oblique wall, This point is clearly a carner which can belong to

any one of several types, Figures 26a, b, and ¢ are some examples of such

3 corners. (It will be noted that 206b and ¢ represent alternatives, which are

ggiuvalent since viscosity and wall friction are disregarded.) Both theory and
i experiment show thet this corner must be the source of a disturbance behind the
;‘refltctod shock R. Saith's achlio}ui photognph; indicated that this disturbance

# always a rarefsction wave. This rarefaction's edge shows up as a curved wave
g .!l" jerminating (on the back side) mwgeneom region between R and the
wall, It ukoa cont.act with R at S and beyend S it has "oatan into* R, and
theroby repllcod the straight shock R by & weaker curved shock R¥, It will be
naua that RY deu not catch up with R along the wall. This is so because the
qbove mentioned homogeneous flow immediately behind R is supersonic, and R! is
i A ‘4 prarefaction, and hence precisely sonic. See ?‘igure 217,
. , As th@ obliﬁlnity‘ of I, 0, increases, the flow behind R becomes increasingly
nearly sonic, and correspondingly R' moves cl§se to R, and S' close to tﬁe wall,
Consequently the straight piece R shortens. At a certain angle @, the flow
becomes mctly_ sonic, S reaches the wall and the entire reflected shock becomes
curved, i.e. R* replaces R in its entirety. Thus ., has been computed, it
lies very close to G; but it is definitely less. (O, - §, varies with the
shock strength, in air it is never more than about .6°.) From the point of

view of the empirical evidence one cannot even be quite certain, whether the
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Figure 26,s,b,c

26b Obtuse angle obstacle
26c Acute angle cbstacle
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Figure 27
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regular reflection still exists beyond &, , i.e. whether it ceases at @, or

at O, . '

In the plane cases studied, it was found both theoretically and experi-
mentally that the shock configuration‘remaing similar to itself in time, i.e.
it can be described in terms of two variables, r/t, and @ , where r and @ are
polar éoordinates’uith the origin at the corner, and t is the time of travel of

the incident shock from the corner to the position given by »r , @ . We repeat,

the configuration remains similar to itself as it proceeds, the triple point

travelling a linear path (Figure 28).

In the region of regular reflection it is clear that the angle of the N
triple point trajectory is 0°. We know'fQBm Smith's results that with the ons;t
of irregular reflection the angle 50 miide by the trajectory with the plane
surface (Figure 29) is small but becomes greater as the critical angle is
exceeded by larger amognts. Actually, it is very small for & considerable
angular interval. For overpressures of about 1/4 atmosphere, the range in which
the most detailed observations are available, the Mach effect bégins when the
angle between shock and wall is 56°. Even at 66° incidence the angle of the
triple pAmt trajectary with the wall is only 1 or 2°, |

"~ In the case of a spherical wave, there is no question of edge effects but

additional complications arise from the fact that the angle of incidence changes

and the shock weakens as it proceeds outward from the center. The increase in

the angle of incidence of the expanding spherical shock is, therefore, expected

to be accompanied by an increase in the rate of rise of the triple point, as

already indicated in Pigure 1i. The riab‘of'the stem of the Y takes place in
& mamer for which there is a good qualitative deseription. Halverson and Taub
have made extensive studies of the experimental dats ‘on the Mach effect for

aphericil waves., Despite the lack of a satisfactory theory, the use of available

4
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- Migure 28
Linear travel of triple point
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Figure 29

Angle made by triple point trajectory with plane surface
(@) versus angle of ineidiibe ( §) of plane shook

(Data from L.G. Smith NDRC A-360)
Overpressure in incident shock = 1/4 atmosphere

n = 3,7 ped
g =_1%7 __ o038
147437
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the form a Y. This my be 80, not because it is absent in this region, but ™
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‘:ptﬂnnt.al data togctlur uit-h the M sc&ling law enables us to predict the
um features of tho behtﬁmlet & reflected spherical blast wave,

‘Retarning again ;c.o thé "caac of a lplam wave, we note tt@t. certain diffi-
cultioﬁ appear in the study of irmgalar reflection as the angle of incidence
'o;pp_ronichoa 90°. Ae the aagla of inci&onco gets close to 90° the appearance of

the'reflo’etion changea -coitidngbly. Specifically, the contribution of the

. reflected shock begins to becoms less and less, and in the neighborhood of the

dt.rip?‘l.e point, the back brench of the Y, 1.s. the reflected shock, gets weaker

" and inaker. In other words, a situation develops where it gets progressively
nox-d ditticult to t.OJ.l the fmard branch of the upper part of the Y from its

';_ st.em and to oburvc tho backward branch of the upper part of the Y.

_If one is eonplet.ol,r phlnonenological, if one talkes only about what one

v‘;

sees and mt what one expects theoretically, then one must admit that in the

. Mach effect, after 80° the back side ef & Y has not been cbserved. It looks

O.a though the incident nhock unphr aakes & turn and gets deflected away from
“‘ the wall without the benefit uf the reflected shock. Further, from the triple

-,

- point the reflected shock is observable but it does not reach the other shocks

... 'Hemever, we really do not know whether la_te reflection is of the Mach type or

_;  has soms other fors.

In any case, this late form of irregular reflection is the one which
) corresponds for the spherical wave produced by the bomb to the double point
‘charge, and which, in the end, yields a pressure increase by a factor of 23-/3

©or 21/2, depending on the pressure distance curve in the region of interest.

e This concludes our qdaliﬁtive deseription of the reflection of plane and

spherical shock waves from a rigid plane surface.
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We now proceed to a more detailed discussion of the present status of
the theery of regular and Mach reflection. We will refer frequently to
experimental results.

10.3 THECRY OF REFLECTION

In this section we treat in some analytical detail certain relevant topics
in the theory of reflection, some‘of which have been mentioned in the general
discussion of Section 10.2; We assume séep shocks in non-viscous gases
throughout, although such stringent restrictions are not necessary to all ensuing
discussion. First, we discuss the one dimensional case: a step shock normally
incident on a wall, and the phenomenon ok 9¢atchup" which occurs when the
positive pressure region of two shocks overlap. Next, we consider questions
related to the regular reflection of a plane shock such%ss the pressuro‘multi-

plication as & function of the angle of incidence and shock strength, and the

_ eritical angle beyond which a two~shock solution no longer exists. Finally,

there is a discussion of the irregular reflection of a plane wave and attendant
difficulties.

10,31 Shocks in 0n§_D;ggns1on

| ﬁb will first consider a single plane shock, starting with the classical
Rankine-Hugoniot toraulae.(8) Consider such a shock S (Figure 30). It separates

‘gb
. F t"
. : »
For a derivation of these formulas, see Vol. XIII, Chapter 3 on Shock
Waves, by K. Fuchs.

two domix"ibjno and M, in which the physical characteristics of the substance
mressure and specific volume have the values p,, v,, and‘p, v, respectively.
The corresponding scand velocities are ¢, and ¢, respectively. It is helpful
to tie tg: frame of reference to the shock froﬁt S. Then the substance of M,

flows in%é the shock with the shock velocity Vo, while the substance M flows
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Figure 30
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out of it With the velocity V. The shock S thus causes &' decrease in velocity,
U= VQ -V

' oo
and its compression ratio is } T VP.
The formulse of Rankine and Hugoniot express the conservation of mass,
momentum and energy. The first part of this systea correlates the inner

properties of the substance on both sides of the sheck, i.e. p,, v, 2nd p, v:

E"Eoz “’%(P"’Po)(fo"‘a A 1)
Where E i3 the energy density of the substance in the state ¥, and E, is the
energy density in the state M,: #

E<E(pyv) » Eo= Eo(p s %) @

The second pert of the zystem expresses the velocities V. ,V,U in

‘terms of Pos Yo &nd p, v:

V/’U' "%/'u;, s ¥ %::%.- . | (2 is the sign of Vo=V ) . ’(3)

and hence the difference in material velocity, relative to the shock front 4s

UsV,-V = + V(%) p-pa) - (&)
Equations (1), (3) and (4) imply that

£>1;1.e. P>p, displies r<v, amd v VOV) o) (5)
In Figure 25 this implies a shock "facing" right.

