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General Topics in
Passive Gamma-Ray Assay

J L Parker

This chapter discusses general topics that apply to the gamma-ray assay techniques
discussed in Chapters 7 to 10. All these topics must be understood if optimum results
are to be obtained from any assay technique. The topics include

● Energy calibration and determination of peak position
● Energy resolution measurements
● Determination of full-energy-peak area
● Rate-related losses and corrections
● Effects of the inverse-square law
● Detector efficiency measurements.

5.1 ENERGY CALIBRATION AND DETERMINA~ON OF PEAK
POSITION

5.1.1 Introduction

The energy calibration of a gamma-ray spectroscopy system is the relationship
between the energy deposited in the detector by a gamma ray and the amplitude of
the corresponding amplifier output pulse. The pulse amplitude is measured by the
analog-to-digital converter (ADC) of a multichannel analyzer (MCA) or by one or
more single-channel analyzers (SCAS). The energy calibration is used to determine
the width and location of regions of interest (ROIS), to determine resolution, and to
find the energies of any unrecognized gamma rays.
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The energy calibration of a good spectroscopy system is nearly linear:

E=mx+b (5-1)

where E = energy deposited in detector
m= slope
x = amplitude of output pulse
b = intercept.

The assumption of linearity is usually sufficient for nondestructive assay (NDA) tech-
niques. However, no system is exactly line=, each has small but measurable nonlin-
earities. When a more accurate relationship is necessary, a higher order polynomial
is used. Gamma-ray energies can be detemnined to within 0.01 to 0.05 keV using
a nonlinear calibration curve and several standard gamma-ray sources with energies
known to better than 0.001 keV.

Low-resolution detectors [for example, NaI(Tl) scintillators] often use Equation 5-1
with a zero intercept (b= O). The linear approximation is usually good enough for even
high-resolution NDA applications. For a good germanium detector, a linear calibration
will determine the peak energy to within a tenth of a keV, which is adequate to identify
the isotopes present in the measured sample. For most of the isotopes of interest to
NDA, the pattern of the gamma-ray spectrum is so distinctive that a visual examination
of the MCA display by an experienced person is sufficient to identify the isotopes
present. Figure 5.1 shows the characteristic spectrum of low-bumup plutonium, and
Figure 5.2 shows the characteristic spectrum of natural uranium (0.7% 235u)+

The calibration procedure involves determining the channel location of peaks of
known energy and fitting them to the desired calibration function. Often, the gamma
rays from the measured nuclear material sample can be used to determine the energy
calibration. Figure 5.1 shows that plutonium spectra have interference-free peaks
at 59.54, 129.29, 148.57, 164.57, 208.00, 267.54, 345.01, 375.04, and 413.71 keV.
Similar internal calibrations are possible for many isotopes (Refs. 1 and 2).

When the measured nuclear material cannot provide rm adequate calibration, iso-
topic standards are used that emit gamma rays of known energies. Table 5-1 lists
some of the most frequently used isotopes with the half-lives and energies of their
principal emissions (Ref. 3). Most of the isotopes listed emit only a few gamma rays
and are useful with both low- and high-resolution detectors. All the isotopes listed in
the table are available from commercial vendors. Packaged sources usually contain
a single isotope and are produced in a wide variety of geometries. Source strengths
between 0.1 and 100 pCi are usually adequate for energy calibration. Convenient
sets of six to eight single-isotope sources are available from most vendors. Their
use is required for setting up, testing, and checking many performance pahrneters
of spectroscopy systems. The source sets are useful for determining energy calibra-
tion, testing detector resolution, measuring detector efficiency, setting the pole-zero
adjustment, and correcting for rate-related counting losses.
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Fig. 5.1 A high-resolution spectrum of Iow-burnup plutonium, The indicated peaks are useful in the energy calibration of
plutonium spectra. The energy in keV is equal to the channel number divided by IO, plus 20.
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Table 5-1. Half-lives and energies of major emissions for selected isotopes”
Isotopes Half-Life Energy (keV) Remarks
241Am 433 yr 59.54 Many others, but weaker by factors 104 or greater
137CS 29.9 yr 661.64 The only other emission is from Ba K x rays
133Ba 10.9 yr 81.0,276.40, 302.85, 356.00, 383.85 Several others, but much weaker
60c0 5.3 yr 1173.23, 1332.51
22Na 2.8 yr 511.01 Annihilation radiation

1274.51
55Fe 2.7 yr Mn K x rays 5.9, 6.5 Often used for low-energy calibration
lof)cd 1.2 yr 88.04 Ag K x rays at 22.16 keV and 24.9 keV
54Mn 312 d 834.8 Monoenergetic source
65zn 244 d 511.01 Annihilation radiation

1115.5
57C0 271 d 122.06, 136.47 Two others of higher energy, but much weaker
75 se 120 d 121.12, 136.00, 264.65, 279.53,400.65 Several others, but much weaker

“Listed in decreasing order of half-life. All isotopes listed should be useful for at least 1 yr, because the half-lives are
greater than 100 days.
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Gamma-ray standards are available with several isotopes in one capsule. These
multienergy sources are used to define the energy calibration curve and efficiency
curve of high-resolution detectors. The National Bureau of Standards (NBS) source
SRM-4275 contains 125Sb (2.75-yr half-life), 154Eu (&4$)-yr half-life), and 155Eu
(4.73-yr half-life) and emits 18 well-resolved gamma rays between 27 and 1275 keV.
The emission rates of all 18 certified gamma rays are known to better than 1%.

5.1.2 Idnear Energy Calibration

Equation 5-1 descri~s the assumed functional form for a linear energy calibration.
If the positions x1 and x2 of two full-energy peaks of energies El and E2 are known,
m and b can be computed from

m _ (E2 – El)
(X2– xl)

b _ (X2EI – XIE2)

(XZ– xl) “

(5-2)

(5-3)

For a two-point calibration, the two calibration peaks should be near the low- and
high-ene~y ends of the energy range of interest to avoid long extrapolations beyond
the calibrated region.

Often, when an unacceptable degree of nonlinearity exists, several linear calibrations
can be used over shorter energy intervals. The high-resolution spectrum of most
plutonium samples has nine well-resolved peaks between 59.5 keV and 413.7 keV
so that eight linear calibrations can be constmcted for the intervals between adjacent
peaks; none of the intervals is greater than 78 keV. A series of short linear calibrations
can often be m, accurate as a single quadratic or higher-order calibration curve.

When more than two peaks span the energy range of interest, least-squares fitting
techniques can be used to fit a line to all the peaks. This method can be used to obtain
the following expressions for m and b for n peaks:

(5-4)

(5-5)

Most hand calculators can perform a linear least-squares fit. Many MCA systems
can determine the xi and compute m and b for any selected number of peaks. Some
systems will also do a quadratic fit.

.——
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A linear energy calibration is usually adequate for NDA applications. Table
5-2 gives the results of two-point and nine-point linear calibrations of a high-quality
plutonum spectrum. The nominal calibration, E (keV) = 0.1x + 20.0, was established
by stabilizing the 59.536-keV gamma ray of 241Amat channel 395.0 and the 413.712-
keV gamma ray of 239pu at channel 3937.0. The second column of Table 5-2 gives
the peak positions determined by fitting a Gaussian curve to the upper portion of the
peaks. The third and fourth columns give the difference between the accepted energies
and those obtained from the two-point and nine-point calibrations. Although there is
a measurable curvature to the energy versus channel relation, the maximum error is
only NO.03 keV for the two-point ‘calibration and wO.017 keV for the nine-point cal-,,
ibration. The consistency of the results in Table 5-2 indicates that the peak positions
have been located to within NO.1 channel (wO.01 keV) and that the accepted energy
values are consistent within wO.01 keV.

Table 5-2. Results of linear energy calibrations of a high-quality
Plutonium mectrum
Accepted Peak Energy Difference (keV)a
Energies Positions llvo-Point Nine-Point

(ke~) (channels) Calibration Calibration

59.536
129.294
148.567
164.58
208.000
267.54
345.014
375.042
413.712

395.00
1092.77
1285.51
1445.80
1879.96
2475.37
3249.98
3550.40
3937.00

--- – 0.017

0.014 – 0.001

0.014 0.000

0.029 + 0.015

0.022 + 0.009

0.019 + 0.007

0.001 – 0.009

0.013 + 0.004
--- – 0.008

“The tabulated numbers are the energies from the calibration minus the ac-
cepted energies. For the two-point calibration, m = 0.099993 keV/channel
and b = 20.039 keV. For the nine-point calibration, m = 0.099996
keV/channeI and b = 20.021 keV.

s.1.3 Determination of peak Position (Cent.roid)

Even with high-resolution detectors, full-energy peaks are usually at least several
channels wide. The peaks are nearly symmetric, and the peak positions are chosen as
the peak centers defined by the axis of symmetry. Full-energy peaks are usually well
described by a Gaussian function of the form

y(x) = yo exp [ – (x – x0)2/2a2] (5-6)
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wliere y(x) = number of counts in channel x
yO= peak amplitude
xo = peak centroid
u’ = variance.

References 4, 5, and 6 provide a detailed explanation of the properties of the Gaussian
function. The function is symmetric about Xo, which is the peak centroid used in
energy calibration. The parameter yO is the maximum value of the function and is
nearly equal to the maximum counts per channel in the peak if the background under
the peak is negligible. The parameter c? (the variance) is related to the full width at
half maximum (FWHM~ of the function by

FWHM = 2d~cr = 2.35482u . (5-7)

The area under the Gaussian curve is given by

A = G oyO =2.5070%

= 1.0645(FwHM)yo .
(5-8)

The constant in the second form of Equation 5-8 is close to 1.0 because the area of
a Gaussian is just a little greater than the area of an isosceles triangle with the same
height and width at the half-maximum level.

Full-energy peaks are not exactly Gaussian shaped. For high-quality germanium
detectors the deviations are hardly visible, but for lower quality detectors the deviations
are easily seen as an excess of counts on the low-energy side of the peak (called
tailing). At very high rates or with poorly adjusted equipment, high-energy tailing is
sometimes visible. The upper one-half to two-thirds of a peak is usually Gaussian,
and the centroid determined by fitting a Gaussian to the upper portion of the peak
is a well-defined measure of peak position. Figures 5.3(a), (b), and (c) show the
1332.5-keV full-energy peak of 60Co and the fitted Gaussian function. Figure 5.3(a)
is from a highquality germanium detector at low count rate, with properly adjusted
electronics. The deviations from the curve are hardly visible except for a very slight
low-energy tailing. Figure 5.3(b) is from a detector with poor peak shape. The low-
energy tailing is obvious. Figure 5.3(c) is from the same detector as Figure 5.3(a)
but at very high rates that cause dktinct high-energy tailing and significant deviation
from a true Gaussian shape. In all three situations, the Gaussian function fitted to the
upper two-thirds of the peak gives a good peak location.
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Fig. 5.3 The 1332.5-keVjidl-energy peak of ‘Co for three combinations of detector and count rate: (a) high-quality germanium detec-
tor and low count rate; (b) a germanium detector with poor peak shape; (c) high-quaiity gernianium detector and high count
rate. The Gaussian is jitted to the upper two-thirds of the peak.
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5.1.4 Vieual Determination of Peak Position

The human eye is very good at bisecting symmetric shapes. When a peak can be
spread out sufficiently on the MCA display, estimates of peak positions can often
be made to a few tenths of a channel by visual examination. The movable markers
(cursors) that are part of most MCA displays help in making visual determinations.

