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A REVIEW OF THE LITERATUREON BI-LEVE.LMATHEMATICALPROGRAMMING

by

Charles D. Kolstad

ABSTRACT

This paper reviews the recent literatureon applicationsand algo-
rithms in bi-level programming. Bi-level programming involves tio
mathematicalprograms. One math program is concerned with minimizing
w(x,t) over some region by varying the vector t. The variable x is ac-
tuallya function x(t) and is defined implicitlyas the solutionvector
to the second math program,which minimizes s(x,t) over some region by
varying x. The review is divided into two main sections. One section
covers applied problems that have been presented in the literatureas
bi-level math programs. Most such applications are in economics but
some are in warfare planning. Another section of the paper concerns
the many diverse algorithms that have been developed to solve the bi-
Ievel programmingproblem.

I. INTRODUCTION

Over the past decade there has been an increase in interest in multi-

level mathematical programming, and in particular bi-level mathematical

programming. The bi-level problem consists of two parts, an upper and lower

part. Define the upper-levelproblem (denotedhenceforthas “Pi”) as

(Pi:) min w(x,t)
t

where x(t) is implicitlydefined by the lower-levelproblem:

(Bl:) x(t): min s(x,t)
x

39(xst) : o ,

(la)

(lb)

(lC)

(id)



where all variables and constraint functions may be vectors. A tremendous

variety of applied problems,particularlyeconomic problems, can be viewed as

bi-level math programs. A Stackelberg duopoly or leader-followercontinuous

game (Chenand Cruz, 1972; Cruz, 1978; Papavassilopoulos,1981) can be viewed as

bi-level programming problems with the follower’sproblem correspondingto B1
and the leader’s problem correspondingto P1. Many applicationsare in economic

planningwhere the planner’sproblem is P1 and the economy respondsaccording to

B1. Related to this is the principal-agent problem where the principal (Pl )
tries to induce his agent (Bl) to act in the principal’sinterest. Outside the

economics literature,the max-min problem (Danskin,1966) is that of maximizing

the minimum of some functionand is thus a special case of bi-level programming.

Unfortunately,good solutionmethods for the bi-level problem are not

generally available. In fact, without significant restrictionson the sub-

problem, the overall problem may well be nonconvexand thus difficult to solve

for a global optimum.

The purpose of this paper is to provide a review of recent progress on
bi-level programming (through 1982). The review covers both applicationsand

algorithms. There has been a fair amount of work in both these areas with many

algorithms springing from the need to solve specificapplied problems. In the

next section we review applications,some of which have appeared explicitly in

the literature and others of which have only been suggested. This is followed

bya section on algorithmic developments in multi-level programming. Most

Soviet and Eastern European literature is not reviewed here (however, see

Findeisen,1982).

II. APPLICATIONSOF BI-LEVELPROGRAMMING

In this section we provide a fairly comprehensive review of past

applications of bi-levelmathematicalprogramming. The purpose of this section

is to demonstratethe wide applicabilityof bi-level programming and thus its

importanceas a problem in mathematicalprogramming. Unfortunately,because of

the variety of disciplines in which applications occur, we have undoubtedly

omitted some importantwork from our review.

The bulk of applicationsof bi-levelprogramming that have appeared in

the literature is in the economics realm, particularly central economic

planning. The typical situationis that there is a planner with some social ob-

jective and a set of policy instruments to use for controllingone (or more)

economic agents with differentobjectives.
2



In the context of the previously defined bi-level problem, the “policy

problem” (PI) is given by Eqn. (la-b),where the planner minimizes w(x,t) sub-

ject to the constraintsof Eqn. (lb). The planner can only effect his objective

by adjusting the vector t, which may be a set of taxes, quotas, or some other

instrument. The subordinate problem is given by Eqn. (lc-d) and, following

Candler and Townsley (1982),is termed the “behavioral”problem (Bl). Given a

vector of policies, t, the subordinateagent must optimize his objective s(x,t)

by adjusting the vector x. Obviously,whatever x is chosen in the subordinate

problem influencesthe planner’sobjective.

