APPROVED FOR PUBLI C RELEASE

L™ e UNCLASSIFIED

‘

|
SPECIAL REREVIEW\ C}V‘“‘SE‘FQE “ um [
DETERMINATIO

Clos: W WL U 17 Q |
malifng}:%opym Laif 705 e. ’ PUBLICLY RELEASABLE
ke Series B LA&'L% onGroup

eries # . 12)7/96’
17 March 14L8 This docasent contains F3f) pares.

PHENOQJENQLOGICAL T *LV.OL(Y OF REALCTIVE ASSE:MELIES

‘@ DO NOT CIRCULATE '

| Report Written By:

‘ O« R. Frisch

PERMANENT RETENTION
REQUIRED BY CONTRACT

APPRO\/ED F(]?. PUB .C


ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the 
original report at a 300 dpi resolution.  Original 
color illustrations appear as black and white images.

For additional information or comments, contact: 
Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov



APPROVED FOR PUBLI C RELEASE

R T
‘ cmﬁ*’ﬁ,‘._;{z'-.: 3,50

PUENOMEROLMGICAL THEORY OF REACTIVE ASS SEMBLIES UNCLASS’FIED

A B e AT b e M-

0. Re Frisch

The soaplate theoratinal treatnont of roactivs assembliss is exceodingly
coaplox, and a largs parlt of Volums IV of ths Teohnical Series is dedicatsd to
the prollea of prodictinz the propertlies of a chainersactive asasably from thes
nuclear properties of the materials in it and {rom the gaometrloal arrangsuont
of these materials,

For the purposs of tinis volume we inolude a brisf phenomenological theory
of raactive assenblies which is bazed malnly on the following assuaptions:

(1) Each neutron produces K daughtar neutrons on an avarags,
(3} If a proapt neutrom produsos fission it doss so, on an svsrupgs,

a fter the timwe ’fo.

(3) Delayad neutrons havs s ¥ tines greatar chanes of causing fission
than prount neubrons,

In this treataent wo noglsot the fact that the prohabllity for a neutron to
canzo fisgsion depends on the place whars it is bora and on the time that has slaps-
od since its birthe We shallnot dissusa the milthods by which K, 7T pnd ¥ can be
saloulated from the nucloar and geomstrical charactsaristiocs of the assembly. (Sowe
of these mathods sre desoribed brisfly in Chaptar 2.) Ne shall discuss, whoraver
nesded, how X, T,, and ¥ ara affested by those changes in configuration or coa=
poalition of the assonbly which are mnads in the course of expsarlasnt. .

2.1 TI4E BEHAVIOR OF REACTIVE ASSEMBLIIS

The fission rate F(t) at tho time % in a reactive asseably is mads up of two
kinds of fissions. First, thers ars the "sourse fissions'; that i3, thoss caused
by the presense of a (non-fission) neutron source, and the spontansous fissionsg

in other words, all those fisslons which ars not caussd by nsuirons Jue to sowe
previous f‘ission, uecondlj,..t'qsr? s.re’. tﬁe "‘daughbar Fissions"; that Is,
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2ll those which are caused by a nedt-“nén'.ti'ué tc-. scre previcus fissiene Thia
would include, for instance, phctoneutrons emitted from a beryliium tamper
tecause ¢f the garma-radiation of same fissicn praduct,

ra rate of scurce fissicns, S(t} may cr may not depend explicitly on the
time 4, but it certaiply does nct depend on the previcus fissicon history of the
svsten. The daughter fissicns, however, do, Some of them are caused by “prompt
neutrens, i.e., those which are emitnted within an exceedingly short time
(< 10712 geconds according to nuclear thecry, < 109 seccnds accerding tc
experinertal evidence) of the fissicn itself, and cause fission after an average
time T, wnich l4ies between 8bout 1P for a Pu-239 cr U~235 metal gssembly, and
abont 10~%secends for a grarhite pile, Others are caused by "delayved™ neutrons
which a re emitted by certain fission fragments ("pregnant nuclei™) after a time
sf the order of secondg, The decay curve for the pregnant nuclel is fairly
well known both in the cass of Pu~239 and U-235,

We introduce the function K, p{T JdT tc indicate the probability .bhat a
given fissicn should produce a daughter fissicn at the time ¥ %t 172 4T .
The average number of da:g;hter fissicns produced by a ainple figsion is found
by integration as K /p,(‘t YAT .« This number has previcusly been called K

9

and our way of introducing p{ T ) therefere normalizes it, s¢ that

(2]
[pmdt =1 (1)
Co ' .

We can new write down the fission rate F(t) at the time t as the suu of

gcarce fissions and daughter fissicns and get
=]
Fit) =8(t) + K /F(t ~T(T AT (2)

OJ
This equation is a convenient starting point for all calculaticns in this

charter, It connects the fission rate at a given time t with the physieal

conditicns of the syshbem at this time ahd with the fissicn rates at all previcus
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1ineg, It assumes that the configuratlon of the system, and hence hoin ¥ anc
UL, An net change rapidly with time, We shalil discuss later how the
#auation (2) has te be amendeld if this conditicn is not fulfllled,

Let, us now congider some siuple cases,

3\ .
{3} Bverytiing sansbart g

F=$ oKF'J/p(C)d"C =8 +KF

ar F o aSeae (3)
K

Thlg eauatier can alse ke colaincd simply by adding up source fissions, primary,
! ISR § Lp

awoovdary, hertiary daughter fissions and s¢ on:

£

F g K + 88 265 o, 5801 4K o+ F +¥ & ,,) =8/ - K

‘e .
8: & syproachas unlty, the eguilitiriun fission mte gees to infinlvy,

(b1 8§ = constant, K = 1
Toers is no statiomary sclutif.l'n {sther than F = oo} btut 3 soluticn where F
{nereases linearly with time,

o

F(ti = al = 8 «,.u/_a(t ~Tple T
€
=8 +alt =-aT

a:!;.g,
T

(4)

F =

“

t,
3
Fivsically this is easy te ser, If K = 1 each flssion produces exactly cne
(=
dzuphter fission (on vie averapge) afier the time T uﬁp( t)4t ., Hence
b}
svery extia fiasfon produced will increase the flsgion rate permarently by a
rate of ong flgalon every T secemds, Tre value cf T is obtained by averaging
cver all neatrens, promst and delayed, and is about .1 second,
(¢} S and K constant bul not Fg
'E"c».solw cur integral Equatien {2) we wust make some assumption about p(T ),

The simplest assumptlon that agrees resscnably welil with the facts in mast cases

UNCLASSIFIED
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The ccnditicon /p(t JAT =1 is ther? (u’rllled ir ;:1 £, 31 o« Urder this
7]

agsumpt ion abeut p( v ), the general soluticn of our integral eguation is of
the form

S !:-n-l J\.jt

F(t) = “1=f + ‘i; a; s (6}

where the a; are artitrary constants which, in every spectal case, have to
be computed from the boundary cenditicns of the problen,
T¢ ealculate the values of S\ we ASSUNE 8y = 1, a

arites" for‘.."\., « Our intepral equation thern beccmes

s Nt /."13 At — N AT
Tt e = sex J(gy ve ) 2 B A e R

At *ALL-T) AT
o K /e / Z A e & av ()
i s

oo A 3T
= I’OAC / g;\ £N, e ) dt
:_.'j ] ¥
rsey /,-:,A - (:J\- ‘/)\k )t \'? Ak
"IF : Z-a fl?\k/ ° it L‘ Yol Ay
o Fzi

