PUELICLY RELEASABLE pergbleqap. FSs-16 Date: By LKOCư, CIC-14 Date:

LAm197

January 2. 1945 This document contains 20 prpes

Gindration ohanged to UNCLASSIFIED
by athorlty of the U.S. Atomic Energy Comminaloz
Por ALDR $1 T$ ID-1400-S2)Sent-0ct 1974
By REPORT ETBRARI 2ntind
'RHEOKY OF AN UNTAMPEO SUBCKITICAL SYEERE
BITH A SUKうはCE SOUKCE

WORK NOIHE BY:
D. Kurath
W. Rarita

REAPORT MRTTTEN BX:
Fi. Rarita

APPROVED FOR PUBLIC RELEASE

LASSIFIEO UNCLASSIFIED

ABSTEACT

Snyder，ivilson，and Woodward have measured the neutron flux at the o enter of a subcritical 25 sphere mith 28 and 25 fission chamberso The source was an outier oloseofitting 25 shell activeted with slow neutrons ine ratio $1+M$ of counts with the sphere to without the epleere in place was recordede Two spheres of 25 and one of nornel．uranium were usedo The experimental and theoretical values of 1 ＋are given as follows：

Sphere		73\％ 25		Normal Oranium
Detoctor		28	65\％ 25	28
§malit Sphere	Exp。	$1.13 \pm .01$	$1.26 \pm .08$	． $89 \pm .03$
	Theo：	1.06	1.23	．84
ksdium Sphere	Bxp。	$1.21 \pm .02$	$1.44 .5 \pm .02$	－－－－－－－－－－
	Theo．	1.12	1.42	－00－0000－

The agreonont is good for the $65 \% 25$ but poor for the 28 detectoso The result on the multiplication of the small 25 sphere was $1.076 \pm .008$ experimentally and 1．074 theoretically。

UAKCLASSIFIEO

APPROVED FOR PUBLIC RELEASE

WITH A SURFAGR SOLRCE

INTRODUET ION

In this papor we wish to discuss more completely the theory of the experiments suggeated by Frankel and Jelson and performed by Snyrder, Wilson, and Woodward ${ }^{2)}$ o In a Iarge cavity of the Building X graphite colum, a ephere of β-stage material (about 70% 25) was imersed in the inermal noutron fluxo The sphere consisted of an outer sholl of enriched 25_{0} a removable core of active material and a central fission detector with 28 or 25 foilso The significant measured quantity wes the ratio $1+$ of the counts of sithor deteator with core to without core in place。 These integral experiments ${ }_{0}$ closely allied to the inportant problem of deciermining critical masses ${ }^{\text {1) }}$, serve as a test of our theorotical knowledge and furaish in addition information or criteria to fix more precisoly the differential nuclear constants.

1. BHTHOD OF COLLISIONS

In the smallosize spheres (radius about a half a neutron mean freo path) used in the experiments, neucrons from a sourco on the surfece of the sphere whioh have mee man collisions should contribute litile to the total fiux at the conter, Our method is to treat carefully the first two collisions and then to epproximate the offect of the higher collisionso

In reality, the ephere had an extencled shell sourco, a core with a

1) LAUSO 130
2) LA-189

APPROVED FOR PUBLIC RELEASE

For practical reasons, wo start with the most idealized conditions and then progressively remove the simplifying assumptions. Wo give a chart of various approximations used in our oaloulation and then consider in turn tho more impor'cant。

Enpty
Detector< $\begin{aligned} & \text { a. Center point: } \\ & \text { bo Off center in spherical fotls }\end{aligned}$
(A) Surface Source, Solid Core and Center Detection

The simpleat case in the above chart is the one in which the shell source is of zero thickness, the core is solid to the oenter, end detection tares place in the center.

Diract Flux On a sphero (radius a) q neutrons are emitted per soc. The flux at tho center for no core is $9 / 4 \pi \varepsilon^{2}$. With core the atrenuated direct beam will produoe a flux Fo ot the center。

$$
\begin{equation*}
F_{0}=q e^{\infty \sigma a / 4 \pi_{a}^{2}} \tag{1}
\end{equation*}
$$

σ is the total transport orossoseotion (in reoiprocal cms) o Thus far, wo have $a s 1+M=\left(4 r_{a} 2 / q\right)\left(F_{a}+\ldots \ldots\right)_{:}$

$$
\begin{equation*}
\lambda+14=e^{\omega \sigma a} \tag{2}
\end{equation*}
$$

First Collisionse We now calculate the oontribution from first collisions in the coroo. The:mentreg guthed at q travels along r° and is scattered at P to enter innage rothedeteakir dat tho centero The flux at

UNCLASSIFIED
the center from first collisions will now be derivod. tho flux at $P_{0} n_{p}$ will arise from the surface souroe.

