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IMPLOSION CHARACTERISTICS OF DEUTERIUM~TRITIUM PELLETS

SURROUNDED BY HIGH-DENSITY SHELLS

] %— Gary S. Fraley
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,—_’EE‘S i The effect of high-density shells on deuterium~tritium pellets imploded
Efo i bzrlaser energy deposition or other means is investigated. Attention is
§EEEE‘OO r__centered on the inner parts of the pellet where hydrodynamics is the dominant
S===™M ! " mechanism. The implosions can then be characterized by a pressure boundary
g—__:g ' condition. Numerical solutions of the implosions are carried out over a
—'gm 5’“ ‘wide range of parameters both for solid pellets and pellets with a central
=] 1—void.
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I. INTRODUCTION _

The implosion of small deuterium~tritium pel-
lets driven by laser energy deposition to obtain
thermonuclear fusion has been widely investigated.
It 1s necessary to achieve high densities (compress-
ions of 1000 or more from solid density) to obtain
efficient thermonuclear burn for pellets with masses
ranging from 1 ug to 1 mg. Emphasis has been on

“optimized" pulses with a typical energy deposition
of the form

B(t) = 1/(t=-0)2,

with T a characteristic time of the pulse. Here we
consider energy deposition of a less singular form
but with high-density shells surrounding the thermo-
nuclear fuel. It is expected that the high momentum
density of the shells will help produce high com-
pressions in the fuel,

The pellet consists of the fuel, the shell, and
possibly other material on the outside. There may
be a void in the center. Energy deposition and
accompanying effects occur in the outer part of the
pellet. In the interior the temperature is lower,
and, 1f the shell 1is thick enough, hydrodynamics

dominates the implosion. Effects in the outer part
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of the pellet then affect the implosion in the in~-
terior only through a pressure boundary condition,
which will be applied at a constant mass point. An
appropriate position for the boundary condition is
at the front of the thermal or ablation wave from
the outside of the pellet at the end of the implo-
sion. It should be interior to regions signifi-
cantly heated by fast electrons or radiation. Its
position in the shell as a whole depends on details
of effects where the laser energy 1s absorbed and

on the shell thickness. In this -report, the mass,
interior to the point where the boundary condition
is applied, is taken as a given quantity. Deposition
of energy through the entire shell usually degrades
the implosion.

The use of hydrodynamic solutions in the in-
terior requires that the hydrodynamic energy flux,
which is pressure times velocity, be much larger
than that due to electron conduction or radiatiom.
Necessary conditions on pellet size for a constant
applied pressure are derived. It will be shown
that typically about one~third of the implosion
energy is transferred to the fuel. Then, the

average applied pressure is



- 3 =3
Py = 3mg 5 RT,/velly = 5 PRI, /Mg )

where R 18 the gas constant, Ve is the fuel volume
(the shell volume can usually be neglected), Dy Pes
and Ug are the fuel mass, density, and molecular
weight, and Ti 18 the ignition temperature. With

T, % 5 keV g 5.8x10’ K. ,

P, % 2x1016 Pe ergs/cm3 , 2)

where p. is in gm/cm3.

We find characteristic hydrodynamic and thermal
fluxes in the fuel when the initial shock has passed
through the shell into the fuel. The pressure be-
hind the shock front is P = Apa, where A depends on
the ratio of shell and fuel density, Rp’ A 18 about
0.1 and 0.25 for Rp = 100 and 10,respective1y.7
From Eq. (1), the fuel temperature Te & pluflapr Ay
AT,. (The density behind the shock 1s 4 pf.) The

1 19 o5/2

thermal conductivity g 10 /Z ergs/cm~sec~keV,

where O 18 the temperature in keV and Z is the atomic
number.8 This gives a characteristic flux of 1021

A3'5/rf (cgs units) with Tey the fuel radius, in cm.
The jump conditions for a strong shock give a hydro-
3/2/pf1/2 & 3x 1024 3/2 Pee

A /pf,the hydrodynamic flux dominates.

dynamic flux of about p
If r, >> 107
For solid density fuel (pf = 0,2 gm/cm ) re must be
much larger than a micron. Later temperatures in
the fuel become increasingly uniform (except close
to the center) and thermal conduction becomes less
important for that reason.