Bauaticn (7) is of the n'P degree in _\Uani hence cannct te sclved explicitly
foern ‘) 4, However,scme simple conclusions can te drawn without sclving the
eguation,
(1) BReing of the nth degree, 1t must have n scluticns for ./'l\.,
(2} A1l scluticns are real, Plctting the right hand side of
Equation (7) against 4\ we get a curve which has a regative slope
everywhere except at the points where . A becomes equal to ore of
the >\ k. Ab these peints the curve jumps from-o3 to + ox , A
typical curve i3 shown in Figure 1, The intersecticns of this curve

with a line Arawrn at height 1/K a re the sclutions and there must be

n of them, ves S0 0
A is s UNCLASSIFIED
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) . | (3} As long as K< 1, all sclutions are negative, (SinCQka =
a positive valur of /A would make the right hand side cf Eguation (7)
< lor K>1,) Therefore, az long as K <1 all the time dependent
sclutions of our integral equationare sums of exponentlals which
decrease with time, leaving eventually only the time-independent
scluticn S/(1 - KY which is,therefore,indeed the equilibrium fission
rate,
(4) TIf K > 1, one solution for /\ becomes positive, It represents
an exponential which grows with time and which cventually exceeds all
other terms, The other sclutions, however, are all sti1l negative and
not very different from the correspordiing values of}\k (with the
exception of the smallest A,),
It is seen that the time behavior of the assembly {35 fairly complicated and
not in gencral to be described by a eimple exponential, If one suddenly alters
- the cenditions cof the system (for instance, by removing or introducing a neutron
_souarce or by altering the arrangement of tamping material) the subsequent fission
rate is 3 superposition of all the sclutions just mentiored, with coefficients. 3
which depend on the character of the alteration, After a while the solutions
with the greater (negative) vslues cf /\die cut and enily the one with the leagst
negative./\ 1s left, dence, after changing the reactivity of an assembly, for
instance in an attempt tc make it just oritical, orme always has to wait about a
miniute or two for the transitory effects to die cut before on2 can judge the
effect of the change on the reactiviiy,
We said before that a certain fracticn, which we shall call f, of all the
neutrons is emitted nct in the figsion act itself but as a result of the
g 3 ~decay of certain fission fragments ("pregnant nuclei®), The decay curve
- ‘ of thege delayed neutrons has been measured repeatedly, both for ¥-235 and Pu-239,

and several attempts have been made to represent the curve as a sun of expo-

rentials (which it ought to be,. .11‘ J«here gre several types of pregnant nuclei,

___AM __UNCLASSIFIED
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each with its charucteristic decay pericd). The two longest periods are quite
accurately known since it has been possible to isolate the corresponding
radiocactive isotopes (of bromine and iodine) by chemical methads. Concerning
the shorter periods, different observers don't agree too well. Actuslly, the
disagreement hardly effects the shape of the decay curve or the calculated time
behavicr of 4n assewnbtly.

Since the delayed neutrons have lower energles than the prompt neutrcns,
their chance of producing a fission is different (usually larger) by a factor
which we call ¥. {An apprcxipmate calculation of ¥ was attempted by F.
DeHoffmann in LA-471). Strictly speaking we shouid introduce a different ¥
for each of the different of pregnant nuclei, but not encugh is yet known
about the respective neutron energies to justify such niceties,

The progspt neutrona are emitted within a negligible time of the instant
when the neutran which caused the fisszion hit the nucleus. However, they have
to travel sone distance and in scme czses have to be slowed down, before they
can cause fissicn thenselves. The aversge time lost in this way we call T,.
Of course score neutrons may take shorter times dnd some {for inatance those
which return after having suffered seversl collisions in the tamper) may take
ruch longers:

Taking all this into account we can write

AL

p(t) = (1-¥£) p () + ¥ f Ei s . (8)

where the first term refers to the prompt neutrons and £ is the fracticn of
neutrons which are deiayed. If we approximate this term by an exponential
PO(T.‘) = (1/ '%) e ~.t/‘° we have expressed p(t) entirely as a sum of exponentials
and can now express the time behavior of the system by Equation (6), with the
values of J\ determined by Iquution (7).

E:uation (7) can also be uged to determine K if the pericd T = 1/A
of the systen has been measured. We rewrite Equation (7) by subtracting both

. UNCLASSIFIED
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. sides from 1 and get
d Ty L3 5ot SN v f .i‘.L.N :Tﬁf‘ AT - T f __E}‘_'__
* -Fu ¥ ?. = /v—-d k k 4 \-+ /\k (:i.l k Jf\.k -Rk P k T"'T 1

N,

(Tk vy »

S
If we furthermore make use of RBjuationg (5), {8) we get
K=l X be 1:1
fim - T + 47
S GednwE TR m,

This equation can be further simplified if ¢ne considers that ¥r <& 1 (aboat
L0035 to ,Q1),that T is,at the most,a few milliseconds while practical values
of T are usually a second or more, and that in the inter=ating cases, K is

close to 1, Hence we can write approximately

. T q. T,
5% = K21 "’F‘"*sz f;*s:”

{9}
. This reactivity equation is often called the “inhour equation®, for reasons thab

will be apparent in the next section,

2,2 MEASUREMENT OF K

The behavior of a gystem for which K = 1 4s so characteristic that in this
caze the measurement of K presents ro problem,” In systems which are slightly
sub=critical or super-critical, the quantity we want to neasure is really K -1

or § K which is often called the ex:eas reacvivity, This is a noneiimensional

quantity and does not, as such, reguire a special unit, However, since tho
exces3 reactivity is usually a small fraction 2f 1, it ic convenieni to use a
suitable unit smaller than 1, for instanee the misrore !/,uﬁe) orr misrc-szactivity
R unit, The reactivity in gdcerores 4is .equal to J K x 1()0,
' The absgolute measurement of the sxcess reastivity is quite Jdiffienlt, One

azthod which has been used with some success will be descrived presently, On

the other hand, relative measurements are fairly easy, That is, it is fairly

- UN
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easy Y0 compare the axcess reactivities of one reactor in two different stabes,
Several arbitrary units have been used, sach as the "inhour™ and the ®cent®,
Their value on Lhe abgolute scals differs from one reactor to the other
depending on the value of & (the relative effiziancy o»f delayed and prompbt
neutrons), and on the material (plutoniwe or U-235) used,

2,2-1 Absolute Measuramonts (The "Boron Bubble®)

S

Ideally, the multiplication constant of a reasior could be measured by
fntroducing a2 zaiibrated neulron source and bhen measguring now many additicnal
nruhrens are produced through the fission chains, In prastice suen a proccdure
would e wvery diffieulsy, The sourse would have to have the sime anergy
distribution as the fisgion neutrons, and its distrinutien in spaze would have
to be the same, This might be achieved by suitable averaging of a number of
measurerants carried cul with the source placed at different points, However,
there would s%ill be the difficulty of an absolute measursment of the total
aunbeyr of neutrons produced in the systen,