[ ¥<)iie p<p,  implies V) and V<V, <0 (6)
In Figure 25 this implies a shock "facing" left
Far p-—» po the shock becomes a sound wave. (1) shows that in this limit

s
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X=- €1

= F ~ - -3-% « On the other hand since Fa%% (identically) at constant entropy,
| an infinitesimal shock leaves the entropy asymptotically constant. Now (3)
glves V~V~Vv? ‘V—‘—-F-—T , with constant ent.x"opy, i.,e. adiabatically the
shock velocity becomes sound velocity. Therefore, with respect to an infin’ibe- |
simally weak shock the flow on both sides becomes asymptotically soniec,
For a shock of finite strength the following rule is generally valid:
(A) The shock velocity is supersonic with respect to the lower pressure side
and subsonic with respect to the high pressure side.
For (5) these two sides ar¢ M,, M, respectively. For (6) they are M, ilo,

respectively. So we have: .
€| implies l\fo,>co MAARY- (7
E< implies I\/o’ <Co , lVol 7C (8)

This rule can be demonstrated quite readily for an ideal gas but it is

also generally valid for any substance with a p, v characteristic that is concave

4oc

upward. (9

(9)
"H. A, Bethe, "The Theory of Shock Waves for an Arbitrary Equation of

State,”™ QSRD Report No. 545.

A Consider a shock moving to the right. Restating (3) and (5)

V/v V—T

- But
_ |2k Al 2ky s
C- 9 Ar s Gt 2 ‘;&)
constant consiant
sniropy o entropy
For an idea) gas the adiabatic law and trge equation of state, and the
- internal energy density are respectively

(8)  pv*= constant , () pw=RT , (JEzLE= (9)
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Se c=Vspv » Co=V¥pey 0
What re\-fwi-‘h to prove isg that '

c >V »c, | (10)
Subatit’nting the expressions ‘f_or\/"c,c‘, s this inequality becomes

. rab';r‘ p. V.V:E?E' > VfP.U‘,

Jg%)%>x where §. = P/):;° (11)

‘ An ydditional relation between "71;0 R 5 and ¥ is required so that the

eorricmosa of this inequality can be demonstrated. Substituting (9c) into (1)
we obtain '
‘ v . (05 +(¥+)

——

v, © (s+)E+ (¥-1) s , (12)

‘cenbinin’g (11) and (12) and simplifying we get in each case the same inequality,
-,

<

namely
A A
S (13)

This condition %> | was already required by the encfgy density condition (9c).
This pr_oina the statement (A) for an ideal gal.

10,3-2 Shock Catchup
‘Having demonstrated (10) we are now in & position to show under what

conditions two successive shocks will merge. Consider two step shocks (Figure 31).
By (10) shock I is supersonic with respect to undisturbed medium & , and is
subsonic with respect to the once-shocked medium (1), 1.e. C(, >\/: >C,

Similarly, shock II is superscnic with respect to once-shocked medium (1) and
subsonic with respect to twice-shocked medium (2) i.e. C; >V;|> ¢

. i |
Combining these two statements '\/a > ¢, >V; or V. >V,
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Figure 31
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‘and 3hock II will overtake Shock I. This is true as long as %ﬁ) | and hence

t

: cltchup% will cofuinly occur whenever the positive phases of two shock waves

overlap. (Figure 32).

A hore detailed investigation would show that catchup would occur even if
the second shock were in the early part of the rarefaction region of the first
iahbck," but we will not go mﬁo this question here.

10,3-3 Normal Reflection by a Rigid Wall (Jdeal gas)
The Figures 33 have three domains A, B, and C which are defined in terms

of ‘the nrumber of timés that a shock has paé.aed through them., The pressure,
Aspeeific volume and sound velocity in these regions are p, v, ¢; pg, Vos Co;
é';,“ v', ¢', respectively.

*; ‘Since reflection increases the overmressure

P< Py P

or E<l<y (1)

.‘ where P4, g B

In the present setup there occur no movements parallel to the rigid wall.
Hence the substance of the domains A and C which cannot move noramally to the
wa;i} either is necessarily at rest., The substance of the domain B has therefore
the ?volocity U from Figure 33a and the velocity U' from Figure 33b., The

condition relating the strengths of Shocks I and R is therefore
v=u (147)
Now for an ideal gas characterized by (9a, b, c) we recall that

o (g0 §+ (x40)
V. (8+) 8 +(g-1) | (12)

Solving for U, U from (2) and (4) we find that

U, 251 (158)
C. V¥l(sse g+ (8-
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Figure 32
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Figure 38 a,b

APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE

ONCE SHOGKED B
REGION
% ? vo’co
|
330
UNSHOCKED A
REGION p,v.C
////f(////?/////?////////
RIGID WALL
ONCE SHOCKED
REGION B
1 | po b vo’co
33b

TWICE SHOGKED

REGION A
.‘ P, C'.V
/7////////177//g///7/////

RIGID WALL

APPROVED FOR PUBLI C RELEASE



oo,

APPROVED FOR PUBLI C RELEASE

ILOANRN % ¢ .10 N
Co Vz/r[(nz)g-r(awl)‘]‘

The minus sign in (15b) appears because of the opposite directions of travel

(15b)

of the incident and reflected shocks. Equating (15a) and (15b) as required
by (14) and solving for ‘5" in terms of 14

r e s

¥~ |
consequently O<¢<| corresponds to |< §' < -l

¥+l
For air (at moderate temperatures and densities) ¥ = 1.4 and % =8, These
results deserve a brief discusajon because they cantain the first qmutatiw

indications about the “momtic' effects in shock reflection: t.ha;b is, the

deviations which ahocka of finite strength mresent from "acoustic" laws, Ihich

.. hold asymptotically for shocks of infinitesimal strength.

From (16) we infer easily that
1-5<s-1 , -l an

This means (as was stated without proof in a previous part of-’this chapter) that

MLl Y 7 %o a8)

.

The reflected shock is stronger than the incident shock if strength is measured
by the absolute compression (pressure difference), but it is weaker if the
strength is measured by the relative compression ’(pressure ratio),

In the limit of infinitesimal shocks, the acoustic limit (16) can be
manipulated to show thath-)éﬁ'-p,,%no/"{: i.e, that both absolute and relative
criteria give the same result in the acoustic limit. |

' Thus the “unacoustic" theory is so far just a plausible extension of the

acoustic theory with little individuality of its own. We shall see how radically

 this changes when oblique reflection is considered.
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10.3-4 Regular (b Reflection
We will now consider the case of the oblique reflection of & shock of
finite strength (Figure 34).