Fig. 1

$$
\begin{equation*}
n v_{P}=q Q \sigma r^{\prime} / 4 n_{r} \prime^{2} \tag{3}
\end{equation*}
$$

This flux nt_{P} produces at P a neutron collssion soures dq $_{P}$

$$
\begin{equation*}
d q_{P}=n v_{P} \sigma(1+f) d r_{p} \tag{4}
\end{equation*}
$$

Eeref. is the number of nsuirons emittod per collision anid $d \underline{-p}$ is the volume element at P o This sollision souroo $d q_{p}$ orcates at d a flux

$$
\begin{equation*}
d q_{p}\left(e^{-\sigma \pi} / 4 \pi \pi^{2}\right) \tag{5}
\end{equation*}
$$

The neutron flux F_{I} due to first collisions is then

$$
\begin{align*}
& F_{I}=\int d q_{p} \frac{e^{\infty \Delta r}}{4^{\pi / 2}}=\int n \nabla_{p} \frac{\sigma(1 .+f)}{4 \pi_{r}} d r p_{p} e^{-\sigma r} \\
& =\int q \frac{\theta^{o \sigma r^{p}}}{4 \pi r^{2}} \frac{\sigma(1+f)}{4 \pi r^{2}} d \underline{p} e^{-\sigma r} \tag{6}
\end{align*}
$$

Introducing the variables suggested by Fig. 1 , we have $\frac{d x}{-p}=2 \pi_{r}^{2} d r d \mu$ is
$\mu=\cos \theta ; 0 \leq r \leq a ;-1 \leq \mu \leq 1$. Thus we get finally

$$
\begin{equation*}
F_{1}=\frac{q \sigma(1+1)}{\delta \pi} \int_{0}^{a} \int_{-1}^{+1} \frac{d r d \mu}{r^{1}}-\sigma\left(r+r^{0}\right) \tag{7}
\end{equation*}
$$

We evaluate this integrel by expanding the exponentied term. Fhysically the first term of the expansion means no attenuation from surface

the source path qPand likewise or is a sign of attenuation over the detector path Pd。

$$
\begin{equation*}
F_{1}=\frac{q c(1+1)}{3 \pi} \int_{0}^{a} \int_{-1}^{+1} \frac{d r d \mu}{r^{0} C^{2}}\left(1 \infty \sigma r=\sigma r^{\prime}+\ldots \infty\right) \tag{8}
\end{equation*}
$$

We use $r^{\prime 2}=r^{2}+a^{2}$ o 2arp and integrato over the angle variable μ 。

$$
\begin{align*}
& F_{1}=\frac{9 \sigma(1+f)}{8 \pi}\left\{\int_{0}^{a} \ln \frac{r+a}{|r-a|} \frac{d r}{a r}(1-0 r)\right. \\
& \left.-\sigma \int_{0}^{a}[|r+a|-|r=a|] \frac{d r}{a r}+0000\right\} \tag{9}
\end{align*}
$$

Setting $x=x / a$

$$
\begin{align*}
F_{1} & =\frac{q \sigma(1+f)}{8}\left\{\iint_{0}^{1} \ln \frac{1+x}{1-x} \frac{d x}{x}=a a \int_{0}^{1} \ln \frac{1+x}{1-x} d x=\sigma a \int_{0}^{1} 2 d x+\ldots\right\} \\
& =\frac{q \sigma(1+f)}{8 \pi a}\left\{\frac{\pi^{2}}{4}-\cos (2 \ln 2+2)+\ldots 0\right\} \tag{10}
\end{align*}
$$

The contribution to $1+M$ from F_{1} is $F_{1}\left(4 a_{a}^{2} / q\right)$ or

$$
\begin{align*}
& 1+M=\left(4 \pi^{2} / q\right)\left[F_{0}+F_{1}+0.000\right] \\
& 1+M=e^{-0 a}+\operatorname{ca}(1+\varepsilon)\left\{n^{2} / 8-(1+\ln 2) \sigma a+0000\right\} \tag{11}
\end{align*}
$$