An iagenious way of avoiding these difficultiss i3 the so-salled "boron
bubbla® mathod, A small portion of the reactor is replacel by a boren-conbaining
material which has the same abgorphisn and scattering of nentrons, but contains
no fiasile meterial, {nis "boroen bubble® ig moved to different places and a
sultable average of the results iy taken, The introduction of this boron bubhle
obviously decrzases the reactivity of the assembly, If it vepregents a frastion
v/Y of the total velume of the fissils material, its introduction is, on an

average, equivalent to a reduction of K by that same fraction, Such a change,

knowa in absovlule units, can be used to zalibrate any of the relative methods T

whizh are to be described in the neaxt paragraph, The disadvantage of the method
is that the energy Jdeveandense of the fisslon oross section of U-235 and Pu-239
cannot be simulated by any nonfisgsile absorber, In order to calculate the ripght

amoun® of boron, one has to know bteforehand the eonergy spectrum of the neutrons

UNCLASSIFIED. .
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in the system, which, furthermors,usually varies from point to point, Also, it is
not accurately true that all the boron bubbls dves is to absorb as many neutrons
as the fissile material which it replases, because this statement is true only
on an average and not for each individual neutron energy, Experimants which have
been carried out by this method are described in Chapters 4 (Waterboiler) and

& (Hydrides) where the difficulties of this method are discussed in more detail,

3,22 Ralative Meazurements

For suberitical systems, a scale linear in K can be establisned by the simple
procedure of measuring the neuiron intensity in several different states of the
systam; for inatance for several different positions of the control road, The
reciprocal of the neutron intensity is a measure of 1 - K, the negative
"excess reastivity™, Howaver,the units are completely arbitrary and depand,
furthermore, cn the constancy of the reubron detector used,

Several methods for ;neasuring the exsess reactivity depnend on the time
behavior of the system, If a reactor is slightlyt ancve critisal, the neutron
flux will grow exponentially with time (in the absence of a neutron source), and
this rate of growh is conneated with the excess reacstivity by Bquation (9).

In particular, for a system exceedinzly .close to critical, the rats of growth

of the chain reaction is a linear function of K - 1 and the numbter of times the
flux e-folds in one hour is directly proportional to K - 1, This reasoning

leads to the unit called one “inhour® which we may define as the change in
reactivity which will turn a just critical system intc one with an e-folding

time of one hour, If T i3 one hour, it is much larger than any of the ti and
Equation (9) becomss K - 1 = T/T, where T is the average time between
fissions, as defined in the first sechion, If we inseri ¥ =1, T = .09 ssconds,
T = 3600 seconds, we find thal one inhour is a change of K by 2,6 x 10"5.

However, if ¥ ) 1, a3 in most of the assemblies discussed in this volums, then

the value of the inkour is greater than 2,5 x 10"5 by the same faztor,

With an appropriately rapid contrel mechanism, T can be male as small

UNCLASSIFIED
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. ’ as about one second; on the other hani, Buation (9) can also be used for negative
values of T, but the measurement of K hecomes very inaccurate for K smller
than, say, ,98, as can be ssen from Figure 1, From Bguaticn (9) or frem a
graphical representation of its relevant portion (the "inhour curve®) the
exzess reactivity of a reactor in a given stabe can be immediately obtained in
units of cone inhcur, from a msasurement of T,

The valuesof K3 and K5 of a reactor in two different states can also be
coumpared, provided Kl and Ky are € 1, by making a sulden transition from one
state to the other, for instance by rapidly shifting the control rod, The
imrediate effect of this transiticn depends exclusively on the change in Kp,
the prompt-multiplicaticn constamt; she delaysd neutrenz take some time to
adjust themselves and may, therefore, be regarded as part of the source, in
the first instant, Since the prompt-multiplication is due to thae frastiocn
1 = ¥f of all the nsutrons emitted as a result of fission (see Equation (8)),

. we have
g ’ Kp= K( 1 ~¥r) (10}

Tnmediately after the transition we find the fission rate changed by a fastor

1-X 1-E
A= R = 2 (1-¥r)
"Kpl 1-}:1( I-Xf; (1)

After several minutes the fission rets will have adjusted itszelf to the new

state of the system and will have changed altogether by a factor

B e =i
1K (12)

If both A and B are measured we can solve the two linear EBjuations (11) and

_ . (12) and get the two excess reastivities;
1-B . (1-E)B
L-k =¥r5y 1-Ka= Yty

UNCLASSIFIED
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The difficulty lies in measuring A it is necessary both to effect the
transition and to record the change in fission rate within a time short compared
to the fastest delayed-neutron pericd, that is,within a fraction of a secend,
The change of f{ission rate with time is i{llustrated in the Figure 2 belcw.

The transition can sometimes be performed with sufficient spsed, tut pen

Figure 2
A,— 2
@
.'J r
3
1dn 1
ST
< A E
A !
n
o4

Tigs
recorders as were usad in most of cur experiments are not fast encugh to permit
an accurate determination of A, (See Chapter 5, Section 5.2)

Tne excess reactivity by this methad is obtained in units of Z,f. Tne frac-
tion f of delayed neutrons is 006 for U235 and ,005 fer Pu-239; 5,varies
from one system Lo another, It has been sugpested to use 2 f as a practieal
unit of excess reactivity and to call one nundredth of 3 f *one zent®, 1In
other wirds, 100 cents is the changs in K frum a Just oritical system to the
poiant where the prompt neutrons alons can support the reastion,

A variant of the "sudden chauge® method is that in which K is left
constant but the source is suddenly changed, TI7,for instance,a source is
suidenly introduced into a subaritisal system, the maltinslication is at Pirss
omly 1/(1 - Kp) but grows within a few minutes to its equilibrium value
/(1 = K}, A comparison betwaen the fission rate imnediately afier the
insertion of the source,ant that some time later,gives the value of

(1 - K - K¥V/(1 - K} = C from where we find K = ¥ £/(C = 1) plue higher

UNCLASSIFEED-
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terns in X £ which are negligitle, The difficulty of measuring C is the same
as that of measurirg A ir. the®change~of=K® methed, Of course,both the
immediate and the ultimate change in fissicn rate is the same (apart from the

sign}, whether a given source is suddenly inserted or sudderly remcved, and the

latter is often easier to do,

2,3 VEASURRMENT OF ¥

As it was pointed out in the last section,the value of the inhcur
for a U=235 systenm with X =1 1s 2,5 x 10~%; that is, if a just critical
gyst.em 1s changed 80 that K increases by 2,5 x 1(}"5, the fissicn rate will
then e~-fold in cne hour, This is very nearly the case fur a grapghite pile
where the main loss cof neutrons s in the system itself (for instance in U=228)
rather than by leakage; the competiticn between fissicn and absorption depends’
very little cn the sgeed of the neutrons,

However, in small reactors such as those which are described in this volume,
leakage is the main process competing with fissicn, and the slow delayed
reutrens (with mean energies of arcund .5 million electron volts) leak out much
less than the faster prompt neutrons (mean energy 1 to 2 willicn electron volts },
Hence, the factor ¥ which indicates the relative efficiency of delayed ard
prompt neutrons 48 > 1, The value of the inhour is then greaher than 2,5 x
10"5 by a factor ¥ , Hence,an absolute calibraticn of the X scale, for
instance by the boron bubble method, amcunts to a measurement of & , In this
way valuesg of 1,3 - 1,6 for ¥ were observed in scrme cases, An experimental
measurenent of the quantity J f is given in Chapter 4, Section 4.2,

It might be possible to measure X directly by comparing the filssicn vetes
cbtained with two neutron sources simulaling the eunergy spectra of delayed
and prenpt neutrons, respectively, No such measurarents were attempted,

Of course Zf'can never be greater than 1/ g the delayed neutrons cannot be

utilized beller than 100 per cent, anc pf the prompt wmes,at leagt the fraction

| W= UNCLASSIRIED
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1/V must be utilized to get the system critical,
F, de Hoffrenn has shown how to caleulate under certain simple assumpticns,

(TA-471),

2,4 MEASUREMENTS CF ‘L‘q

To measure T

o is difficuit because cf its smallneze, In the water-

toiler (See chapter &) T, is about 10"4 ceconds, in a hydride (Ses Chapter 5)
avont 106 seconds, in metal about 10~8 seconds,

On the cther hand, the very smallness cfT, is useful since it helps to
separate it froem the much longer periods of the delayed neutreng, 1If any of
the parameters which influence the fission rate (such as X er the scurce
strength §), is suddenly changec¢, the fission rate will adjust itself rapidly
10 the new condition as far ag the prompt neutrons are concerned while the
rate of emission of delayed neutlrins can be regarded as esssniially constant,

Our furdamental Rpuation (2) can then bte written

' (<) -»z.