5.1.5 Graphical Determination of Peak Position

Figure 5.4 shows an SCA-acquired spectrum of 137CSfrom a high-quality 7.62- by
7.62-cm NaI(Tl) scintillator. It is desirable to plot such spectra as histograms with
the width of the bar equal to the window width and the low-energy side of the bar
beginning at the threshold voltage setting. Usually the intervals between threshold
settings equal the window width. The peak center is determined by drawing a straight
line along both sides of the peak through the centers of the bars. The intersection of
the two lines is the peak center.

1.5 I I I I I I I I I
T = 8.33

GAMMA RAY ENERGY = 661.6 KeV /,

n
m THUS ENERGY CALIBRATION IS

oF 1.0 — E(KeV) = ~ * T
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m
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Fig. 5.4 Plot of an SCA-generated spectrum of 137CSfrom a 7.62-cm by
7.62-cm NaJ(Tl) scintillation detector. The plot shows how visu-
ally fitting the ~itersection of lines along the sides of the peak is a
consistent way of estimating the peak center.
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%1.6 Determination of peak Position by the First-Moment Method

The centroid of a positive function y(x) is given by

(5-9)

where x1 and x2 are the bounds of the area considered and y; is the number of counts in
channel xi. This is called the first-moment method because the numerator of Equation
5-9 is the first moment of y(x). For the Gaussian function (Equation 5-6), Y = XO.
For calculational purposes the integrals are replaced by sums that closely approximate
them. The Gaussian function only approaches zero as x ~ *w; however, summing
over a region approximately three times FWHIVIis usually adequate. If the peak is
symmetric and if the summed region is symmetric about the peak, good results are
obtained even without subtracting the background from under the peak. If ‘a large
background continuum lies under the peak and an asymmetrically placed summing
region is used, the result will be in error. If the underlying continuum is subtracted,
the error in calculated peak location caused by an asymmetric summing region is
small. Figure 5.5 shows both a good choice and a poor choice of summing regions.
Methods for continuum subtraction are discussed later in this chapter.

The first-moment method is particularly useful for peaks with relatively few counts
per channel. It should be used with caution on peaks with distinct asymmetry because
the calculated centroid will not coincide with the centroid of the Gaussian portion of
the peak that must be determined for the energy calibration. Use of the first-moment
procedure does not require that the peak have a Gaussian shape, but only that the
peak is symmetric.

5.1.7 Determination of Peak Position by the Five-Channel Method

The five-channel method uses the maximum c,ount channel and two adjacent chan-
nels on each side to estimate the peak centroid. The relevant formula is

X. = Xm+ Y~+l (Ym– Y71a-2)– Yin-l (Ym– Ym+2)
Ym+l (Ym– Yn-2) + Yin-l (Ym– Ym+2)

(5-lo)

where the subscript m refers to the maximum count channel, and yi refers to the
counts in channel xi.

Equation 5-10 assumes a Gaussian peak shape. Similar fornylas can be derived
assuming a parabolic shape at the top of the peak. Equation 5-10 works well when
there are 6 to 30 channels above the FWHM point and enough counts in the five
channels to clearly delineate the shape of the top of the peak. The five-channel
method does not work as well as the first-moment method on broad peaks with poor
precision. However, the five-channel method is less sensitive than the first-moment
method to asymmetric peak tails from a poor detector.
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Fig. 5.5 A spectral peak showing good and poor choices
of summing regions when determining the peak
centroid by the jirst-moment method.

5.1.8 De termination of Peak Position by a Linearized Gaussian Fit

This procedure transforms the Gaussian-shaped peak into a line and then fits a line
to the transformed peak. The slope and intercept of the fitted line are related to X.
and u. The background continuum under the peak is first subtracted so that the fit is
made only to the Gaussian-shaped peak.

Transformations that linearize the Gaussian function have been applied only recently
to determine the parameters of gamma-ray peaks (Ref. 7). The simplest of a class of
similar transformations is the function

(5-11)
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where y(x) is the number of counts in channel x. me last expression in Equation
5-11 is correct if y(x) is the usual Gaussian function. The linear function Q(x) has a
slope m and intercept b given by

m = 2/02

b = –2x0/u2. (5-12)

Solving for a2 and X. gives

rY2= 2/m

Xo= –b/m . (5-13)

Equation 5-14 gives the expressions for the slope m and the intercept b of the line
fit to the set of points [x, Q(x)] by the weighted-least-squares method:

(5-14)

s? = estimated variance of Q(x).

The estimated variance of Q(x) is a function only of the uncertainties in y(x):

S2[Q(X)]= S:[y(X – 1)]+ 5;[y(X + 1)1 (5-15)

where s,(y) = s(y)/Y.

If the background continuum is small enough to ignore, then

S:[y(x)l ~ 1/y(x) . (5-16)
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If the background continuum is subtracted by the straight-line procedure later shown
in Section 5.3.3, the expression for S2[y(x)] is given by

[
S2[Y(X)] = yt(x)+ : kz# +(2 – k)2#

h e1
(5-17)

2(x – Xl)
where k =

(Xh – xl) “

Also, yt(x) is the total counts in channel x and the meanings of the other parameters
are given in Section 5.3.3.

For a linear fit there are simple expresdons for the estimated variance S2 of m
and b:

(5-18)

Although the fitting procedure just described may seem somewhat complex, the fit
can be performed by a short computer program in only a few seconds. The Gaussian
function should be fit to the top three-fourths to two-thirds of the peak to avoid
problems with non-Gaussian tails and imprecise data. The n channels in the peak
give n – 2 values of Q(x). When at least four or five values of Q(x) are used in
the fit, the results are more than adequate to determine the peak centroids needed
for the energy calibration. Unfortunately, it is very difficult to estimate the statistical
uncertainty in X. using this fitting procedure. However, experience indicates that for
peaks of reasonable precision, the values of X. are good to NO.1 channel ‘or betler.

In automated operations, a test should be made to determine whether a Gaussian
function adequately describes the input data. The reduced chi-sqwue statistic x2/v
provides such a test. For the linear fit of Q(x) versus x,

x2/1/ {[=+ x$ Qi-(m+b)]2
i ) (5-19)

where m and b are computed from Equation 5-14 and n is the number of values of
Q(x) in the fit. For good fits, X2/v should be N1.00. (See Ref. 5 for a very read-
able discussion of the properties of x2/v.) For low-precision peaks (up to w 10000
counts/channel), x2/v is really WI.00 for peaks of qualitatively good shape. As the
maximum number of counts per channel increases, x2/v increases even though the
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peak shape remains the same. The increase in X2/v does not necessarily mean the
fit is inadequate for determining energy calibration or for testing resolution. At low
precision, the goodness of fit is dominated by counting statistics; at high precision it is
dominated by the inevitable small deviations of the peak shape from a true Gaussian
shape, resulting in an increase in the computed value of X2/v. Experience will dictate
an acceptable value of X2/v for a given range of peak precision.

Figure 5.6 shows a low-precision spectral peak from a germanium detector (FWHM
w 19 channels) with the fitted Gaussian function superimposed upon it. The lower
portion of the figure shows the plot of Q(x) versus x for the upper two-thirds of the
peak along with the fitted line and the computed peak parameters.

5.1.9 Determindon of Peak Position Using a Parabolized Gaussian Fit

The naturtd logarithm of the Gaussian function is parabolic m is strikingly apparent
when full-energy peaks are viewed using the logarithmic display of, an MCA. The
natural logarithm of the Gaussian (Equation 5-6) gives

lny=czxz+clx+co (5-20)

where C2= – 1J2U2
c1 = Xolu=

co = in yo – #2u2 .

A fit of Equation 5-20 to the set of points (xi, In yi) produces values of C2, c1, and
co that give the parameters of the Gaussian:

XQ = –C1J2C2

.=~q

in yO= co – c~/4cz . (5-21)

The fitted curve is a parabola that opens downward and whose axis is parallel to
the y-axis. The procedure described here determines y. in addition to X. and cr, the
two parameters obtained from the linear fit to the linearized Gaussian. Therefore, the
full-energy-peak area can be determined using Equation 5-8.

Figure 5.7 shows a parabolized Gaussian fit to a high-precision spectral peak from
the 122.O-keV gamma ray of 57C0. The same high-quality germanium detector was
used in this figure as in Figure 5.3(a). At low energies, charge collection in germa-
nium detectors is more complete than at high energies, with a resultant decrease in
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Fig. 5.7 The 122.O-keV full-energy peak from a 57C0 spectrum obtained with
a coaxial germanium detector having high resolution and good peak
shape. The fitted curve is a ‘‘parabolized Gaussian.
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low-energy tailing. Comparison of Figures 5.3(a) and 5.7 shows that the tailing in the
122-keV peak of Figure 5.7 is even less than the small tailing of the 1332-keV peak
in Figure 5.3(a).

The expressions for the weighted quadratic least-squares fit are included for the
convenience of possible users. The expressions are given in determinant form and
involve eight sums, indicated by S1, S2, .... S8.

S6 S2 S3
co=; S7 S3 S4

S8 S4 S5

~ S1 S6 S3
c~=— S2 S7 S4

A S3 S8 S5 (5-22)

S1 S2 S6

C2’: S2 S3 S7
S3 S4 S8

where

S1 S2 S3
A S2 S3 S4

S3 S4 S5

As usual, the sums are over all the points fit. The yi values have the background
continuum subtracted. The remaining expressions required for the fitting procedure
are

si = s(ln y~)

s(y)
s(ln y) = G (5-23)
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where s(y) is given by Equation 5-17. The expression for X2/v, the goodness-of-fit
statistic, is

(5-24)

where n is the number of points fit and C2, c1, and co are the values computed from
Equation 5-22.

The remarks made in the previous section about the portion of the peak to be
fit and about trends in X2/v values apply equally well here. The quadratic fits put
considerable demands on the computer, and occasionally the six significant decimal
digits provided by many 16-bit processors running in single precision are insufficient
for performing correct quadratic fits on high-precision data.

5.1.10 Wtermkdon of Feak Foskion Using Complex Spectral Fitting

Large fitting codes are used to analyze complex spectra with overlapping peaks.
The codes describe the peaks with functions that have a basic Gaussian form, with
tailing functions added to describe the peak shape mom accurately. An iterative
nonlinear least-squares procedure is used to fit the data. The centroid of the Gaussian
component of the fitted peak is taken as the peak position for purposes of energy
determination.

5.2 IJE’I’EC’KX? RESOLUTION MEASUREMENTS

5.2.1 btfOdUdklll

This section is devoted primarily to the measurement of detector resolution. The
importance of good resolution and peak shape in obtaining unbiased NDA results can-
not be overemphasized. A narrow, Gaussian peak shape simplifies area determination
and minimizes the possibility of Mlasin assay results.

The full width at half maximum (FWHM or FW.5M) is the basic measure of peak
resolution. It is usually given in energy units (keV) for high-resolution detectors and
expressed as a percentage of the measurement energy for low-resolution detectors.
Resolution measured in energy units increases with energy FWHM2 % a + bE.
When expressed as a percentage, resolution decreases with energy.

Most detectors give fulhenergy peaks that are essentially Gaussian above the half-
maximum level. The ratio ,of the full width at heights less than the half maximum to
the FWHM has long been used to quantify the quality of the full-energy-peak shape.
Manufacturers measure the FWHM and its ratio to the full width at tenth maximum
(FW.lNI) to describe the peak shape; for many years a value of FW.lM/FW.5M less
thim 1.9 was regarded as describing a good peak shape. It is now reasonable to specify
FW.021vf/IW.5M and even FW.OHWFW.5M when the best peak shape is required.
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Table 5-3 gives the theoretical ratios for a Gaussian curve and the measured ratios
for a high-quality coaxial germanium detector. l%e table shows that the actual peak
shape closely approaches the Gaussian ideal. The ratios at fiftieth and hundredth
maximum should be measured after background subtraction.

