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A REVIEW OF THE LITERATURE ON BI-LEVEL MATHEMATICAL PROGRAMMING

by
Charles D. Kolstad

ABSTRACT

This paper reviews the recent literature on applications and algo-
rithms in bi-level programming. Bi-level programming involves two
mathematical programs. One math program is concerned with minimizing
w(x,t) over some region by varying the vector t. The variable x is ac-
tually a function x(t) and is defined implicitly as the solution vector
to the second math program, which minimizes s(x,t) over some region by
varying x. The review is divided into two main sections. One section
covers applied problems that have been presented in the literature as
bi-level math programs. Most such applications are in economics but
some are in warfare planning. Another section of the paper concerns
the many diverse algorithms that have been developed to solve the bi-
level programming problem.

I. INTRODUCTION

Over the past decade there has been an increase in interest in multi-
level mathematical programming, and in particular bi-level mathematical
programming. The bi-level problem consists of two parts, an upper and lower
part. Define the upper-level problem (denoted henceforth as "P1") as

(P1:) min w(x,t) (1a)
t
3 f(x,t) <0, (1b)

where x(t) is implicitly defined by the lower-level problem:

(B1:) x(t): min s{x,t) (1c)
X
Sglx,t) <0 , (1d)




where all variables and constraint functions may be vectors. A tremendous
variety of applied problems, particularly economic problems, can be viewed as
bi-level math programs. A Stackelberg duopoly or leader-follower continuous
game (Chen and Cruz, 1972; Cruz, 1978; Papavassilopoulos, 1981) can be viewed as
bi-level programming problems with the follower's problem corresponding to Bl
and the leader's problem corresponding to P1. Many applications are in economic
planning where the planner's problem is Pl and the economy responds according to
Bl. Related to this is the principal-agent problem where the principal (P1)
tries to induce his agent (Bl) to act in the principal's interest. Outside the
economics literature, the max-min problem (Danskin, 1966) is that of maximizing
the minimum of some function and is thus a special case of bi-level programming.

Unfortunately, good solution methods for the bi-level problem are not
generally available. 1In fact, without significant restrictions on the sub-
problem, the overall problem may well be nonconvex and thus difficult to solve
for a global optimum.

The purpose of this paper is to provide a review of recent progress on
bi-level programming (through 1982). The review covers both applications and
algorithms. There has been a fair amount of work in both these areas with many
algorithms springing from the need to solve specific applied problems. In the
next section we review applications, some of which have appeared explicitly in
the literature and others of which have only been suggested. This is followed
by a section on algorithmic developments in multi-level programming. Most
Soviet and Eastern European literature is not reviewed here (however, see
Findeisen, 1982).

II. APPLICATIONS OF BI-LEVEL PROGRAMMING

In this section we provide a fairly comprehensive review of past
applications of bi-level mathematical programming. The purpose of this section
is to demonstrate the wide applicability of bi-level programming and thus its
importance as a problem 1in mathematical programming. Unfortunately, because of
the variety of disciplines in which applications occur, we have undoubtedly
omitted some important work from our review.

The bulk of applications of bi-level programming that have appeared in
the literature is in the economics realm, particularly central economic
planning. The typical situation is that there is a planner with some social ob-
jective and a set of policy instruments to use for controlling one (or more)

economic agents with different objectives.
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In the context of the previously defined bi-level problem, the "policy
problem" (P1l) is given by Eqn. (la-b), where the planner minimizes w(x,t) sub-
ject to the constraints of Eqn. (1b). The planner can only effect his objective
by adjusting the vector t, which may be a set of taxes, quotas, or some other
instrument., The subordinate problem is given by Eqn. (1lc-d) and, following
Candler and Townsley (1982), is termed the "behavioral" problem (B1l). Given a
vector of policies, t, the subordinate agent must optimize his objective s(x,t)
by adjusting the vector x. Obviously, whatever x is chosen in the subordinate
problem influences the planner's objective.

It is important to realize the distinction between the bi-level problem
and the common decomposition of large planning problems into multi-level
problems (e.g., Dantzig and Wolfe, 1961; Kornai and Liptak, 1965; Geoffrion,
1970). These methods are all concerned with breaking down a large math program
into a number of smaller, more tractable units. An important aspect of these
methods is a coincidence between the objectives of the multiple levels and the
objective of the overall problem. The fact that the decomposed problem can be
written as a single convex programming problem distinguishes decomposition from
the general problem considered here.

