
Chapter V

CRITICALITY SAFETY IN
PROCESSING PLANTS

A. Plant Features with Criticality Potential

Processing plants contain a multiplicity of work stations, and areas for both long-term and
short-term storage. Criticality safety considerations go beyond the analysis of each of these
in terms of subcritical individual units or storage arrays. The progression of fissile material
through a plant involves transfers and special handling during which unusual conditions
may be encountered. It is important that these operations be governed by procedures and
be carried out by well-trained personnel.

Consider a plant for processing highly enriched uranium as solids, such as fabrication of
weapon components or fuel elements for reactors. It is essential to avoid the effect of
massive fissile units falling together or encountering other units as the result of an accident
with transfer equipment. Minimum spacing between units can be maintained by the use of
birdcages, provided there are appropriate procedures for loading and unloading them.

In a plant for scrap recovery or processing irradiated fuel, the operations involving fissile
solutions must be carefully planned. It is noteworthy that all criticality accidents that
have occurred in processing plants have involved solutions. Mishaps that have led to these
accidents include solution leakage, precipitation, dissolution of solids, instrument failure,
and transfer among vessels. Avoidance of these mishaps calls for continued cooperation of
criticality safety and operating personnel.

In general, both physical and administrative criticality safety practices must be tailored
to specific plant conditions. This requirement inevitably will require judgment. Special
evaluation also may be required because there is no “standard” plant for which universal
criticality safety recipes can be defined.
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B. Administration

Provisions of Standard ANSI/ANS-8.19, Administrative Practices for Nuclear Criticality
Safeiy, are of major significance in processing plants. This Standard recognizes that
criticality safety requirements must contribute to the physical and economic functions of a
plant in a balanced manner. Accordingly, it places no requirement on the form of plant
organization. Instead, requirements of the Standard are expressed in terms of management,
operational supervisors, and a criticality safety staff provided by management.

The Standard emphasizes that effective criticality control, like other branches of safety,
requires the positive support of management and implementation by supemisors with
assistance of the criticality safety staff. It identifies associated respcmsibilities, calls for
effective training of personnel and concise operating procedures, and has sections on process
evaluation, material control, and planned response to criticality accidents.

c. Training

The training program for persons involved in operations with fissile material should malie
safety considerations, including criticality safety, an integral part of a program that provides
necessary job skills. Standard ANS1\ANS-8.20, NucZearCriticality Safety Training,applies
to personnel associated with operations where there is the potential for a criticality accident.
Provisions of the Standard are consistent with the precept that safety education will be
most meaningful and readily assimilated if it is clearly relevant to operations. It follows
that local supervision should participate in criticality safety training, or conduct it with
the support of criticality safety specialists. Appropriate training of supervisory personnel is
implied.

The Standard calls for training in the recognition of criticality alarms and the proper
response to them. Training should be supported by discussion of selected criticality
accidents. Stratton)s history of nuclear accidents30 describes each in sufficient detail to be
helpful for this purpose. Accounts of real accident experience in training talks can help
keep the audience awake.

D. Criticality Alarms and Response

Criticality alarms have twice initiated lifesaving evacuation of areas in which accidents
occurred.30 The value of such systems is therefore clear in areas for processing significant
amounts of fissile material. Guidance for the design, installation, and maintenance of
such systems may be obtained from Standard ANSI\ANS-8.3, Criticality Accident Alarm
System. This document directs that an accident alarm system must be considered for any
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area containing more than a threshold quantity of fissile material. The Standard calls for
an easily recognized signal for immediate evacuation in case of an alarm. It recommends
that the response of the alarm system to radiation be tested at least monthly, each signal
generator be tested at least once every three months, and an evacuation drill be performed
at least annually.

The existence of an alarm system carries with it certain responsibilities. The system must
be maintained to provide confidence that it will function if needed, and to minimize the
frequency of false alarms. False alarms can have a negative impact on safety by creating a
potential for injury as a result of precipitous response. False alarms also tend to destroy
confidence in the system. Unannounced drills are not endorsed.

The response to an alarm is to be governed by an emergency plan with elements given in
the administrative Standard ANS1\ANS-8.19. Further features of an emergency plan are
being considered.