We have reached a stage whare we can arjive at some simple
conclusionso Consider the ca term of Eq. (11).

$$
\begin{equation*}
1+M=1+\left\{\left(n^{2} / 8\right)(1+f)-1\right\} a a=1+\{102337(1+f)-1\} \text { ca } \tag{219}
\end{equation*}
$$

We have set $e^{-0 a}=1-\sigma a_{n}$ sinco higher powers of oa have alrady bean neglocted in the troatment of the single acattering term and in the omission of multiple scatterings and since the expansion of the attonuation terin

positive and negative terms in the higher orderse
A simple interpretation can be given to Eq。（119）e We have twa terms the $1_{r} 2337\left(1+f^{\prime}\right)$ oa，the flux scattered to the center by collisions i and ooa，the flux thrown out by attenuation in a first collision。 We note that a nonofissionaole core（ $f=0$ ）does not imply $f=0$ 。 In fact
 $1+4(25)$ and $1+M(28)$ ，the results to be expected for 25 and 28 detectors。 The radius a～2 cm ，and mean freo path $\sim 4 \mathrm{~cm}$ or oan ~ 50 For $25, ~ a \sim 5:$
 σ_{f} and σ_{r} are the fission and radiative capture cross sectionss $\sigma_{\text {in }}(28)$ is the inelastic ecattering below the 28 threshold and therefore acts as captures Taking v the number of neutrons per fistion prooess as 2olitg wo get

$$
\begin{aligned}
& f(25)=\frac{10 \text { i. } x-1.34-0.07}{5}=037 ; 1+f(25)=1.37 \\
& f(28)=\frac{1044 x-3=033-09}{5}=-012 ; 1+f(28)=.80
\end{aligned}
$$

We noto that it is $\sigma_{i n}(28)$ which makcs $f(28)$ negativo Finally we have

$$
\begin{align*}
& 1+M(28) \sim 1.04: 1+M(f=0) \sim 1_{0} 12 \\
& \text { and } 1+M(25) \sim 1.34
\end{align*}
$$

Louble Collisions．Using the methods outlined above，we q evaluate the flux F_{2} due to double collisions．

Fig． 2

$$
\begin{aligned}
& \therefore:!. .: \cdot \therefore . .: \because \cdot: \quad \text { UTLLASJIFIED }
\end{aligned}
$$

$$
\begin{align*}
& d F_{2}=\sigma(1+\varepsilon) \int_{0}^{a} \int_{-1}^{+l} d\left(n v_{P^{\prime}}\right) \frac{e^{\sigma \sigma r}}{4 \pi r^{2}} d \underline{P}^{\prime} \tag{12}\\
& F_{2}=\sigma^{2}(1+r)^{2} \int_{0}^{a} \int_{-1}^{+1} \int_{0}^{a} \int_{01}^{+1} \frac{q e^{\infty \sigma r^{\prime \prime}-\sigma r^{\prime}-\sigma r_{2} \pi R^{2} d R d \mu^{\prime} 2 \pi r^{2} d r d \mu}}{4^{\pi r^{2}} 04^{\pi} r^{2}-4^{\pi r^{2}}} \tag{13}
\end{align*}
$$

We used $\frac{d r}{-p}=2 \operatorname{rir}^{2} d r d \mu$ and $d r_{p}=2 \mathbb{R}^{2} d R d \mu^{2}$. Reoalling $r^{\prime 2}=R^{2}+a^{2}$ © $2 a R \mu^{8}$ and $r^{\prime}=R^{2}+r^{2}$ - $2 R r \mu$, we easily perform the twe angle integrations

$$
\begin{equation*}
F_{2}=\frac{q a^{2}(1+f)^{2}}{15 \pi} \int_{0}^{1} \int_{0}^{1} \ln \frac{1+y}{1-y} \ln \frac{y+x}{|y-x|} d y \frac{d x}{x}+\ldots \tag{14}
\end{equation*}
$$

We have given explicitly only the unattenuated first torm of F_{2} 。 Further, $y=R / a$ and $x \equiv r / a$ 。 A numerical evaluation of the integral gives

$$
\begin{equation*}
F_{2}=\frac{q g^{2}(1+f)^{2}}{4^{n}} \times 1.15166 \tag{15}
\end{equation*}
$$