It is importantto realize the distinctionbet~een the bi-level problem

and the common decomposition of large planning problems into multi-level

problems (e.g.,Dantzig and Wolfe, 1961; Kornai and Liptak, 1965; Geoffrion,

1970). These methods are all concernedwith breaking down a large math program

into a number of smaller,more tractableunits. An important aspect of these

methods is a coincidence between the objectivesof the multiple levels and the

objectiveof the overall problem. The fact that the decomposed problem can be

written as a single convex programmingproblem distinguishesdecompositionfrom

the general problem consideredhere.

In the economics literature the subordinateproblem (Bl) often serves a

very specific purpose, i.e., that of a simulator of a market economy. It has

been known for some time that the operation of a portion of a competitive

economy can be simulated using mathematical programming (Samuelson, 1952;

Takayama and Judge, 1971). In short, in a market for a single good, if there.
are i = 1,..., I consumerseach consuming qi and j = 1,..., J producers each

producing ~j, then a market equilibrium can be associated with the solution.-

max I A J-A- X Jqi X Jqj
~s~ i=l o ‘i‘X)dx - j=l ~ ‘j(x)dx

(2a)

1. J. (2b)
3 x q. - z qj < 0

i=l 1 j=l —

(2C)

(2d)

3



where Pi(x) is the inverse demand function for consumer i and Sj(x) is the sup-

ply or marginal cost function for producer j. This suggests that very often the

subordinate problem (Bl) in bi-level math programs is a single math program

simulatingthe decentralizedmarket processesof a competitive economy.* The

effect of a per-unit tax on such an economy can be simulatedby subtractinga

term for tax payments from Eqn. (2a). A quota system applied in an economically

efficient manner can be simulated by adding appropriate constraintsto Eqn.

(2).** It is within this frameworkthat most economic applicationsof bi-level

mathematical programming occur: an overall social objective (the planning

problem) subject to equilibriumin a market economy (the behavioral problem)

with communication between the two levels through taxes, quotas, or some other

set of policy instruments.

In spirit, the bi-level problem has a long history in economics -- social

objectivesvs objectivesof individual economic agents. It is difficult to

identify the earliest treatment of bi-level problems. Stackelberg’s(1952)

leader-followerduopoly model is fundamentallya bi-level problem. The leader’s

problem is P1 and the follower’sproblem is B1. Marschak (1953)considersthe

problem of governmentalcontrol of a monopolistwith zero marginal costs facing

linear demand for a single good. The policy problem is that of the governmnt

choosing a per-unit tax on the monopolist’s output in order to optimizea

governmental objective. Two objectivesare considered. One is simply to maxi-

mize tax revenue. The other is to maximize output subject to a lower limit on

tax revenue.

The earliest explicit discussionin the economics literatureof bi-level

math programming appears to be Candler and Norton (1977a). They considera

numericalexample of a milk-producingmonopoly in the Netherlands,regulatedby

the government. The behavioral problem represents the objectives of the

x
The formulation of Eqn. (2) can obviouslybe nnde more complicated. The most
common extension is to introducemultiple products and the notion of space where
products are distinguished.
**
A quota is a restrictionon overall output from a particular sector of the

economy. Within an optimizationmodel of a competitiveeconomy, it would be rep-
resented as a constrainton aggregateoutput. In practice, the quota would have
to be translated to the firm level through a license system or some other
mechanism. For an aggregate constraintto realisticallyrepresent the action of
a quota, the licenses must be allocated to firms in an economicallyefficient
manner. This can be assured by allowing private trading of licenses among
firms.

4



monopoly that seeks to maximize revenue from sales of milk, butter, and cheeses.

The Dutch governmnt controlsa milk subsidyand duties on importedbutter. The

governrmt is assumed to have a composite objective consisting of consumer

prices, governmentoutlay (the less, the better),and farm income (the more, the

better).