In the economics literature the subordinate problem (Bl) often serves a
very specific purpose, i.e., that of a simulator of a market economy. It has
been known for some time that the operation of a portion of a competitive
economy can be simulated using mathematical programming (Samuelson, 1952;
Takayama and Judge, 1971). 1In short, inAa market for a single good, if there
are i = 1,.:., I consumers each consuming q; and j = 1,..., J producers each
progucing a3 then a market equilibrium can be associated with the solution

(g,q9) to

max I * J - (2a)
wa E I aax - 2 TN 5 0
9-’9-1-1 o jixjax j=1 o J x)ax

I . J . (2b)
3% q- % q;¢0

i=1 j=1 9

a; 20, ¥, (2¢)
q. >0, ¥, , (2d)




where Pi(x) is the inverse demand function for consumer i and sj(x) is the sup-
ply or marginal cost function for producer j. This suggests that very often the
subordinate problem (Bl) in bi-level math programs is a single math program
simulating the decentralized market processes of a competitive economy.* The
effect of a per-unit tax on such an economy can be simulated by subtracting a
term for tax payments from Eqn. (2a). A quota system applied in an economically
efficient manner can be simulated by adding appropriate constraints to Eqn.
(2).** It is within this framework that most economic applications of bi-level
mathematical programming occur: an overall social objective (the planning
problem) subject to equilibrium in a market economy (the behavioral problem)
with communication between the two levels through taxes, quotas, or some other
set of policy instruments.

In spirit, the bi-level problem has a long history in economics -- social
objectives vs objectives of individual economic agents. It is difficult to
identify the earliest treatment of bi-level problems. Stackelberg's (1952)
leader-follower duopoly model is fundamentally a bi-level problem. The leader's
problem 1is Pl and the follower's problem is Bl. Marschak (1953) considers the
problem of governmental control of a monopolist with zero marginal costs facing
linear demand for a single good. The policy problem is that of the government
choosing a per-unit tax on the monopolist's output in order to optimize a
governmental objective. Two objectives are considered. One is simply to maxi-
mize tax revenue. The other is to maximize output subject to a lower limit on
tax revenue.

The earliest explicit discussion in the economics literature of bi-level
math programming appears to be Candler and Norton (1977a). They consider a
numerical example of a milk-producing monopoly in the Netherlands, regulated by
the government. The behavioral problem represents the objectives of the

x
The formulation of Egn. (2) can obviously be made more complicated. The most
common extension is to introduce multiple products and the notion of space where

products are distinguished.
*%k

A quota is a restriction on overall output from a particular sector of the
economy. Within an optimization model of a competitive economy, it would be rep-
resented as a constraint on aggregate output. In practice, the quota would have
to be translated to the firm level through a license system or some other
mechanism. For an aggregate constraint to realistically represent the action of
a quota, the licenses must be allocated to firms in an economically efficient
manner. This can be assured by allowing private trading of licenses among
firms.
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monopoly that seeks to maximize revenue from sales of milk, butter, and cheeses.
The Dutch government controls a milk subsidy and duties on imported butter. The
government is assumed to have a composite objective consisting of consumer
prices, government outlay (the less, the better), and farm income (the more, the
better).

Other applications of bi-level programming have been suggested by Candler
et al. (1981), principally in the area of development planning. They suggest
that the market problem be a model of a sector of a developing economy (such as
the agricultural sector), simulating the competitive interactions of economic
agents in that sector in response to a number of governmental policies such as
price supports or controls, taxes, subsidies, or production quotas. The policy
problem can involve a variety of objectives including employment generation,
economic growth, nutrition, or simply output. A specific problem examined by
Candler et al. (1981) is that of irrigation policy. The behavioral model is of
an agricultural region served by a single irrigation system. The behavioral
model simulates the decisions of farmers as to how much water to use when sub-
ject to policies imposed by administrators of the irrigation system. Farmers
are assumed to maximize profit given local prices. Policies considered are (a)
system water allocations to be distributed efficiently among the farmers and (b)
a cotton production quota. Two objectives are considered: (a) maximization of
value-added tax at international prices (as opposed to local prices) and (b)
maximization of employment. Although the data used in their analyses were
hypothetical, the example illustrates a major area of application of bi-level
programming.