Table 5-3. Theoretical andmeasured resolution ratios
FW lM FW.02M FW.OIM
F~M FW.5M FW.5M

Gaussian 1.823 2.376 2.578
122.0 keV 1.829 2.388 2.599

(1.oo3)a (1.005)a (1.008)a
1332.5 keV 1.856 2.428 2.640

(1.018)a (1.022)a (1.024)a

‘The ratio of the measured ratio to the theoretical ratio
for a Gaussian.

The pulse spectrum from a detector is continuous, whereas an MCA or SCA groups
the pulses in energy intervals. It is assumed that all the events in an interval can be
represented by the energy of the center of the interval. When a Gaussian is fitted to
the center points of the intervals, the width parameter a is slightly greater than that
of the original continuous distribution. As discussed in Ref. 8, the grouped variance
and the actual variance are related by

(a2)G = (02)~ + h2/12

(FWHM2)G = (FWHM2)~ + 0.462h2 (5-25)

where (02)G = grouped variance
(02).4 = actual vari~ce

h = group width (MCA channel width or SCA window width).

For MCA spectra, h has units of keV/channel if FWHM is in keV, and h = 1.00 if
FWHM is in channels. Table 5-4 gives the ratio (FWHM)A/(FWHM)G. To measure
the actual resolution to 0.1%, the system gain should be adjusted to provide more
than 15 channels in (FWHM)G. If (FWHM)G is 3 channels, the (FWHM)A is over-
estimated by -390. The correction has no practical bearing on full-energy-peak areas.
The Gaussian function fitted to the bhmed points has the same area (to better than
0,01%) as the continuous distribution because they. parameter is decreased by almost
exactly the same factor as the width parameter is increased.

—
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Table 5-4. The ratio of (FWHM)~ to (FWHM)~
FWHMG FWHMA

(channels) FWHMG

3.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0

0.9740
0.9907
0.9971
0.9990
0.9994
0.9996
0.9997
0.9998
0.9999

5.2.2 Determination of Peak Width by Viiual Estimation from MCA Display

Vkual estimation works best with MCAS that have horizontal and vertical graticule
lines and analog controls for the vertical and horizontal position of the display. Many
small MCAS have such features; larger laboratory models usually do not give the user
any control over the vertical position of the display.

To determine FWHM to N 1%, the energy gain should be chosen such that FWHM
~ 10 channels. After the spectrum has been accumulated, the display controls are
adjusted so that individual channels are resolved and one of the horizontal graticule
lines cuts the peak at the half-maximum point. Figure 5.8 shows a peak divided at
the half-maximum level. After the peak is bisected, the channels above the horizontal
line are counted, estimating to tenths of channels. Because the channels are plotted
as points, one really counts the spaces between the points. Usually the continuum on
the high-energy side of the peak is regarded as the “bottom” of the peak. The slope
of the energy calibration line is used to convert the FWHM value from channels to
energy. If the energy calibration is not available, multienergy sources can be used.
Large germanium detectors are calibrated with the 122.06- and 136.47-keV gamma
rays from 57C0 and the 1173.2- and 1332.5-keV gamma rays from ‘°Co. In either
case the energy calibration can be determined from the separation of the peak pair
in channels and the known energy difference.* ‘i%e resolution is then determined
by multiplying the FWHM in channels of the 122- or the 1332.5-keV peak and the
appropriate energy calibration (keV/channel). With a little practice, values of FWi-lM
(keV) can be determined to within 1%.

*Currently the best value for the energy difference between the two 57C0 gamma rays
is 14.413 keV; the best value for the energy difference between the two 60Co gamma
rays is 159.27 keV.

— -.
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Fig, 5.8 A full-energy peak bisected by the mid-line of an MCA

display. The FWHM equals the number of spaces above
the half-maximum level.

5.2.3 Graphical Determination of Peak Width

The same type of plot used for energy calibration (Section 5.1.5) may be used for
resolution measurement; indeed the two measurements can be combined. The shape
of the top of the peak must be sketched to estimate the maximum peak height and the
half-maximum line. Figure 5.9 shows the same 137CSspectrum as shown in Figure 5.4
but indicates the top of the peak, the half-maximum line, and the estimated FWHM.
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Fig. 5.9 An SCA-generated spectrum of 137Csfrom a NaI(Tl) detector. The plot
shows how the FWHM and peak centroid are determined.

5.2.4 Determination of Peak Width Using Ana.l@cal Interpolation

The procedure described here quantifies the graphical procedure presented in the
previous paragraph. Most of the FWHM functions built into modern MCA systems
use some variation of this procedure. The interpolation procedure is particularly useful
because the full width at any fractional height can be determined easily.

Figure 5.10 shows a full-energy peak with the maximum count channel near the
centroid. The line across the peak in the figure indicates the fractional height at which
the width is evaluated. The x coordinates of the points where the K * maximum line
intersects the peak are

KYP – Y1+ xix/ =
y2 – yl

Xn = Y3 – KYP + x3
Y3 – Y4

(5-26)
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Fig. 5.10 Diagram of the procedure used to determine the FWKM
by linear interpolation. The value of K may be between
0.0 and 1.0.

K = fraction of maximum height at which the width is evaluated
YZ= number of counts in channel x
yP = number of counts in the channel with maximum counts
xl = x coordinate of intersection of line K with low-energy side of peak
xh = x coordinate of intersection of line K with high-energy side of peak

x1, x2 = channels below and above xl
X3, X4= channels below and above Xh.
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The full width at the fractional level K (FWKM) is

FwKM=xh-x~=(x3 -m)+
[(y;3_3)-

119

(3’-31
(5-27)

To obtain the most accurate results, the value of yP must be carefully estimated.
When two channels with equal counts are at the top of the peak, the’maximum value
of the peak is clearly higher than the maximum channel value. The maximum channel
value underestimates KyP and gives a slightly large value for FWKM. The procedure
should be applied to peaks that are nearly symmetric about the maximum count chan-
nel. The peak maximum yP can be accurately determined by fitting a Gaussian curve
to the upper part of the peak. The peak shape can be accurately determined by using
peaks with good statistical precision at all the fractional levels to be measured. For
measuring FW.OIM, a yP of -106 should be used so that the precision at the 0.01
level will still be -190. Smootilng might be used to obtain consistent results from a
peak with poor precision; however, smoothing always’broadens the peak a little.

5.2.5’Determination of Peak Width Using the Second-Moment Method

The second-moment method for determining the width parameter o is analogous
to the first-rpoment method for determining the centroid. The secorid moment of the
normalized Gaussian function is equal to a2, the variance of the function. For the
unnormalized function in Equation 5-6, the second moment is

The parameter a is related to the FWHM by Equation 5-7.
Any significant background continuum should be subtracted before Equation 5-28

is applied. The sums are calculated over a region equal to or larger than three times
the FWHM. The method should not be ,used on peaks with significant asymmetry or
with a non-Gaussian shape.

The procedure is useful for broad Gaussian peaks of poor precision where the linear
interpolation method does not work well. ,1’hefirst- and second-moment determina-
tions are usually performed together because the centroid value from the first-moment
algorithm is required in the seeond-moment algorithm.

5.2.6 Determination of Peak Width Usiqg a Linearized Gaussian Fit

Section 5.1.8 shows that Equation 5-11 can be used to linearize a Gaussian curve.
The slope and intercept of the fitted line are related to the peak centroid and FWHM
(Equations 5-7 and 5-13). The linearized Gaussian procedure is a good test of the
energy calibration and detector resolution. Testing both a high-energy peak and a low-
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energy peak provides strong assurance that the electronic parts of the NDA system
are performing correctly. This test can be an important part of a measurement control
program for a high-resolution gamma-ray NDA system.

5.2.7 Detmdndon of Peak Width Using a Parabolizd Gaussian Fit

Section 5.1.9 shows that the natural logarithm of the Gaussian function is a quadratic
function of x. Fitting this ‘function to the set of points (xi, in yt) gives the parameters
of the Gaussian function Xo, yo, and a and provides another way of determining the
width of a Gaussian peak.

5.3 DETERMINATION OF F’UTLENERGY-PEAK AREA

5.3.1 Introduction

The gamma-ray pulse-height spectmm contains much useful information about
gamma-ray energies and intensities. One of the most important concerns in applying
gamma-qy spectroscopy is coqect extraction of the desired information. Norm@ly,
the most important information is the full-energy-peak areas and their associated un-
certainties.

Full-energy peaks in gamma-ray pulse-height spectra rest on a background con-
tinuum causal, by the Compton scattering of higher energy gamma rays. The most
fundamental limitation in obtaining unbiased peak areas is the determination of the
background continuum. When the continuum is small with respect to the peak, it can
cause only a small fractional error in the pe~; area. However, when the ratio of the
peak area to the continuum area becomes much less than 1.0, the possibility of bias
rises rapidly.

For many NDA applications, simple background-subtraction methods are adequate.
Under certain circumstances, complex spectfal fitting codes with long- and short-term
tailing functions must be used. Whh low-resolution detectors, the problem of including
small-angle-scattering events in the peak is severe, but computational corrections can
s~etimes be applied to resolve the problem (Ref. 9).

,,

5.3.2 Selection of Regions of Intcmeist (ROIS)

The choice of ROI is as important as the; choice of algorithms used to evaluate
peak areas. Most procedures use two ROIS to define the continuum level on the low-
and higli-nergy sides of a peak or multiplet. The average channel count of an ROI
is taken as the continuum level at the center of the ROI. A third ROI defines the peak
region.

For a Gaussian function, 99.96% of the aiea lies within a region centered at X. that
is thiee times the FWHM of the function. The amplitude of the Gaussian function at
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X. + 1.75 FWHM is only 0.0082% of the maximum value at X. so continuum ROIS
that begin at this point have minimal contributions from the peak. Thus, a peak ROI
of three times the FWHM and continuum ROIS placed symmetrically 3.5 to 4.0 times
the FWHM apart should obtain N99.9% of the peak area.

In principle, the continuum is estimated more precisely if the continuum ROIS
are quite wide. However, the possibility of systematic error increases as the energy
interval increases. For most NDA applications, continuum ROIS of 0.5 to 1.0 times
the FWHM are adequate. With an energy calibration of 0.1 keV/channel, typical
background ROIS are three to five channels wide. When the continuum between
neighboring peaks is very narrow, ROIS of one or two channels must be used. Peaks
whose centers are separated by three times the FWHM can be considered resolved,
usually a narrow ROI can be placed between them. It is better to sacrifice statistical
precision than to introduce bias by using continuum ROIS that are too wide.

Spectra with significant low- or high-energy tailing may require a wider peak ROI
than three times the FWHM. Because peak resolution deteriorates somewhat at high
rates, the ROI should be set on a high-rate (low-resolution) spectrum. Usually, better
results are obtained if all the ROIS are of equal width; therefore, the ROIS for low-
energy peaks and reference pulser peaks are somewhat wider than three times the
FWHM.

Computer codes can be written to accurately and consistently choose ROIS. Digital
stabilization can b used to keep the desired peaks within a single preselected set of
ROIS for long time periods. Sometimes it is desirable to change the spectrum to fit
a particular set of ROIS. Codes exist that can reshuffle the contents of a spectrum to
giv~ any desired energy calibration with little degradation of spectral quality.

5.3.3 Subtraction of Straight-Line Compton Continuum

It is often adequate to approximate the Compton continuum by a straight line
between the high- and low-energy sides of well-resolved peaks or of overlapping peak
groups. Figure 5.11 shows how the ROIS are selected and indicates the notation used
in the background equations. Note that the continuum ROIS need not be symmetrically
placed with respect to the peak ROI nor need they be of eqwd width. The background
is the trapezoidal area beneath the continuum line given by

B = [Y(FP) + WP)I (Np/2) (5-29)

where Y(FP) = mFP + b

Y(LP) = m% + b

and where m = (Y~ – Y~)/(~~ – xl)
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energy peak.