A single plane shock wave, I, i# incident on the wall, the included angle

~being o¢ . It produces a secondary shock wave, the reflected wave, R, which

includes the angle o' with the wall. We will derive relationships bétween
the strength of I (measured by its compression ratio), the value of « , the
strength of R and the valus of & .,

The shock waves ] and R\gpd the wall define three domains in the subptance:
the unshocked material aha;d';f I; the once shocked material between I and R;
the tw:f.ce shocked material behind R. We denote these domains by A, B, C,
respectively. - | |

The ordinary frame of reference has the unshocked material A at rest,
while the waves I and R move with shock veYocities U and U' respectively normal
td themselves. A more advantageous frame of reference is one which is tied to
the reflection point, P, where I, R and the wall meet. Here the substance A
comes in with a velocity & , parallel to the wall, while the substance D ,
leaves with a veloéity‘z' s parallel to the wall. From this point of view, the
first shock causes flow which is initially parallel to the wall to be deflected

toward the wall and the second shock rerders this oblique flow again parallel.
»

| In this frame of reference, the shocks I and R and the reflection point P are

at resto

Clearly the pressures in the three regions increase with the number of
times the regions received a compressive shock, 80 that p< b, ¢ p’ where

P’P"P' aro‘tho pressures in regions A, B, and C respectively. Or:

S<l<§' ' (19)
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_Figure 34
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The velocity components in A & C,units of the sound velocity in B,

normal to I and B are ,zl sin =T , 'z" sin o' = T' 1.e.

‘

. ,
Iz' = tinw ’ '21 2 Toin o - (20)

In our present ’units I, R modify the velocities of the substance which

crbses them by the amouﬁts '

\Ui Ju'l
- R—— d L
W <« Co and w‘ Co

respectively.
If ‘we denote the components of the nrboit.y X in Bby x and y and then
calculate these compenonta by passing S.nto ﬁ through I and thnn through R,
we obtain: &

>
Through I: X e oo twsmel Y= —ur Cos ol

Trough R: X =

T . '
o *U"M&-‘ , Y= +U’ md_'

Combining thess relations

Trosinle . Trulsnd (21)
S ot Sam, 06
_ - ’ )
W oo o o' co o (22)
where by (15) for an ideal gas
LAY S I U 2(F-1)
weT. V2 ¥z §+0x- ;)‘_} VT R CDRLT (23)
and fﬁm (3) and (12) for an ideal gas
‘t_v G- § +(x+1)
T oC. V?.V[(!M)gi-(t -0)
(24)

T'= Y g s ()

N

o \ae[tesn g+ (v-0T

A more convenient form of (21) is obtained if we introduce a new variable ¢
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where o~ = af+T 1.e. by the definitions and by (3) o = T .

LAY Sar 4 . -t
Sém o - Sin o : (211)
where for an ideal gas
) ~|-()'-|)ﬁ -2 (¥4 '-t-(‘&-l' '
G._.,V 5 e | AAALLE ) (25)
2% Y

Equaiiona (21') and (22) in conjunction with (23) and (24) relate the
shock strengths S R g' » to the angles of incidence and reflection o¢ , o'
so that given s s ol , the gquantities 3' s o&' can be obtained..

Elininéting},u from (21') and 622)., uaing (23) we find an expression for
' in terms of ¢ and « .,
| (x+1) ot o {z (w+1) 0%+ a4 s 2 (0% e +a—"f(x- oy z]lotnaa.} cr'?

+ [ ()P0t 4 (c2 et + [(w)r’»,z]‘d#d}zo (26)

The condition (22) in conjunction with (25) yields the relation for o ' in
terms of ¢', 0 and o .

Ve -o

¥
cow o' = g
Vo' - o

Cov oL (27)

There are, in general, two solutions for S" o' given g s o 3 one has
grester values for §'s o', the other lower values for ¢ ', 2. For eaah
value of the shock strength ¥ , however, there is a maximum value 61‘ < (4.e.
Ooxt, ) 8t which these two solutions coalesce and beyond which there is no two
shock solutions of the type predicated. For roaaon§ cited in Secticen 10.2,
the less'sbeep solution is the one considered physically admissible.

- We will now discuss briefly the question of the existence of two solutions
and the coalescence of these two solutions a; the critical angle of ‘incidence

Olexr. 1is approsched. Rewriting (26)

x*~-Bx+Cz=0 | | (28)

APPROVED FOR PUBLI C RELEASE




APPROVED FOR PUBLI C RELEASE

X - yz -
where: o= (tﬂii’-&-(pa) 1, o'yl
B = +2';U*(lt‘:) ,;[ r(;}::;"* ) ntol
-4 *-wl—[—-—----‘:;‘::;‘*‘]‘w
ot (h}z)‘h(g-r} NN r’]/?:; ' {;:\
xeo! zi{m(l ’r)_} Y

Now if .gg § ' 3 < tuo solutiozw cxish (oorrcaponds to regular reflection).

one solut.i.on exists (corresponds to critical angle),
> no real solution cx‘ist.s (30)

These three conditions can be met. To see this, since C and B are continuous
fmict-iona, we need only show that the € conditions are met at least at two
points. | : | '

Ato(=90°,B:l,C=1,sot.hatgg> 1l and for

o ~ N S.{ ‘)¢L+l] @ (t-l)O' +3 -
‘<>(<<905\B=°-;.[ 5+ hn L .y [W Cbn... o
ne 4
so that - (o v a <
+1)

-and the three criteria (30) can be met .

Using the values of ' and the assumed value of ¢ and o. we can find
the corresponding valwes of « by means of (27).
*,,.. obtained from a in (30) is given by the following equation

6% (¢ 1)433-{%(;’“)"{; Of;'-g-l)(d“'-l)‘-k 16¢* (0"“-04-8 K(q'*—l)"[(u-:)crh 2.]} '3"
- {4 IO (v"a){(m)c‘ﬁ)} [(H)WZ] *\-3‘("'""‘) [(1 l)a"+2]}
- L(x-n)c‘ +2} =0

(31)
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where y = sinzoL
ext
These equations have been investigated in numerical detail by H. Polachek

and R. J. Seeéer.(lo) Some of .their results are embodied in Secticn 10.2,

{10)
Regular Reflecticn of Shocks in Ideal Cases (AM~524) Feb. 12, 1944.

Figures 20 and 21.
It is of interest to see how the critical angle approaches $0° as the
shock becomes sonic.

€ - 5? ;-F{a;a 2l-A , A << |

a3

and by (25) ¢*-} : - éﬁ; A . Inserting in (31) and neglecting
terms in A" |
y=aintog =1- £5 or
: 90 -o,,, =\Zh

The critical angle converges to 90° as the shock overpressure approaches
zero, the approach to 90° varying as the square root of the shock overpressure,

10,35 Mach Reflection

Let us now turn to the case in which regular reflection ceases to be
possible.

When ol increases beyond 0L gy.. We wish to investigate the case in which
regular reflection continues as long as it is possible, i.e., up to K= hpe
and we shall try to determine what happens beyond this point.