Fl¢) =8+5 +F% (F(t-t) e ¢ aT (13)
P 4 ’ i
o

where S‘ rapresents the delayed neutrens and is treated as time-independent,
The time dependent part of the soclution of this equation is fornd to be

proportional to

- t =1
Bt o, o0k
e % = € = To

Tnis fcllows directly from Bguation (7) if one replaces K by Kp, the sum by a
single term, A by = , f} by 1 and Akby 1/[%, .

If Kp ') 1, the system is supercritical for prom;it. neutrong and will blow
up in a very short time unless steps are taken to prevent that, In Chapter 9
an experiment is described (the "dragon experiment®) where the condition

Kp 7 lwas indeed realized, for a time short enough to prevent a disaster,

eammmmmn VVCLASSIFIED
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s Kp < 1, the sysiem is nct explosive, but thae fissien rate will
grow in exponential fashion tecause of the delaysd neutrons as long as
¥ > 1, If we want to do measurerents on a system in which the fissicn rate
does not prew exponentially, we have to keep K &€ 1, and hence
Krg< I - ¥ (See Bquation (101}, In such a system < is,of course,negative,
and [=h [ > J?/ﬁ;, Sirce ¥ £ is of the order of 1077, we see thsh the “iime
sonstant® 1/} | of a weterboiler, a hydride reactor and 2 metal reactor are
+f the opder of 10™° secords, 10~ seconds and 107° seconds, respsctively,

Jt is possikle Lo produce neutren bursts of very short duraticn, for
tnstance by moliulating the team of a cyclotron (See Volume I of the Tesnnical
Series), If such a burst of neutrons is made tc enter a suberitical reantor,
§he fission rate immediantely after the pulse will decrease exponeniially with
the vime constant {cLI = (I-KP) /%b . The decrease can be ouserved by the
uge of scunting "channels® each of which is cperating cnly for a definite short-
time interval, a definite time after tre nevtron buarst, Fquiprent of this
type hes been used previcusly for measuring neutren velocities frem their tima
of flight, and experirents in which Lime ccnstantas of fissile reacteors are
weasured by means of a midulated nentrcn source are desasrite? in Chapter 8
¢f this volume,

The sarme chapter alsc descrilbes 2n Ingenicus variant of the modulated
source methed which was suggested by Bruno RCssi, This vardiant depends on the
fact that statistical fluctuaticns of any neutren souree represent a kind of
modalaticn, and that it {stherefore, not necessary to apply esternal mcdulation,
A brief thesry <f this methed i3 given in this chapter, in the section on
figetuationg,

A thalrd method whilch has teen successfully tried depends on a moderately

rapid, perisdiec vaclatlion of K, To calculate the effects of such a variation

on vhe filsgion rate, we use again Bguation (2), We assume that toth K and tue

. “umssmib
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fission rate F are the sum of a constant and a2 small purely harmonic term
K, = Ko +Ke ™ 4 F o Fg 4 feiMF

Rauation (2) then beccmes

twt iwh iw(t-Thy =%,
Fg+fe ) s S+ (Kooi-Ke )/(FO'?fe‘ ™ ')e /%o dtT

(¢}
F,o= S+KF, Fo = 8/(1-k;)
-iw‘t-'t/'t’
by - KF “P‘K fﬁf av
= KF +Ef T-Tﬁ“io (14)
1 . 1=K 4wl SaK iw ‘
£ = KFOT—TO s KF, a o "o B

5 -
I+iw‘t‘o (I'Ko) 4"2":95)
(Ir. this caleulation the term with Kf has been neglected), The occurrence
cf an imaginary term indicates that the variation in fission rate is shifted in

phase with respect to the varlation, This phase shift is

K w t ¢ . d KQ -l.{ —to
tan g ToF a—?i_bz or for PLLL D= -i.--f(;"—
(15)

Bow (1 - Ko)/T, 1is nothing else but the average value of |ol.|, while K,
might be replaced by 1, for the sort of accuracy with which Lhe phase shift can
be measured, lhe phase shift then becomes simply w |-t {, the usual valae fer
‘a systen of time constant | di( for instance,a resistance R and capacity ¢, such
that 1/CR = l=t|) disturbed by a force {fur instance,an electremotive force)
of frequency w/zn'. Hence, by measuring the phase shift one determirns o ,
An experiment of this type is described in 1A-183 and in Chapter 4 of this
Volume, .

Tt is a ccmmon feature of all these methods of measuring T, that all one
really measures is = = (Kp-l)/'to . Hence to get ’L’o one has to kncw the

(ﬂrc'mpt) excess reactivity Kp - 1, The difficulties of measuring excess

reactivities have been axplained in a previous section, UNC‘_ ASS‘F‘E&
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2.5 FIUGTUATIONS IN REACTIVE ASSEMBLIES

A nuclear chain reaction cengists of individual procasges which happen at
random, This has the effect that if the same experiment is repeated several
times, the regsults fluctuate, Such fluctuation occurs always when random events
are involved, as,for instance, in ordinary radicactive decay.; in nuclear chain
reactions the fluctuations are accentuated by the multiplication mechanism and
can assume formidable proportions,

R, Feyrnman in Volume VI of the Tachnical Series has described methods for
caleulating the fluctuations in certain cases which were of practical interest
tc the Project, carrying the calculation to a considerable degree of refinement.
and complexity where this was regquired, In this chapter a simplified treatment
{8 intrcduced, of a less ambitious scope, sufficient for the interpretation »f
the experiments with which this volume deale, The methcds used are largely
based on Feynman's report, but some of his equations are derived in a different
way'qhichvras first suggested by Ulam and Hawkins,

2,5~ The ¥Method of "Gegg_gat,ing Tunctions®,

A faw general remarks will make what follows easier, We are coacerned with
experiments in which the result is a whole number, e,g, the number of pulses
recorded during a given pericd, If one such experiment is repeated many tires
the result will in general fluctuate and we shall call Py the probability
that the result of one experiment is the number k¥ , Cne then defines the

@ .
gererating function 'P;Zpkxk whish is a very suitable vehicle for carrylng

all the statistical infor;?ation ‘about, the experiment, and cne from which useful
information can te easilyextracted, Furtnermore, the generating function of a
combined experiment is,in some cases, a simple algebraic cembinaticn of the
generating functiens of the individusl experiments, It is convenient to asscciate
generating functions with fictitious experiments as wellj in other words, with

any cuestion starting with "How many?, This will be dcne, even if no methecd

UNCLASSIFIED
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has been devised to give an exact answer, or if the answer is not known. We
shall use bold capitals to indicate generating functions; for instance we shall
associate the function (b R ? ¢k ¥ with the question "How mary neutrons
are generated by an individusl fissicn?" where ;?Jk is the prebability that just
k are generated. Equally, we shall use "| in connection with the question