Other applicationsof bi-level programminghave been suggestedby Candler

et al. (1981),principalIY in the area of development planning. They suggest

that the market problem be a model of a sector of a developingeconomy (suchas

the agriculturalsector), simulatingthe competitive interactions of economic

agents in that sector in response to a number of governmentalpolicies such as

price supportsor controls, taxes, subsidies,or productionquotas. The policy

problem can involve a variety of objectives includingemploymentgeneration,

economic growth, nutrition,or simply output. A specific problem examined by

Candler et al. (1981) is that of irrigationpolicy. The behavioralmodel is of

an agriculturalregion served by a single irrigation system. The behavioral

model simulates the decisionsof farmers as to how much water to use when sub-

ject to policies imposed by administratorsof the irrigation system. Farmers

are assumed to maximize profit given local prices. Policies consideredare (a)

system water allocationsto be distributedefficientlyamong the farmers and (b)

a cotton productionquota. Two objectivesare considered: (a) maximizationof

value-addedtax at internationalprices (as opposed to local prices) and (b)

maximization of employment. Although the data used in their analyseswere

hypothetical,the example illustratesa major area of application of bi-level

programming.

Candler and Norton (1977b) have utilized a previously developed large-

scale model of Mexican agriculture as the behavioral subproblem. For policy

objectives,they examine employment,farm income, corn and wheat production (all

to be maximized),and governnmtal expenses (to be minimized). Policy variables

used to influence the subprobleminclude subsidieson fertilizeruse, subsidies

on irrigation investment loans, support prices on wheat and corn, and water

taxes. The contributionof this work is not only in their realistic policy ap-

plication but also in their computational experience. Although they came up

with improved policies through bi-level optimization, they did discover some

nonconvexitiesin their overall problem which made it difficult for them to find

a global optimum (for som objectives). This has turned out to be a significant

problem in bi-level programming.

5



Fortuny-Amatand McCarl (1981)consider the problem of a fertilizer sup-

plier who monopolizes a specific region. Farmers in that region have an

inelasticdemand but can buy from distant sellers. Thus, the behavioralproblem

is that of the farmers’decision process. The behavioralproblem is complicated

by five variationson the basic product--fertilizer.These variations have to

do with whether or not fertilizerapplicationequipment is loanedwith the fer-

tilizer and whether or not prices are FOB the fertilizerplant or delivered to

the farm. The policy problem is that of the monopolistwho must decide how much

to charge for his product and product variationsin order to maximize monopoly

rent subject to constraintson availabilityof capital and labor.

Another set of problems in the area of environmental regulation has

motivated this author and apparently Wayne Bialas to research the questionof

bi-level programming. The problem is to drive polluters to efficient levels of

emissions through an emissions tax. The same tax (per unit of emissions)ap-

plies to many differentsources of pollution in a region even thougheach source

contributes in a different way to concentrationsof pollution in the environ-

ment, due to locational differences and transport of pollutants by the

environment. Thus the subproblem (Bl) simulates the market’s response to a tax

or set of taxes. The policy problem (PI) seeks to minimize real social costs

while meeting pollution concentrationstandards (constraints). This problemwas

encounteredby Bialas for the case of water pollutionand Kolstad (1982)

pollution.

A very differentproblemwas explored by Falk and McCormick (1982’

of a cooperative game. The problem is that of an imperfectcartel of

for air

: that

several

countries in ,theinternationalcoal market. Since in an imperfectcartel, side-

payments are not permitted, cartel objectives may not be to maximize joint

profits. Falk and McCormick utilize Nash’s solution to this bargainingproblem.

If Ui is the ith cartel member’s gain from joining the cartel (relativeto his

profit in a noncooperativesetting),then the Nash solution is to maximize ~ui,

the product of the Ui’s. Falk and McCormick formulate this as a bi-l~vel

problem, utilizinga very simple competitive model of coal trade as the sub-

problem B1. The upper-levelproblem (PI) is Nash’s product of individualgains

from cartelization,IIu.o Using a nunwical example with a two-member cartel,il

Falk and McCormick demonstrate that two relative maxima exist for the overall

problem, only one of which is a global maximum. Kolstad and Lasdon (1985) have

examined a similar problem in the sam market.