The total $1+M$ up to $(\sigma a)^{2}$ terms is then

$$
\begin{align*}
1+a & =1+\left\{\left(n^{2} / 8\right)(1+f)-1\right\} \sigma a+ \\
& \left\{0.5-(1+\ln 2)(1+f)+1.15166(1+f)^{2}\right\}(0 a)^{2} \tag{16}
\end{align*}
$$

Sumarizing our final equation we give the origin of the several
 uated first collision; (c) oda: linear attenuation in direct flux; (d) $0.5(\mathrm{oa})^{2}$: square attenuation in direot flux; $(0)-(1+f)(o a)^{2}$; linear attenuation over souroe peth q P in first collision; (f) $\quad-(2,2)(1+f)(\sigma a)^{2}$: Linear attenuation over detsotor path (Pa) in first collision; (g) 1,15266(1 $+f)^{2}(\mathrm{ca})^{2}$: unattenuatod double collisions.

（B）Surfece Source，Filled Hole，and Center Detection
：＂e travel one more step in the direction of actuality and assume thet the detector space（radius b）has the same total cross section for scattoring as the $\operatorname{cor} \theta$ ，but no fission

Fig． 3

The derivation of $1+$ 近 proceeds as in section A_{0} However，the recions of integration are differento F_{0} is maintaineds F_{2} of氏q．（8）breaks up into two parts，$F_{1} \mathrm{O}_{\mathrm{o}}$ and $F_{H_{D}}{ }^{\circ}$ The former represents the first collision in the core and latter arises from the first collision in the hole（ $0 \leq x \leq b$ ）．We write
down the result

$$
\begin{align*}
& F_{1, c}=\frac{q o(1+f)}{8 \pi} \int_{b}^{E} \int_{-1}^{+1} \frac{d r d \mu}{r^{r} L^{2}}\left(1 \propto \alpha r-\sigma r^{\prime}+\ldots\right) \\
& =\frac{q \sigma(1+f)}{8 \rho \varepsilon}\left\{\int_{b / a}^{1} \frac{\ln \frac{1+x}{1-x}}{\infty} \frac{d x}{x}-\alpha a \int_{b / a}^{1} \ln \frac{1+\pi}{1-x} d x-a a \int_{b / a}^{1} 2 d x+\ldots 0\right\} \tag{3'}
\end{align*}
$$

$$
\begin{align*}
& =\frac{q \sigma}{8 \cdot \frac{a}{a}}\left\{\int_{0}^{b / a} \ln \frac{1+x}{1-x} \frac{d x}{x}=c a \int_{n}^{b / a} \ln \frac{1+x}{1-x} d x-\infty a \int_{0}^{b / a} 2 d x+\ldots .\right\}
\end{align*}
$$

The double collision gives rise to four types：$F_{2, c, c *} F_{2, c, h^{\prime}} F_{2, h, 0,}$ and $F_{Z_{s} r_{2} h^{\circ}}$ For finstance $F_{2_{3} h, c}$ implies a double collision flux at the conter caused by e．first collision in the hole followed by a second collision in core with consequent detection at the center。 The final integrals are

$$
\begin{align*}
& F_{2, c_{D} c}=\frac{q o^{2}(1+i)^{2}}{16 \pi} \int_{b / a}^{1} \int_{b / a}^{1} \cdot \ln \frac{1+y}{1-y} \ln \frac{y+x}{|y-x|} d y \frac{d x}{x} \tag{p}\\
& F_{2,0, h}=\frac{q \sigma^{2}(1+f)}{1 b \pi} \int_{b / a}^{1} \int_{0}^{b / a} \ln \frac{1+y}{1-y} \ln \frac{y+x}{|y-x|} d y \frac{d x}{x} \\
& F_{2, h, c}=\frac{q \sigma^{2}(1+\rho)}{1 b^{n}} \int_{0}^{b / a} \int_{b / a}^{1} \ln \frac{1+y}{1-y} \ln \frac{y+x}{|y-x|} d y \frac{d x}{x} \tag{51}\\
& F_{2, h, h}=\frac{q \sigma^{2}}{16 \pi} \int_{0}^{i} / a \int_{0}^{b / a} \operatorname{Rov} \frac{1+y}{1-y} \ln \frac{y+x}{|y-x|} d y \frac{d x}{x}
\end{align*}
$$

(C) Surfaco Sourca, Eapty Hole, and Center Detection

An equally impartant approximation is to assume that the hole has no scattering at allo