The variance of the background B is

(5-30)

(FP + LP – 2Xl)
where K =

(Xh – xi) “



General Topics in Passive Gamma-Ray Assay 123

Equation 5-30 assumes no uncertainty in the ROI bounds and is a function only of
the statistical uncertainties in Bh and B/, which are estimated by S2(B~) = B/ and
S2(Bh) = Bh. Equation 5-30 is correct when the background ROIS are not symmetri-
cally placed relative to the peak ROI. If the continuum ROIS are placed symmetrically
relative to the peak ROI, the expressions for both B and S2(B) are simplified. The
symmetry requirement means that (FP – XL) = (X~ – LP) and K = 1, and so the
expressions become

‘=(’’~yh)Np=($+w’ (5-31)

and

‘*(B)= (*)’(%+%)
(5-32)

Frequently Equations 5.31 and 5.32 are used even when the symmetry requirement
is not met, and if the net peak areas are much greater than the subtracted continuum,
little error will result. However, when the peak areas are equal to or less than the
subtracted continuum, the error may well be significant. In dealing with complex
spectra (the spectra of plutonium are good examples), one is frequently forced to
use asymmetrically placed ROIS. When the required computations are performed by
interfaced processors, Equations 5-29 and 5-30 should be used because they give the
best results that can be obtained with any version of the straight-line procedure.

For computations done with a small calculator, the use of the simplest possible
expression is desirable and ROIS should be chosen accordingly. If N~ = N~ s NC,
Equations 5-31 and 5-32 simplify to

B = 3(B’ + B/)2NC

and

()

2

S2(B) = ~ (Bh + B/) .
c

(5-33)

(5-34)

If it is possible to choose Nc = Np/2, the expressions achieve the simplest forms:

B = (Bh + B~) (5-35)

and

S*(B) = (B~ +B~) = B . (5-36)
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5.3.4 Subtraction of Smoothed-Step Compton Continuum

The Compton continuum beneath a full-energy peak is not a straight line. At a
given energy, most of the continuum is caused by large-angle Compton sca~ering of
higher energy gamma rays or by pulse pileup from lower energy interactions. The part
of the continuum under a peak that is caused by the gamma ray that generates the peak
results from small-angle Compton scattering and full-energy events with incomplete
charge collection, this contribution can be described by a smoothed step function.

Gunnink (Ref. 10) devised the original procedure to generate a step-function con-
tinuum beneath single peaks or multiples based on the overlying spectral shape. The
procedure provides better results than the straight-line background approximation, es-
pecially for overlapping peak multiples. For clean single peaks, the improvement is
often negligible.

Figure 5.12 shows a logarithmic plot of a mtdtiplet and a step-function background.
Using the notation of Figure 5.11, the background at channel n is

[

i=n

/

i=X~

B. =Y1– D ~ (Yi–yh)

1
~ (Yi - y.) (5-37)

i=x +1.e
i=x +1e

where yi = total counts in channel i
D=Y~–Y~

B(X~) = Y/
B(Xh) = Yh.

The background Yh is subtracted from every channel because the Compton events
from higher energy gamma rays cannot influence the shape of the smoothed step for
lower energy gamma rays. Equation 5-37 is usable when the continuum beneath a
peak or multiplet has a slightly negative or zero slope.

A significant complication in using the smoothed-step procedure is that the ex-
pression for the precision of the net area becomes exceedingly complicated when
derived from Equation 5-37. The precision expression (Equation 5-30) based on the
straight-line approximation is much simpler and almost as accurate.

5.3.5 Subtraction of Compton Continuum Using a Single Region of Interest

Estimating the background continuum from a single ROI is sometimes desirable or
necessary. For example, a single ROI is often desirable when using a NaI detector
and a single-channel analyzer (SCA) to measure 235U enrichment or 239Pu holdup.
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Fig. 5.12 A peak doublet with the estimated spectral continuum computed by
the simple smoothed-step algorithm.

When the signal-to-background ratio is high, it may be adequate to assume a flat
background continuum. Here, the contribution of the continuum to the peak ROI is
given by

(5-38)

(5-39)

Although this procedure is most often used with low-resolution scintillators, it is also
used with germanium detectors when there is no convenient place for a background
ROI on the low-energy side of a peak.

If the background continuum is not flat but can be assumed to have a constant slope
over the energy range concerned, Equation 5-38 may be modified to

B = KBh (5-40)

where K is a constant factor determined by experiment. If the ambient background
radiation is the main contributor to the Compton continuum, a “no sample” spectrum
may be used to determine K. If the continuum is strongly dominated by high-energy
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gamma rays from the sample, K may be estimated from an MCA spectrum. Often
K will change from sample to sample. Although these single-ROI procedures have
limited accuracy, their use is preferred to ignoring the continuum problem entirely.

5.3.6 Subtraction of Compton Continuum Using ‘I%vo-Standard Procedures

Measurement of 235U enrichment using the 185.7-keV gamma ray is a successful
application of a single SCA window for background corrections. The assumption of
a constant background shape is very good, and the constant K of Equation 5-40 can
be determined accurately. The enrichment E is given by

E = C(P – KB) (5-41)

where C is a constant with units (Yo235U/count). For two samples of different and
known enrichments measured for equal times, Equation 5-41 becomes

El = C(PI – KBI)

E2 = C(P2 – KB2) .

The solution to these equations is

C = (E2BI – ElB2)/(P2Bl – PIB2) .

K = (E2PI – ElP2)/(E2Bl – EIB2) .

Equation 5-41 may be written as

E=aP-bB

where

a = E2BI – E1B2

P2B1 – P1B2

b = P1E2 – P2EI

P2B1 – P1B2 ‘

(5-42)

(5-43)

(5-44)

(5-45)
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The two-standard method can be used to measure low-level radioactive cotMrnina-
tions in water or other fluids. See Chapter 7 on uranium enrichment for more details
on this procedure.

5.3.7 Using Region-of-Interest Sums to Measure Peak Areas

For well-resolved peaks, the simple summation of counts above the estimated back-
ground continuum is probably as good as any other method of finding the peak area.
This method avoids any difficulty from imperfections in the peak-shape models of
spectral fitting codes. The ROI-summation method is quite tolerant of small vari-
ations in peak shape and provides an accurate and straightforward estimate of the
precision of the net peak area.

For all ROI-summation procedures, the peak area is given by

A=P– B (5-46)

where P is the integral of the peak ROI and B is the contribution from the background
continuum. The expressions for S2(A), the estimated variance of the net area, vary
according to the procedure used to estimate the background continuum.

When B is estimated, by straight-line interpolation from continuum ROIS on either
side of the peak ROI, the estimated variance of the peak area is

S2(A) = S2(P) + S2(B) = P + S2(B) . (5-47)

Equations 5.29 through 5.36 give B and S2(B) for different conditions on the width
and position of the background ROIS relative to the peak ROI. The expressions are
summarized in Table 5-5. The simplest expressions are obtained when the background
ROIS are symmetrically ,plaeed with respect to the peak ROI and have the appropriate
widths. When adequate computational capacity is available, the most general form of
the expressions should be used so that ROIS can be assigned without constraint.

When the smoothed step function is used to estimate the background continuum,
Equations 5-46 and 5-37 combine to give

LP

{[

A=P– ~ Y~– D ~ (y~–y~)
/ 1}

~ (y, - Y.) . (5-48)

n=FP i=x +1e i=x +11?

Beeause the continuum estimate is a function of the channel counts, the exact expres-
sions for S2(A) become extremely complex. One of the estimates for S2(A) given in
Table 5-5 should be used.
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Table5-5. (CONT.)
c1

& (Bh + B~) = (~)2(B.+Bl)
6“

Symmetricplacement B= S2(B)
zm

of backgroundROIS c ~

with N~ = N~ = NC Y
$.

Symmetricplacement B = (Bh + B/) S2(B) = (Bh + B/) = B ~

of backgroundROIS
-.a
g

with NE = N~ = Np/Z ~

“A=P– B
%.
~

S2(A) = P + S’(B). ~

bNotationsummaryas in Figure 5.11; LE = low energy HE = high energy: s
g

F/, L/ = first and last channelsof LE backgroundROI 5

Fp, LP = first and last channelsof peak ROI
4

Fh, Lh
b

= first and last channelsof HE backgroundROI M

B~, P, B~
$

= integralsof LE background,peak, and HE backgroundROIS
N/>Np, Nh = numbersof channelsin LE background,peak, and HE backgroundROIS
Yh = Bh/Nh = averagecontinuumlevel in HE backgroundROI
Y# = B/~y = averagecontinuumlevel in LE backgroundROI
Xh, xl = centersof backgroundROIS
Y(FP)and Y(LP)= ordinatesof backgroundline at FP and LP
mandb = slope and interceptof backgroundline between(Xl, Y/) and (Xh, Yh).
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When a single background ROI is used, Equation 5-46 holds for the net peak area,
and the expression for S2(A) is based on Equation 5-47. When the continuum is
assumed to be flat (Equation 5-38), the expressions for A and S2(A) become

()N2
S2(A)=P+ ~ B~. (5-49)

If a sloped continuum is assumed (Equation 5-40), the expressions for A and S2(A)
become

A= P–KBh

S2(A) = P + K2Bh .
(5-50)

Note that although Equations 5-49 and 5-50 may correctly predict the repeatability of
measurements, they do not predict any assay bias arising from the approximate nature
of the single-RC)I background estimate.

5.3.8 Using Simple Gaussian Fits to Measure Peak Areas

As shown in Section 5.1.3, the determination of a and y. by a Gaussian fit also
determines the peak area using Equation 5-8. For cleanly resolved peaks, the areas
obtained by fitting simple Gaussians are probably no better than those obtained from
ROI sums, and may ~be somewhat worse. This assertion is known to be true for
germanium detectors{ For NaI sciritillators, a Gaussian fit may give more consistent
peak areas than ROI methods. The simple Gaussian-fitting procedures do not provide
straightforward ways: to estimate peak-area precision.

In a few situations, Gaussian fitti’ng is advantageous. When two peaks are not quite
resolved such that the desired peak ROIS overlap, a Gaussian can be fitted to one-
FWI-IM-wide ROIS centered on each peak to determine the peak areas. When the
centroid location and ~PWI-IMare the primary information desired from a Gaussian fit,
the area estimate ofte$ comes with no extra effort. When a peak has significant low-
energy tailing from Compton scattering in the sample or shieldlng, a simple Gaussian
fit to the middle FWHM of the peak cti easily obtain the desired area.

When a Gaussian function is transformed to a line that is least-squares fit to obtain
the parameters X. and o, the parameter yO can also be determined using any of the
original data points and Equation 5-6 to solve for yo. An average of the values of yO
determined from several points near X. gives a satisfactory value for the area equation.
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Section 5.1.9 shows that the logarithm of the Gaussian function is parabolic and
that a quadratic fit to ln(yi) yields all three of the Gaussian parameters Xo, yo, and
a. The peak area is obtained from Equation 5-8. As with the linearized Gaussian
procedure, no simple expressions exist to estimate the precision of the peak areas.

5.3.9 Using Known Shape Parameters to Meabure Peak Areas in Multiple@

The previous ‘discussion emphasizes well-resolved single peaks because most ap-
plications of gamma-ray spectroscopy to the NDA of nuclear material employ well-
resolved peaks. However, to measure isotopic ratios from high-resolution plutonium
spectra, it is necessary to analyze unresolved peak multiples.