6



De Silva (1978) has examined the regulation of the oil industry in the

United States. The problem is to choose optimal price ceilings for oil dis-

covered before and after a base point in time. The subproblem (Bl) is that of a

profit-maximizing oil company faced with price ceilings. The policy problem

(PI) is that of the federal governmentchoosing price ceilings in order to mxi -
mize a composite objective, includingthe value of oil discoveredand produced

during the planningperiod.

Cassidy et al. (1971) analyze the problem of bi-level planningwhere
states (of the US) develop an optimal set of public works projects using money

from the federal government. The subproblem (Bl) is that of a state decidingon

a set of projectswhich maximize a linearwelfare function. The policy problem

(Pl ) is that of allocating resources to each state to optimizea Federal objec-

tive couched in terms of the equity of the resourceallocation.

There has been a variety of other research concernedwith topics closely

related to bi-level programming. In the early 1970s a series of articles

appeared concerningprograms involvingthe optimal value function of a secondary

math program (Brackenand McGill, 1973a, b, 1974a, b; Bracken et al., 1977).

All of the applications cited in these papers are in the area of warfare,

principallythe optimal structureand location of strategic nuclear forces--

submarines, bombers, and missiles. If the problem is couchedas a two-person

Stackelberg game, the subordinate problem (Bl) concerns one’s opponent’s

objective (i.e.,reducing one’s war-makingcapabilityand causing other damage)

while the upper-levelproblem (Pi) concerns one’s own objective (damage to your

opponent). For their example of bomber basing, your opponent’sgoal is to use

its submarinesto destroy as many of your bombers as possible (problem Bl).

Your problem is to determinea least-costbomber location pattern which assures

that a given number of bombers survive.

Applications in the area of dynamic Stickelberggames are more remotely

related to bi-level programming. Luh et al. (1982)propose constantly varying

time-of-daypricing for electric power. They propose the customeras the subor-

dinate agent respondingto prices and influenced by a variety of stochastic

variables such as the weather. The upper-leveldecision-makeris the electric

power producer who chooses a price at an instant in time so as to clear the

market in a least-costmanner.

The large literature on max-min problems is not considered here (see

e.9., Danskin, 1966). As will become apparent in the next section, the max-min

problem is a special case of a bi-levelmath program.

7



III . ALGORITHMICDEVELOPMENTS
Most of the applications reviewed in the previous sectionare accompanied

by algorithms for solving the particularproblem considered. At leasta dozen

differentalgorithmsappear in the literature,most of which will be discussed

in this section. There are three classes into which most algorithmsfall. One

class of algorithms is concernedexclusivelywith the linear bi-level problem.

These algorithmsare concernedwith efficientlymoving from one extreme point to

another until an optimum is found. Another set of algorithmsutilizes the Kuhn-

Tucker-Karush conditions of the subproblem as constraints on the overall

problem, thus turning the bi-level problem into a nonconvex single mathematical

program. A third set of algorithmsis based on various descent approachesfor

the policy problem with gradient informationfrom the subproblem acquired in a

variety of ways.

A. Extreme Point Search.

All of these methods are concernedwith

All of the algorithmsdiscussedin this section

level problem

(P3:)

PI). Consequently,we can write

min c+t + Cwx

purely linear bi-level problems.

ignore constraintson the upper-

the upper-levelproblemas

(3a)

(3b)

and the subproblem,implicitlydefining x (t), as

(3C)(B3:) min dxx
x

3 AXX ~ b - Att

X>() ,—

A basic result of Bialas and Karwan (1982) is uti

algorithms:

(3d)

(3e)

zed in most of these

Theorem 1 (Bialasand Karwan): Any solution to problem P3-B3 occurs at

an extreme point of the constraintset of problem B3.

The various algorithmsare concernedwith efficient searchesof these ex-

treme points. Three algorithms have been discussed in the 1

8
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algorithm due to Candler and Townsley (1982) is the most widely discussed,

principally because of the large number of papers on bi-level programmingof

which Candler is a coauthor. Other algorithms of this type are due to Bialas

and I(arwan(1982)and Papavassilopoulos(1982).