Then Eq. (1) for F_{0} bocomes

$$
F_{0}=q a^{-\sigma(a-b) / 4 \pi^{2}}
$$

Eq. (3') for $F_{1, Q}$ has an additicnal term $\Delta F_{1_{g}}$ ovaluated belowo $F_{1, h}$ is 2oro. Similarly $F_{2, c, c}$ is retainod, but $F_{2, c, h} F_{2, h, c}$ and $F_{2, h_{0} h}$ become zeroo

that

$$
\Delta F_{,} c=\frac{q o^{2}(1+f)}{4 i n} \frac{b}{a} \int \begin{align*}
& \arcsin b / a \\
& 0
\end{align*} \sqrt{1} \frac{a^{2}}{b^{2} c \sin 2} \theta\left\{\frac{n}{2}-\theta-\arccos \left(\frac{a}{b} \sin \theta\right)\right\} d \theta
$$

(D) Extended Sourco

In the previous soctions wo idealized our source as a surfaces In reality the source is a shell of finite thickness undergoing fission in a cloud of slow neutrons" Heglocting the effect of curvature, we calculate the source distribution $Q(x)$ in a parallel plate of active material.

$a=$ radius of oucer core

The number of slow neutrons $d Q(x)$ reaching a dopth x at angle θ in solid angle $d \omega$ is for a uniform angular distribution of $\cdot / 20$ 81 en noutronss

$$
\begin{equation*}
d Q(x) \sim e^{-\sigma_{B} r} d \omega \sim e^{\infty \sigma_{8} \pi / \cos \theta_{d}(\cos \theta)=e^{-\sigma_{8} x / \mu} d \mu} \tag{17}
\end{equation*}
$$

σ_{8} is the total cross section for slow neutrons in the sinell.
Intograting Eq. (1?), wo got

$$
\begin{equation*}
Q(x) \sim \int_{0}^{1} e^{\infty} \sigma_{8} x / \mu \mathrm{d} \mu=\int_{2}^{\infty} e^{\infty \sigma_{8} x y} \mathrm{~d} y / y^{2} ; \quad y=z / \mu \tag{18}
\end{equation*}
$$

These slow neutrons then cause fissions which are the source of fast neutronso Ths integral of Eqc (18) is tabulated in a WPA release。

To include the effect of the extended source $Q(x)$, the results of the previous sections have to be integrated over $Q(x)$. Thus F_{G} of Eq. (I')

in Section C becomer

$$
\begin{equation*}
F_{0}=\int_{a}^{a^{\prime}} \frac{Q(x) d x e^{-\sigma r^{\prime}}}{4 \pi_{r}^{\prime}} ; r^{\prime}=a^{\prime} \ldots x \tag{*}
\end{equation*}
$$

In the same manaer we generalize the other expressions.
(E) OffaCenter Detection

That the detection takes place in apherical. fission foils off the conter must be considered。 Derivations of $I+M$ lead to more complicated but basically the same expressions ${ }^{3}$) 2.8 found abovos
(F) Cross Section Averages

The glow neutrons bombard the anriched shell and create a fission source distributed in energy E as $\mathcal{X}_{f}(E)$ 。. These neutrons in turn by elasticg inelastic and fission collisions become a new spectrumg the first collision spectrum which by a further collision changes into a second collision spectrum, etso

Diroct Flux Averages. The direct unattenuated flux requires an energy average of

$$
\begin{equation*}
\int_{0}^{\infty} x_{\underline{L}}(E) \sigma_{d}(E) d E=\overline{\sigma_{d}} \tag{19}
\end{equation*}
$$

LHere σ_{d} is the detcotor cross section which is either $\sigma_{f}(28)$ or $\sigma_{f}(25)$ of the foils in the fisaion chambero

Similarly. linear attenuation in the direct flux is given by

$$
\int_{0}^{\infty} x_{f} \sigma \sigma_{d} d E=\overline{\sigma \sigma_{d}}
$$

3) See $2 A^{:}$below.