In the shell, after the initial shock has pass-
ed through, the thickness 1s Arsla where Ars is the
initial thickness, and from Eq. (1), the temperature
Tg & Ty pfus/ufps, where p_ and u_ are the shell
density and molecular weight. (Typically the mat-
erial is only marginally degenerate and a perfect
gas equation of state may be used for calculation

of the temperature.) The hydrodynamic flux % P, 3/2/

1/2 8 3x 102 3/2/9 1/2 (cgs units), and the
thermal flux & 4x102 (Dfu /ufp )7/2/ZAr . With ug /
He & 3,we require Ar >> 10~2 (pf/p ) /pr cm.

The blackbody flux, o] Tsa % 1024 Gs ergs/cmz-
sec, where 0 1s the Stefan-Boltzmann constant, and

Gs 18 the shell temperature in keV, is an approxi-

mate upper limit to the net radiation flux. The
ratio of hydrodynamic to blackbody flux is then
3/2/[p81/2
previously derived. For values of Pg % 8 ~ 20 and
pf 0.2 gm/cm this is about 10 or more. If the

about 3p. (15 pf/p )4] from the results

shell is optically thick, the actual flux is approx-
imately the blackbody flux divided by the optical
depth. Radiation losses in the fuel are usually not
important during the implosion. Where the applied
pressure increases with time, temperatures during
most of the implosion are lower and thermal conduc~-
tion and radiation are correspondingly less impor-

tant.

II. HYDRODYNAMIC IMPLOSIONS
A. Boundary Conditions and the Equation of State

The implosions are determined by the pressure
boundary condition applied at a fixed mass point.
We are interested in energy deposition with little
shaping, so pressures of the type

p = ct® (3)

are used where n is small (0, 1, 2). A perfect gas

equation of state,

= pE(y-1) ,

where E 1s the specific energy and Yy = 5/3, 1s used.
The initial pressure is zero. Except for the ini-
tial zero pressure, this is also the equation of
state for nonrelativistic material of arbitrary
degeneracy. This equation of state with one other
factor, the degenerate zero temperature pressure,
appears adequate for an understanding of the im-
plosions. With this simplified model, the number
of irreducible parameters (those with no scaling
laws) is small enough so the calculation of a rep~-
resentative set of numerical solutions over the
parameters becomes much more practical. With zero
initial pressure,the compression achieved in the
implosion depends only on the shape of the applied
pressure, not its magnitude., The initial pressure
acts as a cutoff, with little compression for
applied pressures equal to or less than the zero
temperature degenerate pressure., To illustrate

details of the effect of a more realistic equation
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of state,calculations are also done with a Thomas-
Fermi-Dirac equation of state which includes effects
of degeneracy and ionization.
Sec., III.

Results are given in

The zero temperature degenerate pressure in the
fuel is almost never important for this type of im-
plosion, but it may be in the shell., The degenerate
solution differs from the zero initial pressure case
only through its effect on the initial shock that
passes through the shell. The ratio of pressure
before and after the shock front is positive instead
of zero. The effect is small 1f the ratio is small.
The zero temperature dégenerate pressure 159
)2/3 2 No5/

P = % (= * (o/u* 1,

3
13
A 1.0x10 (p/ue)5/3 ergs/cm”,

where L 18 electron mass and He 1s the electron
molecular weight, No is Avogadro's constant and h
The highest shell density is

about 20. With He A 5 (at typical temperatures and

18 Planck's constant.

densities behind the shock,the inner electrons are

tightly bound and do not contribute to the pressure),
P, & 101“.
is that of Eq. (1) and is 4x10
densities of 0.2 and 0.05.

For n = 0, the pressure behind the shock
15 204 1x10%°
It is a fairly good

for fuel

approximation to neglect Py for pg = 20 and a better
one for smaller Pge For pellets with a void, the
applied pressure 1s approximately pa/(l + Rv), where
Rv is the ratio of the void volume to the initial
fuel volume. For Pg = 20 and Pg = 0.2, we would
expect results with the realistic equation of state
to fall off substantially from those with the ideal
The initial shock
with zero pressure in front achieves a compression

of 4,

gas equation of state at Rv A 40,

The effect of degeneracy on applied pressures
only moderately above the zero temperature pressure
may approximately be taken into account by the use
of the zero initial pressure solution with initial
density one~fourth the density actually achieved
behind the initial shock.