Elements of the emergency plan include procedures for evacuation to specified assembly
stations, actions after assembly, and treatment of injured and exposed persons in accordance
with advance arrangements.

Personnel must be trained in their proper response to the alarm including the use of.
evacuation routes and designated assembly points. Emergency plans must be kept current;
evolution of a plant can influence the procedures to be followed in the event of an alarm.

E. Material Control

One criticality accident occurred because a concentrated fissile solution in a polyethylene
cylinder was mistaken for a dilute solution.30 This occurrence emphasizes the value of
labeling or other positive identification of fissil-ematerial in helping to avoid routing errors
within a plant. Also of value are posted limits at work stations and storage areas. If
observed, for example, in the transfer of material along a glove-box line, posted limits can
prevent inadvertent overloading of a box.

Labeling and posted limits cannot take the place of up-to-date procedures used by well-
trained personnel, but should make errors less likely. Computerized accounting procedures,
such as proposed for safeguards, should contribute further to the reduction of transfer
errors.

Provisions for handling fissile material during inventories must be as carefully planned as
for regular plant operation. This need is emphasized by the three criticality accidents that
resulted from misdirection of solutions during inventory.30
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An occasional requirement that should be anticipated is the emergency storage of fissile
material that can accumulate as the result of interruptions of normal operations. Mishaps
such as faulty processing or equipment failure may interrupt the flow of solutions, and
accidents or other disruptions may prevent material from leaving the plant.

In a plant layout, the convenience of proper operations should be considered. To be avoided,
for example, is transfer of material through a working area when another convenient route is
available, and unnecessary processing of different fissionable materials in the same area. To
illustrate, use of the same furnace for casting enriched and natural uranium, except during
independent campaigns, could contribute to the confusion of feed items. An example of
making mishaps inconvenient is to transfer fissile material on a single plane, as with special
carts. Transfer by crane over other fissile material would be objectionable.

F. Process Startup

Before initial operation of a plant, or of a module that is new or revised, confirmation
of the proper condition of its components is mandatory. Confirmation includes testing
of instrumentation, valves, seals, transfer devices, and ventilation and fire-protection
equipment. At this point, adequacy of training should be established.26

It is also important to reassess criticality safety before startup. The initial assessment can
be influenced by evolutionary changes during construction. Even though the effect .of each
change has been considered, the as-constructed configuration should be examined.

At this stage, it is appropriate to reconsider matters of judgment about the adequacy
of the experimental basis for evaluating the criticality safety of operation. Judgment is
involved in decisions concerning the appropriateness of directly applicable experiments,
of experiments used for va~dating calculations, or of additional safety margins-applied
when validation is questionable. Any doubt usually can be resolved by means of neutron-
multiplication measurements as outlined in Standard ANS1\ANi9-8.6~Safety in Co’’~ducting

,,,,

Subcritical Neutron-Multiplication Measurements in Situ. These measurements, conducted
during stepwise introduction of fissile material, would identify safely subcritical conditions.
In general, they would simply provide reassurance that normal operation is acceptable.
They must not cause personnel to relax concerning accident potential.
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G. Maintaining Safety Provisions

During plant operation, continuous observation and periodic surveys are means of guarding
against adverse effects of evolutionary change in conditions or practices. Has a vessel that
could contain more than a critical volume been brought into a process..area? Has equipment
for fissile material been used for other material? Should features of fire protection be
reviewed because of changed plant content? Have precautions against the consequences of
natural disasters such as earthquake, flood, or tornado been relaxed over time? The list of
questions does not stop here. In fact, it depends on detailed plant features, regulations, and
the policy of plant management. Thus, the wish for a universal check list would be futile.

H. Examples of Plant Application

1. Dissolver for Water-Reactor Fuel

The safe geometry of a 100-liter dissolver for chopped U(3.2)OZ fuel elements is to be
explored. The shape of the dissolver should be simple and it is to be surrounded by a steam
jacket. Full water reflection should be assumed to allow for water in the steam jacket and
for incidental reflection.

Table 9 shows a limiting value of 26.4 cm for the subcritical diameter of a long cylinder of
heterogeneous oxide.86 This value is essentially the inside diameter of 10-inch Schedule-5S
pipe. The diameter limit for solution is significantly greater. Because a cylinder of this
diameter has a capacity of 55 liters per meter of length, the height of a 100-liter dissolver
would be about 1.8 m. A design study will show whether this height meets functional
requirements.