1. Candler-Townsley. The Candler-Townsleyalgorithm is describedin some depth

in Candler and Townsley (1982) and with more brevity in Bard and Falk (1982).

The algorithm focuses on the relationshipbetween P3-B3 and the followingLP:

(P4:) ~in ctt + c~;
X,t

(4a)

3 B ~ ~ b - Att (4b)

;>0 (4C)

t>() . (4d)

In P4, B is an “optimal”basis from Ax; i.e., B satisfiesoptimality conditions

for B3 (nonnegativereduced costs). In P4, the vector x has been restricted to

~, corresponding to the columns of Ax in B. Note that with B so defined, any
solutionof P4 is feasible for P3-B3 (i.e.,an optimal solution of B3 that is

feasible for P3). The algorithm thus involvesmoving from one such “optimal”

basis B to another, solving P4 each time. If one ensures that the objective of

P4 improves, and thus there is no cycling, then the following theoremassures

that P3-B3 will eventually be solved.

Theorem 2 (Candlerand Townsley): If there exists an optimal solution to

P3-B3 (t*,x*),then there exists a basis B* of AX with nonnegativereduced costs

with respect to B3 such that (t*,x*,B*)solves P4.

Thus their algorithm focuses on searching the bases of Ax until a solu-

tion of P3-B3 is found. We describe the process intuitivelysince the details

of the search process are quite elaborate. Given a feasible solution to P3-B3

(tfl,xR) and a corresponding“optimal”basis Bg, solve P4. The nonbasic columns
of A)(which have negative reduced costs (with respect to the objective function

of P4) are candidates for pivoting into a new basis; denote the set of these

columns by TR. Candler and Townsley prove that any basis B2+I which improves
the optimal value of P4 (and thus moves closer to an optimum of P3-B3) must con-

tain an element of each of the Tk, k = 1***.S t. They further define a

9



supplemental set of nonbasic columns of Ax so that one is guaranteedto find a

basis which is feasible for P4. Thus, one sequentiallychanges B in P4 and then

solves P4 until a solution to P3-B3 is found.

2. K-th Best Algorithm. Bialas and Karwan (1982) take a slightly different

approach focusing on the relationshipbetween P3-B3 and P5:

(P5:) min ctt+ Cxx
t,x

3 Ax x + Att < b

(5a)

(5b)

t,x > 0 . (5C)

Theorem 1 above indicates that a solution of P3-B3 will occur at an extreme

point of the constraintset of P5. The “K-th best” algorithm is an efficient

way of searching these extreme points. Suppose that the entire set of M extreme

points of the constraintset of P5 is enumeratedin ascendingorder of objective

function value [(il,;l), (t2,i2),...,(tM,2M)]; i●., Ct?i + Cx$ ~ C~2i+~ +
A

Cxxi+l“ We know one of the extreme points will solve P3-B3. The algorithm

moves sequentiallythrough these ordered extreme points until one is found which

is an optimal solution to B3. One seeks the index K* where

K* . min[is(l,o.o,M)l(~i,~i)solves B4] . (6)

Obviously the first of the sequence of extreme ~oi~ts canAbe f~und by

solving P5 directly. The mechanism for moving from (ti,xi)to (ti+~Sxi+l)‘s
straightforward. Define Ti = {(~,~k)lk ~ i}. DefineAWi = {(t,X)I<(t,~)CTi~s

such that (t,x) is an adjacent extreme point to (t,x)}. Let Vi =Wi~T~,

where T; is the complement of Ti. In other words, Wi is the set of extreme
&

points adjacent- to one of the previouslyexamined extreme points. The set Vi

is that set less the previouslyexaminedextreme points. It is easy to see that
A .

(t- ,xi+~) is the solution to min[cxx + cttl(x,t)di]. The algorithm ter-1+1
AA X,t

minates when (ti,xi) solves B3. Since this algorithm approaches the optimal

*
At an optimal
the basis each

solution,adjacent extrem points are obtained by pivoting into
of the non-basicvariables.