For n > 0, the effect is more complicated be-
cause the initial applied pressure is small., But if
the applied pressure (=p2) at the time the initial
shock reaches the inner surface of the shell is larg-

er (by a factor of ten or more) than the zero tem-

perature degenerate pressure, neglect of it is a
fairly good approximation. The time is roughly
that required to accelerate the shell mass through
one~half its thickness. The implosion time is
about that required to accelerate the shell through
its radius. When the work done on the pellet dur-
ing the implosion time is equated to the average
pressure of Eq. (1) times the displacement, we ob-
tain the approximate result

n/(n + 2)

P, & p,(br /) )

with L being the initial shell radius,
B. Scaling Laws

The perfect gas solutions scale for all but
Rp’ the ratio of shell

over fuel density; Rm, the ratio of shell mass (in-

three or four parameters:

side the boundary condition point) over fuel mass,
n, and for pellets with a central void; Rv, the
ratio of volume of the void to initial fuel volume.
The scaling laws show that maximum densities are
independent of C [in Eq. (3)], while temperatures
do depend on it, so there is density~temperature
decoupling.

The scaling laws are found as follows: let
pl(m,t), rl(m,t), vl(m,t), and ul(m,t) be the pres-
sure, radius, specific volume, and velocity of the
solution for a system with unit mass and unit spe=-
cific volume in the fuel., The Lagranglan variable
m is the mass interior to a point, and t is the
time, The applied pressure is

p; (L,t) = ¢ .
The initial pressure is pl(m,O) = 0. Consider
solutions of the type

p(m,t) = C, py(m/m, Cit)

r(m,t) = C4 rl(m/mt, Clt) s (5)
v(m,t) = C3 vl(m/mt, Clt) ,

and

u(m,t) = Clcaul(m/mt’ Clt) ,



where m. is the total mass. The equation of state
is

E= PV/ (y-1) ’

where y = Y(m/mt) only. The applied pressure 1is

plm_, t) = cln czt“ - ct® . (6)

From the equations of motion,

9 2
Semm? £,

o gL=0 Q)

or

and

we have

¢, = 3D I(ntd)

c,=cc (8)

and

1/3 -1/3
C4 o, pf .

III., RESULTS
A. Implosions with No Central Void

The solutions were calculated with a standard -
type spherically symmetric Lagrangian code with ex~
plicit hydrodynamics. Shock waves are handled by
artifical viscosity. Values of Rp of 40, 100, and
400 were used, corresponding to P = 0.2 and Pg =
8 and 20, and be = 0.05 and oy = 20. For these
values mass ratios from 10 to 100 are most interest-
ing. Maximum fuel compression is achieved in this
range. The transfer efficiency, the ratio of energy
transferred to the fuel over the total implosion
energy, 1s large enough at Rm = 10 so that it cannot

increase much for smaller mass ratios. There are

three important output parameters: the transfer
efficiency, the maximum fuel p-R,and total p-R with
p-R = f pdr. The last two are convenlently normal-
ized by the initial fuel p-R.

In a pellet consisting only of compressed fuel,
the effective reaction time is the time it takes
a rarefaction wave from the surface to reach a mass
element.a This disassembly time, averaged over the
fuel, is rF/(QCf) where Cf i8 the sound speed. The
reactions per mass, Nm’ are proportional to the
product of the reaction rate, <oV Pes with the
reaction time, where <oV>, the product of the aver-
aged fusion cross section and velocity, depends only

on temperature.
Nm x <gV> Pe rf/(acf).

This can be factored into the p-Rf and a function of
temperature.

