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SOME PRELIMINARY NUMERICAL STUDIES OF TAYLOR INSTABILITY

WHICH INCLUDE THE EFFECTS OF MATERIAL STRENQTH

by
K.A. Meyer and P.J. Blewett

ABSTRACT

In this numerical study a two-dimensional Lagrangian code,
TOODY II, is used to compute the growth of a perturbed inter-
face between a perfect gas and an aluminum plate. The inter-
face undergoes acceleration in the direction of the gas to the
aluainum. Using an elastic perfectly plastic model for the alum-
inum the effects of yield strength, density ratio, wavelength,
initial amplitude, and the elastic shear modulus on the pertur-
bation growth rate are presented. Results are compared with Tay-
lor theory and an attempt is made to develop an analytic expres-
sion for the effect of yleld strength.

NOTATION arose as to the relative effects of material strength,
P pressure density ratio, wavelength and initial perturbation
R density size on the growth of the disturbance. A series of
E specific internal energy numerical test problems with a much simpler config-
r Gruneisen constant uration than the actual experimental flow was con-
U shock speed sidered in order to obtain some qualitative informa-
u particle speed tion. The results of these preliminary numerical
Sj"j stress deviator tensor S§Udies ere presented here.
wij spin tensor, wij - % 223 _ 22% \ The configuration under consideration is given
dx AX in Fig. 1 and consists of a perfect gas at an ini-

G elastic modulus of shear tial pressure of .1 Mb, density of .55 gm/cm5 with
ot stress tensor an adiabatic exponent y = 3 and an aluminum plate
eiJ strain rate deviator tensor also at a pressure of .1 Mb and with a density of
Y° yield strength in tension 3.14 gm/cmj. The ges and plate extend indefinitely
n perturbation amplitude . in the y direction. The right face of the aluminum
A perturbation wavelength is held at zero pressure while the left boundary of
a acceleration the gas is kept at .1 Mb. The gas-aluminum interface
V] Poisson's ratio has a half sine wave perturbation with wavelength A
°, "bulk" sound speed and initial amplitude o

I. INTRODUCTION ) As the rarefaction proceeds into the aluminum

During the course of a combined numerical and from the right the plate is accelerated. When the
rarefaction crosses the interface we have the case
of a perturbed interface being accelerated in the

direction of low to high density, which in the clas-

experimental investigation of Taylor instability in
aluminum plates (to be published) some questions



sical incompressible fluid case is unstable. Be-
cause of the wave action we have a time varying ac-
celeration. The variation of the interfece pressure
with time (averaged over a wavelength A) is given in
Fig. 2. Figure 5 is a plot of the average gas den-
sity (over a wavelength) adjacent to the interface
versus time while Fig. # is the density-time plot
for the aluaminum next to the interface. The time
origin for these problems is 2.3% psec; i.e., the
rarefaction commences at the free surface of alumi-

num at t = 2.34 psec.

II. PHYSICAL MODEL OF ALUMINUM PLATE

The code used in these calculations is TOODY
II,1 a two-dimensional Lagrangian code developed at
Sandia Corporation. Here we will briefly describe
the physical model used for the stress supporting
aluminum plate. The "hydro" equation of state
P(0,E) is the conventional Mie-Gruneisen equation
for the pressure P off the Hugoniot,

P-P, = oI‘(E-EH) s (1)
where the subscript H indicates Hugoniot values.
For the linear fit of shock speed versus particle
speed,

U=c  +su, (2)
Eq. (1) implies,

P = PH {1 -

e
Ll 1V}emm, )

where,

2
. Po o a{a-1)

P "
B ((s-1)a-sl? *)
o= %— . (5)

o
The values used for the above constants were:
0, = 3.14 gm/cm5
e, = 0.535 cm/usec
8 =1.35
T= 1.70

In addition to the hydrodynemic character of
the aluminum an elastic component is appended by

differencing the following equations:

x

xx XZ _XZ Au 113p]

§7 - s 5 355 (6)
XZ . XZ, XX ZZ raux AuZW

ST+ w (s -8 )'GL_az'+'_a§ (n
zz XZ _XZ - u” 113

s™% + 2% 5% 2 2020+ 3 5 82 (8)
sV = ~(s*4s%%) . (9)

By definition the stress deviators, SiJ, indicate
how much a normel stress deviates from the average
of the three normel stresses, which by definition

is the pressure,
st = ot 4 pald (10)
P=- %(oxxwwwzz) . (11)