10



solution from a region of infeasibi1ity, the solutionwi11 be a global solution

even if P3-B3 is not convex.

3. Papavassi1opoul0s. In a recent paper, Papavassilopoulos(1982) presents

several algorithmsfor solving the linear bi-level program. Unfortunatelyit is

not clear whether any computationalexperiencewith these algorithmsexists. We

focus on the first of his algorithms.

As in the previous algorithmsa sequence of extreme points is generated,. .
each of which will be feasible*for P3-B3. For each extreme point (ti,xi)$the
next extreme point of the sequence is chosen by examiningall extreme points ad-.-.. A A
jacent to (ti,xi). An adjacent extreme point is chosen, (ti+l,xi+l),which (a)

strictlyreduces the objectiveof P3 while (b) maintaining optimality of B3.

Since this algorithm approaches the solution from a region of feasibility,

global optimality is not assured.

B. Kuhn-Tucker-KarushMethods.

A number of algorithms involve transforming the behavioral problem B1

into Kuhn-Tucker-Karush necessaryconditionsfor optimalityand then rewriting

P1-B1 as

(P7:) min w(x,t) (7a)
x,t,v

3f(x,t) :0

Vxs(x,t)+ ll”vxg(x,t)= o

(7b)

(7C)

M“g(x,t) = o (7d)

g(x,t) < 0 (7e)

(7f)

Problem P7 is of course equivalentto P1-B1 since any solution to P7 will

satisfy Eqns. (7c-f)and thus solve B1 (providing s is strictly quasi-convex

with respect to x and g is quasi-convexwith respect to x). The difficultyis

that the constraint set of P7 is not convex, principally because of Eqn. (7d).

%
For (t,x) to be feasible for P3-B3, (t,x)must solve B3 while t~O.
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Thus most conventionaldescent algorithmscannot be applied to P7. Also, if the

subproblemB1 is large, then the number of constraintsand variablesassociated

with the Kuhn-Tucker-Karushconditionswill be large. Thus these techniquesdo

not seem well-suited to problems involving large subproblems. The three

algorithms presentedbelow solve P7 in differentways. All algorithmsconsider
*

the case of linear Kuhn-Tucker-Karushconditionsfor the subproblem.

1. Bard and Falk. Bard and Falk (1982)consider the linear version of P7

for which the only problematicconstraintis Eqn. (7d). The core of their algo-

rithm is to rewrite P7 as a separable convex program; i.e., for xc Rn, all

functions can be written as

f(x) = : fj(xj) .
j=l

Introducingthe variables A (equalin dimensionto g), constraint (7d) is equiv-

alent to

Z[min(O,Ai)+ vi] = O
i

Ai +gi +lli =(), I/i

Ai>o,v. .— 1

(8a)

(8b)

(8c)

Although Eqn. (8a) is not a nice smooth function,it does have the separability

characteristicwhich Bard and Falk need to apply an existing algorithm for

separable nonconvex programs. The algorithm uses a branch-and-boundtechnique

and involvesa partitionof the feasibleregion. Computationaltests applied to

small problems have produced good results although computationsincreaserapidly

with the size of the constraintregion. Thus, the techniquemay be time consum-

ing when applied to problems involvinglarge subproblems.

2. Fortuny-Amatand McCarl. As did Bard and Falk, Fortuny-Amat and McCarl

(1981)focus on the complementaryslacknesscondition,Eqn. (7d). They examine

‘Bard (1983) has recently proposedan algorithm for solving the general problem
P7. His method involvesa grid search between estimated upper and lower bounds
on w(x,t) in Eqn. 7a.
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the case where P1 and Blare each quadraticprograms.* If we assume that each

objective function is convex, then if constraintEqr10(id) is ignored,problem
P7 is a convex program which can be easily solved. Introducing the variable ~

(with the same dimension as g) such that each ni is either O or 1, P7 can be
transformedinto