If the peak shape is described by an adequate mathematical model in which all the
parameters are known except the amplitude, unresolved multiples can be analyzed
quite simply by ordinmy ‘noniterative least-squares methods. For some purposes the
simple Gaussian function (Equation 5-6) is adequate without any tailing terms. If the
position and width parameters X. and o are known, only ~e amplitude parameter y.
is unknown. Frequently, the well-resolved peaks in a s#ectrum can yield sufficient
information to determine the X. and a parameters for the unresolved peaks. The
gamma-ray energies are accurately known for all fissionable isotopes; therefore, the
energy calibration can be determined with sufficient accuracy to calculate the X.
parameter for all unresolved peaks. The width parameter a can be determined from
the well-resolved peaks and interpolated to the unresolved peaks with the relation
FWHM2 = a + bE, which is quite accurate for germanium detectors above 100 keV.
The well-resolved peaks can also yield information needed to determine the parameters
of tailing terms in the peak-shape function.

The least-squares fitting procedure for determining the peak amplitudes is most
easily described by the following example. The example assumes a three-peak multi-
plet where all the peaks come from different isotopes. After the Compton continuum
is subtracted from beneath the multiplet, the residual spectrum has only the three
overlapping peaks and the count in channel i may be written as

yi=Alx Fli+A2x F2i+A3x F3i (5-51)

where A 1, A2, and A3 are the amplitudes to be determined and F1, F2, and F3 are
the functions describing the peak shapes. Assuming that the peaks are well described
by a pure Gaussian,

F1 = exp[Kl(xi – X10)2]

F2 = exp[K2(xi – X20)2]

F3 = exp[K3(xi – X30)2] (5-52)
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where x10, X20, X30= known centroid positions
Kl, K2, K3 = 1/2~,2,3

u~ = (FWHM)~/ (2-) .

The least-squares fitting procedure determines Al, A2, and A3 to minimize the
sum of the squared difference between the actual data points and the chosen function.
With derivation the expressions for Al, A2, and A3 are

E ’12 ~FlF2 ~FlF3

D= E F2 F1 E
F22

x F2 F3

E F3 F1 ~ F3 F2 ~’F32
(5-53)

The pattern of Equation 5-53 can be followed for expanding to additional unknowns.
The form of Fl, F2, and F3 is not related to the solutions for Al, A2, and A3. The only
requirement is that the functions are totally determined except for an amplitude factor.
Tailing terms may be added to improve the accuracy of the peak-shape description.
When two or more peaks in a multiplet are from the same isotope, the known branching
intensities, 11, 12 .... can be used to fit the peaks as a single component. If peaks one
and two in the example are from the same isotope, Equation 5-51 becomes

yi=Ax Fi+A3x F3i (5-54)

———-
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where

F = exp[Kl(xi – X10)2]+ (12/11) exp[K2(x~ – X20)2] .

@ation 5-54 has only two unknowns, A and A3. Strictly speaking, the coefficients
in F should be I/El and 12/11E2where E 1 and E2 are the relative efficiencies at the
two energies. If available, the efficiencies should be included, but often the related
members of the multiplet are so close together in energy that E1 % E2. When one of
the related gamma rays is much more intense than the other, the errors in the iritense
components caused by assuming El = E2 are usually negligible.

5.3.10 Using Complex Fitting Codes to Measure Peak Area

Much time has been invested in the development of computer codes to determine
the peak areas from complex, overlapping peak multiples. A number of successful
codes exist, along with many variations for special problems. Helmer and Lee (Ref.
11) review the peak models and background subtraction procedures of most currently
used codes.

The complex codes describe full-energy peaks with a basic Gaussian shape plus
one or two low-energy tailing terms (long- and short-term tailing) and sometimes a
high-energy tailing term. The long-term tail is often not included in the full-energy-
peak area because it is ascribed to small-angle Compton scattering within the sample.
The long-term tailing function usually is not required for high-resolution spectra. The
detailed form of the tailing terms varies from code to code, although the results are
often equivalent. The procedures to subtract the Compton continuum also vary; in
general, the background subtraction procedures are most in need of improvement.

These fitting codes are often indispensable, but they often require a major learning
effort before they can be used intelligently: Learning to use, such codes skillfully can
be likened to learning to play a large pipe orgaw after acquiring some basic skills, one
must learn the possibilities and limitations of the many combinations of “stops.” The
potential user who does not have extensive experience in gamma-ray spectroscopy
should consult with knowledgeable users of the code.

Note that all fitting codes perform better on high-quality spectra with good resolution
and minimal peak tailing. A fitting code cannot completely compensate for poor-
quality detectors and electronics or for sloppy acquisition procedures. It should be
said that an ounce of resolution is worth a pound of code. In the past few years, the
quality of detectors and electronics has improved in parallel with code development,
resulting in the present ability to do measurements that were previously very difficult,
if not impossible.
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5.4 RATE-RELATED LOSSES AND CORRECTIONS

5.4.1 Introduction

As discussed in Chapter 4, ADC deadtime is defined as the sum of the time intervals
during which the ADC is unable to process other events. Deadtime can occur in all
NDA system components. The deadtime intervals are either fixed or are a function
of system parameters and pulse amplitude.

For MCA~based systems, the deadtime begins when the amplifier output pulse
crosses the ADC discriminator threshold. The deadtime includes the pulse risetime,
a small fixed time for peak detection and latching, a digitization time, and often the
memory storage time. For germanium detector systems using 100-MHz Wilkinson
ADCS, the deadtime for an event at channel 4000 is w55 ps. At rates of only a few
thousand counts per second, a significant fraction’of information can be lost to system
deadtime alone.

For SCA-based systems using NaI(Tl) detectors, the deadtime is much shorter and
can often be ignored. The losses in such systems are usually due to pulse pileup.

Pulse pileup is described briefly in Chapter 4. Figure 4.9 shows how two events
that occur within an interval less than the amplifier pulse width sum to give a pulse
whose amplitude is not proportional to either of the original pulses. Figure 4.10
shows the effect of pileup events on the spectrum. Pileup can occur in the detector,
the preamplifier, or the main amplifier, but the overall effect is governed by the
slowest component, usually the main amplifier. Pileup always results in a 10ss of
information; the degree of loss depends on the information sought and the gross count
rates involved. For example, when counting events above a discriminator threshold,
two pileup events are counted as onq if pulse-height analysis is being performed,
both events are lost from their respective @aks;

In high-resolution spectroscopy systems, the, amplifier pulse width is often com-
parable to the ADC processing time, and the loss of information caused by pileup
may be equal to or greater than the loss caused by deadtime. Although. an MCA can
operate in a live-time mode and compensate for deadtime losses, it does not fully
compensate for pileup losses.

Many texts discuss all counting losses in terms of two limiting cases, both of which
are referred ‘to as deadtime [see, for example, Chapter 3 of Knoll (Ref. 12)]. Neither
case exactly describes the operation of actual equipment. One case is called nonpar-
alyzable deadtime and is typical of ADC operatiow the other is termed paralyzable
deadtime and is related to pulse pileup. The terminology is unfortunate because no
circuitry is dead during pileup rather, events are lost from their proper channel be-
cause of the pulse distortion. In this book the distinction between deadtime and pileup
is preserved because they are two distinctly different loss mechanisms.

-——— .-—— ——-——.
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The goal of many gamma-ray spectroscopy applications is to compute a corrected
rate CR for the gamma ray(s) of interest:

CR= RR x CF(RL) X CF(AT) (5-55)

where RR = raw rate of data acquisition
CF(RL) = rate-related loss correction factor
CF(AT) = attenuation correction factor (See Chapter 6).

When the correction factors are properly defined and computed, CR is the count rate
that would be observed if there were no electronic losses and no sample attenuation.
The corrected rate, CR is often directly proportional to the desired quantity, such
as mass of 239Pu or 235U enrichment. All three factors in Equation 5-55 must be
determined accurately to obtain accurate assays.

5.4.2 Counting LOSSas a Function of Input kte

In modem spectroscopy systems, counting losses are rarely well described by the
simple model of nonparalyzable deadtimcz however the model is described here for
completeness. In early systems, the deadtime losses were far higher than pileup losses,
and the simple nonparalyzable model was quite adequate.

For a fixed deadtirne D, CR can be represented as follows:

CR=
RR

l–RRx D”
(5-56)

Inverting Equation 5-56 gives

RR=
CR 1

l+ CRx D=l/CR+D -
(5-57)

As CR 400, RR ~ l/D as a limiting value of throughput. The term nonparalyzable
arises because RR rises monotonically toward the limit VD. For pileup losses, RR ~
O aa CR A 00, justi~ing the term paralyzable.

Although Wilkinson ADCS do not have a fixed deadtime, Equations 5-56 and 5-57
apply if D is set equal to the average deadtime interval. Whether fixed or an average,
the deadtime D is rarely determined directly because most users wish to correct for
the combined rate-related losses.

Pulse-pileup leases are important in high-resolution spectroscopy for two reasons.
First, the relatively long pulse-shaping times required for optimum signal-to-noise
ratio yield pulse widths up to 50 ps, which increases the probability of pileup. Sec-
ond, a small pileup distortion can throw a pulse out of a narrow peak. Because NaI(Tl)

—— ..-.—
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systems operate with time constants of -3 ps or less, they have lower pileup losses.
Furthermore, because the NaI peaks are 10 to 20 times broader than germanium peaks,
many events can suffer a slight pileup and still remain within the full-energy peak.
However, pileup losses in NaI(Tl) spectra are much harder to correct because of the
broader peaks;

Figure 5.13 shows that if an amplifier pulse is preceded or followed by a pulse
within approximately half the pulse width, its peak amplitude is distorted. The degree
of distortion depends on the amplitude and timing of the interfering pulse relative to
the analyzed pulse. Frequently pileup-rejection circuitry is used to detect and prevent
analysis of the distorted events. Unfortunately, in rejecting bad pulses almost all
systems reject some small fraction of nondistorted pulses.

lf no other events ticur within the time interval T where pileup is possible, the
pulse will be analyzed and stored in its proper location. The fundamental expression
from Poisson statistics (Refs. 1 and 3] that applies here is

pm) (RT)Ne-RT
=

N!
(5-58)

where P(N) is the probability of N events occurring within a time interval T if the
average rate is R. The probability that an event is not lost to pileup is obtained by
setting N = O in Equation 5-58:

P(0) = e-RT . (5-59)

The fraction F of pulses lost to pileup is given by

F=l– P(0)= l–e-RT. (5-60)

If RT is much less than 1, Equation 5-60 simplifies to

F*RT (5-61)

which provides a very simple relationship for estimating the pileup losses at lower
rates.

If deadtime losses can be ignored, Equation 5-59 describes the throughput of a
high-resolution spectroscopy system. The measured raw rate RR is given by

(5-62)

where R is the gross rate of events from the detector. Differentiation of Equation 5-62
shows that RR is maximized at R = VI’ and that the fraction of R stored at that rate
is l/e * 0.37. Thus, at the input rate for maximum throughput, just over a third
of the input events are correctly analyzed and stored. The fraction of the input rate
that is stored is e-RT, and the stored rate as a fraction of the maximum stokd rate
l/(eT) is given by RTel–RT. Both of these fractions are plotted in Figure 5.14.



General Topics in Passive Gamma-Ray Assay 137

1.4

1.2

0.2

0

●☎
● 0

● ●

e ●

● ●

● ●

●

o
●

-2 -1 0 1 2 3

I I

●

● *

● 9

● ●

● ●

● ●

● ●

X IN UNITS OF FWHM
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5.4.3 Actual Data Throughput

Figure 5.14 shows that the throughput rate peaks at surprisingly low values for
ordinary high-resolution gamma-ray spectroscopy systems. For T = 50 ps (a high
though common value), In = 20000 s–l and the maximum throughput is about
7350 S-l. Where long time constants are necessary to produce the desired resolution,
throughput must be sacrificed as the price for the highest resolution. In fact, the
low-rate side of the throughput curve should be used when possible beeause it yields
better resolution and peak shape. A$ a rate of 0.6(1~), the throughput is 90% of
maximum; at only 0.5(1/T), the throughput is still 82% of maximum.