Candler and Norton (1977b) have utilized a previously developed large-
scale model of Mexican agriculture as the behavioral subproblem. For policy
objectives, they examine employment, farm income, corn and wheat production (all
to be maximized), and governmental expenses (to be minimized). Policy variables
used to influence the subproblem include subsidies on fertilizer use, subsidies
on irrigation investment loans, support prices on wheat and corn, and water
taxes. The contribution of this work is not only in their realistic policy ap-
plication but also in their computational experience. Although they came up
with improved policies through bi-level optimization, they did discover some
nonconvexities in their overall problem which made it difficult for them to find
a global optimum (for some objectives). This has turned out to be a significant
problem in bi-level programming.




Fortuny-Amat and McCarl (1981) consider the problem of a fertilizer sup-
plier who monopolizes a specific region. Farmers in that region have an
inelastic demand but can buy from distant sellers. Thus, the behavioral problem
is that of the farmers' decision process. The behavioral problem is complicated
by five variations on the basic product--fertilizer. These variations have to
do with whether or not fertilizer application equipment is loaned with the fer-
tilizer and whether or not prices are FOB the fertilizer plant or delivered to
the farm. The policy problem is that of the monopolist who must decide how much
to charge for his product and product variations in order to maximize monopoly
rent subject to constraints on availability of capital and labor.

Another set of problems in the area of environmental regulation has
motivated this author and apparently Wayne Bialas to research the question of
bi-level programming. The problem is to drive polluters to efficient levels of
emissions through an emissions tax. The same tax (per unit of emissions) ap-
plies to many different sources of pollution in a region even though each source
contributes in a different way to concentrations of pollution in the environ-
ment, due to locational differences and transport of pollutants by the
environment. Thus the subproblem (Bl) simulates the market's response to a tax
or set of taxes. The policy problem (Pl) seeks to minimize real social costs
while meeting pollution concentration standards (constraints). This problem was
encountered by Bialas for the case of water pollution and Kolstad (1982) for air
pollution.

A very different problem was explored by Falk and McCormick (1982): that
of a cooperative game. The problem is that of an imperfect cartel of several
countries in .the international coal market. Since in an imperfect cartel, side-
payments are not permitted, cartel objectives may not be to maximize joint
profits. Falk and McCormick utilize Nash's solution to this bargaining problem.
If uy is the ith cartel member's gain from joining the cartel (relative to his

profit in a noncooperative setting), then the Nash solution is to maximize Hui,

i
the product of the ui's. Falk and McCormick formulate this as a bi-level

problem, utilizing a very simple competitive model of coal trade as the sub-
problem Bl. The upper-level problem (P1) is Nash's product of individual gains

from cartelization, Uui. Using a numerical example with a two-member cartel,
i
Falk and McCormick demonstrate that two relative maxima exist for the overall

problem, only one of which is a global maximum. Kolstad and Lasdon {(1985) have
examined a similar problem in the same market.
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De Silva (1978) has examined the regulation of the o0il industry in the
United States. The problem is to choose optimal price ceilings for oil dis-
covered before and after a base point in time. The subproblem (Bl) is that of a
profit-maximizing oil company faced with price ceilings. The policy problem
(P1) is that of the federal government choosing price ceilings in order to maxi-
mize a composite objective, including the value of 0il discovered and produced
during the planning period.

Cassidy et al. (1971) analyze the problem of bi-level planning where
states (of the US) develop an optimal set of public works projects using money
from the federal government. The subproblem (Bl) is that of a state deciding on
a set of projects which maximize a linear welfare function. The policy problem
(P1) is that of allocating resources to each state to optimize a Federal objec-
tive couched in terms of the equity of the resource allocation.

There has been a variety of other research concerned with topics closely
related to bi-level programming. In the early 1970s a series of articles
appeared concerning programs involving the optimal value function of a secondary
math program (Bracken and McGill, 1973a, b, 1974a, b; Bracken et al., 1977).
A1l of the applications cited in these papers are in the area of warfare,
principally the optimal structure and location of strategic nuclear forces--
submarines, bombers, and missiles. If the problem is couched as a two-person
Stackelberg game, the subordinate problem (Bl) concerns one's opponent's
objective (i.e., reducing one's war-making capability and causing other damage)
while the upper-level problem (P1) concerns one's own objective (damage to your
opponent). For their example of bomber basing, your opponent's goal is to use
its submarines to destroy as many of your bombers as possible (problem Bl).
Your problem is to determine a least-cost bomber location pattern which assures
that a given number of bombers survive.