(P9:) min W(x,t) (9a)
X,t,ll

3 f(x,t) ~ o (9b)

Vxs(x,t) + Ll”vxg(x,t)= o (9C)

P < Mn— (9d)

– - M(l - n)g(x,t) > (9e)

g(x,t) < 0—

B>o

n. = O or 1 ,
1

where M is a fixed, large positive

and can be readily solved (since in

a global optimum. The Fortuny-Amat

(9f)

(9!3)

(9h)

number. For a fixed n, problem P9 is convex

our example s is quadraticand g linear) for

and McCarl algorithm uses a branch-and-bound

techniqueto enumerate the possibilitiesfor n, solving P9 at each iteration.

In commenting on their computational experience, the authors seem to suggest

that for large subproblems (i.e.,n of large dimension),their algorithm is not

very satisfactory.

3 ParametricComplementaryPivot. Problem P7 involves finding x, t, and vL
which optimizes the objective function,w (Eqn. 7a). Bialas and Karwan reformu-

late P7 as that of finding a feasible x, t, and v such that the objective is

less than some upper bound U. By solving the problem with successivelysmaller

upper bounds until no feasible solution can be found, a solution to P7 will ob-

viously be obtained.

*
A quadraticprogram

Thus the reformulatedproblem is

involvesa quadraticobjectiveand linear constraints.
13



(Plo:) Find x(a), t(a), ~(~)

~w(x,t) ~ a (lOa)

f(x,t):0 (lOb)

v S(x,t) + 1l’vxg(x,t)= o (1OC)x

P“g(x,t) = o (lOd)

g(x,t) < 0 (lOe)

U>cl. (lOf)

For fixed a, it is relatively easy to write P1O as the problem of finding

z > Cl 3F(z) > 0, <z,F(z)> = O, the complementarily problem (see Cottle and— —
Dantzig, 1974), for which algorithms are available. Although xand tare not

explicitlyrestrictedto be nonnegativein P1O, they can be easily written as

the difference between two nonnegativevariables. For convenience,assume t >

0. x > 0. Then P1O DIUS these restrictionson t and x can be written in com-.—

plementarityform as

(Pll:) <a - w(x,t) - v ~ O, v ~ O> = O

<- A - f(x,t) >0, A>o>=o

<X>o, t>o>=o— —

<t- X>(), X>o> =0

<-9(xst)~os ll>o>=o—

<- Vxs(x,t) -~-vg(x,t) >0, )(>()>=()
x

(ha)

(llb)

(llC)

(lld)

(he)

. (llf)

Equations (ha) and (llb) are restatements of Eqns. (lOa) and (lOb) where

“dummy”variables, v and A have been introducedto be consistentwith complemen-

14



tarity format. Equations (llc) and (lld) (with the dummyX) are complicated

ways of writing t > 0. Equations (he-f) correspondto Eqns. (lOc-f). Thus for

a given a, a solution to Pll (x,t,u,y,A,x) is feasible for P1O. The minimum a

for which Pll has a solution will yield the optimal solution to P7 and thus the

optimal solution to P1-B1.

Bialas and Karwan apparently only examine the linear version of P7 and

use their own algorithm to solve the resultingPll and to choose successive a.

They indicate that their algorithm has worked quite well for the small problem

they have examined.

c. Descent Methods.

The workhorsesof

where first derivative

nonlinearprogramminghave to be the descent methods

information is used to smoothly approach an optimum.

There are two probablereasons these methods have not been more widely used for

bi-level programming. One reason is the potentialfor multiple local optima.

Another, possiblymore fundamentalproblem, is the computation of derivatives

associated with the subproblemB1. Although techniques for computingderiva-

tives of solutionsto mathematicalprogramswith respect to parameters of those

programs have been known for some time (see Fiacco and McCormick, 1968), they

are not widely used.

Referring back to P1-B1, the basic approach is to apply one of the many

descent methods to P1. In Pl, x is viewed as a function of t, defined im-

plicitly by B1. Gradients of w and f can be computed if Vtx* is known. (Vtx*
reflects changes in the solution to Bl, x*, from infinitesimal changes in t.)