Equations (6) through (8) are derived in reference
2. They consitute an extension of Hooke's law from
static elasticity to dynemics. The effect of the
second term on the left-hand side of these equations
is to take into eccount the fact that a rigid body
rotation changes the tensor components, Sid. That
is, under a rigid body rotation Hooke's law in the
static equilibrium sense would say that the stress
deviators would not change because there is no de-
formation of shape. The equations of conservation
of momentum, however, require the stress deviator
components on the fixed (x,z) frame. Thus the
stress deviator components must be "corrected" for
any rigid body motion occurring within the time
step, At. If one then ignores the rotation terms in
Egs. (6) through (8) he will see that what remains
is an identification of a stress rate deviator with
the appropriate strain rate deviator, 1.e., Hooke's
law differentiated with respect to time. O©Of course
the above equations are tranéformed to Lagrangian
coordinates in TOODY; we have left them in Eulerian
form for purposes of interpretation.

After finding all (Si‘j)n+l by means of Egs. (&)
through (9) (all quantities on the right-hand side
are known at n+§ from momentum equations) we first
f£ind the second invariant of the stress deviator

tensor, $/2, where,



¥n+l - [(Sxx)a + (Syy)2 + (Szz)2 + 2(sz)2]n+l.

(12)

We then use the von-Mises criterion to test whether

2 £ (10)° (23)
where Yo is the yield strength in tension. If con-
dition (13) holds, the values of (S 9)™ found from

Egs. (6) through (9) are considered the true values

and the medium is described as "elastic.” If con-
dition (13) is violated all we can conclude is that
at some intermediate time within At = tn+l "

vlastic flow has occurred and therefore, Egs. (6)
through (9) did not apply over the complete interval.
One interpretation of the von-Mises criteriog is

that there is an upper limit to the energy of distor-
tion (as opposed to the work done in changing the
When this limit
is reached the medium can support only this dispar-

volume) that the medium can absorb.

ity in the stress deviators regardless of the
strains. See references 3 and 4 for fuller discus-
Over At then the

total strain has now an unknown elastic strain com-

sions of the von-Mises criterion.
ponent and a plastic strain component. There are
various theories such as the Prandtl-Reuss theory
and the von-Mises theory that relate the plastic
strain rate component to stress; however, all the
theories demand that in the plestic regime the
equality in Eq. (13) must be meintained for the so-
called perfectly plastic model. Wilkins shows in
reference 3 that a method, consistent with the von-
Mises flow rule which in our notation may be written

as,

o
sid Y

Gi'j
311 P

, (14)

(here G;J is the plastic component of the strain

rate deviator and II is the second invariant of that
tensor) is to reduce each (313)n+1
(6) through (9) in proportion to the extent the von-

Mises criterion is violated, i.e.,

found from Egs.

id)n+l - gY_O) (Sij)n‘f‘l (15)

(S 6n+1

C. Mader has calibrated dynamic yleld strengths for
gluminum based on one-dimensional experiments by J.

Taylor using a model similar to the above.5 Suffice
it to say that there is a weelth of models covering
elastic, plastic, and viscous behavior of materials
and until definitive experiments can be made it

seems prudent to choose the very simplest model.

III. DISCUSSION
Before discussing the numerical data it is of
interest to ascertain the rate of perturbation
growth from classical incompressible theory using
an average acceleration and representative densities.
The average acceleration of the system of the ‘
gas and aluminum plate can be obtained as follows.
The initiel conditions are

= 254 cm (AL plate thickness)

TaL

Tgas = .356 cm

= 3.14 gm/cm5

.55 gm/cm5

Pat

ogas =

while the totel pressure drop is .l Mb, therefore

the average acceleration is

P
OALTAL+°gasTgas

= .10l cm/usec . (16)
This implies an average interface pressure

P = .081 Mb (17)

18X 00Tay

which is in reasonable agreement with what one ob-

tains from the numerical solution as represented

by Fig. 2.

From the classical lineer incompressible theory

we have

n=n %, (18)

where n 1s the perturbation amplitude and where

p =P
an AL gas _d in n
N %5, ¥ =Ta (19)

The question erises as to what are the relevant
densities to use in Eq. (18). Two sets of densities
were tried, first the initiel densities pg = .55
gm/cm and Pas = 3.4 gm/cm , and second, estimated
averages obtained from Figs. 3 and 4, namely
Pgas = 505 gm/cm3 and p, = 3.06 gm/cu?. Table 1
lists the linear incompressible values of d in n/dt



for the cases of interest. These will be compared
later to the numerical results.