Should this long, small diameter prove to be undesirable, an alternative would be an
annular tank surrounding a neutron-absorbing material to reduce neutron exchange within
the configuration. If the absorbing material is water and the inside diameter is at least
30 cm, the annular thickness can be approximated by a reflected infinite slab specified in
Table 9 to be 12.6-cm thick. If additional conservatism is desired, a thickness of 10 cm
and an inside diameter of 40 cm may be assumed for the design study, the capacity of
which is about 157 liters per meter. Accordingly, a vessel of 100-liter capacity would have
near-equilateral external dimensions. Before adoption, the acceptability of the final design
should be confirmed either by a validated calculation or by in situ neutron-multiplication
meaimrements.2g

9

Of course, this dissolver encompasses more than the simple container. In the first place, to
accommodate irradiated fuel, it must be one component of a shielded fuel-handling system.
The container must be modified for introduction of the chopped fuel, draining solution,
and withdrawal of residual solids. Sparging to facilitate uniform dissolution also may prove
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desirable. The ultimate criticality safety evaluation must take into account auxiliaries and
interaction with other components.

Further, there may be special requirements for campaigning fuels from different sources,
for instance, the fuel up to 4 wt% ZS5Uin tile following example of plant application. If

the possibility of handling fuel at somewhat more than 3.2 wt% 235Ucan be foreseen, it
should be more effective to plan for it at this stage than to adapt to it later. Actually, the
“conservative” annular thickness of 10 cm may prove to be suitable for fuel enrichments of
nearly 5 wt$lo235U. ..-

2. Storage of Low-Enriched Uranium Solution

Consider vessels for storing a variety of uranium solutions in which the 235Uenrichment will
not exceed 4 wt?loand the uranium density will remain below 750 g/L. A total capacity of
1890 liters (500 gal) is desired, and, because of the possibility of long-term storage and the
difficulty of internal inspection, a single vessel packed with Raschig rings is not selected.
The preferred arrangement is a planar bank of cylinders near a 12-m-long, 5-m-high concrete
wall, with a narrow walkway between the cylinders and wall.

According to Table 8, the subcritical limit on cylinder diameter for U(4) solution is 30 cm;
the next smaller commercial pipe size is 10-inch Schedule-5S (26.6-cm-i.d.). At a usable
height of 4.6 m, the capacity per cylinder is 250 liters and 8 cylinders would be required.
Construction and operational convenience would be met by a one-meter center spacing of
cylinders and would result in additional space at the ends of the bank of cylinders.

A walkway of 0.7 m separates the cylinders from the concrete wall and reduces the effect of
the wall to that of incidental reflection on each vessel. Because the 30-cm diameter limit
is based on full water reflection, which is much more effective than incidental reflection,
it is necessary to show that the effect of interaction among the cylinders is acceptable.
According to validated KENO calculations,147k.ff = 0.725 for a single cylinder having only
2.5-cm-thick water reflection, and k,ff = 0.785 for the linear array spaced from the concrete
wall, showing that interaction is adequately small. Thus, it is appropriate to proceed with
the design of this arrangement and with detailed exploration of contingencies:

The low values of k,ff suggest the reasonableness of further investigation of a storage
bank with significantly increased capacity. For example, a one-dimensional calculation of
a 12-inch Schedule-5S pipe (31.5-cm-i. d.) instead of the 26.6-cm pipe resulted in a keff
of 0.9. The capacity of 8 cylinders at the 4.6 m height would be increased to 750 gallons.
Of course, a careful computational study and analysis of contingencies would be required
before adopting this approach.
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3. Solution in Tanks Packed with Boron-Containing Raschig
Rings

In certain cases, as noted before, an alternative to geometrically subcritical tanks for
solution storage is the use of large capacity tanks packed with borosilicate-glass Raschig
rings. Typically, although one-quarter to one-third of the tank volume is sacrificed to the
glass absorber, the tank may still accommodate large volumes of solution more efficiently
than long, limited-diameter cylinders or thin slab-like containers. Other than for primary
criticality control, Raschig rings in auxiliary tanks may protect against accidental criticality
resulting from inadvertent diversion of fissile solution to those tanks.