"How many fissions eccur in a single chain in & given (subcritical) system?n
altbough we know no wey of finding cut,

J,5=2 Combinations cf LExperiments

If two (simidar or different) experinents with the respective ponerating

‘ functicn P and (3 _are made and their results are added, the generating

function of this combined experiment is the product of the individual

generating functicnes, F : G s Provided the cutcorme of one experiment coes

rot influencge that of the other,
For instance, the probability of getting the result "4" i3 the probability
of getting "O" in the first experiment and "4" in the second, plug that of
gettirg "1 in the first and "3" in the second, etc. or fcg&-t f‘lg3-+ L84 f3gl+fhg0

This,however, is just the coefficient. of x* in the product (i‘o+ fox«+ f‘(“:q'.2+ A N
’ “<

1

({-;o-i» glx + 32x2+ sseee)s In particular, if an experiment is done n times, the

generating function relating to the sum of the m results is the nbh power of the

generating function G‘ of the experiment.

In some applications the nurmber n itself is determired by the cubcome of a
previcus experimert with the genersting function F‘ = fa.r £ X f232+ eessee .
The gensrating function of the combined experiment is I‘o+ fl. G + f2 G 2 4 eceen
=F (G ).

we nay stuate this as follows:

If _two experivents are performed in Ycascade" (the cutccre of the first

decidas how many times the secend one i3 to be performed) the combined

@
generating function is oblained by paking that ofﬂth_eﬂl‘ irst ocperate cn that

UNCLASSIFIED
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A few examples will make these things clearer, let us consider a long-
lived radiocactive sample in which N atoms disintegrate wer s2cond on an average,
What is the generating function P associated with the question “How many
atoms disintegrate during one gecond?”

Let us firat solve this problem for a very short interval 4t | The
probablility that two or more atoms should disintegrate in 4t is negligibleg
the probability that one should disintegrate is Ndt and the remainder, 1. Ndt ,
is the probsbility for nc disintegration, The generating funetion is therzfora,

(1-Ndt} 4 (Ndtjx = 1 4 Ndt {x-1)

A time inberval of one second can be regarded as the sum of1/dt intervals
of the length dt, We therefore get the generating function referring to the irters
wrl t by teking the (t/at)eh power of the generating funection which refers

to dt, In this way we get
1/d% N(x-1 N WY N K2
’P s [lfdt(xf-l)&i] / 38( ) Te te lx +€ 3T  oresesi 1 16)

The coefficients give the probability that in a given seeccnd just O, 1, 2 ete,
atoma should disintegrate and we see that our method permits a fairly simple
derivation of the wsll known Peisgon distribution.

A second example refers to a particle counter (G, N, counter, boron chamber,
ate,) We agsume that the counter is used tc¢ record certain primary events, =.g.
disintegraticn in a scurce, fissisn in a reastor ete, We define its efficlency
B as the probability. for one individual primary event to be recorded, (We
thus include in E such factors as solid angle or ahsorption due t¢ intervaning

material), The generaiing function of the counter is thersfore

C = 1-E+Ex = 14 B (x-1) (17}

If n primary events oscur, what the counter does is to repeat n times the

experiment deseribed by the generatinz function C: . and the outcome is

JiE—— UNCLASSIFIED
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therefore described by the generating function Cn.

If the number of primary evenis is itself subject to fluctuations and
associated with a genarating functionﬂp » then we have to lat ’P operate
onC ir order to get the generating funetion of the counting experiment, If, in
rarticular, P eﬁ{x-—%) as before,(that is, if the rmumber of primary events
has a Poisson disiritution) we get

PC) e ¥ G-1) =eN(I+E(x-1) -1) ep FE(x-1)

Horice the number of pulses per second again follows a Poisson distributiong
this is obwvious since the pulses are independent, events just as much as the
primary events (the disintegrations in the source} only their average rate per
gecond ig not N but EN , However, the formalism can be used in cases where the
primavy events do not follow a Poisson distributiocn, e shall very socn encounter
such cases,

2, 5=3 Mements of the Distribution

The problems where one can actually determine the generating function
relating to a certain experiment are not too nunercus., However, it is often
possible to calculate the first few mements of the distribﬁtion and in many
cages this is all that is needed,
By differentiating the generating functicn once we get %—F; H f1+2f2x+5f3xz}...
If we now set x 231, we obtainin-fnfﬁ » the mean value of the result,
Py

Similarly, by differentiating twize and setting =x=l , we get

(_‘?ég)xul " R :6 oF

and generally

(3“F) = BreTImet) s (akel)
oxk Inl

Of ceurse Fx~l i3 always 1 since it is the sum of the probabilities of

2ll possible results,

NCLASSIFIED
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’ Tha first derivative i1 general merely offers a check since the mean value
‘ of the result can be calculated from a simpler type of theory which does not
involve gererating functisns, The second derivative however,gives a measure of
the flusctuations, Higher derivatives can be calculated, usually with not much
greater effort, to gel more deiailed information, bub we shall confine our
attenticen to the secornd derivative in what follows,

For the sake of readability, we shall use the letters @ and b 4

e -

I 114
& RF . ® Y 3 b = F wy = n(nd) " nc .n
(xal} (x21) :

Quantities which are often wanted are the mzan gquare .;1."‘. 2 a4+ b and the
mean square deviation m ® (;:f;)z = ;é n z - bq-g.g?. Tha Iatter haz tha
Imporvant property of veing additive, if the resulis of two iniependent
experiments are addad, This can be easily verified. We use gabgariptst and 2
Lo refer te the two experiments and the submeript 12 to refer o Ltheir sum,
and find

] 2y = [_g_x. (F1‘F2)] = [{:1 F2+F2 Fl}x.l =~[F1+ Fﬂ] T aytay

Xzl x-_:}.
2
vt 2| £, F) <[ (P} ]

The First of thesa two eaquations wmeraly indicates that the average is

- . Z . . 2 .ak
ra 2 byt s, 3yt byefatay)” 3(by-3, %) (b, az)

additive, which iIs <bvicus, By adding the two squations we gel uy.

: nl*»“z Fy
If two experiments are combined in cascade, we have + 12 :Fl (F 2} .

Orie can then zimilarly verif:r the followlng relationsy
/- p) .
4 L ) ‘
= [Fl(rz)‘} Fl (Fé) F; and for x
"
ZFF]
dxd

n . 8 {. oy
Fl t\Fz}.(Fﬁ) ff:l(g) Fz , and for x
. The mean square deviation m 1 of ccurse no lowger additive busl followz a

"
u

1: ':11(2}= l'il' 82

"
[ ]

1 b;(a}’ b1523+a1b2

relation similar ts that fordbd
P4
ml(g) RS I R B

Iet us again conzider some examples, The generating funsticns for

P UNCLASSIFIED |
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indepondent, cvent:s if N is thelr average number, we found to be P: e HN(x-1})
By differentiating we get
az P’ = NeNQ-1) -y (as it has to be)
(x=1)

b =P"(x=l) = Nze N(1-1) = N‘?; m=bia-a® = N (as is well knowfx)

Another exumple refers to the counting of non-Poisson events with a
counter of efficiency Es The generating function of the primary events
be F , that of the connﬁer, C =14+ E(x-}). If a, b and m refer to the
nuwber ,of primary event;s, dps bp, and Lp to the number of recorded events,
we find

agp “a ¢ E, bR‘-'-b-Ez,mﬁzaﬁ(lm?)"aa(l-wb-?i) (1e)

Hence, if the deviation from a Poisson distribution is such that m > a,
ther mg >aR' as well, varying lessstrongly with 2 as E decreases and not

a
at ull when E = @, as must clearly be the cuse.