Square ationuation in the same way infolves

$$
\begin{equation*}
\int_{0}^{\infty} x_{f} \sigma^{2} \sigma_{d} d E=\overline{\sigma^{2} \sigma_{d}} \tag{11}
\end{equation*}
$$

For a first colliaion, the spectrum becomes in suatioring from Etg E° 。

$$
\begin{equation*}
\mathcal{X}_{\mathrm{P}}(E)\left\{\sigma_{0} \delta\left(E-E^{\eta}\right)+\forall \sigma_{f}(E) \mathcal{K}_{\mathrm{f}}\left(E^{\prime}\right)+\sigma_{i n}(E) \chi_{i n}\left(S_{B} E^{\eta}\right)\right\}=\sigma_{\Sigma} S_{2}\left(E_{s} E^{0}\right) \tag{20}
\end{equation*}
$$

$\sigma_{\theta} \delta\left(E-E^{4}\right)$ is the elastic scattering to the same energyo $W_{f}(E) X_{f}\left(E^{r}\right)$ is the number of neutrons emittod in a fission collision at energy E^{9} 。 $\sigma_{i n} Y_{\text {in }}\left(E_{s} E^{p}\right)$ is the inelestio spectrumo X^{2} this spectrum $\sigma_{1} S_{1}\left(E_{y} E^{p}\right)$ is directly detected, the resulting average is

$$
\begin{equation*}
\iint_{1} \sigma_{2} S_{X}\left(E_{0} E^{p}\right) \sigma_{d}\left(E^{0}\right) d \operatorname{SE}^{0} \equiv \overline{\sigma\left(2+\hat{I}_{D}\right) \sigma_{d}} \tag{21}
\end{equation*}
$$

For a first collision and a linear attenuation the attenuation may precede or succeed the collisiono

Attenuation followed by a collision requires the integrad

$$
\begin{equation*}
\iint \sigma(E) \sigma_{1} S_{1}\left(E_{p} E^{q}\right) \sigma_{d}\left(E^{v}\right) d E d E^{q}=\overline{\sigma^{2}}\left(1+\tilde{I}_{2}\right) \sigma_{d} \tag{22}
\end{equation*}
$$

On the other hand attomation preseded by a first colldaion involves

$$
\begin{equation*}
\iint \sigma\left(E^{0}\right) \sigma_{1} S_{1}\left(E_{1} E^{0}\right) \sigma_{d}\left(E^{\theta}\right) d E A E^{0} \equiv \overline{\sigma^{0} \sigma\left(1+I_{3}\right) \sigma_{d}} \tag{23}
\end{equation*}
$$

Then two colilisions occur, the spectrum becomes

$E^{\prime \prime}$ is the final energy after the second collision. The average sought is

$$
\begin{equation*}
\iiint \sigma_{2}^{2} S_{2}\left(E, E^{\prime \prime}\right) \sigma_{d}\left(E^{\prime \prime}\right) d E d E^{f} d E^{\prime \prime}=\overline{\sigma^{2}\left(1+f_{4}\right)^{2} \sigma_{d}} \tag{25}
\end{equation*}
$$

To take account of these different cross sections Eq. (16) of seciion A must be rewritten :

$$
\begin{align*}
& 1 \rightarrow M=\frac{1}{\sigma_{d}}\left\{\overline{\sigma_{d}}+\left[\frac{\pi^{2}}{\sigma} \overline{\sigma\left(1+\xi_{1}\right) \sigma_{d}}-\overline{\sigma_{0} \sigma_{d}}\right] \varepsilon\right. \\
& +\left[05 \sigma^{2} \sigma_{d} \cdot \overline{\sigma^{2}\left(1+i_{2}\right) \sigma_{d}}-\overline{\ln 2 \sigma^{\circ} \sigma\left(1+f_{3}\right)} \sigma_{d}\right. \\
& \left.\left.+1.15166 \sigma^{2}\left(1+I_{4}\right)^{2} \sigma_{d}\right] a^{2}\right\}
\end{align*}
$$

2. DISCUSSION OF NUALR ICAI DATA

We have computed with two sets of nucicar constants which we alil the old and the nowo Tho old values were essentially those given in the handbook Lam140, The $\sigma_{f}(25)$ curve was mado to go down through the Bretscher value at 4 Mevo A1so we took $\sigma_{c}(25) / \sigma_{f}(25)=016(1-\mathrm{E} / 2)$. $\sigma_{0}\left(28 j / \sigma_{f}(28)=01\right.$ and $\mathcal{K}_{\text {in }}\left(E, E^{2}\right) \sim E^{8 i / 2}$ रor $E^{e} \leq 1.1$ and zoro elsewherso Tha new nuclear constants were revised to include Richard ${ }^{9}$ s recent fission epectrum and Manley's 4) last measurements on the 28 and 25 transpori; and Inelastic cross sections. We also docided to flatten the $\sigma_{f}(25)$ curve beyond 0.6 Mev. Present evidenco indicates that the Brotischer value at 4 Mev is low All available data were used in arriving at the nev constants. He assumed $\sigma_{c}(25) / \sigma_{f}(25)=014(1-\mathrm{E} / 2)$ 。 Only tho thermal value is exporimontally known in the lattor relation. The inelastic spectra for 25 and