American National Standard Use of Borosilicaie-Glass Raschig Rings as a Neutron Absorber
in Solutions of FissiZeMaterial, ANSI\ANS-8.5, definesappropriate conditions for criticality
control. Restrictions exclude the use of alkaline solutions, HF, and hot, concentrated
H3POq. Temperature and radiation fields also are limited. The Standard defines chemical
and physical properties that are typified by Pyrex type 7740 and Kimbal type KG-33 and
limits the ring size to 3.81-cm-o.d. It specifies packing conditions and gives requirements
for inspection and maintenance. Finally, maximum densities of fissile material in vessels of
unlimited size are specified for three different volume percentages of glass. Typically, as the
glass volume fraction ranges from 0.24 to 0.32~density limits range from 150 to 200 g/L for
233U,from 270 to 4’00 g/L for 235U-enriched uranium, from 115 to 180 g Pu/L for 239Pu,
and from 140 to 220 g Pu/L for plutonium containing more than 5 wt~o 240Pu.

Although it is unlikely that these reasonably generous limits would restrict a practical
process, there could be unusual circumstances that would require greater glass fractions.
Because computational models cannot closely approximate randomly packed Raschig
rings,148 the preferred guidance for increased limits would be experimental data near
the desired conditions or computational results verified by in situ neutron multiplication
measuremerits.29 An example of an experimental system that is subcritical at a plutonium
density greater than that permitted by the Standard is reported by Lloyd, Bierman, and
Clayton.137 The subcritical density of plutonium (8.3 wt% 240Pu) in nitrate solution was
391 g/L when a 61-cm-diameter tank was filled to a depth of 99.1 cm. Raschig rings
containing 4.0 wt~o boron occupied 18.870 of the volume, and there was an effectively
infinite water reflector on the tank walls and base.

Nurrni149reports the use of borosilicate-glass rings with enriched uranium solutions that
have free fluoride-ion contents greatly exceeding the limit specified in the Standard. Because
of this deviation, there is daily visual inspection and semiannual emptying of tanks for
detailed examination. This is a more stringent maintenance schedule than that required by
the Standard.

Another approach to environments that are hostile to borosilicate glass is suggested by
experiments at Battelle Pacific Northwest Laboratories137 with plutonium solutions in
a tank packed with stainless steel Raschig rings containing 1.0 wtYo boron. A 45.7-
cm-diameter tank, water reflected on sides and bottom, was packed with 1.27-cm-o.d.,
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1.Z7-cm-long steel rings occupying 27.070of the volume. At a depth of 99.1 cm, plutonium
(8.3 wt% XOPU)solutions at densities of 275 g Pu/L with 480 g No3/L and of 412 g Pu/L
with 602 g N03/L were subcritical.

A further example includes data on plutonium-uranium nitrate mixtures in a 61-cm-
diameter tank, water reflected on the sides and bottom and packed with glass Raschig rings
containing 4 wt~o boron.137–138The rings, which were 3.81-cm-o.d. and 4.32 cm in length,
displaced 18.8?loof the solution volume. At a depth of 90.4 cm, solution at a density of
180 g U/L (0.66 wt% ZSSUin u) and 78.4 g Pu/L (5.7 wt% 240Puin Pu) containing 377 g

N03/L was subcritical.

4. Solution Holdup Design

A cell in a U(93.2) reprocessing facility has a concrete floor area of 9 m2 and analyses have
shown that the neutron interaction between the process vessels and between the vessels and
the floor is negligible. The floor with sidewalls will serve as a catch basin for solutions that
may leak from the vessels. An overflow line is to be installed in the floor, draining to a
poisoned catch tank, thereby limiting the thickness of solution. The maximum expected
235u density in UOZ(N03)2 is 25o g/L. A permitted solution height over the floor is to

be determined. The configuration of the solution is conservatively approximated by an
efl?ectivelyinfinite uniform slab with a thick concrete reflector on one side and incidental
reflection on the other side.