That regular reflection is impossible, means that the oblique flow in
region B (Figure 34) cannot be deflected by a standing oblique shock R so that
it becomes parallel to tre wall. This corresportls to the propagation of signals
from the shock R, back against the flow X into the region B, a fact well

subastantiated by the exrerimentally observed fusicn of the incident and reflected
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shoék's Jand R (gt. Section 10.2). Another way of desor.;ihiné the criﬁcal angle
-is to say that it is the greatest angle at which the ant.aot U 'and U
orthogonally to the wall can be made equal, i.e. e ‘
4 Q' cos x,;' = U Co‘& , (32')
Beyond this a@o, the compensation of the normal campénmta of the floi. :
velocity is no longer possible by such a simple, statiocnary préc"u. The

phenomenon of irregular reflection which is thus prodvuced will not be stationary -

. even in the frame of reference in which P (and I) is at rest. The wave of

impact of X on the wall will propagate from P in all directions and thus changs
in "size" at all times and never reach a final equilibrium state. However,
while the shock configuration shows a continuous change in size, its shape will‘
be permanent (cf. the comments connected with Figure 28 in Section 10.,2), 1Its
sizé is proportig»nal to the time t that has lapsed since its formation: For
t = 0 it begins concentrated into a single point. .

Since the shocks R and X are advanging into two different s;odia A and B,
a discontindouq change of direction of the RM frbrit must be expected at T,(Figure 85),
Tat is, T is really the contact point far thfee different shocks - I, R, M. |
The point p, is the so-called "cenior of similitude” frw which the phenomenon
originates (the "corner® in the sense of the discussion in Section 10.2).

Now consider & frame of referance in which I and T are at rest (Figure 36).
The flow 2 * of the substance in A crosses the shock system I, R, M, to
finally rdch the domain C. However, this process operates in two different
wa}s even in bttn immediate neighborhood of T: the substance in A above the
line £{ crosses into C through two shocks I snd R; while-the substance in A
below L1 crosses into C through one shock M. Since we agsume no shocks beyond
R, ¥ (in C), both processes must compress the substance to the same pressure.
But this compression occurs in the "upper" half in two stages {1, R) and in
the "lower” half in one (M). The former process is less irreversible than the

latter - essentially beéaus'e it is less abrupt. Hence the substance which

-

e ]
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Figure 3§
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Figure 36
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crossed "above® T may bc expected to have .ﬁ lomr entropy than that which
crossed below® T. Thus we have in C near T two flows: both with same pressure,
bat the "upper”. flow has lower entropy. 3ince the two flows have the same |
rressure, but the "upper® flow has the lower entropy, therefore it mast also
have the lower temperafure, i.e. inner energy, and the higher density. Again,
since it has the ‘lmr inner energy, it follows from Bernouilli's principle

that it mast have (in this frame of reference) higher kinetic energy, i.e.
velocity. Therefore these two flows must be gliding put. each other along a
dividing line D issuing from T. So D 1is a alipstrm, and also a discontinuity-
line for entropy, temperature Mwamaity, but not for pressure, We therefore
have a puturn cau.tatm of four:

";mmumm hnos I, R, M, D, all confluent
in T: the three shocks I, R, M, d the slipstreu D (Figure 37). ’
That D is a alipstnan and mﬂ. a am is indic&tcd by the experimentally
observed large aqu.oq tpomm M And D lnd tbl mn.irtnnt that the flow into &
shock be upq-snmle tith mnpcct w the ndimn mw whi_ch the lhock travels
(ef. rule A). ‘The ﬁu 1s subscuic behiud M and it 18 inemeivable that u
can become rapid anough before reaching D tm 1ta conponent across D should be |
supersonic. \ ‘ :
Since thé existence of the ixt;‘a? ahbck,li, and the frregular reflection
its presence implied was rﬁt rcoé'g.ni's‘ed: ﬁy Mach, it seems appropriate to give
his name to this type reflection. ¥e sh&iltlﬁrofore degignate irregular
reflection according to ‘uvxo; scheme of Figure 37 as Mach reflection.
10.3-6 Thres Shock Selations

On the basis of the above it would seem indicated that a theoretical

Mstmuon of lueh L'N‘nect.ion should be Mu-ttkon For regular reflection

"~ Flgure 34 provided th§ basis for theoretical discussion. For Mach reflection
| Figure 37 mey seen to provide the basis in the same sense, and therefore we
have to ses what muibi‘lities of a thecretical treatment it offers.
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Figure 37
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The theoretical treatment of ff:ular rurmcctian wes greatly simplified
by the fact that conditions in aach éne of tho ehreo domim A, B, C of
Figure 34 were constant. We needed enly to discuss the purely algebraical
connections between them by applying the Rankine-Hugoniot cnnditiom to the
straight shocks I,R, which separate them.

In Figure 37, conditions in the domein C, are cgrtainl& not constant and
the shock R is certainly curved. _

Probably the same is true for the domain Cg, the shoek ¥ and the slip-
stream D. Thus we must resort to the differential equations éf'compressible
fluid dynamics, aggravated by the appearance of curﬁed shocks, which introduce
varying amounts of irreversibility. _

It would, however, be pointless to attack these difficult partial differen-
~tial equations, withowt having first aacortéiﬁed She natnré of the conditions
at the boundaries of the areas in which they apply. These areas are C, and.(C g
The banndarica are the lines R, M, D, and the point T at which they all meet
is one of particular 1nteroat.

The Rankine-zﬂugmiot conditions take care of the situation along R and M. °
For the slipstresm D we must require that it be a streamline in C, as well as
in Qé'and that at each point the pressure on its C, side be the same as on its
cz gide, but we must also reconcile all these requirements at the point T,
where R, M, D meet. Therefore a discussion of the conditions at’T is a %
necessary preliminary of any theoretical treatment of Figure 37.

The discussion of conditions in the immediate neighborhood of T is best
- done in the frame of reference where T (and I) is at rest, This is the scheme
‘ _‘af Figure 37 ex@pt that we may replace the lines I, R, ll, B by their tangents
&t T~ i.e. we my assume them to be ttraight (Pigure 38).

. The following resarks are now in arder;

(1) The welocity vector: % of tbe incom:lng flow in A is determined

" by the strength of the incident shock I and the orientetions of I and the wall.
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Figure 38
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Indeed, the former determines the velocity of the flow normal to I on the A
side. We know that Z% has the direction of £f£ , and so the statement abou£ the
normal component amounts to ’zil SA'A'L(AIU » I]):Vcompleting'the determination
of Z%,

(2) | The four discontinuity lines I, R, M, D divide the field into
four sectors A, B, C, CL o Assuming continuity within each one of these
sections, we may even treat them*as domains of const‘.an_t conditions, since we
are investigatirg an immediate (infinitesimal) neighborhood of T only. Thus
we have a situation in which straight shocks delimit domains of constant
conditions. The resulting problem is therefore again only one of applying the
Rankine-}!ugoniot conditions (and those of a 3lipst.ream), involving no
differential equations.

Considering the ﬁ‘nportanec of this conclusion, it is essential to re-

emphasize the assumption on which it is baud; continuity in each section

B, B, Cy, €, 8t T. Let us see what the basis of this assumption is.

»‘I‘ha.nain reason is thé experimentally established aabect of Figure':‘,?
which shows the lines I, R, M, D, and no others., Heace there are certainly
no lineé of diac:ontinuit.y' across either sector A, B, Cy, Cp . However, this is
not the only possible type of discontinuity. Thus & supersonic flow around s
convex corner “"turns' in a manner, where the state at each point is a function
of the direction from the corner to that point. In this way there is a dis-
continuity at the carner, but nowhere else. This Meyer discontinuity or
angular discontinuity was discovered by prandtl (11) and Moyer(lz).