Ze2nhs Distribution in Length of Individual E;Qaion Chains.

As & first application to chain rea:ct.ions, we ask what is the length of
an individual fission chain, that is, the total number of fissicns resulting
from a single purent fission in a subcritical system {including the parent
fission). This length will vary from one chain to another and we would like to
know how big the variations are. We can obtain an equation by looking at this
problen in two different ways and equating what we see. On the'one hand s We
can regard the questicn as one whole and associate with it the generating
function V' (x) = Ztnxn where 'bn is the probapility tha.t the chain should
consist of just n fissions. On the cther hand,we can split the process into
the following three stages: _t;he parent fission generstes some neutrons; Qome
of these ciuae secondary fissions; each of these is itseif the parent of a
chain, |

The first stage has the generating function CI)-: Z{gxn where Q; is the

probability of the liheration of just n neutrons. Each of these neutrons

independently has a probability K/U of causing fission'and hence the

o S UNCLASSIFIED




APPROVED FOR PUBLI C RELEASE

nupter of fissions caused by one of them is governed by the generating

function F = 1+ (KA)(x~1), The generating function for the total nunber

of seconfgary fissicns, M, is, therefore, obtained by letting d) operate on
F H ]\A,-‘» é ( F) » The generating function for the nucrber of fissicns in
each one| of the chains which takes its origin from a secondary fission is again
T , a8 fHefined above, Since-/v\goyerns the number of these chains, the total
number of fissions in all of them is governed by M (T). In tlis nurkber the
original| parent fission is not included; if we want tc include it we must

multiply M(T) with X, the generating function for an experiment for which

we know Lhe answer is 1. The resulting exjression x ¢ MCT)now refers to the
total number of neutrons in the entire chain and must, therefore, be the same as

Hence, we get this equation:

T= < MT) as

If we assune Mto be known it would be possible in principle, but rather
difficult(l) to calculate T. However, we can again calculate mments by
(1) o )

Under the special assumption that the nuuber of neutrons enitted in one
fission follows & Poisson distribution,"r can be worked out explicitly
and the result is

=Z("">'nf' .

taking derivatives and setting x=1. (In the formulae which follow, x is always

equal 1 even though it is not indicated). Thus we get

T-881+P’\. 'T‘ a ll- , , ',(.20)
T MM MTS T2 M6 T P w0 BB
We can calculate the values ofM and M since M= q) (F) M @ F ancfzn
.M-l-‘- @(F )2 ? F“. If we remember that © = 1+(x~1)(K/v) we find (always for
x=l) that F'= kX/v and F”= 0. On the other hand, q) is sisply v, the meun

value of the number n of neutrons emitted in one fission,and (I) the

mean value of n(n-1) which we shall call Xye Hence M K, T 1 KZ(XQ/Z/?>
oMY . ccicis: 1 CLASSIEIED
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Introducing this in equaticons (20) and (21) we get
o v eSO, 8 et P
(1-%) TR

The first of these equations is again obvious since the average length of '
& chain is nothing else but the factor 1/( 1<%) by which the numbsr of originﬁl
fisaions 1s multiplied by the chain reaction, The secondepiation shows that
the fluctuations become very large if X approaches unity, and indiéates that
reagurenents of these fluctuations may be nsed to determime Xo 4 |

In practical reactors one never deals with a single chain {except in bombs) .
Usually there are many “source fissions®, that 1is, fissions which are not ’
cauged by a fission neutron, and usually they =~cme at random, 'I‘heref‘oz'e,_ifbbt)‘algrg‘
are 8§ on an average durlng the time t, the generating ﬁmction for their |
rupber in t is S;es(""n. (See Equatlion (16))e To get the generating functiom |
for the total number of fissions in all the chains which originate in the time N

interval t, we have to let S operate on T  which gives us

U= g 3T-1)

P

Differertiating (and setting x = 1) we find
)

[ H /] 2 2 24 4 '
Uz 8T 2 s/ Us s3(TV% ST & —fm+ s L F7) ¢ 2XA-K)
/ LT o

] ’ 1.2 2

mU+U- @) = s 2 (Lp/4%) +1-82
(1-x)°

S0 fur we have spoken aboul the number of fissions happening in a reacter

although we know no way of actually determining the accurate numher, If a
counter cf efficiency E is used to record the fissions then the fluctuations
beceme accessible to direet measurement, By usirg equation (18) we find for

the mean sjuare deviation mRof the recocrded pulges

K2 (%o /P } b 2K(1E
&r [1+E (2{%:3{)2 & ’)‘}

™R 3
(22)

where & is the mean recorded "rﬁixnﬁe‘r.
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Wibh decre&aing B the fmct.ua.tions cf the recorded pulaes become s;x,al}or
and they approach a Poiaaon diat.ribuxion. 73 E is nade ‘much amaller than (1~K}2

then the rluctuations are "noml" ; that ia s DO greater than 11‘ random e\renta

‘were being ccunt.ed. At E =(3.-.x}2 it t.akea 1/(3.~K) chains to givo a single pulse A

each chain giving 1/(1-!{) ewmts; yet tha rlucws.tions are greater than "normal"
hence the pulses sre not independant. Sim;e different cha.ins are independent of
each other, this nruat maan th&t there is a.n appreciable probability of obtaining

two or more pulaes from Qne chain, although the average nmuber of p.xlses pmduced

~ by one chain 13 only l-K. » Thia gives a vivid indication or the enornous disparity

i the leng'ohs of individual Chdiﬂ& for closeuto-critical systen.a (nhere l-K is

If t.he properties or a aystem change with t.ime the probability P}c that

K eertaixx experiment. '«111 give the result. k will in general alao depend on tima, |

and we have t.o use a time~dependent. generating runction P (t ,x) Zpk(t) x to

tiescribe the gxperiment. In som caaas or 1nterest to us a differential oquation

‘ 2
. 2P ’
_for P« ,x) can ba aet up, and from it the mments (a " x-zl' = xel etc, c&n':‘

be found as explicit funcbiona or time. ST o

Let us first consiqgr & cha_n r'eactor without a neutron source. we shall
use the symbol P (t.,x) zpk(t) xk for the generating function co*responding

to the number of neutrona present in the systam, thah means, pk(t) is the

probability that there should be k neutrons in the syat.em at. Lhe tin.e te To

‘establish a djfferential equation rcr P (t,x) we proceed as tollows. s at the
.beginning of the small time 1ntez'va1 dt, one neutmn 13 present s what 18 thc |
generating runction descmbing the number of neutrons at the-end of this intefval?
“The rollowing things Tay happen durine; dt.

(l) The . sare neutron may still be there, (probability l-dt/'r;) ir e

" is t.he mean 1ife of an individual ngutron in the syat.em. Since, in thia case,

%, -”, . ._.. . S
<6 . P - .