From Table 1, the specified subcritical thickness of an infinite slab of U02(N03)2 reflected
by 30-cm-thick water is 4.9 cm. A thick water reflector on both surfaces is expected to
be more effective than concrete reflection on one and incidental reflection on the other.
It follows that the specified height of the overflow pipe should not exceed 4.9 cm. The
chosen height should be measured from the lowest portion of the floor as established by an
elevation survey.
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APPENDIX

This Appendix provides a description of the calculational study leading to the curves
presented in Figures 2 through 13 of this document. The motivation for this study was to
provide quantitative examples illustrating the relationship between system reactivity (k,fi)
and system geometry. Inferential in these curves are the partial derivatives of geometrical
size ($) versus k.ff. Figures from report LA-108t50-M5’, Critical Dimensions of Systems
containing ’235u, 23~Pu,U-rid233””u,lg86 Revision;”were adapted to provide a basis for the

illustration. This adaptation appears directly in Figures 2 through 13. The adaptation
brings forward results from LA-1086o-MS for experimentally determined critical systems.
These data provide a reference to interpret the curves. The three well-established fissile
Duclides ZSSU,~ss~, and Zsgpuwere selected for the co-nstructionof the exam-pies.The 235U

was taken to be present as U(93.2). System compositions were taken to be metal-water
mixtures and were selected to systematically span the entire range from limiting critical
fissile density (7 to ’13 grams per liter in water) to pure metal density (approximately
20 ~ilograms per liter). For these systems, the neutron spectrum varies systematically from
a thermalized distribution for dilute fissile densities to a slightly softened fission spectrum
for the pure metal systems. Three system geometries were selected to complete the set
of examples: spherical, infinite circular cylinder, and infinite planar slab. In each case,
the fissile-bearing region is surrounded by a tight-fitting pure.water reflector of effectively
infinite thickness. These are classic geometries which occur repeatedly in the literature of
criticality safety. The first documented occurrence of these geometries and the associated
characteristic curves, known to the editors, is found in the report (2~-400,Chain Reaction
of Pure Fissionable”Mat;rials in Solution.150

The metal-water systems used in the examples have no direct experimental analog. Uranium
metal and plutonium metal are not, in a chemical sense, soluble in water. However, the
metal-water mixtures are neutronically approached in an asymptotic sense for dilute fissile
systems. 111such systems the atomic ratio of the hydrogen to the fissile atomic species is
very high (above 1000). In these systems, the other nuclear species needed for a chemical
solution, such as nitrogen and fluorine, are also very dilute and have a minimum perturbing
effect. Hence, these dilute systems approach the idealized metal-water mixture. Over
the remaining range, however, the chemical constituents, such as nitrogen and fluorine,
represent a serious perturbation from the idealized metal-water mixture. Hence, any
comparison between calculational and experimental results requires a careful and accurate
determination of the impact of the presence of these other nuclear species.

Caution should be exercised in the application of the curves presented in Figures 2
through 13. First, the reader should recognize that the curves represent calculational
results. Second, the reader should note that these calculations do not conform to
current validation and verification criteria. No attempt has been made to document a
rigorous compliance with such criteria. That is, software and platform verification and
the comparison of calculational results with experimental results have not been carried
out as described in Chapter I, Section B-4 of this document, The Role of Calculational -
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Validation. Instead,we complywiththe traditionalcriteriafor reportingscientificresults
by providingsufficientdetailto allowfor independentreproducibilityand confirmationof
results.

The valueof k,fiwascalculatedfora specificnuclidetype,density,andsystemdimension(r).
The dimension x corresponds to a spherical diameter, an infinite cylinder diameter, or an
infinite slab thickness. For each nuclide type, density, and system geometry, four to five
values of r were selected which resulted in calculated k.ff’s in the range 0.5 to -1.2. In
addition the value of km for an infinite metal-water mixture was calculated. To determine
the value of x for a particular value of k,ff, the appropriate set of calculational results were
fitted to a continuous curve having the following algebraic form.

In the above expression a, ~, and y are fitting parameters. This form provides a
monotonically increasing k,ff versus r which asymptotically approaches km for large x
The curves shown in Figures 2 through 13 were generated by fitting a spline through
the calculated values of x for each selected fissile density. The calculational results were
produced using the MCNP Monte Carlo code (see Ref. 13). The cross-sections were
based on ENDF/B-V cross-section evaluations provided by the XTM group at Los Alamos.
Specifically, the MCNP nucli.deidentifiers (ZAIDS) shown in Table 16 were used.