) | ~
Phys. Zeitschrift, Bd.%, p. 23 (1907).

(12) L |
Forschangsarbeiten auf dem Gebiete des Ingenieurwesens, V.D.I. Heft 62
(1908).
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There are reasons which mmke the appearance of an angular discontinuity
under the conditions prevailing at T not at all improbable, Without discussing
them, we point out this: the angular discontinuity is unlikely in the sector

Cybecause the flow there is in many cases subsonic(ls).. It is unlikely in A,

(13)
cf. discussion of Prandtl-Meyer angular discontinuity in article by
Taylor and MacColl, previously cited (footnote 4).

because A is ahead of the incident shock I, which is the "signal" of the

approaching disturbanee, and therefore A4 ought to be entirely undisturbed.

LS 3 )

¢ It is unlikely in B, beémuse B (while behind 1) is ahead of the reflected shock |
) R, which is the "signal® of I having run 1hto an obstacle, and therefore B
ought to be unaffected by any reflection phenomena. Hence the angui;r dis-
continuity, if there is one at all, should be in Cu® |
We shall point out that the‘assumption of continuity at T is in mBny cases
untenable, because the conclusion conflicts with experience. We shall point
out further that an angular rarefaction in C,; does not appear to be able to
resolve the difficulty. It may be, that there is one in B, i.e. that R is not
the "first signal® of reflection. (In some, but not in all cases even A and C,
may be questioned.) Alternatively, existing theory does not allow us to rule
out entirely the possibility of point-discontinuities at T which are not angular
discontinuities. The situation is obscure., However, in order to understand
‘the situation and its difficulties, we must first follow up the assumption of
continuity at T, following the scheme pictured in Figure 38.
The general procedure to be followed would be this: Kﬁowing the strength
of the incident shock I and the orientations of all five lines I, R, M, D and
{1 5 we can follow Figures 37rand 38 and apply the conditions of Hankihe-Hugoniot
''''' and those of a slipstream. The former determine by themselves the situation in

C, and in Cg" i.e. on both sides of D. The slipstream condition then requires
/
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that the substance velocity on both sides of D must be parallel to p and that
the pressure must be the same on both sides of D. Thus we obtain three equations.

If the orientation of £ £ is unknown, we can eliminate it, and still have
ﬁwo equations. If the strength of I is unknown (but the "Qndiaturbed" state in
A - p,v, but not the velocity Z* - is known), we can eliminate it, too, and
still have one equation.

We call the soluticns for the immediate neighborhood of T - according to
Figure 38, and with the assumption of continuity - the three shock solutions.

Thus measurements made on a shadow photograph of the type of Figure 32
provide data which can be fitted to a three-shock solution only if they fulfill
one equation. If the strength of the incident shock 1 is known, they must even
fulfill two equations. Thus a determination of all three-shock solutions allows
for a direct empirical verificatibn.

The best specific instance for such a determination is that one of air at

" moderate pressures (1 to 5 atmospheres), i.e. of an ideal gas :v;lth { = 1.4,

Actually the algebra of this case is rather cumbersome, but a numerical approach
is practicable., A numerical survey of three-shock solutions was obtained by

Se CMndraaekhar(M), Ke Friedrichs(15), and H. Polachek and @,d. Seeger(16).

(14)
S. Chandrasekhar "On the Conditions for the Existence of Three Shock
Waves", Ballistic Research Laboretory, Aberdeen, Report No. 367 (1943).

(15)
K. Friedrichs, "Remarks én the Mach Effect", Div. 8 and Applied Math.
Panel, NDRC (1943).

(16)
H. Polachek and R, J. Seeger: Reg. Reflect. of Shocks in Ideal Gases
AM=524, (1944) .

%

-t

Experiments show disdgreements with three-shock solutions.
Thus a conflict between theory and experiment exists at the point T which

seems to justify our dropping the assumption of continuity.
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In dropping the assumption of continuity we must try to introduce point
discontinuities at T, As pointed out lan angular rarefaction in C, would seem
to be the most natqral selution, but preliminary investigations indicate that
this device produces no solution - not even for a weak shock in an ideal gas.

Thus far we have been discussing an inf‘init.esimal region of the shock
configurat'ion due to the reflection of a plane shock from a plane surface in
the range of irregular reflection. This was a discussion of the boundary
conditions designed to indicate t.h? direction the solution of the partial
differential equation of compreaaii;le fluid flow would take. The essential
result is that the nature of the bwndari conditions is not yet understood.

Our real interest, however, is not, except in an exploratary sense in the
case of an irregularly reflected plane wave but in the irregular reflection of
a spherical wave. The discussion for a regular reflection is equally v:llid in
both cases. The theory of the irregular reflection phenomenon is even less
understood in this more complicated spherical case, We are therefore forced
in our present state of knowledge to rely on certain qualitative notions about
the Mach effect coupled with experimental information. The experimental obaerva- -
tions on the reflection of gpherical blast waves from a plane surface are discuaséd

in the next section,

0.4 EXPERIMENTAL DETERMINATION OF THE HEIGHT OF FURST

The data on which the following discusaion is based was obtained from INT
explosions, not nuclear explosions, Therefore, inasmich as the free air pressure
distance curve aft.ep taking wl/ 3 scaling into account differs in these two
classes of explosioﬁe, the resulba discussed below are not applicable to the
blast produced by nuclear bombs. However, it is found that in the range of
interest, i.s. 5 to 10 pounds per square inch overpressure a suitable value of

.W can be found to amske the ratic of the peak overpressure produced in the nuclear
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explosion to the mrpressn‘n produced in tha "equivalent® TNT explosion nea‘rly
unity, We will be inberasted in pesk preazmre only. aincc this determines the
damage caused by large bm: (cf Socticn m 1) For THT explosions the free air
pressure, p {pounds per squﬁre inch), in the range of interest is given by

208 - (33)

(rpW)1-¥ ~ for W pounds of INT
r = distance from explosion feet

P=

luchar explosions as calmhm on m IBM have a free air pressure
dilto.nco dependonco which can be npumd in the region 5 to 10 pounds pex
square ineh to within 7 per cent by |

P ’(mr/:: yhe : - (34)

1‘! ‘we choocc ¢ m 206. then E is the “miulmt." tonmp for the mnm m
§ to !ﬂ po\u!a per square inoh, Thorc is no equivalent tomuge in the sense that -
the pmaaune—climncm curves for TNT and a nuclear explouian oan bs made everywhan
identieal by the choice of an npproprute walue of energy released in the form
of blast, With this in mind we will now procesd to construct tables of Mwighte '
of hmrat. by scaling esxpermnul dlﬁ aa the ﬁflacuon of blast waves ~du§ tp
™T msiona. The follow‘.l.at diuuuiod refers to 1 pound of TNT: hngthn and
dmtim are gmtar for an wlcaim of ¥ powmds of TNT by a facter 11/ 3
iple Poiny 2 ' 17)(8«..!'14&039)

W

‘l’h:omriwaul data mméd by ‘Halverson is used here, OSRD Reporl: 4899,
o '!hn sender is also referred to A, H, Taub, OSRD Report 6660 * The Bffect
R & of Burst om the Blast from Exploaives® Confidential; 1946, and
‘ m R&port 2943 "Airbunt frm Blut Bc-ba' Symposium, 1945,

| In m region of regular reflection D(.B (£ oxtm). the aphericity
of uu shock tront introduces no deviations from the results cbtained for

plane wavss because of the local character of the reflection phenomsnon,
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Pigure 39
Splieriseal shock reflected from rigid wall

' | d t 1a
= QU ‘Q [P (%.3 ;\A_/_Vs s given by theory of regular

reflection
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Therefore, we can use regular reflection theory and shock tuﬁe experiments
to determine the dependence of Dy on the height of burst (Figure 40).