Sometimes a spectroscopy system must be operated far beyond the throughput
maximum. At a rate of 2/T (40 000 s–l with T = 50 ps), only - 14’%0of the information
is stored, implying a correction for pileup losses of w7. One important point is evident:
to maximize system throughput and minimize the necessary corrections, T must be
minimized and some loss of resolution must always be accepted. Fortunately, much
progress has been made in recent years to minimize T and still preserve resolution
and peak shape (see Chapter 4 and Ref. 13).

.*
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If Equations 5-59 through 5-62 are used to estimate throughput rates and 10SS
fractions, R and T must be reasonably well known. The input rate R is usually easy
to obtain. Many modern amplifiers include a provision for pileup rejection and have
a fast timing channel with a pulse-pair resolution of about 0.5 to 1.0 ps and an output
that can be counted with a scaler-timer. Equation 5-56 can be used to refine the
value of R when there is significant loss in the fast counting channel. Fast amplifiers
and discriminators can be connected to the preamplifier output to measure the gross
count rate. The SCA output on the ADC should not be used to measure R because it
operates on the much slower amplifier output.

The rejection or loss interval T is more difficult to estimate. If electronic pileup
rejection is not used, T can be assumed to be approximately equal to the pulse width
(see Figure 5.13), An oscilloscope can be used to measure the width between the
1% or 2% amplitude points of the pulse. For many amplifiers, the pulse width
is approximately six times the time constant ‘r, but this usually underestimates the
pileup losses. After a pulse is analyzed, the amplifier output must fall below the ADC
lower-level discriminator before another event is accepted. Because the discriminator
level is usually low, a pulse preceded by another with less than a full pulse width
separation will not be analyzed. To compensate, T might be estimated at about 1.5
times the pulse width for systems without formal pileup rejection.

With electronic pileup rejection, different configurations have somewhat different
values of T. One common procedure uses a fast timing circuit’to examine the intervals
between preamplifier pulses and to’generate an inhibit signal if an interval is less than
a fixed value. The interval and inhibit signal length are approximately the width of an
amplifier pulse. The inhibit signal is applied to the ‘Ianticoincidence gate of ihe ADC
to prevent analysis of pileup events. The value of T depends on the anticoincidence
requirements of the ADC; usually a pulse is rejected if another pulse precedes it within
the preset interval or if another pulse follows it before the ADC linear gate closes when
digitization begins. Obviously, a good qualitative understanding of the operation of
the ADC and pileup rejection circuitry is re~uired to estimate T accurately. Additional
losses caused by ADC deadtime can often be ignored. For exrimple, if the pulse width
is 35 ps (corresponding to use of w6~ps time constants] and digitization takes 15 KS
or less beginning when the pulse drops to 9090 of its maximum value, then the ADC
completes digitization and storage before the pileup inhibit signal is released and the
ADC contributes no extra loss.

The fraction of good information stored is usually somewhat less than estimated.
One reason is that rejection circuitry allows some pileup events to be analyzed, thus
causing a loss of good events. Most pileup rejection circuitry has a pulse-pair resolu-
tion of 0.5 to 1.0 ps. Pulses separated by less than the resolution time will pile up but
are still analyzed, causing sum peaks in the spectrum. When amplifier time constants
of z 3 ps are used, the pulse tops are nearly flat for a microsecond, and events within
the resolving time of the pileup circuitry sum together almost perfectly, forming sum
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peaks that have almost the same shape and width as real peaks. Such peaks are
sometimes mistaken for single gamma-ray peaks and have a habit of appearing at
embarrassing places in the spectrum.

Another cause of information loss is the generation of long-risetime preamplifier
pulses. Usually preamplifier nsetimes are a few tenths of a microsecond. However, if
the gamma-ray interaction is in a part of the detector where the electric field is weak or
where there is an excess of trapping centers, it may take several microseconds to collect
the liberated charge. The main amplifier produces a very long, low-amplitude pulse,
often two or three times as long as normal. Good events that sum with these long,
low-amplitude pulses are lost as useful information. The frequency with which such
events are generated depends on detector properties and how the detector is illuminated
with gamma rays. Gamma rays falling on the detector edges where fields are often
distorted and weak have a much greater chance of not being properly collected. In
some applications; a detector performs better at high rates if the gamma rays can
be collimated to fall,only on its center region. For a relatively poor detector, under
fully illuminated conditions, as many as 10% of the detected events can have long
nsetimes, and this results in a substantial loss of potential information. To achieve
high throughput at high rates requires an excellent detector, with minimum generation
of the poorly collected, slow-rising pulses.

With, appropriate sources and equipment, the throughput curve can be determined
experimentally. Figure 5.15 shows the throughput curve for a state-of-the-art high-rate
system employing time-variant filtering techniques (Chapter 4) to achieve very high
throughput with aimost constant resolution, A small planar germanium detector is used
with a 241Am source. The measured maximum throughput is w85 000s- 1 at an input
rate,of N300 000 s– 1. However, the paralyzable deadtime model predicts a maximum
throughput of 110000 s-l with an input rate of 300,000 s– 1; the simple model is
not adequate. The system ,resolution at 60 keV is almost constant at -0.63 keV up
to an input rate of 100000 counts/s and then increases smoothly to wO.72 keV at
an input rate of 1 ,@O 000 counts/s. Figure 5.16 shows the throughput curve for
241Am using standard high-quality electronics optimized for high resolution at low
count rates with 6-PSIshaping constants and a 100-MHz Wilkinson ADC to generate
an 8192-channel spectrum. Additional loss comes from resetting the pulsed-optical
preamplifier. The maximum throughput of this system is only -2800 s-l, but the
resolution at 60 keV is wO.34 keV at the lowest rates and is still only -0.44 keV at
21 500s- 1. The curves of throughput and resolution demonstrate that with the current
state-of-the-art one cannot simultaneously obtain high throughput at a high rate and
the best resolution. The FWHM increases by a factor of nearly 2 from the system
optimized for resolution to that of the system optimized for high throughput. The
two experimental curves, though describing very different systems, are similar to one
another and to the, theoretical curve shown in Figure 5.14 for the purely paralyzable
system.

— ———— -.,— —
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5.4.4 Correction Methods: General

The determination of the full-energy interaction rates (FEIR) of the gamma rays of
interest is fundamental to many NDA procedures. The assayist must determine

mm= ~CF(RL) (5-63)

where A(v) = full-energy-peak area
TT = true time of acquisition

CF(RL) = rate-related loss correction factor.

Three classes of correction procedures are discussed in this section. For detecting
pileup events, the first procedure uses fast-timing electronics to measure the intervals
between pulses. Corrections are made by extending the count time or by adding counts
to the spectrum during acquisition. The second procedu~ adds an artificial peak to
the spectrum by connecting a pulser to the preamplifier. The third procedure uses a
gamma-ray source to generate the correction peak. The second and third procedures
both use the variation in the correction-peak area to calculate a correction factor.

All three methods require the assumption that all peaks suffer the same fractional
loss from the combined effects of pileup and deadtime; in general, the assumption is
good.

5.4.5 Pileup Correction Methods: Electronic

Methods that extend count time employ fast counting circuits that operate directly
from the preamplifier output; the time constants involved allow a pulse-pair resolution
of 0.5 to 1.0 VS. The time resolution is achieved at the sacrifice of energy resolution
so that some small pulses analyzed by the ADC are lost to the timing circuitry. The
circuitry can neither detect nor correct for pileup events where the interval is less than
the circuit resolving time or where one of the events is below the detection threshold.
When two or more pulses are closer together than the chosen pileup rejection interval,
the distorted event is not stored and the count time is extended to compensate for the
10ss.

One method of extending the count time is to generate a deadtime interval that
begins when a pileup event is detected and ends when the next good event has been
processed and stored; this procedure is approximately correct. The procedure cannot
compensate for undetected events; however, with a typical rejection-gate period of
20 ps and a pulse-pair resolving time of N 1 ps, the correction error may be only
a few percent. For rates up to several tens of thousands of counts per second, the
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total error may be only 1% or less; the necessary circuitry is frequently built into
spectroscopy amplifiers. The method requires live-time operation, so the assay period
is not known a priori. The method also requires that the count rate and spectral shape
are constant during the counting period, this limitation is of no consequence for the
assay of long-lived isotopes, but it is important in activation analysis of very short
lived isotopes.

In reeent years, the activation analysis requirement to handle high count rates and
rapidly changing spectral shapes has led to further advancement in deadtime-pileup
corrections. Such systems are complex and are just now becoming commercially
available. They can handle input rates of hundreds of thousands of counts per second
and accurately correct for losses in excess of 90Y0. The ability to correct for deadtime-
pileup losses at high rates can potentially improve the speed of some NDA procedures.

5.4.6 Pukr-Based Corrections For Deadtime and Pileup

The pulser method uses a pulser to insert an artificial peak into the stored spectrum;
it has numerous variations depending on the type of pulser used. Most germanium
and silicon detector preamplifiers have a TEST input through which appropriately
shaped pulses can be injected. These pulses suffer essentially the same deadtime and
pileup losses as gamma-ray pulses and forma peak similar to a gamma-ray peak. The
pulser peak has better resolution and shape than gamma-ray peaks because it is not
broadened by the statistical processes involved in the gamma-ray detection process.
The pulser peak area is determined in the same way as a gamma-ray ‘peak area. The
number of pulses injected into the preamplifier is easily determined by direct counting
or by knowing the pulser rate and the acquisition time.

An advantage of the pulser method is that the artificial peak can usually be placed to
avoid interference from gamma-ray peaks. In addition, because all the pulser events
are full energy, minimum extra deadtime and pileup are generated. On the other
hand, it is difficult to find pulsers with adequate amplitude stability, pulse-shaping
capability, and rate flexibility.

Another common problem is the difficulty of injecting pulses through the preampli-
fier without some undershoot on the output pulse. A long undershoot is objectionable
because gamma-ray pulses can pile up on the undershoot like they do on the posi-
tive part of the pulse. The amplifier pole zero cannot compensate simultaneously for
the different decay constants of the pulser and gamma-ray pulses, and compensation
networks are rarely used at the TEST input because of probable deterioration in reso-
lution. The undershoot problem can be minimized by using a long decay time on the
pulser pulse (often as long as a millisecond), by using shorter amplifier time constants,
and by using high baseline-restorer settings. Some sacrifice of overall resolution is
usually required to adequately minimize the undershoot problem.

.._. —— .,..—--, ——— .—___,_____
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The simplest approach is to use an ordinary fixed-period pulser, in which the interval
between pulses is constant and equal to the reciprocal of the pulse rate. The best
amplitude stability comes from the mercury-switch pulser in which a capacitor is
charged and discharged through a resistor network by a mercury-wetted mechanical
switch. The mechanical switch limits the useful rate of such pulsers to s 100 Hz.

Assuming that the pulser peak and gamma-ray peaks lose the same fraction of
events from deadtime and pileup, the appropriate correction factor is

CF(RL) = N/A(P) (5-64)

where N = number (rate) of pulses injected
A(P) = area (area rate) of pulser peak.

CF(RL) has a minimum value of 1.00 and is the reciprocal of the fraction of events
stored in the peaks.