28 were deduced from Nanley's datas Tho 25 inelastic spectrum which gave a simple and adequate fit was $\mathrm{E}^{1 / 2}$ erom 0 to o 4 Nev, flat up to 1.0 Mev and then zeroo The 28 inelastic speotrump similarly, wes assumed to bo $(E=\circ 1)^{1 / 2}$ from ol to of Mev, then flat up to 1 Mev and again zero elsewheres ife give the resulis of the collision averages in Table Io The comporition of the core was taken as 73\% 35。

Tablo I
Core 73\% 25

σ_{d}	$\sigma_{f}(28)$		$0_{0}(25)$	
Sot	Old	New	01d	New
\bar{a}	.269	. 389	1.292	1.342
$\bar{\sigma} \bar{\sigma}_{d}$	1.133	1.652	6.302	6.122
$\overline{\sigma^{2}} \sigma_{d}$	40800	7.205	31.87	28.58
$\overline{\sigma\left(1+f_{3}\right) \sigma_{d}}$	$1.0 L_{4} 7$	1.450	8.516	8.814
$\sigma^{2}\left(1+f_{2}\right) \sigma_{d}$	40838	6.562	42.22	40.60
$\overline{\sigma^{\theta} \sigma\left(1+f_{3}\right)}$	40426	6.343	44092	48.78
$\sigma^{2}\left(I+f_{4}\right)^{2} \sigma_{d}$	5.700	8.098	55.60	62.55

(A) Sura 11 Sphere ($100^{\prime \prime \prime}$)

The small sphere had a $73 \% 25$ core, diameter $2=5^{\prime \prime}$ and a detector hole $031.5^{\prime \prime}$ in diameter. The shell was $44 \% 25$ and $0065^{\prime \prime}$ thicko The density of the core was $180 L_{i} \mathrm{gm} / \mathrm{cm}^{3}$ 。

Various estimates ${ }^{\circ} f^{\circ} 0^{\circ}$: 4 In the contribution of higher colijisions thai the second to $1+15$. These

vejues were obtained by Richmans
A measuremont with normal uranium as cora and 28 us detector was alko made. As the hole wes about one-quarter filled, the final valuo was obiainod by linearly interpolating one quartor vay between the empty and fijled holo valueso

Trble II $1+{ }^{\circ}$ for the Snall Sphore

Core	25		Normai Uranium
Datector	28	65\% 25	28
Surfaco sourco			
(a) Solid Coro	1.084	1.313	
(b) Filled Hole	1.080	1.277	
Extended Sourco			
(a) Solid Coro	1.073	1.289	. 82
(b) Fillod Holo	3. 0069	1.253	. 85
(o) Enpty Hole	1.045	1:203	$\bigcirc 84$
Rerrainder	. 007	. 010	. 00
Final Value	2. 0.058	9.226	$\bigcirc 84$
Exp. Value	$1.13 \pm .01$	$1.26 \pm .01$.89 $\pm .03$

A Multiplication in the Small Sphere

The multiplication of the smal 25 sphere was measured in the graphite block。 The activity of an indium foil was volume integreted outaide the ephere with the core and thon without. thecore in positiono The ratio of these two quantitios gives trie gifleingikeaido: :

The number of neutrons created per second witina tho solid core nor q neutron per second anitted from the surfaco is

$$
\begin{equation*}
\text { of } \int_{0}^{a} \operatorname{nv}(r) 4 \pi r^{2} d r=Q R_{H} \tag{26}
\end{equation*}
$$

$a v(r)$ is tho noutron $f l u x$ at r and the multiplication as measured is
$1+R_{M}$