Applications in the area of dynamic Stackelberg games are more remotely
related to bi-level programming. Luh et al. (1982) propose constantly varying
time-of-day pricing for electric power. They propose the customer as the subor-
dinate agent responding to prices and influenced by a variety of stochastic
variables such as the weather. The upper-level decision-maker is the electric
power producer who chooses a price at an instant in time so as to clear the
market in a least-cost manner.

The large literature on max-min problems is not considered here (see
e.g., Danskin, 1966). As will become apparent in the next section, the max-min
problem is a special case of a bi-level math program.




IITI. ALGORITHMIC DEVELOPMENTS

Most of the applications reviewed in the previous section are accompanied
by algorithms for solving the particular problem considered. At least a dozen
different algorithms appear in the literature, most of which will be discussed
in this section. There are three classes into which most algorithms fall. One
class of algorithms is concerned exclusively with the linear bi-level problem.
These algorithms are concerned with efficiently moving from one extreme point to
another until an optimum is found. Another set of algorithms utilizes the Kuhn-
Tucker-Karush conditions of the subproblem as constraints on the overall
problem, thus turning the bi-level problem into a nonconvex single mathematical
program. A third set of algorithms is based on various descent approaches for
the policy problem with gradient information from the subproblem acquired in a
variety of ways.
A. Extreme Point Search.

A11 of these methods are concerned with purely linear bi-level problems.
A11 of the algorithms discussed in this section ignore constraints on the upper-
level problem (P1). Consequently, we can write the upper-level problem as

(P3:) min ¢,t + ¢ X (3a)
t t X
2t>0 R (3b)

and the subproblem, implicitly defining x (t), as

(B3:) min dxx (3c)
X

DAX <D - At (3d)

x>0 . (3e)

A basic result of Bialas and Karwan (1982) is utilized in most of these
algorithms:

Theorem 1 (Bialas and Karwan): Any solution to problem P3-B3 occurs at
an extreme point of the constraint set of problem B3.

The various algorithms are concerned with efficient searches of these ex-
treme points. Three algorithms have been discussed in the literature. The
8




algorithm due to Candler and Townsley (1982) is the most widely discussed,
principally because of the large number of papers on bi-level programming of
which Candler is a coauthor. Other algorithms of this type are due to Bialas
and Karwan (1982) and Papavassilopoulos (1982).

1. Candler-Townsley. The Candler-Townsley algorithm is described in some depth
in Candler and Townsley (1982) and with more brevity in Bard and Falk (1982).
The algorithm focuses on the relationship between P3-B3 and the following LP:

(P4:) 232 cpt + Cex (4a)
DBx<b-At (4b)
x>0 (4c)
t>0 . (4d)

In P4, B is an "optimal" basis from Ax; i.e., B satisfies optimality conditions
for B3 (nonnegative reduced costs). In P4, the vector x has been restricted to
x, corresponding to the columns of Ax in B. Note that with B so defined, any
solution of P4 is feasible for P3-B3 (i.e., an optimal solution of B3 that is
feasible for P3). The algorithm thus involves moving from one such “optimal"
basis B to another, solving P4 each time. If one ensures that the objective of
P4 improves, and thus there is no cycling, then the following theorem assures
that P3-B3 will eventually be solved.

Theorem 2 (Candler and Townsley): If there exists an optimal solution to
P3-B3 (t*,x*), then there exists a basis B* of Ax with nonnegative reduced costs
with respect to B3 such that (t*,x*,B*) solves P4,

Thus their algorithm focuses on searching the bases of Ax until a solu-
tion of P3-B3 is found. We describe the process intuitively since the details
of the search process are quite elaborate. Given a feasible solution to P3-B3

(t,,x,) and a corresponding “optimal" basis By» solve P4. The nonbasic columns
of Ax which have negative reduced costs (with respect to the objective function

of P4) are candidates for pivoting into a new basis; denote the set of these

columns by Tz- Candler and Townsley prove that any basis B2+1 which improves
the optimal value of P4 (and thus moves closer to an optimum of P3-B3) must con-

tain an element of each of the Tk’ k =1,...,%2. They further define a

9




supplemental set of nonbasic columns of Ax so that one is guaranteed to find a
basis which is feasible for P4. Thus, one sequentially changes B in P4 and then
solves P4 until a solution to P3-B3 is found.