For the case of irregular reflection the situation was studied experi-..
mentally. In ﬁarticular » the triple point was located as follows: gages
were placed at various heights (H + Y) and a fixed horizontal distance, D,
from the explosion and the differences in the time of arrival between the
direct (I) #nd reflected (R) shocks were potod. An extrapolation.of this time
to zero gave the height of t.hea triple poi’nt for each height of b;xrst. By | .
repeating the procedure for various heights of burst and then scaling the re-
sults down to 1 pound of INT curves of Y versus h. for various values of D
were obtained (Figure 41). |

It is more convenient to have a plot of the height of bursf.‘hc as a
function of the horizontal distance from the explosion for various selected
stem heights y (Figure 42). The stem heights were so chosen that they scaled

up to 30 and 100 feet for various tonnages of INT.

1Q.4-2 Cptimum Height of Burst for Peak Pressure

Knowing the geometry of the Uach effect, the next problem is to connect
it with a choice of the heights of burst which maximize the area over which
the pressure exceeds a chosen set of values.

Suppogse we are interested in t.hé hoight of burst, hc » which m;IkGS the
peak overpressure, p, on the ground, occur at the greatest horiimtal-projected
distance, D. The procedure would be to measuﬁ p (D) for each value of h, and
then to plot D(h;) for selected values of p. Such experiments have been per-

formed using ’IN’I‘(ls) and the results D(h;) for selected values of p, are

(18)
Various reports of Division 2 NDRC, by A. H. Taub and W. T. Read.

incorporated in Figure 4Z. That hg, for which D = Dyax, is then the height

of burst which yields the greatest distance to a point on the ground for which
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Figure 40
" Theoretical limits for reg¥lar reflection versus charge height
(w =1 1b TNT) (after Halverson)
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Figure 41

Stem height versus horizonm distance for a given charge height (h )
(W = 1 1b TNT) after Halverson
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D - HORIZONTAL ( PROJECTED) DISTANCE FROM CHARGE (ft.)
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Figuro 2 ~

Height of burst versus horisontal dilt;nce for a given
sten height and owverpressurs

-~ % =1 1b TNT

D = horigontal projected distance (feet)
he= chargs helght (feet)

g

a = 1,00 £t f= .33 %
b= .80 g = .29 .
¢ = L83 h= &
d= .48 i= ,20
e = ,37 J= A8

. k= ,08
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the peak pressure has a prescribed value.(m)'lhis value will, in general, be

(19) ~ :

It might be stated that a better scheme now exists than that which was
used for obtaining the pressure (on the ground) versus distance curves
for an elevated nuclear bomb. The idea is £o\first)deduce the reflection
coefficients for chesen overpressures and angles of incidence from the
measurements made on TNT and then apply these results to the free air
blast curve from the nuclear bomb. The main reason this was not dene in
determining the height of burst is that the IBM runs which give the free
air overpressure, distance curves for the nuclear bomb were not yet
carried out when the height of burst tables were made up.

‘in the region of Mach reflection. If we choose, instead, to debcr_mino'»m
height of burst by requiring that the stem of the Mach Y have a pa-eacrib;d
height, y, at a given peak pressure, then for this value of h¢ it is, in general,
true that D < Dg,x. The advantage gained by baéing he on y is that the pressure
is increased, not only on the ground but over a vertical region coinciding

with the Mach Y as well., In this way, the average pressure exerted by the blast
on a structure i3 increased, result:i.ng in increased destruction in regions

where the pressure is marginal. The problem is soméwhat complicated by the
variation of preassure along the stem of the Y. A 15 to 25 per cent decrease

in pressure occurs in traversing the stem of the Y from the ground to -the triple
point. Because of this variation t;1e mean pressure along a chosen vertical
strip is not rigorously meximized by making the stem of the Y just tall enough
to cover it. As a working approximation, however, we will choose the height

of burst so as to achieve a desired stem height at a chosen peak owferpressuie.
By using a W1/3 scale factor, Tdbles 10.4=2 (g), 10.4~2 (b) were prepared for °
various tonnages of T™NT. These tables give the heights of burst necessary

~ to obtain stem heights of 30 and 100 feet at various chosen peak overpressures.

The distances at which these stem heights are obtained are also listed.
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Table 10.4~2 (o)
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" Y . 30 ft.
Height of Burst and Radius at which Stem of Mach Y = 30 ft. and
Overpressure Exceeds Given Values for Various Xilotons of TNT
p (pat) f w005 | w100 | W 200 | WeabeO|Walo]|Waz20]| W el
Kilotons 1 N
20 h, (£t) s-=- ———— --e- g 900 1300 1650 3100
4 (08) | ---- il P i; 1800 2200 | 2800 | 4800
18 hg 360 50 | 660 g'“ 950 | 1400 | 1760 | 3400
a 800 | 000 : 1300 é 1800 §; 3499V: 3000 | 5200
14 h, 400 600 ¢ 800 § 1150 % 1800° | 2000 | 3800
a 960 1260 % 1eog;¥'%; 2200 E 2800 | 3600 | 6200
10 h_ 550 0 | 1000 | 1460 1 2000 | 2500 - ar00
d 1260 '1moi'nm izmo%,mm 4800 | 8000
[?;;;:mnﬂwwv;“~hwgsgmwwMFthgb " 1 000 ; 1660 ? 2100 | 2700 | 5000
d i 1350 ? 1vppiﬁ_é _22Qo ,,;}Asloo | f 4000 g 00O | 8700
8 h, 650 %0 | 1156 j 15554*A§ 2300 £ 2900 | 5200
a 1500 | 190 2400 400 . 4400 | 500 | 800
7 h, i 700 | 960 ; 1260 | 1800 | 2400 3100 | 5500
a - 1660 2100 | 270 | 370 | 4800 | 6000 | 10000
6 h_ “eo0 | 1100 . 2400 © 2000 vﬁgyggsoo 300 | 5900
d 1900 2600 :# 3100 % 4200  §5um ¢edm 11000
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Table 10.4-2 (b)