With a high-density shell, the implosion ends
with the fuel and the inner highly compressed part
of the shell all at about the same pressure. The
reaction time is increased by the time it takes a
rarefaction to cross the compressed part of the
shell, The solutions show that, if at the end of
the implosion the shell thickness is not more than
about the fuel radius (which includes most cases
calculated here),most of the shell p-R comes from

the inner compressed part. Then,
L
N = <oV> p. (re/4 Cp + Ar_ /c) 9

L4
with Ar8 being the width of the compressed part of
the shell and Cs being the speed of sound. With
1/2
Cy % C (pln) ',

<gVv>
[+ 4
m Cf

[o-re/4 + p-Ry(oe/o ™1 . 10)

Usually,to within a factor of two,the density ratio

is established when the first strong shock hits the

fuel~shell interface. For7 Rp >> 1,

©\1/2 0.2
(pe/pg) % 0.5/Rp

& 1/5 for Rp = 100 . (11)

It is not a strong function of Rp' The shell p~R



"R;

x i
R' n
. ] —
or o ]
o
o ns2 { i
{
f"" NO SHELL 2 A
@ -0
I L 1 1 L 1 1 L 1

Fig. 1. Fuel p~R for pellets with no central void.

is typically as effective as the fuel p-R; the
£ is still
important for effects as alpha particle deposition.

figure of merit is the total p~R. The p-R

Figure 1 gives the normalized p-Rf. It in-
creases as n and Rp increase, and varies from about
20 to 150. The p~R for bare pellets varies from
5to7 forn =0, 1, 2, The mass ratio varies from

about 15 to 100 for maximum p~R_ for different Rp'

This roughly corresponds to an ﬁspect ratio (rs/Ars)
of ten. Figure 2 gives the total p~R for the same
cases; this varies from 102 to almost 10“. Figure

3 gives energy transfer efficiency. It is typically
about one-third for those mass ratios which glve
maximum p-Rf. The transfer efficiency also increases
with Rp and n.

At the beginning of the implosion,the boundary
pressure forms a shock in the shell., When it reach~
es the fuel, the shock continues through the fuel
and a rarefaction propagates back through the shell.
The shock is reflected at the center and is again
reflected at the fuel-shell interface. Further

shocks are usually weak and may be ignored. The fuel

Fig. 2.
0

Total p-R.

20

1

Fig. 3.

Transfer efficiency.




is then nearly isentropically compressed as it con-
tinues to decelerate the shell., The compression
increases with shell mass (and momentum) until, for
sufficiently large Rm’ the outer part of the shell
remains too far away from the fuel to contribute to
its compression. A pressure pulse originates at the
outer boundary when it 1s reached by the rarefaction.
The pulse propagates through the shell and fuel, and
tends to turn the reflected shock from the center
around in the fuel before it reaches the shell. This
allows for more isentropic compression. The timing
of the pulse is most effective at about the value of
Rm which produces the maximum fuel p-~R. For larger
Rm the p-Rf decreases to an asymptotic value.

The shock formed in the fuel (and its reflec~
tion) is weaker compared with the original shock in
the shell for larger Rp' This allows more of the
nearly isentropic compression after the transit of
the first strong shocks. The total compression
18 then greater for larger Rp' Higher values of n
produce a weaker initial shock and allow compress-
ion on a lower adiabat.

Figures 4 and 5 give results using the Thomas-
Fermi~Dirac equation of state., The fuel and shell
density and type of material, and the constant in
Eq. (3) must be specified, besides the parameters
n, Rp’ and Rm required for the perfect gas equation
of state., Deuterium~tritium fuel densities of 0.05
and 0.2 were used. For shell densities of 8 and 20,
iron and gold were used. The perfect gas solutions,
plus the scaling rules,give the value of C which will
produce a given average temperature in the fuel at
maximum compression. The value of C giving an aver-
age temperature of 4 keV was chosen. The actual
temperature with the Thomas~Fermi-~Dirac equation of
state was usually within 10X of 4 keV. Because of
the low sensitivity of the output parameters on C,
there were no further adjustments in its value. By
Eq. (4), we expect the results for Rp =400, n =1
to begin to fall off from the perfect gas solutions.
This is observed, the worst case giving about 55%
the perfect gas p~R. For other Rp and n,the com-
pression was occasionally somewhat greater than
that of the perfect gas solution. This seemed to
be caused by a higher shell density behind the in-
itial shock, due to ionization effects on the equa~

tion of state. The compression was as large as 5,

Fig. 4.