2, K-th Best Algorithm. Bialas and Karwan {1982) take a slightly different
approach focusing on the relationship between P3-B3 and P5:

(P5:) min ctt +C X (5a)
t,x X
DA x+At<D (5b)
t,x >0 . (5¢)

Theorem 1 above indicates that a solution of P3-B3 will occur at an extreme
point of the constraint set of P5. The "K-th best" algorithm is an efficient
way of searching these extreme points. Suppose that the entire set of M extreme
points of the constraint set of P5 is enumerated in ascending order of objective
function value [(tl,Ql), (tz,fz),...,(tM,QM)]; i.e., ctt1 + cxx1 < ctt1+1

CoXi41° We know one of the extreme points will solve P3-B3. The algorithm

moves sequentially through these ordered extreme points until one is found which
is an optimal solution to B3. One seeks the index K* where

K* = min[ie(l,...,M)l(ti,;i) solves B4] . (6)

Obviously the first of the sequence of extreme points can be found by
solving P5 directly. The mechanism for moving from (t » X ) to (t1+ ,x1+1) is
straightforward. Define T, = {(tk k)Ik < i}. Define W; = {(t x) (%, x)eT }
such that (t,x) is an adJacent extreme point to (t,x)}. Let V1 = w SzT s
where T is the comp]ement of T . In other words, wi is the set of extreme
points adJacent to one of the previously examined extreme points. The set Vi
is that set less the previously examined extreme points. It is easy to see that

(t »X:.,) is the solution to min[c X + C t|(x t)ev ]J. The algorithm ter-
i+1° i+l x,t
minates when (ti’xi) solves B3. Since this algorithm approaches the optimal

* . . . . .
At an optimal solution, adjacent extreme points are obtained by pivoting into
the basis each of the non-basic variables.
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solution from a region of infeasibility, the solution will be a global solution
even if P3-B3 is not convex.

3. Papavassilopoulos. In a recent paper, Papavassilopoulos (1982) presents
several algorithms for solving the linear bi-level program. Unfortunately it is
not clear whether any computational experience with these algorithms exists. We
focus on the first of his algorithms.

As in the previous a]gor1thms a sequence of extreme points is generated
each of which will be feas1b1e for P3-B3. For each extreme point (tl,x ), the
next extremehpolnt of the sequence is chosen by examining a11 extreme points ad-
jacent to (ti’xi)' An adjacent extreme point is chosen, (t 1’x1+1)’ which (a)
strictly reduces the objective of P3 while (b) ma1nta1n1ng optimality of B3.
Since this algorithm approaches the solution from a region of feasibility,
global optimality is not assured.

B. Kuhn-Tucker-Karush Methods.

A number of algorithms involve transforming the behavioral problem Bl
into Kuhn-Tucker-Karush necessary conditions for optimality and then rewriting
P1-Bl1 as

(P7:) min  w(x,t) (7a)
X,t,u
3f(x,t) <0 (7b)
sz(x,t) + u‘ng(x,t) =0 (7¢)
u7g(x,t) =0 (7d)
g(x,t) <0 (7e)
H>0 . ' (7€)

Problem P7 is of course equivalent to P1-Bl since any solution to P7 will
satisfy Eqns. (7c-f) and thus solve Bl (providing s is strictly quasi-convex
with respect to x and g is quasi-convex with respect to x). The difficulty is
that the constraint set of P7 is not convex, principally because of Eqn. (7d).

*For (t,x) to be feasible for P3-B3, (t,x) must solve B3 while t > 0.

1




Thus most conventional descent algorithms cannot be applied to P7. Also, if the
subproblem Bl is large, then the number of constraints and variables associated
with the Kuhn-Tucker-Karush conditions will be large. Thus these techniques do
not seem well-suited to problems involving 1large subproblems. The three
algorithms presented below solve P7 in different ways. A1l algorithms consider
the case of linear Kuhn-Tucker-Karush conditions for the subprob]em.*

1. Bard and Falk. Bard and Falk (1982) consider the linear version of P7
for which the only problematic constraint is Eqn. (7d). The core of their algo-
rithm is to rewrite P7 as a separable convex program; i.e., for xe Rn, all
functions can be written as

f(x) =

)

fj(xj) .