X - 98

Y = 100 Fte

Height of Burst and Radius at which Stem of Mach Y = 100 ft. and

Overpressure Exceeds Given Values for Various Kilotons of TNT

E p (pst) W =06 | Wasle0 W = 20 2 ¥ « beC Wox 10 W =2 ¥ w100
! _(Ktilotons) L e ‘ |
118 hg (18), 180 200 300 . 500 i 800 | 1200 2300 |
- (26) 600 800 1100 1500 ‘ 2000 2700 4800
%_1;_;: T 2 700 ! g T e
| e 800 1000 1400 | 100 | 2600 3300 5800
§“m he “so0 | asa T eso i 1000%"1400 ‘1900 ST
.4 : 1100 1400 1800 2600 3 8300 4300 7600
*_9hc 350 600 7O inoc | 1600 2100 3600
o L 1200 1500 2000 2800 . 3600  4T0 8200
8h 400 560 800 . 1200 1700 | 23c0 4300
a 1300 1700 2200 | 3100 4000 5200 9000
7 he 450 600 80 | 1360 1800 2500 4600
o 1400 1900 2500 3400 4400 6700 10000
ey 500 700 1000 * 1600 2000 2800 * 5200
b4 1600 = 2100 2800 3900 . 5000 6500 11600
[Bh, - 85 | 80 180  1%0 . 2300 . 3100  ---s
e 1900 2600 | 3300 4600 6000 7800  =---
bh, . 600, 900 1260 | 1800 | eme=  eeee e

d | 2000 l 2800 3700 5200 5 e T

S _1 ; |
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"10.5 CONCLUSION: THE HEIGHT GF BURST

In this concluding section we will bring the n_lywiil discussed in ths
preceding four sections to bear on the problem ofﬁo’ﬁmining the height of
burst which results in the greatest area of blast &upge. There are two
argunents which favor an air burst quite apart from ;,hé influence of oblique
reflection. First, a bomb burst close to the ground is accomp;nied by
cratering and melting of the ground and hence a loss of energy to the blast.
Second, an air burst avoids much shielding of one structure by motﬁer. An
undesirable feature of air burat is, of course, the fact that the bomb is |
further removed from the target than it would be if it were burst on the
ground. A coupamting feature is the fact that the high pressure region of
a bomb burst on or close to the ground would over-dntz;oy the target in the
near vicinity of the bomb. This local overdestructiaon regresents an unnecessary
expenditure of energy on nearby parts of the target region which decreases the
destruction i:xflicted on more remote structures. The reduction in blast
pressure due to elevating the bomb is of course more serious for parts of the
target which were in immediate contact with the ground burst bomb -- they
became removed by at least the'heigbt-of burst. For more distant parts of*thc
target the effect of raising ﬂhlo bomp off the ground is less important, and at
distances which are two or three times greater than thevheight of burst t.hé
change in distance from bomb to target due tg elevating the bomb is completely
unimportant in its effect on the preasure af the target.

Judging from the results obtained in the low burst; ﬂ.OO feet) at Trinity,
it is possible to @t reasonable lower limits on the height of burst required
to minimize some of the above blast reducing effects due to the proximity of
the ground. _

If it is desired to avoid fusing earth and structurel materials, then

since the radius of the ard® over which the earth was fused at Trinity was

APPROVED FOR PUBLIC RELEASE




xxxxxx

APPROVED FOR PUBLI C RELEASE

X 98 ,A | !

-

aboutkl,OOO feet, the height of burst he which will avoid such fusing is

%

hg 2> 1,000 feet™" - (35)
This nunberr'.ic for an energy release in the form of radisat energy of 3 kilo-
tons of v'ﬂ"t;r'».m, since one may use an inverse squkre ll.u for such radiative
effects, ths height of burst which will avoid fusing will be related to the

tonnage roleuod as radiant energy W, (kilotons TNT) by the inequality

he > 1,000 (ii..) 3 (36)

-

This calculatio'n assumes no attenuation of the beam due to absorption. It

is not possible to state what propertion of the m.lclear snergy will be released
as radiant energy without knowing the design details of the bomb. To date no
such calculation has been carried out because of the extreme complexity of

the problem. However, the Trinity figures give a useful indication of the
proportioﬁ of energy that appears as radiation.

M o= 2 (37)
Wo 10

As a rough rulé then, to avoid fusing

~ *
lpau. W, (38)

. where hy = height of burst in feet to avoid fusing,
W, = blast energy in kilotons TNT.

The available evidence on cratering from air burst bombs is very frag-
mentary. Indeed, because of the extremely high pressures and great duration
of tm‘bi'a“;s‘t from & nuclear explosion it is not possible in our present state
of lmo#iq@ge to interpret, in any completevray, datsa on cratering from ordinary

oxplosﬁés so that it will apply to nuclear explosives. The only data on
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cratering by a nuclear explosion is that obtained &t Trinity where the bomb
was detonated at & height of 100 feet: A compression crater 10 feet deep in
the center and 500 feet in radius was formed in the close packed sand of the
New Mexico désert. Using this point am‘ixthe data in the Weapons Manual as a
guide, it a]ppears extremely unlikely that any cratering at all would have

occurred had the charge been detonated at & height of 250 feet,

hpe crater > 250 feet for Wy = 10 kilotons mr“m

(20)

It is not possible to match everywhere the blast from a nuclear explosion
by the blast from a suitable quantity of T™NT. At amall distances the

- pressures developed in the nuclear explosiod greatly excéed any pressures
developed in a chemical explosion. In addition, the nuclear explosion is
very much more rapid than a chemical explosion and does not feature after-
burning of the constitutents so characteristic of the latter. Because of.
this, and the finite size of the mass of INT as opposed to that of the
nuclear explosive, the shape of the blast wave and hence its decay as it
travels outward is also different in the two cases, Desgpite this, it is
poseible to find (cf. Section 10.4) a quantity of INT which is eguivalent
‘to the nuclear explosive in the sense that the peak overpressure, distance
characteristic is nearly the same over a small range of overpressure, say
from 5 to 10 pounds per square inch, The Trinity value Wy = 10 kilotons
INT equivalent is for distances where the overpressure is in the range
5 to 20 pounds per square inch. Since the ground was close, the energy
effective in producing a crater was greater than 10 kilotons and hence
the assumption of 10 kilotons amounts to saying that the ground is easier
to crater. The value for h, . 1is therefore probably teo high.

scaling for an explosion of blast tonnage Wy (kilotons TNT) :

3
hp,c, > 120 wbl/ (39)
where h, . = height of burst in feet to avoid cratering.

Prom the above considerations the height of burst hpin to minimize the
reduction in blast due to the proximity of the ground may be estimated as

P

hpin 2> bp,c., or hg, whichever is greater. (40)

The question of the value of h required to minimize overdestruction of the
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target is sensitively dependo;:t, :q-: :;be ,??bf‘i,l" of the target. Given the
pressure which is considered as the limit beyond which overdestructim sets
in, a reasonable value of the minimum height of burst can be obtained from the
pu-esa'urg' distance curve in free. air (cf. Chapter 7 of this vo!.ﬂth and the
multiplication of pressure on reflection from the ground, considering the blast
wave to be normally inecident on a rigid ground,

Noﬂ let us consider the effect of roflect;ion on the preassure in the
hhst""f;'om a bomb burst high (h > h¢) in the air. Directly under the boab
a rcfiiechltion from the ground partly compensates for the loss in overpressure
due to t,l;xe increase in distance from the bogmb to the target area which ac-
companies air burst. "me gain in overpressure occasioned by the reflection
of a normally incident shock is a factor which would be 2 if the shock were
weak, and between 2 and 8 if the shock is of finite strength (cf. Figure 21,
Section 10;2). For shock strength in the intefesting region, 5 to 10 poundsl
per square inch, this factor is only a 1ittle above 2. This, then, is the
effect ot head-on reflection. As one departs from the point immediately under
the bomb, the increase in the coverpréisure gq;s even more fgvorable because
o(s“ the properties of oblique reflection mentioned previously. The highest
amplification occurs”soon after Mach reflection sets in. After this it drops
again as‘-incidcnco becomes more and more.glancing. Since the blast decays
with diat.nncc and the free air peak overpressure drops, it is clearly most
advmugeoua to get the greatest boosting factor where the blast pressure is
Just mgi{&al for the desired typo of damage. One should, therefore, choose
the h.:g;; of burst so that the maximum amplification occurs at that point.