L8 EéflLASS{H%D
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we find one neutron at the end of cur interval dt, this case contributes a
term {1-dt/T)x to our generating function.

| (2) The neutron may have caused fission, probability (K/v)(dt/v).
In this case m néutrous are produced with the probability ’dm’ sc our term is
(R (at/t) 300 B or (KAN(at/t) i) |

(3} The neutron may have leaked out or may have been absorbed,

probability (l‘k/bb(dt/“c); result: no neutron at the end of dt, hence the teru
in our genefating‘function is just (1-K/)(dt/t).

_ Hence, the complete generating function which describes the number of neutrons

at the end of the interval dt is
L ab -5 a4 K db = dt
ot _b)x-&(l 1]})‘1:4'1/ ﬂé»q)(x)_,x-&g_1>
=1 - K - K. 21 - A1) -
1-E exd D 21K ($0 ) - x
If now the gererating function at the tiue t is P (t,x), the generating functions

at time ¢ 4+ dt 1s obtained by letting Poperate on the generating function
x 4+ g dt/A which describes what happens in the interval dt.

Thus we get
P (tadt,x) = P (t, x+g % )
Pm+a ZPx =Pex)re$ 2pex (23)

hence

T L= ﬁE
ot = & ax (24)
The same equation is derived by R. Feynman in Volume VI of the Technical
Series, by a slightly different procedure and his notation is slightly different.
We car again obtain the moments of the distribution by differentiating
Equation (23) with respect to x, and then putting x = 1, By differentiating P (x,tY.

once we get, since <%§ =7 2 a(t), the average nuuber of neutrons present
x=1

£ P UNCLASSIEIED

APPROVED FQ? Pl.'lBLI.'@ RELEA SE

0.-'.' 'Oo'o




APPROVED FOR PUBLI C RELEASE

° ..
at the time t | and remembaring that b,:’tjx 1- VY, g(xel) = 0, and differenti-
\
ate (24) with respect to X,
X-l
I = A'\;ﬂ' 2u0(Kel), or a = Llcmf Ierxt (28)

the faniliar expenential inerease (or decreass if K<1 )of the muker of

neutroeny with btime in a chain-reactor,

-
By differentiating Equation (23) twice we find how LE RFTRSTY ° ""‘-:r-p)

> x~
with time: » xs]
ab 4 dqr
T-&'g- - 2% ﬁ t e gx‘{," = 2b(K-1)+ak(Xs. )

This equaticn can Le solved by making use of Bquaticn (28) and the resuls is;

SexX 3 et & N

r_,( (A
"
1 dg K-1 1 (& ¥Xo
where of = .. (_b... s —2nil s = (....E_.) X2
T ax /=1 T ﬁ T N ax? X8l Ty

If we start the reaction by inserting cne neutror a% the time & o 0o, our

baindary conditions are trat
t=0 * 1 bth = 2

These conditicns serve to deternlne the integration constants€; and Cg, and

our goutisng become
2.8 7 C 2t ~»t
& zg and b:(@_,)(e’x -‘.ex)
vy

For a divergent chain (A2 ) both 2 3znd b become very large for large t
and the second term in b beqsmes quickly negligitle so that b growa
proporticnal to a2, This iz plausidtle since the fluctuaticns in a divergent
chizin arise at the heginning, wher the numbers involved are still small,

In mogt problems of prastical interest there is a scource of neutrons in the
system, liberating $ neutrona per secend, cn an average, If we want to inclule

such a soucce we have to change ou*. .da.ci c-g (”3\ inte
] Qe oo

P +d, x) =(‘.-.-,_{5_'%, (1+.s.dt:f_ -1 I?!CL&.S?”%E
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since 1 = 8§ 4448 dt +x is the generating function representing the

arrival of}a source neutroen in the interval 4t , the probability of which

1
Iy

is independent of the number of neutrons already present, Our Eguation (24)
then cranges into

T %g- = B %:F_;__;P. ST(x=1)

(27)
This equation,tec, is derived in Feynman's chzpter in Velume VI

{If our systar contains a source of F fissicns per second, rather than S

neutrcns, we merely have tc replace the term St (x-1) in Bquaticn (27) by F1 (@ ~1Je
By forming the first and second durivatives of Equation 27we zot

1 _%% = a(K-1)}+S8ST

or X a4 S

and D 2xXt+3a+ 23

dn
q€
db

aE

If X0 (i.e,, in a subrritical system) a static soluticn will establish

itself after awhile, when da/dt T du/at « O , In this case we have

a =5 . _S S%

t

N
‘l

b

o a - G2{1
(2 0+P)m“ a (-S-:t‘- -7‘-17—"*' 1)

2.,5-6 Fluctuations of a Dragen Pulse

Bguation (28) has been derived for a subaritical system, However, if
a system, after having run at a ¥ slightly below 1 for some time, is slowly
made slightly supercritical, cne may expect Bquatiom (28) still tc hald, 2oth

a and b will,»f ccurse,go up in an exponential fashion, but the ravio b/a"may
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be expected to stay nearly constant at about 1+ X/2VsST . since X
remains close to 1, In a dragon experiment (see Chapter 9) K is first

kept sliphtly below 1 for a comparatively long time; it is then slowly raised
above 1 (slowly if time is measured in ;t.erms of © ) and finally lowered again
below 1, As soon as K exceads 1 the neutrens begin te multiply very
rapidly and soon their number is so large that t.:'/a2 may be regarded as
accurately constant (the number is so large that no furuxer‘increase of the
fluctuations can take place), This means that the mumber of neutrons present,
at a certain time after the system has become supereritical, fluctuates from
one experiment to another, but the ®shape"™ of the pulse (neutron level plotted
against time) is always the same, Hence,the ne.lative fluctuation of the
{irtegrated) pulse size should be the same as the relative fluctuaticn of the
neutron level, as indicated by Bquation (28),

A mere suitable measure than b/az for the relative fluctuation is the
relative mean square deviation (m/ﬁ-z 3 (benea)/a® = (b/68)+(1/0)-1, whers the
term 1/a oan be neglected since we are only interested in cases whers a 1is
very large,

35 we get for the relative mean square deviation of a dragon pulse

(3 -92/7% = #x oo (29)

where J, the intensity of the pulse, may be measured in arbitrary units, Since
from dragon measurements one should be able to get a fairly accurate {igure for
T in the dragon assembly, it might be possible to use a dragon, combined with
a calibrated mock fission source to determine Xz from observations of how the
pulse size varies from cne drop to ancther, Some observations of that sort are
reported in Chapter ¢ , but no definite conclusion canbe drawn frca thenm,

2,8=7 Fluctuatiocns in a Stationary Reactor

Equation (28) tells us how thqa_ugtanbaneous nunber of neutrons in a reactor

fluctuates, To measure these flao&ua.%ieas Qne.um:ld have to use a detectcr Eb
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which is made sensitive fer periods of ’oi.mé T« T 30 that the neutron level
does nct change during any one of these ™gates®™, Such an experiment wculd
be very hard to design in such a way that it gives relevant results,

If the gate time T is made longer the experiment becomes easier to perform,
but mere difficult to interpret, The wean value A& for the number of fisgions
N happening during T can be formed by simply integrating the fission rate over
the time T, but this 1s not sc¢ for B, the mean value of N(N - 1) because of
the "memory® of the system, In general,this memory has very corplicated effects
because of the presence of delayed neutrons of several different periods,
However, if T is small compared to these periocds c¢ne can treat the delayed
neutrons as a (slowly varying) source of randem neutrors and include them in
the value of S, In this case only the mean life T° of the prompt neutrons
enters into the caleculation, Measurements of this kind nave been carried out
(see Chapter 5) and can be used to get the value of T, and of X, ,