Fig. 6

For the direct flux $n_{0} v(r)$ to P_{s} we have

$$
\begin{align*}
& n_{0} v(r)=\frac{Q}{2} \int_{-1}^{+1} \frac{e^{-a r^{-}}}{4 \pi r^{2}} d \mu \\
& =\frac{Q}{B \pi}\left\{\frac{1}{a r} \ln \frac{r+a}{|r-a|}-\frac{\sigma}{a r}[|r+a| \infty|r-a|+r \ldots 0]\right. \tag{27}\\
& =\frac{Q}{4 \operatorname{mac}^{2}}\left\{\frac{a}{2 x} \ln \frac{a+x}{a-r}=0 a+\ldots .\right\}
\end{align*}
$$

APPROVED FOR PUBLIC RELEASE

Figo 7
For first collision to P_{0}

$$
\begin{equation*}
n_{1} \bar{v}(r)=\int_{0}^{a} \int_{-1}^{+1} \sigma(1+f) \operatorname{san}_{0} v(R) \frac{e^{\omega} \sigma r^{2}}{4 \pi r^{2}} 2 R^{2} d R d \mu \tag{28}
\end{equation*}
$$

We shall need to calculato only the principal term ol Eq. (28), which arises when attenuation over $q P^{0}$ and $P^{0} P$ are neglectied.

$$
\begin{equation*}
n_{1} v(r)=\frac{Q \sigma(R+f)}{16 \pi} \int_{0}^{a} \ln \frac{a+R}{a-R} \ln \frac{R+r}{R-n} \frac{d R}{r} \tag{29}
\end{equation*}
$$

To (oa) ${ }^{2}$ torms nv(r) $=n_{0} \nabla+n_{1} \nabla$ whioh, eubstituted in $E q$ (26) gives

$$
\begin{equation*}
Q_{M}=\frac{Q \sigma f}{a^{2}} \int_{0}^{e} r^{2} d r\left\{\left.\frac{a}{2 r} \ln \frac{a+r}{a-r}-\alpha a+\frac{\sigma a(1+f)}{4} \int_{0}^{a} \ln \frac{a+R}{Q-R} \ln \right\rvert\, \frac{R+r}{|R-r|} \frac{d R}{r}\right\} \tag{30}
\end{equation*}
$$

Introduoing $x_{i} \equiv r / a$ and $y \equiv R / a$, wo get

$$
\begin{align*}
R_{N G}= & \sigma\left\{\left[\int_{0}^{1} x \operatorname{din} \frac{1+x}{1-x} d x-\sigma a \int_{0}^{1} x^{2} d x\right.\right. \\
& +\frac{\sigma a(1+f)}{4} \int_{0}^{1} \int_{0}^{2} x \ln \frac{1+y}{1-y} \ln \frac{x+y}{|x-y|} d y d x \tag{32}\\
& =\sigma f a[1 / 2+\{-1 / 3+03479(1+f)\}] \sigma a+
\end{align*}
$$

APPROVED FOR PUBLIC RELEASE

The hole and sholl corractions and the contribution of higher terms than (oa) ${ }^{\hat{2}}$ are hero nogligibie。 Final rosults are ontered in Table III。

Table III

$1+R_{\text {M }}$ for small 25 sphere	
Theoretical (Old constanti)	1.074
Theorotical (New constanta)	1.083
Experimental	$1.076 \pm .008$

(B) Medium Sphero (2")

Tho medium sphere was composed of the small sphere and an additional shell to bring the diameter to 2 ". The shell sourco was

Table IV. $1+M$ for the Medium Sphere, $73 \% 25$ Core

Detector	28	65\% 25
Surface Source and Solid Coro	1.3144	1.486
Extended Sourco and Empty Hole	1.110	1.383
Remainder	.014	.033
Final Value	$1.12 l_{4}$	I.416
New Final Valus	1.120	1.4.469
Exp. Velue	${ }^{\circ}$	1.4

APPROVED FOR PUBLIC RELEASE

The entry, fiew Final Velue, was computed on the babls of the now constantso The extra work satalied in computing a filiad hole value does not componsate for the addud accuracyo dfor oover, the holo is loes important for the modium sphore and it should be a fair approximotion to consider the kole e.s emptyo

The $1+4$ of Table II and III were computad for center detectiono The offacenter results were not appreciebly difforento

We observe that the agreement for both ephores with tha 25 detector is good. Too close a chock is not to be expected beceuse of the uncertainty introduced by the emount and distribution of matter in the holes the rasults for the 28 detector are rathor poor。 Wo estimate that if the 25 and 28 inelastic scattering to below the 28 threshold were reduced 30 por cent ${ }_{B}$ the existing discrepencies would be explainedo

APPROVED FOR PUBLIC RELEASE