Table 16

Nuclides, Cross-Section Evaluations, and Atomic
Weights Used for Calculational Results

106

Nuclide

IH

160

233u

235u

238u

239pu

Avogac

ZAID

1001.5OC

8016.50c

92233.50c

92235.50c

92238.50c

9~239.55c

)’s number
(atoms/b-cm)

Atomic Weight

1.00782475

15.994914,80

233.03962900

235.04392497

238.05078549

23!3.05215781

0.602204345



9
B The lwtr.Olt version of the S(a,fl) scattering model was used for the water in the

metal-water mixture and for the water in the reflector.

Table 17 gives values of the mass densities assumed for water and for the metal state of each
nuclide. Table 18 gives the number densities of hydrogen and oxygen used for the 15.2-cm

9
water reflector. Tables 19 through 21 give the number densities calculated for 22 selected
fissile mass densities for the three fissile nuclides ZSSU,ZSSU,and 239PU.Finally, Tables 22

through 24 list the final calculated geometrical dimensions (x values) used to produce the
curves shown in Figures 2 through 13.

Table 17

Mass Densities Assumed for
Water and Fissile Metal

Mass Density
Material (g/cm3)

Water 0.997801

233UMetal 18.05

235UMetal
(93.2 Wt% 23’U) 18.76

II 239PuMetal I 19.74

Table 18

Calculated Number Densities for
the 15.2 cm Water Reflector

NumberDensity
Nuclide (atoms/b-cm)

IH 0.066725294

160 0.033362647

.
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Table 19

Fissile Mass Densities and Calculated Number
Densities for 233UMetal-Water Mixtures

233u

Mass
Density
(kg/L)

0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.020
0.030
0.050
0.100
0.200
0.500
1.000
2.000
5.000

10.000
14.000
18.050

Number Densitv (atoms

233u

.000012921

.000015505

.000018089

.000020673

.000023257

.000025841

.000028425

.000031010

.000033594

.000036178

.000051683

.000077524

.000129206

.000258413

.000516826

.001292064

.002584128

.005168257

.012920642

.025841285

.036177799

.046643517

“\

1~

.066706810

.066703114

.066699417

.066695720

.066692024

.066688327

.066684630

.066680934

.066677237

.066673540

.066651360

.066614393

.066540459

.066355625

.065985955

.064876948

.063028602

.059331909

.04.8241833

.029758372

.014971603

.000000004

160

.033353405

.033351557

.033349709

.033347860

.033346012

.033344163

.033342315

.033340467

.033338618

.033336770

.033325680

.033307197

.033270230

.033177812

.032992978

.032438474

.031514301

.029665955

.024120916

.014879186

.007485802

.000000002



Table 20

I?issileMass Densities and Calculated Number
Densities for U(93.2) Metal-Water Mixtures

235u

Mass Number Density (atoms/barn-cm)
Density
(l{g/L) 235u 238u IH 160

0.005 .000012810 .000000923 .066706212 .033353106
0.006 .000015373 .000001107 .066702396 .033351198
0.007 .000017935 .000001292 .066698580 .033349290
0.008 .000020497 .000001477 .066694764 .033347382
0.009 .000023059 .000001661 .066690947 .033345474
0.010 .000025621 .000001846 .066687131 .033343565
0.011 .000028183 .000002030 .066683315 .033341657
0.012 .000030745 .000002215 .066679498. .03.3339749
0.013 .000033307 .000002399 .066675682 .033337841
0.014 .000035869 .000002584 .066671866 .033335933
0.020 .000051242’ .000003691 .066648968 .033324484
0.030 .000076863 .000005537 .066610805 .033305403
0.050 .000128105 .000009229 .066534479 .033267240
0.100 .000256209 .000018457 .066343665 .033171832
0.200 .000512419 .000036915 .065962035 .032981018
0.500 .001281046 .000092286 .064817147 .032408574
1.000 .002562093 .000184573 .062909001 .031454500
2.000 .005124186 .000369145 .059092707 .029546354
5.000 .012810464 .000922863 .047643827 .023821914

10.000. .025620928 .001845726 .028562361 .014281180
14.000 .035869299’ .002584017 .013297187 .006648594
17.484 .044796448 .003227126 .000000004 .000000002