Jj=1

Introducing the variables X (equal in dimension to g), constraint (7d) is equiv-
alent to

Z[min(o,xi) + ui] =0 (8a)
i

Ai + gi + 111- = 09 vi (8b)
A; 20, ¥ (8c)

Although Egn. (8a) is not a nice smooth function, it does have the separability
characteristic which Bard and Falk need to apply an existing algorithm for
separable nonconvex programs. The algorithm uses a branch-and-bound technique
and involves a partition of the feasible region. Computational tests applied to
small problems have produced good results although computations increase rapidly
with the size of the constraint region. Thus, the technique may be time consum-
ing when applied to problems involving large subproblems.

2. Fortuny-Amat and McCarl. As did Bard and Falk, Fortuny-Amat and McCarl
(1981) focus on the complementary slackness condition, Eqn. (7d). They examine

x

Bard (1983) has recently proposed an algorithm for solving the general problem
P7. His method involves a grid search between estimated upper and lower bounds
on w(x,t) in Eqn. 7a.
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the case where Pl and Bl are each quadratic programs.* If we assume that each
objective function is convex, then if constraint Eqn. (7d) is ignored, problem
P7 is a convex program which can be easily solved. Introducing the variable n

(with the same dimension as g) such that each n; is either 0 or 1, P7 can be
transformed into

(P9:) min  w(x,t) (9a)
X,t,n
D f(x,t) <0 (9b)
VxS(x,t) + u‘ng(x,t) =0 (9c)
B < Mn (9d)
g{x,t) > - M(1 - n) (9e)
g{x,t) < 0 (9f)
>0 (99)
ny=0orl , (9h)

where M is a fixed, large positive number. For a fixed n, problem P9 is convex
and can be readily solved (since in our example s is quadratic and g linear) for
a global optimum. The Fortuny-Amat and McCarl algorithm uses a branch-and-bound
technique to enumerate the possibilities for n, solving P9 at each iteration.
In commenting on their computational experience, the authors seem to suggest
that for large subproblems (i.e., n of large dimension), their algorithm is not
very satisfactory.

3. Parametric Complementary Pivot. Problem P7 involves finding x, t, and u
which optimizes the objective function, w (Eqn. 7a). Bialas and Karwan reformu-
late P7 as that of finding a feasible x, t, and u such that the objective is
less than some upper bound a. By solving the problem with successively smaller
upper bounds until no feasible solution can be found, a solution to P7 will ob-
viously be obtained. Thus the reformulated problem is

x
A quadratic program involves a quadratic objective and linear constraints.



(P10:) Find x(a), t(a), u(a)

Sw(x,t) < a (10a)
f(x,t) < 0 (10b)
sz(x,t) + u‘ng(x,t) =0 (10c¢)
n'g{x,t) =0 (10d)
glx,t) <0 (10e)
H>0 . (10f)

For fixed a, it is relatively easy to write P10 as the problem of finding
z>0>F(z) >0, <z,F(z)> = 0, the complementarity problem (see Cottle and
Dantzig, 1974), for which algorithms are available. Although x and t are not
explicitly restricted to be nonnegative in P10, they can be easily written as
the difference between two nonnegative variables. For convenience, assume t >
0, x > 0. Then P10 plus these restrictions on t and x can be written in com-
plementarity form as

(P11:)  <a - w{x,t) - v>0, v>0>=0 (11a)
<= - f(x,t) >0, A>0>=0 (11b)
x>0, t>0=0 (11c)
<t-x>0, x>0 =0 (11d)
<- g{x,t) >0, u>0>=0 (1le)
<= vxs(x,t) - u‘vxg(x,t) >0, x>0 =0 . (11f)

Equations (1la) and (11b) are restatements of Eqns. (10a) and (10b) where
“dummy" variables, v and A have been introduced to be consistent with complemen-
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tarity format. Equations (11lc) and (11d) (with the dummy x) are complicated
ways of writing t > 0. Equations (1lle-f) correspond to Eqns. (10c-f). Thus for
a given «, a solution to P11 (x,t,u,Y,A,x) is feasible for P10. The minimum «
for which P11 has a solution will yield the optimal solution to P7 and thus the
optimal solution to P1-Bl.

Bialas and Karwan apparently only examine the linear version of P7 and
use their own algorithm to solve the resulting P11 and to choose successive a.
They indicate that their algorithm has worked quite well for the small problem
they have examined.
C. Descent Methods.

The workhorses of nonlinear programming have to be the descent methods

where first derivative information is used to smoothly approach an optimum.
There are two probable reasons these methods have not been more widely used for
bi-Tevel programming. One reason is the potential for multiple local optima.
Another, possibly more fundamental problem, is the computation of derivatives
associated with the subproblem Bl. Although techniques for computing deriva-
tives of solutions to mathematical programs with respect to parameters of those
programs have been known for some time (see Fiacco and McCormick, 1968), they
are not widely used.