To calculate B, the mean value of N(N - 1), where N is the number of
fissions occurring in the time T, we use a generatling function of two variables
x and y, where x rafers (as before/ to the number n of neutrens pregent at the
time t while y refers to the ®"fission score®, s at ihe time t; that is,tc the
mimber ¢f fissions which have taken place between time zera and Lime t, In
cther werds, if our generating function is ¥ (t, x, y) :E;Pik () =t ¥,
then py,(t)is tte probability that at the time t thera should be just i
neutrons present and that, simultanesusly, the fission score should be k., The

calculation of mean values goeg very much as in the case of one variatleg

(2E) (3%) gy

n a 3
®x'xsyz 1 I T A,

111
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The differential oquation for P can again bé ‘written

T 2P . lﬁ‘fp.St(x-l)

TET O & »x

(30}
but ¢ is now a function of beth x and y

& " 1‘27'“—!@“) (1)

By forming the first and second derivatives of Bquation (30) (inciuding the
mixed derivative) and setting x=ysl one gets 5 equations from which A and 3

(in which we are mainly interested) can be calculasted, Since we are considering
a statiomary system we assums da/dt = db/dt 8 O, The fission score s and
the quantities A, B, and Z relating to it keep growing with time and are
cbtained by integrations the integration constanta are fixed Ly the cordition

that A, B, and Z must be zerc at the time zero, The final resulis are

il
- ES KS o X2(X2/42)4 2K(1eK) ( . -8 )
i7TT=K) s B v ({f{)s ¢ 1=}

where < = Y"" <0, hence joL} 2 I;:K

(x2)

From Egquation (32) we can calculate the fluctuations of the number of fissions
reccrded by a detector of efficiency B in periods of the duration T eacnhh, If ap
denotes the mean numbter of fissions countad in a perial T, and mp the mean

sqmave deviation of that number, we get, with the help of Equation (18)

|l
2 2
my 2 ag (1+E.B__(.'r& - a2(7 ) o |1eE X2 (K5/R ) 2% (1-x)[ 1.e } (33

(1-K)? TiiT

The term in square brackets is for smallvalues of [ proportional to T.
dence, the deviation frem a random ercor (for which mg = aR) rises linear with
the length T of the ®"gate®™, until T becomes of the order 1w AL greater values

of T the sqmare bracket approaches 1, and Equation {33} in the 1limit cof large T

hecams identical with Eqguation (2‘2) This must be 30 since for large values
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negligible, ant Equation (22) was derived’ urxder the (tacit) assumption that
all chaing whizh start in a given interval also end in it,

Thus, by meaguciag the d ependance of the fluetuations on the gate width T,one
can get information onistil, and from the asymptotie value {for large 1‘) one can
dray conclusions regarding Xz , Measurpments of that kind are described in
Chapters 4 and 8.

Strictly speaking, measurements of thia kind should be interpreted on the
basis of caleulations which take the existence of several . delayed nsutron
periods into acccunt, Such ;mleulations were attemnted, but the msulting
formulae are sO clumey that no attempt was made to evalnate them, In an
approximate way the delayed neutrons may be regardel as part of the source,

They differ from a true source in that they show greater than normal filuctua-
tisng, but these are comparatively slow, In the measurements described in
Chapter 8 , the fluactustions due to the varying length of prompt chains were
conputed from a mumber of short runs during which the delayed neutron intensity
did not vary much, In this case Bquation (33) may be usedz K then means the

multiplisation factor for prompt neutrons alone (which we previosusly called

\

K p K
2:.5-8 The Ross! Experiment

and teh | i3 the time constant with which the prompt chains decav,

B, Rossl propesed a3 method for measuring of whichdepends on the existencs
aof 11uctuabions and is therefore ,treated in this sec'oion("). The methoi of

(2)

IR g e ~ - P

Since in this section o (as defined befcre) is always negative we
shall uge the letier o4 to denvte |t} , in co*xtrast to troe »revicus
ections,

L R

generating functions dces not lend itself naturally to the treatment of this
problem and I shall give an approximate calculstion which was given by ¥,
Relof fman in TA«101, A more accurate caleulation is given by R, Feymman in

his chapter on fluctuations in Volage VI of the Technical Series, The
Py RQQIEIEN
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exparimsntal method is described in Chapier ‘B of this Volume, It
determines the probability}>(t) that a certuin time t after a pulse, resorded
by counter No, 1 a pulse should be recorded by counter No, 23 the tine ¢ »
can he varied and the variation of this probability on t dstermined,

In order Lo calculate the probability”P {%)we consider firalt "related
pairs®, where the {wo pulses recorded by counters No, 1 and No, 2 arz dus
to neatrons belonging to the same fisaion chain, In this case the two
palsas have a "nearest comnon ancestor®; that is,a fizsion such that twd
different neutrons emitted in it caused the two suh-chd na which, resmct-ively; ’
gave riss to the two pulses, Ws denote by t, and to the times at which the
two pulses cccur, and by t, the time of the "nearest commcn ancastor®, The
probability for thisancestsr to happen in thae time interval tojt & dt,, ’u N dt,
if Wis the fission rate in the system, The probability that just m=m -'
neutrons are emitted in this fission is pm . The expacted mumber of

- .1',‘
neutrons present in tho system at the time t,is m.€ %ty -4)

, and the
probability that one of them should cause a pulse in counter No, 1 in the
interval 4ty is Ej d61 /Ay
The expected number of neutrons present at time %2 in {m-1)e -D‘(tz.ﬂ s
hare w2 write {(m~l) instead of m because we know that the second pulse
descends from one of the other m-1 neutrons emitted in the ancestor fission
and not from the same neutrun from which the first pulse descendss otherwise
our fission would not be the™nearest common ancestor,® The probability that ons of

these (m-l1)E =(t2-t)

neutrong should produce a pulse in counter No, 2
t(

in the interval dtp, is Epdts/ty- B and Bpare the efficienciss of the two

counters, measured in counts per fission,

By multiplying all these [actors 'we geot :
~ - wX{to=t
(41-8) graby  (met)e "2 mpars
LY TV ,
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This expression has to be inbtegr atnd o»’er all possible values of te 3
that is, from=ce to ¢, if t1<tp 3 ., it must also be summed over all
values of m, This gives

1 .
Ex%o -o<(t1+e2)/ 2ett, BiEy X,  ~S(tp=ty)
e & at, s N 1 2. €
HE 2 | c TR E T e,

To this has to be added the mumber of ®accidental®™ pairg; that is, of these

where the two pulses recorded are caused by neutrons oi'i.ginating from differant
fission chains., Different chains are statistically independent and hence
the number cf these pairs is simply

NEy db; NE, dtg = NoBqEp dty dbg
The total m:mber of pairs, related and accidental, has to be divided by
N By dt, , the probability of a pulse in counter No, 1 during ét , in ordsr
to get p(t) , where t = ty =%y e

X
NzElEgdtldt-i-K EEp "'?"'2"2 & Xgpqat X2

eomt
o(e)at ’ A Xop 2 (N Tt By patd? ) dt

N By dt

New the term NEp is siaply the counting rate C in the second counter, and

if we replace o by (l-Kp)/x-, we get,
P(t)dt ngﬁ&..?...(l £, ) ,cp/f‘ at

This is essent,faﬁy idenbical with Equation (3} in Chapter 8, where

further digcussion Of the .eguations can ke found together with a description

of the experiments to which :
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