Numerical problems were run with an initiel
gas density of .55 gm/cmj and an aluainum density
of 5.4 gm/cmj. Aluminum yield strengths of 0.0,
1.0, 2.0, and 5.0 Kb were considered as were shear
moduli of 93 Kb, 280 Kb and 839 Kb. The effect of
density ratio was investigated by replacing the .55
gm/cmj gas by a vecuum and using & time varying
applied pressure profile obtained from Fig. 2. Per-
turbation wavelengths of .254 cm and .508 cm were
considered as were initial amplitudes of .01016 cm
and .02052 cm.

The growth of the perturbation with time is
given in Figs. 5 through 8. Figure 5 is for an
initial perturbation amplitude of .02032 cm and a
wavelength of .508 cm. The "gas" density was zero,
that is an applied pressure profile wes prescribed
on the left surface of the aluminum. The aluminum
had a shear modulus of 280 Kb and curves for yield
strengths of 0.0, 1.0, 2.0 and 3.0 Kb are included.
Figure § is for the same conditions as Fig. 5 but
an initial gas density of .55 gm/cm5 was used. Fig-
ure 7 conditions duplicate those of Fig. 6 but the
perturbation wavelength was changed to .254% cm.
Figure 8 conditions differ from those in Fig. 7 only
in that the initial perturbation was .01016 cm
(rather than .02032 cm). All of these plots (Figs.
5 - 8) show that after a relatively short initial
period the perturbation grows exponentially. The
rates of growth, d {n n/dt, obtained from the graphs
(slopes of the straight lines on the figures) are
tabulated in Table I. For the case of 0.0 Kb yleld
strength the numerical growth rates can be compered
with those obtained from Eq. (19) for linear incom-
pressible theory. One can see immediately that the -
numerically obtained values of d {n n/dt are always
lower than the linear incompressible results. Fur-
thermore, the ratio of the numerical to linear re-
sults for A = .254 cm is not the same as that for
A = .508 cm hence there is a wavelength dependence
in the function relating the numerical solution to
the linear approximetion. The data\;iga1cate
that for the no strength case the growth rate is
not dependent on the amplitude of the initial per-
turbation (in the range considered).

It would appear that the rather large periodic

oscillations of pressure and density at the interface

have an effect on the perturbation growth rate and
simply trying to use time averages of these quanti-
ties in the linear theory is not sufficient to give
agreement with the numericel calculations. This
means we have no simple analytic model against which
to Judge the effect of changing variables (e.g., o0,
N, no) and hence since the numerical data is rather
sparse we can only get qualitative results. We do
see that increasing yleld strength results in de-
creasing the rate of growth. Also halving the wave-
length increases the rate of growth 4 {n n/dt (but
not by the /2 as would be predicted by Eq. (19) for
zero yleld strength). Reducing the initial ampli-
tude has negligible effect on the low strength cases
(0.0 and 1.0 Kb yield strength) but has a merked
effect at higher yleld strength (2.0 and 3.0 Kb).

If we define the Atwood ratio as

B = E‘.‘L;Eﬂ , (20)
PaL Pgas

then for the applied pressure (vacuum) case 8 = 1,

. whereas for the gas case Dgas = .55 gm/cm5 and

Pag = 3.14 so we have & = .7. From Table I we Ssee
that the reduction in growth rate associated in
going from a base flow 8= 1, A = .508 cm, N =
.02032 cm and 0.0 yield strength to the same flow
but with 8 = .7 is8 the same as the reduction obtained
by going from the bese flow to one with the only
change being yleld strength, namely a yleld of

2.0 Kb instead of zero.

An attempt was made to try to determine a model
which would indicate more clearly the effect of
yleld strength. We consider an expression (anal-
ogous to Eq. (19)) of the form

a Opp=0
. -%1- a.:/?—;r' a.oA_L_‘_"E - H(Yo’)"O’ ) '(21)
Al “gas

If we assume thet H(Y°=0) = 0 and define

2 _Jen DAL-gﬂ_d&nn,

AT =l— a8 (22)
Pt Pgas dt

» ¥%=0.

Then o = Aa-H . If we teke A from the zero yleld
strength calculation inTable I and look at H as a
function of yleld strength we can obtain curves of
H vs. yleld strength. These curves are plotted in
Figs. 9 and 10 and indicate that H is a linear func-
tion of yleld strength.