Referring back to P1-Bl, the basic approach is to apply one of the many

descent methods to P1. 1In Pl, x is viewed as a function of t, defined im-
plicitly by Bl. Gradients of w and f can be computed if Vtx* is known. (Vtx*
reflects changes in the solution to Bl, x*, from infinitesimal changes in t.)
O0f course x*(t) may not be uniquely defined nor be differentiable at all t, and
Vtx* is unlikely to be continuous. These are potential problems.
1. Penalty/Barrier Function Methods. Shimizu and Aiyoshi (1981) propose
rewriting the subproblem Bl as an unconstrained minimization problem through the
use of a barrier function. A solution to Bl can then satisfy a stationarity
condition of this unconstrained function.

Rewrite Bl as

(P12:)  min{P"(x,t) = s{x,t) + r ¢ Lg(x,t)1} , (12)
X
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where r > 0 and ¢ is continuous and becomes infinite for (x,t) outside the

feasible region. Thus if xr(t) solves P12, then under suitable conditions 118
r

x (t) solves Bl. Assuming P’ s strictly convex in x, then necessary and suffi-
cient conditions for a solution to P12 are the stationarity conditions

vxp"(x,t) =0 . (13)

If x is regarded as an implicit function of t, this can be solved for xr(t)
providing VxxPr is nonsingular. Furthermore,

r - _rve p" 1.2 r
Ux (t) = [VxxP (x,t)] thP (x,t) . (14)
Problem P1-Bl can now be rewritten as
(P15:) min w(xr(t),t) (15a)
t
>flx (t),t1 <0 (15b)

where xr(t) and er(t) are given by Eqns. (13) and (14). Many methods are
available for solving P15 since derivative information on xr(t) is available.

Shimizu and Aiyoshi (1981) show that if (xr,tr) solves P15 then 1im(xr,tr)
r+0
solves P1-Bl.

This method has been successfully applied to small problems. One dif-
ficulty not addressed by the authors is that only local solutions are found
using this method.

2. Direct Gradient Methods. De Silva (1978) has utilized a technique in
which problem P1 is solved viewing x as a function of t. Given an estimate of
t, problem Bl is solved to give both x{t) and Vx(t). In contrast to the barrier
function approach of Shimizu and Aiyoshi (1981), in De Silva's method x(t) can

be computed using any nonlinear programming technique and Vx(t) calculated
directly using methods developed by Fiacco (1976) for sensitivity analysis.
Thus one moves from one t to the next in P15 using any nonlinear programming al-
gorithm that uses first derivative information on w and f. Given a t, any
nonlinear programming method can be used to find x(t) and thus Vx(t).
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A more efficient descent algorithm, particularly appropriate for large
problems, has been developed by Kolstad and Lasdon (1985). They focus on the
computation of Vx(t). If Bl is very large, this can be very difficult to
compute. Following Murtagh and Saunders (1981), they partition any so]utign
vector x*(t) of Bl into components which are at bounds (ngnbasic varjab]es--xﬂ
and other components (basic and superbasic variables--x*): x* = (x*,x*), If
strict complementary slackness is assumed, as t changes infinitesimally in B1,
only x* will change; the x* will remain at their bounds. This structuring of
the problems greatly facilitates the computation of Vx*(t) since most components
are generally nonbasic.

3. Optimal Value Functions. A subclass of the P1-Bl problem has been ex-
amined by several authors

(P16:) min wio,t) (16a)
df(e,t) <0, (16b)
where
¢(t) = min s(x,t) (16¢)
X
Sg(x,t) <0 . (16d)

Since ¢(t) is defined as the optimal value function of problem Bl, we know in
general that ¢ is convex (Mangasarian and Rosen, 1964). Thus, in many cases P16
is a strictly convex prbgram which has a unique local optimum. Also, since ¢ is
scalar-valued, V¢ is relatively easy to compute. Bracken and McGill (1974b)
solve such problems, computing V¢ numerically. Geoffrion and Hogan (1972) ex-
amine a problem similar to P16 (actually a problem with multiple subproblems),
focusing on calculating the directional derivatives of ¢(t), since ¢(t) is not
everywhere differentiable even though it is usually continuous.
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