: Binc§ the optimum amplification occurs for early Mach reflection thg ‘ »
height of burst is to be determined by the requirement that Mach reflection “
sets in at abeut the limit of B damage.(21) At this point the amplification

L) L LN J
L

0

‘k- (Ul ﬂ:l
-

L)
@
- [
L J

t'fﬁ.

(21) .
- If it is desired to maximize A aamAge the height of burst should be
modified so that Mach reflectidﬁmdﬁdr&a-éaiﬁbapondingly earlier.
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factor for overpressure cas bo ia hi;h g.a. L!"(g{. Section 10.3), but it seems
safer to count on a somewhat anlllcr valun and consider higher values of peak
overpressure, because of variauu diaaipativo mechanisms (cf. Section 10.1).
The method by which the optimun hueﬁi:inntion is properly positioned raquiros
same further discussion. Actually, when the target, for example the wall of
a house, is struck, it receives two blows if there is %tgulnr reflection by
the ground in its vicinity: one by the direct and one by the reflected blast
wave. If these two waves are close together»they both act as one blast., If
they are far apart, i.e., the angle of reflection is far from 90°, then these
two shock waves hit the lafger part of the wall with a considerable lag
between their times of arrival. (As long as the reflection is regular the
two shocks would arrive simultaneously at the g‘round but would be separate at
all points above the ground. i'm'e separatiori between shocks j:ncreases with
distance off the ground.) ,In this case dissipative and other unfavorable
effects may act between théit_io shocks. Clearly, the best situation from this
point of view is one in whit ok the two éﬁb“éka are merged together, which happens
in the stem of the Y. Hence the house aﬁould be hit by this stem. As was
pointed out, it is desirable to have the Mach effect in its early stages just
as ﬁhe aistance at which the type éf damage under consideration ceases. Now
if one wishes tc destroy a wall, then the stem of the Y should cover the entire
wall, Conaeéuently the height of burst should be so chosen that the stem is *
about'as high', .or‘higher t.ha:x t:he' target, about at the distance B damege ceases,

In view of these considerations and the validity of the peak pressure
criterion (cf. Section 10.1) we determine the proper height of burst as
follows:

(1) The peak pressure required to iﬁflict & given type of damage,

B damage, for example, is known: from 3 to 9 pounds per équare
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(2) &n amplification-j.n-up anrmire of at lsast 2 can be
.mctd (22) o o-o o ouo‘ d.. .‘

This is approximate; the actual aupl.tfica’dm is dctemintd uporimnt-
ally, as described in Section 10.}. . _ ‘

(3) The stem of the Mach Y ahonlfd be about equal to the target
height. |

By 1, 2 the bomb must be burst at a diat.;ncg where the peak pressure is
something less than half of the peak pressure required according to the above,
The height of burst is determined by 1, 2 in conjunction with requirement 3
according to the procedure described in Section 10 4.

We can now proceed to a statement of the hoigh*t of burst and the damage
radiuas in a few selected cases, On the basis of the Trinity test and the
combat drop at Negasaki we may assd;e an eqaivalont blast touna;e of 10 ard

20 kilotons. The pedk pressures roqumd rw ﬂ dmge may vary according to

the structures involved, and even for typical x‘elidential property from count.ry

to country. In J;pln- 3 pounds per square inch msy be eritical; in the U.S.A.,
England, and Germiny, 6 to 9 pounds per:sguare inch might be required. If one
is conservative cne may use a higher vaiue.(23)

. . SRR

In connection with the planning of ﬁhia project, values o:!’ between 3 and
6 pounds per square inch were nsuslly talked about. The height of bursts»
was finally determined on the basis of a é pounds per sjuare inch estimaf
partly in order to be conservative and partly because we were not certa
what the tonnage of the blast would be. The uncertainty in tomnége was
due to the grobability of predetonation and general uncertainties neces-
sarily affecting the first trials.

The following table gives the heights of burst consistent with the pressure
levels of 10 and 6 pounds per square inch and stem heights of 30 and 100 feet.
The table 1s obtained from experiments as discussed in Sectdon 10.4. Table 10.5
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givos the heights of burst fon 10 and m'kmotbgcs INT uhich should be used if

two heights (30 and 100 feet) are to be attained by the stem of the Mach Y at

the positions, R, where the peak overpressures are 10 and 6 pounds per square

inch. A more complete table can be found in Section 10.4.

Table 10.5
W = 10 kiletons
Overpressure Distance Height of burst
Pr (psi) R (ft) : H (ft)
10 3600 3300 2000 1400
6 5300 5000 - 2600 2000
& 20 oto
10 1600 4300 2500 1900
6 - 6600 6500 3300 2800

On the basis of such coneiderations it mas fqmd that & nuclear bomb in

the 10-20 kileton range should be burst at anf"’lltituw:‘ar 1500-3000 feet to

méximize blast damage. Such heights of burst would, in addition, avoid both

fusing and cratering the earth.

10.5-1 A;c_uraq of Wt of Burst

It 15 appropriate here to insert a few remarks about the accuracy to
which it is desirable to fix the height of burst since this requirement is

immediately reflected in the complexity of the fusing apparatus required.

An

accuracy of ¥ 50 feet, for ‘example, dictates a radar activated fuse whereas

an accuracy of ¥ 250 feet might be attained by a relativoly simple clock

LE R J
o9 0
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carried by 2irplane.

should be fused. They are:

"

There are several factors which limit the accuracy to which the bomb

(1) Experimental errcrs in measuring triple point. tra jectories
and pressures in the blast configuration.

(2) lack of criteria as tc the precise height the stem of the

DO NOT CIRCULATE
Retention Copy

gﬁ Mach Y should attain gt the limiting pressure which it is
‘:‘ _desired to enhance ty irregular reflection.
‘1‘ (3)1,,&;&9‘9!'&?:1’. knowledge of the target configuration and hence of
:3 “ fim pressure which is required to produce msrginal destructien.
; (h)‘i The variable nuclear and hence blast performance of the bomb.
= It can be stated with reasonable certainty, say with a prob-
. o abilit.j of 0.95, that the nuclear efficiency will be)grg&ter
'  than 1/2 the rated efficiency.(zh) l:' ":‘—
[
(24) )

This was caleculated by R. F. Christy for a Christy type gadget, but is
not sensitively dependent on the specific implosion design.

One feature which makes the choice of the heights of burst less seriously

. dependent onthe aﬁove facts is the relative insensitivity ot the value of
the area over which the pressure exceeds a certain prescribed value to the
height at which the bomb is burst. & variation in height of burst of % 450
teet, for .’Ixﬁﬁplo,’ produces no more than a 20 per cent variation in the area
defined ;bm'in'the pressure region 5 to 10 pound@-per square inch for blast
tonnages oI 10 to 20 kilotons. In view of this fact, and those cited above, a

very conservative limit on the accuracy to which the. bomb should be burst when

used in lrea ltj.hck is * 250 ?eetj ‘\‘-“ DO NOT CIRCULATE
L ' 35\ _ Retention Copy
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