,,,
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Table 21

Fissile Mass Densities and Calculated Number
Densities for 239PUMetal-Water Mixtures

239pu

hfass
Density
(kg/L)

0.00.5
0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.020
0.030
0.050
0.100
().2()()
0.500
1.000
2.000
5.000

10.000
14.000
19.740

Number Densitv (atoms

239pu

.000012596

.000015115

.000017634

.000020153

.000022672

.0000251S1

.000027710

.000030230

.000032749

.000035268

.000050383

.000075574

.000125957

.000251913

.000503827

.001259567

.002519134

.005038267

.012595668

.025191337

.035267872

.049727697

U,

IH

.066708393

.066705013

.066701632

.066698252

.066694872

.066691492

.066688112

.066684731

.066681351

.066677971

.066657690

.066623888

.066556283

.066387273

.066049252

.065035190

.063345086

.059964879

.049824257

.032923220

.019402390

.000000003

160

.033354196

.033352506

.033350816

.033349126

.033347436

.033345746

.033344056

.033342366

.033340676

.033338985

.033328845

.033311944

.033278142

.033193637

.033024626

.032517.595

.031672543

.029982440

.024912128

.016461610

.009701195

.000000002



233u
Mass

Density
(kg/L)

0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.012

0.013

0.014

0.020

Iiefl

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0,8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

Table 22

Calculated Dimensions for 233u Metal.water Mixtures

Sphere
Diameter

(cm)

—
—
—

—
—

—
—

317.12
—
—

105.78
—
—

76.12
179.13

62.29
104.73

54.16
80.25

177.95

48.55
67.26

112.46

44.71
59.44
88.23

32.93
39.88
49.50

Infinite
Cylinder
Diameter

(cm)

—
—
—

—

—

238.93

—

78.38

—

55.63
135.31

—

45.22
76.90

38.85
58.24

135.68

34.78
48.71
83.69

31.68
42.72
64.94

22.72
27.93
35.19

Infinite
Slab

Thickness
(cm)

—
—
—

—

—

—
—

149.53

—

47.43

—

32.51”
84.71

—

25.58
46.12

21.67
34.28
84.06

18.92
28.02
50.54

16.96
24.04
38.59

11.20
14.47
19.10

233u

Mass
Density
(kg/L)

0.030

0.050

0.100

0.200

0.500

1.000

2.000

5.000

10.000

14.000

18.050

k,ff

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

Sphere
Diameter

(cm)

26.10
30.40
35.65

21.26
24.30
27.85

17.76
20.08
22.71

15.74
17.80
20.09

14.20
16.11
18.19

13.27
15.11
17.12

12.34
14.07
15.99

10.75
12.32
14.04

9.04
10.40
11.88

7.94
9.19

10.52

7.00
8.11
9.31

Infinite
Cylinder

Diameter
(cm)

17.50
20.72
24.74

13.82
16.09
18.72

11.07
12.79
14.75

9.50
11.00
12.69

8.25
9.63

11.18

7.53
8.87

10.35

6.85
8.11
9.50

5.77
6.89
8.12

4.71
5.66
6.71

4.08
4.91
5.83

3.58
4.31
5.11

Infinite
Slab

Thickness
(cm)

7.84
9.87

12.36

5.46
6.84
8.45

3.60
4.64
5.83

2.50
3.38
4.38

1.60
2.37
3.27

1.14
1.84
2.68

0.79
1.39
2.15

0.43
0.87
1.47

0.25
0.54
0.97

0.18
0.41
0.75

0.14
0.33
0.60
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235u

Mass
)ensity
‘kg/L)-

0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.012

0.013

0.014

0.020
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Table 23

Calculated Dimensions for U(93.2) Metal-Water Mixtures

kefl

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

Sphere
Diameter

(cm)

—

—
—.
——

—
—

—

130.68
—

87.11
1273.95

69.41
137.49

59.51
95.99

—

53.16
77.93

173.45

48.64
67.72

115.37

35.51
43.94
56.68

Infinite
Cylinder
Diameter

(cIn)

—

—
—
—

—
—

—

98.23

63.90
833.96

—

50.49
103.27

—

42.83
70.72

38.10
57.02

129.51

34.63
49.04
85.54

24.62
31.03
40.69

Infinite
Slab

I’hickness
(cm)

—
—

—
—
—.