Of course x*(t) may not be uniquelydefined nor be differentiableat all t, and
Vtx* is unlikely to be Continuous These are potential problems-

1. Penalty/Barrier Function Methods. Shimizu and Aiyoshi (1981)propose

rewriting the subproblemB1 as an unconstrainedminimizationproblem through the

use of a barrier function. A solution to B1 can then satisfy a stationarity

conditionof this unconstrainedfunction.

Rewrite B1 as

(P12:) min{Pr(x,t)~ s(x,t) + r 41[g(x,t)ll , (12)
x
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where r > 0 and $ is continuous and becomes infinite for (x,t) outside the

feasible region. Thus if xr(t) solves P12, then under suitable conditions j~m

xr(t) solves B1. Assuming Pr is strictlyconvex in x, then necessaryand suffi-

cient conditionsfor a solution to P12 are the stationarityconditions

vxPr(x,t) = o ● (13)

If x is regarded as an implicit function of t, this can be solved for xr(t)

providingVxxPr is nonsingular. Furthermore,

Vxr(t) = - [v;xpr(x,t)]-lV;tPr(x,t) . (14)

Problem P1-B1 can now be rewrittenas

(P15:) min w(xr(t),t) (15a)
t

3 f[xr(t),tl: o , (15b)

where xr(t) and vxr(t) are given by Eqns. (13) and (14). Many methods are

available for solving P15 since derivativeinformationon xr(t) is available.

Shimizu and Aiyoshi (1981) show that if (xr,tr) solves P15 then lim(xr,tr)
r+o

solves P1-B1.

This method has been successfullyapplied to small problems. One dif-

ficulty not addressed by the authors is that only local solutionsare found

using this method.

2. Direct Gradient Methods. De Silva (1978) has utilizeda techniquein

which problem P1 is solved viewing x as a function of t. Given an estimate of

t, problem B1 is solved to give both x(t) and Vx(t). In contrast to the barrier

functionapproach of Shimizu and Aiyoshi (1981),in De Silva’s method x(t) can

be computed using any nonlinear programming technique and Vx(t) calculated

directly using methods developed by Fiacco (1976) for sensitivity analYsis.

Thus one moves from one t to the next in P15 using any nonlinearprogrammingal-

gorithm that uses first derivative information on w and f. Given a t, any

nonlinearprogrammingmethod can be used to find x(t) and thus Vx(t).

16



A more efficient descent algorithm,particularly appropriate for large

problems, has been developed by Kolstad and Lasdon (1985). They focus on the

computation of Vx(t). If B1 is very large, this can be very difficult to

compute. Following Murtagh and Saunders (1981),they partitionany solution

vector x*(t) of B1 into componentswhich are at bounds (nonbasic variables--x*). A-
and other components (basic and superbasicvariables--x*): X* ~ (x*,x*). If

strict complementaryslacknessis assumed, as t changes infinitesimally in Bl,
A

only x* will change; the X* will remain at their bounds. This structuringof

the problems greatly facilitatesthe computationof Vx*(t) since most components

are generallynonbasic.

3. Optimal Value Functions. A subclassof the P1-B1 problem has been ex-

amined by severalauthors

(P16:) min w($,t) (16a)
t

>f(+,t) & o , (16b)

where

f+(t)= min s(x,t)
x

39(x,t) ~ o .

(16c)

(16d)

Since +(t) is defined as the optimal value function of problem Bl, we know in

general that @ is convex (Mangasarianand Rosen, 1964). Thus, in many cases P16

is a strictlyconvex program which has a unique local optimum. Also, since $ is

scalar-valued,V+ is relativelyeasy to compute. Bracken and McGill (1974b)

solve such problems, computingVI$numerically. Geoffrionand Hogan (1972)ex-

amine a problem similar to P16 (actuallya problem with multiple subproblems),

focusing on calculating the directionalderivativesof $(t), since $(t) is not

everywheredifferentiableeven though it is usually continuous.
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