Equation 5-64 is not quite correct because pulser pulses are never lost as a result
of their own deadtime, nor do they pileup on one another. Thus the overall losses
from gamma-ray peaks are greater than those from the pulser peak although the
difference is usually small. At moderate rates, the deadtime and pileup losses are
nearly independent and CF(RL) can be corrected with two multiplicative factors to
obtain a more accurate resulti

= ~(1 + RTD)(l + RT)
cF~L) A(P)

(5-65)

where R.= pulser rate
TD = deadtime for pulser pulse

T = pileup interval.

The deadtime TD can be adequately estimated from the speed of the ADC and, for
Wilkinson ADCs, from the position of the pulser peak. The interval T is usually
one and one-half to two times the pulse width. If R is S 100 Hz, both factors are
usually small. Assuming a typical value of 20 PS for both TD and T, the value
of each additional factor is 1.002 so that the increase in CF(RL) is only -0.4%.
Larger corrections result if greater values of R, TD, or T are used. If R is increased
to 1000 Hz to obtain high precision more quickly, the additional factors make a
difference of several percent.

Concern about assay precision brings up a rather curious but useful property of
periodc pulsers. The precision of the pulser peak is given by a different relation than
that of gamma-ray peaks. The precision of a pulser peak is, in fact, always better
than the precision of a gamma-ray peak of the same area because gamma-ray emission
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is random and the generation of pulser pulses is not. The precision of gamma-ray
peak areas is governed by Poisson statistics whereas the precision of pulser peaks is
governed mostly by binomial statistics.

Assuming that the background under the pulser peak is negligible and that the peak
area is P, the variance and relative variance of P are given by

S2(P) = P (1 – P/N)

S;(P) = ~ (1 – P/N)
(5-66)

where N is the total number of pulses injected into the spectrum. Assuming again
that the Compton continuum is negligible, the variance and relative variance of a
gamma-ray peak of area A are given by

S2(/4) = A

S?(A) = 11A .
(5-67)

Figure 5.17 gives ST(P) versus P for several choices of P/N and demonstrates that by
the time P/N w 0.5 the improvement in precision is quite negligible.

When the pulser peak rests on a significant continuum, the expressions for S(P)
are more complex because of the random nature of the continuum. The pulser peak
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Fig. 5.17 The relative standard deviation ST(P) of a pulser peak area P as a func-

tion of P for several values of PIN where N is the total number of pulses
injected into the spectrum.
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should be placed in a low-continuum (usually high-energy) portion of the spectrum so
that the improved precision can be taken advantage of and the simple Equation 5-66
can be used.

The use of a high-energy pulser peak can complicate the minimization of the un-
dershoot. An alternative approach is to use a rectangular pulse that is longer than
the amplifier output then the pole-zero problem disappears and there are no shrdlow
undershoots. Instead, a negative pulse is generated as the pulser output drops. Other
events pile up on the negative pulse, but the pulse is cleanly defined and tends to
throw pileup events out of their peak. The addhional factor for the pileup losses can
be written as (1 + 2RT).

If an adequate random pulser were available, CF(RL) would be given simply by
Equation 5-64. Unfortunately, although random pulsers have been used successfully
in research laboratories, no adequate unit is commercially available. It is difficult to
simultaneously achieve the desired amplitude stability, random-interval distribution,
and constant average rate required for routine gamma-ray assay applications.

Pulser-based deadtime-pileup corrections are accurate only when both rate and spec-
tral shape are constant throughout the counting period. When the count rate changes
during a measurement, proper corrections cannot be made if the pulser operates at a
fixed rate. In principle, a correction can be made using a pulser that operates at a rate
that is a fixed function of the gross detector rate. Pulsers based on this concept have
been built and used successfully (Ref. 14). They are used in activation analysis, half-
life studies, accelerator experiments, and anywhere that variable rates with constant
spectral shape might be encountered. The use of variable rate pulsers indicates the
variety and ingenuity with which the fundamental idea of inserting a synthetic peak
into a spectrum has been applied to the problem of deadtime-pileup corrections.

S.4.7 Reference-Source Method fof Deadtime-Pileup Corrections

The most accurate method for measuring the deadtime-pileup correction uses a
reference source fixed in position relative to the detector. The source provides a
constant gamma-ray interaction mte in the detector. The reference peak performs the
same function as the pulser peak.

Like the other methods, the reference-source method requires the assumption that ali
peaks suffer the same fractional loss from deadtime and pileup. Given this assumption,
the ratio of any peak area to the reference peak area is independent of such losses. Let
A(Y) and FEIR(~) represent, as usual, the full-energy-peak area and the full-energy
interaction rate of any gamma ray other than the reference gamma ray R. If F is the
common fraction stored and ‘IT ~is the true acquisition time, then the areas are

A(T) = F X FEIR(T) X ‘f’I’

A(R)= FxFEIR(R)x TI’.
(5-68)

— ---- —
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The ratio of the two expressions gives

A(~)/A(R) = FEIR(y)/FEIR(R) (5-69)

which is independent of both F and TT. Gamma-ray assays often are based directly
on the loss-independent ratios A(7)/A(R) without ever explicitly determining CF(RL)
or FEIR(~).

For the reference-source gamma ray, the correction factor becomes

CF(RL) = FEIR(R) X TT/A(R) . (5-70)

Combining tlis expression with Equation 5-63 gives

A(T)
—FEIR(R)

~1R(7) = A(R)
(5-71)

which is independent of count time. Equation 5-55 for the corrected count rate CR
can now be rewritten

CR(T) = FEIR(y) X CF(AT)

A(T)
= —FEIR(R) X CF(AT) .

A(R)

(5-72)

The magnitude of CR(T) does not depend on the true acquisition time although its
precision obviously does.

If assay systems are calibrated with the help of standards, it is unnecessary to know
FEIR(R) to obtain accurate assay values. In many assay procedures, the quantity
sought, M (isotope or element mass), is proportional to CR(T). In Equation 5-73
through 5-75, K is the calibration constant, the subscripts denotes quantities pertaining
to standards, and the subscript u denotes quantities pertaining to unknowns.

CR(T)U [A(T)U/A(R)U]FEIR(R) X CF(AT)U
M.=Y=

K
(5-73)

The calibration constant can be determined from a single standard:

K _ CR(~)~ [A(T), /A(R), ]FEIR(R) x CF(AT).-— =
M. M.

(5-74)

Combining Equations 5-73 and 5-74 gives

(5-75)

which is independent of FEIR(R).

—.— .
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Although an accurate value of FEIR(R) is not needed, it is useful in obtaining
approximate values of FEIR(T), FEIR(R), and CF(RL) so that actual rates of data
acquisition are known along with the fraction of information being lost to deadtime
and pileup. Having a calibration constant expressed as corrected counts per second
per unit mass can be helpful when estimating required assay times.

A reasonably accurate value of FEIR(R) can be obtained by making a live-time
count of the reference source alone and estimating a correction for the pileup losses.
A more accurate value can be obtained by using a pulser to correct for deadtime-pileup
losses.

The reference-source method can be applied to any spectroscopy system without
additional electronics. The method avoids problems caused by injecting pulser pulses
into a preamplifier and by drift of the reference peak reIative to the gamma-ray peaks.
It also avoids the extra corrections required by a fixed-period pulser. Additionally, no
error occurs because of the finite pulse-pair resolving time, and the reference peak is
constantly present for digital stabilization and for checking system performance.

The most significant limitation to the procedure is that a reference source with
appropriate half-life and energy is not always available. An additional limitation is
that the reference source must have a significant count rate and this causes additional
losses and results in poorer overall precision than that achievable using the same count
time with other methods. The reference-source method, as well as the simpler pulser
method, is only applicable when the count rate and spectral shape are constant.

The reference source should have a long half-life and an intense gamma ray in a
clear portion of the spectrum. The energy of the reference gamma ray should be lower
than but relatively close to the energy of the assay gamma rays so as not to add to
the background beneath the assay peaks. A monoenergetic reference source limits the
increase in gross count rate and overall deadtime-pileup losses. Few sources meet all
the desired criteria, but several have proven adequate in many applications.

For 239Pu assays based on the 413.7-keV gamma ray, 133Ba is the most useful
source. Its 356.O-keV gamma ray does not suffer interference from any plutonium
or americium gamma ray and it is within 60 keV of the assay energy. The 10.3-yr
half-life is very convenient. Although 133Ba has several other gamma rays, they are
all at energies below 414 keV.

For plutonium assays that make use of lower energy gamma rays, 1°9Cd is a useful
reference source. The 88.O-keV gamma ray is its only significant emission except for
the *25-keV 1°9Ag x rays from electron capture, which are easily eliminated by a
thin filter. Its half-life of N453 days is adequate to give a year or two of use be-
fore replacement. Although no interfering gamma rays from plutonium or americium
isotopes are present, there is a possible interference from lead x rays fluoresced in
the detector shielding. The lead K~2 x ray falls almost directly under the 88.O-keV

1°9Cd Interference can be avoided by wrapping the detector ingamma ray from .
cadmium to absorb the lead x rays, and by using a sufficiently strong 1°9Cd source
that any residual leakage of lead x rays is overwhelmed. If some totally different
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shielding material can be used (for example, iron or tungsten alloys), the problem
disappears.

For assays of 235U, the 122.O-keV gamma ray from 57C0 is used frequently.
Its 271-day half-life is adequate, although not as long as might be desired. The
122.O-keV gamma ray is approximately eight times more intense than the 136.5-keV
gamma ray, which is the only other gamma ray of significant intensity. Note that in
using 57C0 for assay of highly enriched uranium samples, the 120.9-keV gamma ray
from 234U can be an annoying interference. This problem can be effectively elimi-
nated by using a filter to reduce the intensity of lower energy emissions relative to
the 185.7-keV intensity and a sufficiently strong 57C0 source to override any residual
234U signal.

Frequently 241Am can be used as a reference source for uranium or other assays.
Although the 59.5-keV gamma ray from 241Am is further removed from 186 keV
than desirable, it can be used successfully, particularly if steps are taken to reduce
the resolution difference. The half-life of 433.6 y is beyond fault. Americium-241
must be absolutely absent from any materials to be assayed. When using lGgYb as a
transmission source in densitometry or quantitative 235U assay, ytterbium daughters
emit x rays that directly interfere with the 59.5-keV gamma ray, but sufficient filtering
combined with adequate source intensity can eliminate any possible difficulty.

The current methods for deadtime-pileup correction assume that all full-energy
peaks suffer the same fractional loss. That assumption is not completely true primarily
because the width and detailed peak shape are functions of both energy and count
rate. In applying the reference-peak method, precautions can be taken to minimize
the degree to which the assumption falls short. Four of those precautions, most of
which apply to any of the correction methods, are listed below.

● Where possible, apply the procedure only over a narrow energy range.
● Keep the peak width and shape as constant as possible as functions of both

energy and count rate, even if that slightly degrades the low-rate and low-energy
resolution. Proper adjustment of the amplifier and the pileup rejection can help
considerably.

● Avoid a convex or concave Compton continuum beneath important peaks, espe-
cially the reference peak. If possible the ratio of the reference peak area to the
background area should be 210.

● Exercise great care in determining peak areas. ROI methods may be less sensitive
than some of the spectral fitting codes to small changes in peak shape.