A further feature of the strength model used




v

in the code is shown by the data in Table II. Here
we have kept A, Ng? and yield strength constant and
varied the shear modulus G. The wide variation in @
(a factor of 9 from the lergest to the smallest val-
ues of G considered) produced no variation in the

rate of growth of the perturbation.
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TARE I

LEJ from Sumericel Rucs

here A = 508 ca and = 00X cu

Probles Description .o  ero0m Ye220m  ¥Ye30m
vee, Ay 1.019 .933 .86 182
Cas, Ay my BT <765 .668 568
Gas, A2, w, 1.145 912 .82 593
Oas, A/2, .\’/z 1237 98 65T A%e
Lisear Toeory-Yac, A oy 118 Sumericel/linear = i—z% - .903
Linesr Theory-Gas, A, LN
8

&) Initisl Densities 936 Susertcal/linear = ﬂ - .08

1) Averege Densttics S Susericsl/linear = %} - 896
Linear Theory-Ges. x/z. LN

s) Inttial Denstrtes 1.3 Fumertcet/ttneer » 133 . 065

b) Avergge Densttics 1.3% Suserical/livear = ‘:“ - 857

TABLE 11

Effect of Shear Modulus on Perturbstion Qrovth Rste

¥° = 1.0 Kb, Intttsl Bulk Modulus K, = o,c 2, for sll cases

G = .093 Mb G = .280 Md G = .839 Mo

v .450 ve= .39 ve .U
t (usec) « {ca) t (usec) « {cm) t_(usce) n {cam)
2.349 .02032 2.349 .02032 2.349 .02032
2.746 .02061 2.746 .02059 2.740 .02054
3.k2 .02681 3.42 .02677 3.143 02677
3.543 03348 3.563 .033%0 3.542 03336
3.9u2 04241 3.943 04228 3.940 04219
b 30 -056Th b3k -05655 b3 05638
b.TU5 07506 b5 -OTHT3 .76 07455,
5.145 .11069 5.145 .11035 5.141 .10666
5.541 .14568 5.540 .14507 5.541 47T
5.T79 .17362 5.78% ATH 5.781 17262

P=0.1 Mb

0.356¢ 0.254cm —

% .

.

Fig. 1. Typicel initial configuration for a gas-
aluminum problem with perturbation wave-
length A.
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Fig. 2. g@as-aluminum interface pressure vs. time

for three ceases Yo = 1.0 Kb, Yo = 2.0 Kb
and Yo = 5.0 Kb. The pressure is averaged
over one perturbation wavelength A (A =

.508 cm) .
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Fig. 3. Gas density adjacent to the perturbed alu-
ainum interfsce vs. time for the cases Yo
= 0.0 Kb, Yo = 2.0 Kb and Yo = 5.0 Kb.
The density is averaged over one perturbs-
tion wavelength A (A = .508 cm).
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Fig. 4. Aluminum density adjecent to the perturbed

interface vs. time for the cases Yo = 0.0
Kb, Yo = 2.0 Kb and Yo = 5.0 Kb. The den-
sity is averaged over one perturbation
wavelength A (A = .508 cm).
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Pig. 5. Perturbation growth for the csse of an

applied pressure on the aluminum plate.
The initial perturbation amplitude no =
.02032 cm and the wavelength A = .508 cm.
Aluminum yield strengths of 0.0, 1.0, 2.0

and 5.0 Kb are considered.
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Fig. 6. Perturbation growth for the case of a gas-

propelled aluminum plate with initial per-
turbation amplitude n, = .02032 cm and
wavelength X = .508 cm. Aluminum yield
strength of 0.0, 1.0, 2.0 and 3.0 Kb are
considered.
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Fig. T. Perturbation growth for the case of a gas-

propelled aluminum plate with an initial
perturbation amplitude N = .02032 and
wavelength A = ,254 cm. Aluminum yield
strengths of 0.0, 1.0, 2.0 and 3.0 Kb are
considered.
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Fig. 8. Perturbation growth for the case of a gas-

propelled sluminum plate with an initial Pig. 9. Plot correlating yield strength Y and the
perturbation amplitude N = .01016 and function H (Bq. (21)) for cases wgth
wsvelength A = .254 cm. Aluminum yleld 'no = .02032 cm and N = .508 cm.

strengths of 0.0, 1.0, 2.0 and 3.0 Kb are

considered.




Il T T kY
10- 7o *0.010i6 em T
A =0.254cm °
A GAS-Al
0S|~ SLOPEs= AH/AY*s0384 -
A
D8} n
o7 o |
o6} n
H
osi- -
OA- 9o 002032cm ]
(-]
A £0.254cm
o3l o GAS-Al -
SLOPE = AH/AY*= 0328
o2} =
ol .
1 ] 1
05 10 20 30

Fig. 10. Plot correlating yield strength Yo and
the function H (Eq. (21)) for the ceses
with M, = 02032 cm and A = .25k cm and
the cases with n, = .01016 cm and A =
.254 cm.
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