—
—

—
—
—

60.42

—

37.71
562.43

—

29.03
62.92

24.20
42.25

—

21.03
33.35
80.40

18.77
28.09
52.14

12.37
16.47
22.63

235u

Mass
Density
(kg/L)

0.030

0.050

0.100

0.200

0.500

1.000

2.000

5.000

10.000

14.000

17.484

k,ff

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

Sphere
Diameter

(cm)

28.17
33.37
40.18

23.20
26.85
31.22

19.60
22.51
25.82

17.78
20.36
23.32

16.63
19.15
22.06

16.20
18.81
21.76

15.72
18.41
21.53

14.30
16.78
19.64

12.31
14.37
16.68

11.08
12.92
14.97

10.08
11.76
13.62

Infinite
Cylinder
Diameter

(cm)

19.01
22.94
27.98

15.20
17.96
21.28

12.44
14.56
17.02

10.96
12.88
15.06

9.99
11.83
13.98

9.55
11.47
13.72

9.17
11.14
13.41

8.15
9.98

12.10

6.90
8.39

10.09

6.12.
7.44
8.92

5.52.
6.72
8.05

Infinite
Slab

Thickness
(cm)

8.77
11.20
14.42

6.28
7,96
9.99

4.37
5.68
7.19

3.30
4.45
5.79

2.47
3.58
4.88

2.06
3.19
4.52

1.71
2.83
4.19

1.24
2.22
3.45

0.85
1.60
2.56

0.67
1.28
2.07

0.56
1.09
1.77



239pu

Mass
Density
(kg/L)

0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.012

0.013

0.014

0.020

Table 24

Calculated Dimensions for ZagpuMetal.Water Mixtures

k,ff

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9”
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

Sphere
Diameter

(cm)

235.44

84.59
344.79

61.59
100.75

50.95
72.49

135.53

44.84
59.55
89.85

40.65
52.20
72.23

37.65
47.26
62.44

35.38.
43.69
56.03

33.54
40.96
51.55

32.06
38.81
48.15

26.90
31.67
37.68

Infinite
Cylinder
Diameter

(cm)

178.13
—
—

61.77
264.35

—

44.46
74.83

36.39
52.66

101.00

31.70
42.95
66.19

28.53
37.36
52.75

26.24
33.55
45.03

24.51
30.77
40.18

23.12
28.74
36.76

21.99
27.11
34.15

18.05
21.61
26.22

Infinite
Slab

Thickness
(cm)

114.24
.
—

36.54
171.68

—

25.04
44.68

—

19.95
30.46
6.1.68

16.89
24.16
39.16

14.89
20.49
30.27

13.38
18.02
25.40

12.27
16.28
22.32

11.39
14.91
20.01

10.66
13.87
18.34

8.10
10.33
13.16

239pu

Mass
Density
(kg/L)

0.030

0.050

0.100

0.200

0.500

1.000

2.000

5.000

10.000

14.000

19.740

k,fi

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

Sphere
Diameter

(cm)

23.31
27.04
31.52

20.63
23.74
27.37

18.66
21.46
24.68

17.66
20.37
23.48

16.75
19.40
22.44

15.86
18.38
21.26

14.56
16.84
19.42

11.98
13.80
15.82

9.27
10,65
12.14

7.76
8.91

10.13

6.23
7.13
8.08

Infinite
Cylinder
Diameter

(cm)

15.29
18.04
21.42

13.16
15.49
18.19

11.58
13.68
16.09

10.73
12.73
15.07

10.00
11.93
14.18

9.33
11.20
13.35

8.45
10.12
12.03

6.74
8.05
9.53

5.07
6.04
7.09

4.19
4.98
5.84

3.34
3.95
4.60

Infinite
Slab

Thickness
(cm)

6.26
7.98

10.08

4.81
6.22
7.90

3.63
4.89
6.34

2.94
4.14
5.55

2.35
3.52
4.88

1.97
3.06
4.33

1.55
2.50
3.62

0.96
1.61
2.42

0.57
0.99
1.49

0.42
0.73
1.12

0.31
0.53
0.81
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