Experimental results indicate that the reference-source method can correct for dead-
time and pileup losses with accuracies approaching 0.190 over a wide count-rate range.
Such accuracies can also be approached by pulser methods, particularly at lower rates
and by some purely electronic methods. However, equipment for the purely electronic
methods is very sophisticated.
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5.5 EFFECTS OF THE INVERSE-SQUARE LAW

The absolute full-energy detector efficiency varies approximately as the inverse
square of the distance between the detector and gamma-ray source. Consider a point
source emitting I gamma rays per second. The gamma-ray flux F at a distance R is
defined as the number of gamma rays per second passing through a unit area on a
sphere of radius R centered at tlie source. Because the area of the sphere is 47rR2, the
expression for F is

1
F=—

47rR2 “
(5-76)

The ‘detector count rate is proportional to the incident flux, and if the detector face
can be approximated by a portion of a spherical surface centered at the source, the
count rate has the same l/R2 dependency as the flux. When low-intensity samples
are counted, there is a clear motivation to reduce the sample-to-detector dis~dnce
and increase the count rate. Unfortunately, when the sample-to-detector distance is
so small that different parts of the sample have significantly different distances to
the detector,’ the count rates from different parts of the sample vary significantly.
This variation can cause an assay error when the distribution of emitting material is
nonuniform.

The overall count rate from samples of finite extent does not follow the simple law;
usually the variation is less strong than l/R 2. Knowledge of a few simple cases can
help to estimate overall count rates and response uniformity.

The simplest extended source is a line, which is often an adequate model of a
pipe carrying radioactive solutions. Consider an ideal point detector with intrinsic
efficiency e at a distance D from an infinitely long source of intensity I per unit
length (Figure 5.18). The count rate from this source can be expressed as

Jm Ie dr
CR=2 —

TIE
~ r2+D2=_5”

(5-77)

In this ideal case, the count-rate dependence is l/R rather than l/R2; when pipes are
counted at distances much smaller than their length, the count-rate variation will be
approximately l/R.

The count rate from a point detector at a distance R from an infinite plane surface
does not depend on R at all. For a detector near a ‘uniformly contaminated glovebox
wall, count rates vary little with wall-to-detector distance changes.

.—
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When possible the variation of response with

151

position inside a sample should be
minimized. The sample-to-detector distance Ctu- be increased, but the penalty is a
severe loss of count rate. A better strategy is to rotate the sample. Consider the cross
section of a cylindrical sample of radius R whose center is at a distance D from a
detector (Figure 5.19). Unless D is much greater than R, the count rates for identical
sources at positions 1, 2, 3, and 4 vary considerably. The figure shows that if D =
3R, the maximum count-rate ratio is CR(2)/CR(4) =4. The ratio of the response of a
rotating source at radius R to the response at the center (position 1 of Figure 5.19) is

CR(R) _ 1

CR(1) 1 + (R/D)2 “
(5-78)

The response is the same as that obtained for a uniform nonattenuating circular source
of radius R whose center is at a distance D from a detector. Table 5-6 gives the value of
this function for several values of R/D compared to CR(2)/CR(l) for the nonrotating
source of Figure 5.19. For relatively large values of R/D, rotation improves the
uniformity of response. The response variation is even larger when attenuation is
considered. Rotation only reduces l/R2 effects; it does not eliminate them completely.

INFINITE LINE SOURCE
INTENSITY I PER UNIT LENGTH

I

J +-I,
1

A

D

1 (EFFICIENCY E)

Fig. 5.18 Geometry for computing the response of a point detector to a
line source.

.——.—e-—. ——.. — .—__. _._..=
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CR (2)/CR (1) = 2.25
CR (3)/CR (1) = 0.90
CR (4)/CR (1) = 0.56
CR (2)/CR (4) = 4.00

D= 3*R

DET.

Fig. 5.19 Cross section through a cylindrical sample and a point &tector
showing how count rate varies with position.

Table 5-6. The effect of sample rotation on count-
rate variation

CR(R)/CR(l) CR(2)/CR(l)
RP (Rotating) (Nonrotating)

1/2 1.33 4.0
l/3a 1.125 2.25
1/4 1.067 1.78
1/5 1.042 1.56
1/6 1.029 1.44
1/7 1.021 1.36

aSee Figure 5.19.

Rotation reduces response variations caused by radkd positioning, but does little to
compensate for height variations. If the source height is less than one-third of the
sample-to-detector distance, the decrease in response is less than 10~0relative to the
normal position.

The choice of sample-to-detector distance is a compromise between minimizing the
response variations and maintaining an adequate count rate. A useful guideline is
that the maximum count-rate variation is less than +10% if the sample-to-detector
distance is equal to three times the larger of the sample radius or the half-height. If a
sample cannot be rotated, it helps considerably to count it in two positions 180° apart.
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5.6 DETECTOR EFFICIENCY MEASUREMENTS

5.6.1 Absolute P@-Enerw-Peak Efficiency

The absolute full-energy-peak efficiency is the fraction of gamma rays emitted by
a point source at a particular source-to-detector distance that produces a full-energy
interaction in the detector. It is determined as a function of energy by measuring
the efficiency at a numkr of energies and fihing the experimental points with an
appropriate function.

&A(~)= F131R(~)/ER(T) (5-79)

where &A= absolute full-energy efficiency
ER(T) = gamma-ray emission rate.

The determination of F’EIRis described in Section 5.4. For high-resolution detectors,
care must be taken to correct for pileup and deadtime losses. For low-resolution
scintillators, the pileup correction can usually be ignored.

Calibrated sources for absolute calibrations are available from a number of vendors.
It is a testimony to the difficulty of measuring accurate emission rates that the quoted
accuracies are only between 0.590 and 2.OYO.Table 5-1 lists several monoenergetic
gamma-ray sources. Multi-isotope, multi-gamtna-ray sources, such as the NBS source
SRM-4275 (see Section 5.1.1), are convenient when calibrating high-resolution detec-
tors. This source is useful for several years and covers the energy range most otlen
of use in NDA.

Frequently two or more gamma rays are emitted in successive transitions between
energy levels of a single excited nucleus. Because the time interval between such
cascade gamma rays is very small compared to the charge collection times of german-
ium, silicon, or NaI(Tl) detectors, the multiple gamma rays are treated as a single
interaction. This cascade summing can result in subtractive or addhive errors in the
measured FEIRs. The problem is significant when the source is “soclose to the detec-
tor that the probability of detecting two or more cascade gamma rays simultaneously
is large. If very short source-to-detector dktances, must be used to enhance sensitivity,
cascade-summing problems must be carefully considered. The notes accompanying
SRM-4275 contain a good discussion of summing problems as well as other possible
dh%culties involved in the use of multi-gamma-ray sources.

5.6.2 Intrinsic Pull-Energy llfficiency :

The intrinsic full-energy efficiency is the probability that a gamma ray loses all of
its energy if it enters the detector volume. me absolute full-energy efficiency &,4and
the intrinsic full-energy efficiency eI are related by the simple equation

(5-80)
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where 0 is the solid angle subtended by the detector at the source and f2/47r is
the probability that a gamma ray will enter the detector volume. The intrinsic full-
energy efficiency is determined experimentally by measuring the absolute full-energy
efficiency and solving Equation 5-80 for er. The values of eI computed will depend
slightly upon the position of the source with respect to the detector.

Some care is necessary in estimating the solid angle 0, especially if the detector
has an odd shape or is not located on an axis of symmetry. Figure 5.20 shows a point
source at a distance D from the face of a cylindrical detector of radius R. The correct
expression for the solid angle subtended by the detector at the source is

‘=2+-(A)]
(5-81)

where D/<- = Cos @, with 0 being the angle of the solid-angle cone shown in
Figure 5.20. However, for a circular detector, an approximate expression is frequently
used:

G’w A/D2 = nR2/D2 (5-82)

where A is the area of the detector face. The first expression in Equation 5-82 can
be applied even when the detector is”not circular, but is only accurate when A is
much less than 47rD2. Comparing Equations 5-81 and 5-82 shows that as D deaeases
relative to R, the value for L?from Equation 5-82 becomes too large. For D/R = 8,
0 is wI% too large; for D/R = 1, L?is -70% too large.

Fig. 5.20 A point source on the axis of a ~ylindrical detector.
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5.6.3 Relative Efficiency

Frequently the actual values of the absolute or intrinsic full-energy-peak efficiency
are not needed, and only the ratios of the efficiency at different energies are required.
A relative efficiency curve is usually easier to determine than absolute or intrinsic
efficiencies. Relative efficiencies differ from absolute or intrinsic efficiencies only
by a multiplicative constant that depends upon the prbcedure used in determining the
relative efficiencies. Exact gamma-ray emission rates are not required, only values
proportional to the emission rates. When a single multienergy isotope is used, the
branching fractions provide the necessary information (Ref. 15). Equation 5-79 can
be modified to give relative efficiencies for a single source:

.sR = A(~)/B(~) (5-83)

where B(7) is the branching ratio corresponding to the peak area A(T). Usually
relative-efficiency curves are normalized to 1.00 at some convenient energy. A
semilog plot of relative efficiency has the same shape aa the corresponding absolute-
efficiency or intrinsic-efficiency plot. Figure 5.21 shows the relative-efficiency of a
coaxial detector as derived from a single spectrum of a thin 133Ba source. Note that
sources with negligible self-attenuation must be used when the branching fractions
are assumed to be proportional to the rates of gamma rays escaping from the source.
This assumption is not true for many steel-encapsulated sources particularly at lower
energies.

o
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Fig. 5.21 Relative eficiency of a 3070-e@ient coaxial germanium detector

between -50 and 400 keV, as derivedfiom a single spectrum of
a thin 133Ba source.
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5.6.4 Efficiency Relative to a 7.65-cm by 7.65-cm Nal(’11) Detector

The manufacturers of germanium detectors usually characterize the efficiency of
coaxial detectors by comparing it to the absolute full-energy efficiency of a 7.65-cm
by 7.65-cm NaI(Tl) detector. The comparison is always made at 1332.5 keV with a
source-to-detector distance of 25.0 cm and the efficiency expressed as a percentage of
the NaI(Tl) efficiency.’The efficiency of the germanium detector is measured and the
absolute full-energy efficiency of the NaI(Tl) detector is assumed to”be 0.0012 for the
stated energy and distance. The expression for computing the measured germanium-
detector efficiency is

[ 1
FEIR(1332.5)/ER( 1332.5) ~W

ERNaI =
0.0012 (5-84)

where FEIR( 1332.5) includes corrections for deadtime-pileup losses and ER( 1332.5) is
the current emission rate. The soume-to-detector distance is very difficult to determine
accurately because the detector crystal is hidden inside the cryostat end cap. Because
the front face of the detector crystal is mounted within 5 mm of the end cap by most
manufacturers, the measurement is made at a source-to-end-cap distance of 24.5 cm.

If a 60-Hz pulser is used for the rate-related losses, Equation 5-84 can be rewritten
as

135.1 A(1332.5)

‘RN”I = A(p)IOexp(–O.1318T)

where A(l 332.5) and A(p) are the

(5-85)

areas of the 1332.5-keV and pulser peaks, and
where T is the time in ye-m since the 60C0 Source had an activity of 10 rnicrocuries.
If the same ‘°Co source is used consistently, the value of 10 can be absorbed in the
numerical constant.

5.6.5 Effmiency as Function of Energy and Position

Usually NDA calibrations are done using standards that contain known amounts
of the isotopes of interest in packages of appropriate shape and size. Beeause ap-
proximate detector efficiencies are used only to estimate expected count rates, there is
little need to carefully characterize efficiency as a function of energy and position. A
detector so characterized can assay without the use of standards, although generally
not with the same ease and accuracy as possible with them. When standards are not
available or allowed in an area, verification measurements can be made of items of
known geometry and content using the known detector efficiency to predict the FEIRs
for a chosen detector-sample configuration. If the measured FEIRs agree within the
estimated error with the predicted rates, the item content is regarded as verified.
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In constructing appropriate efficiency functions, the absolute efficiency is measured
for many energies and positions and, then fit to an adequate mathematical model.
Cline’s method (Ref. 16) combines reasonable accuracy with a straightforward proce-
dure for determining the efficiency parameters. To characterize a detector accurately
takes several days or more.
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