Fuel p-~R for Thomas~Fermi-Dirac equation
of state.

instead of the factor of 4 for a perfect gas with

Yy =5/3

nd

'-RT

s:uf

Fig. 5.

Total p~R for Thomas-~Fermi~Dirac equation
of state,
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Fig. 6. Fuel p~R for pellets with central void for

Thomas~Fermi~Dirac and perfect gas equations
of state,

B. Implosions With a Central Void

Figures 6, 7, and 8 give results for pellets
(The p~R is normalized
in terms of the initial fuel p~R for the fuel in a

with a vold in the center.
solid sphere at the center.) The constant in the
boundary pressure for the Thomas~Fermi-Dirac equation
of state was chosen in the same way as before. For
large Rv’ after the initial shocks and rarefactions,
the internal energy of the material remains nearly
The applied
When the material
Most of

the compression comes from isentropic spherical con-

constant until it approaches the center.
pressure goes into kinetic energy.

hits the center, a shock propagates outward.

vergence before and after passage of the shock. For

Fig. 7.

Total p-R.
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Fig. 8. Transfer efficiency.

this reason compression is more than that due to
just one strong shock., For a perfect gas equation
of state, it appears that compression increases in-
definitely as Rv increases. (The large values of
RV are probably not realistic as we would not ex-
pect these cases to retain gufficient spherical

symmetry.)

state, the applied pressure necessary for ignition

For the Thomas-Fermi-~Dirac equation of

decreases as Rv increases, and it becomes compar-
able to the degenerate pressure in the shell. This
causes the results to fall off compared with the

perfect gas cases,

IV. CONCLUSION

The (normalized) p~R for no shell was about 5
forn = 0 and 7 for n = 2, For the case (Rp = 100,
Rm = 40, n = 0),the total p~R is about 600. The
use of shells for energy input pulses with little
shaping can increase the p~R by 100 or more. From
Sec. III this increases the yleld by the same fac-
tor. Since the typical transfer efficiency is about
a third, the fuel mass (for a given implosion energy
and the same fuel temperature) is decreased by a
factor of three. The net yleld 1s then increased
by about 25.

The linear relationship between yield and p-R
neglects the heating due to thermonuclear burn.
This in effect produces a nonlinear dependence of
yield on p~R. The most interesting case 1s in the
strong nonlinear region. For a 0.l-mg pellet with
density 0.2,the initial p~R is 0.0l.

boundary pressure gives a final p-R of 0,05.

A constant

For a




temperature at end of implosion of 3 keV,this has a
burn efficiency of 5x10™> (Ref. 4). Surrounding
that with a gold shell of 4 mg gives a final p-R of
about 6 and a burn efficiency of 0.6.

The crucial factor in obtaining efficient ther-
monuclear burn in this type of pellet is to achieve
a fuel pR which is sufficient to stop alpha parti-
This is ab;ht 0.5 gm/cmz. If this 1s achiev-
ed, the reaction time, which depends on the total

cles.a

pR, will usually be large enough for efficient burn.
For solid density deuterium-tritium,an increase in
the pr of a factor of about 60 may be obtained for
pellets with no central void (Fig. 4, Line E). The
fuel mass required is roughly 0.05 mg, which has a
reaction energy of 16 megajoules, the equivalent of
about 2. kg(51h).of high explosive. With a transfer
efficiency of one-third,75 kilojoules are needed for
the implosion. The total energy required depends on
the efficiency with which it is applied to the im-
plosion; for an efficiency of 10%,somewhat less than
1 megajoule is required. Much higher compressions
are possible with the use of voids, and this lowers
The limiting
factor will be the spherical symmetry that can be

the mass and energy requirements.

achieved. For pellets of marginal size, the best

mass ratio (Rm) is that which gives the maximum pr.

This is typically given by an aspect ratio of the

shell of about 10.

Because the transfer efficiency
usually increases rapidly with a decreasing mass
ratio at this point, the best ratio for larger pel-
lets will be several times smaller where the transfer

efficiency 18 close to one.
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