

:

Numerical Modeling of Insensitive High-Explosive Initiators

DO NOT CIRCULATE

PERMANENT RETENTION REQUIRED BY CONTRACT

.

This report was not edited by the Technical Information staff.

•

٠

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to 'any specific commercial product, process, or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorscment, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

> UNITED STATES DEPARTMENT OF ENERGY CONTRACT W-7405-ENG. 36

LA-8437-MS Informal Report UC-45 Issued: July 1980

Numerical Modeling of Insensitive High-Explosive Initiators

Charles L. Mader

NUMERICAL MODELING OF INSENSITIVE HIGH-EXPLOSIVE INITIATORS

Ъy

Charles L. Mader

ABSTRACT

The initiation of propagating detonation in PBX-9404, PBX-9502, and X0219 by hemispherical initiators of PBX-9404, 1.8 g/cm³TATB, and X0351 is described numerically, using the two-dimensional Lagrangian code 2DL and the Forest Fire rate to describe the heterogeneous explosive shock initia-tion process.

I. INTRODUCTION

The initiation of propagating, diverging detonation is usually accomplished by small conventional initiators; however, as the explosive to be initiated becomes more shock insensitive, the initiators must have larger diameters (>2.5 cm) to be effective.

Travis¹ has used the I^2C camera to examine the nature of the diverging detonation waves formed in PBX-9404 (94/3/3 HMX/nitrocellulose/Tris- β -chloroethyl phosphate), X0290 or PBX-9502 (95/5 TATB/Kel-F at 1.894 g/cm³), and X0219 (90/10 TATB/Kel F at 1.914 g/cm³) by hemispherical initiators. The geometries of the initiators were (1) a 6.35-mm-radius hemisphere of PBX-9407 (94/6 RDX/Exon at 1.61 g/cm³) surrounded by a 6.35-mm-thick hemisphere of PBX-9404, (2) a 6.35-mmradius hemisphere of 1.7-g/cm³ TATB surrounded by a 19.05-mm-thick hemisphere of 1.8-g/cm³ TATB, or (3) a 16-mm-radius hemisphere of X0351 (15/5/80 HMX/Kel-F/TATB at 1.89 g/cm³).

We have numerically examined systems with similar geometries by use of the hydrodynamic code $2DL^2$ and the Forest Fire rate² to describe the shock initiation process.

II. NUMERICAL MODELING

The two-dimensional reactive Lagrangian hydrodynamic code $2DL^2$ was used to describe the reactive fluid dynamics. The Forest Fire² description of heterogeneous shock initiation was used to describe the explosive burn. The HOM equation of state and Forest Fire rate constants for PBX-9502, PBX-9404, and X0219 were identical to those described in Ref. 2. The Pop plots are shown in Fig. 1

and the Forest Fire rates in Fig. 2. The BKW detonation product equation-of-state constants for X0351 and for 1.7- and $1.8-g/cm^3$ TATB are given in Tables I, II, and III.

The calculations were done in cylindrical geometry with Lucite confinement rather than the air confinement present in the experimental study. The Lucite confinement prevents the mesh distortion that can be fatal to Lagrangian calculations.

The central 6.35-mm region of the detonator is initially exploded, which initiates the remaining explosive in the detonator using a C-J volume burn. For any given mesh size and time step, the viscosity must be adjusted to give a peak pressure at the detonation front near the effective C-J pressure. The parameters used are as follows.

Calculation		Mesh Size	Time Step	Viscosity
Initiator	Acceptor	(cm)	(µs)	Coefficient
PBX-9407/PBX-9404	PBX-9404	0.05	0.02	4.0
PBX-9407/PBX-9404	PBX-9502	0.05	0.02	5.0
PBX-9407/PBX-9404	X0219	0.05	0.02	4.2
1.7 TATB/1.8 TATB	PBX-9502	0.1	0.02	5.0
X0351	PBX-9502	0.1	0.02	5.0

The pressure and mass fraction contours are shown for a PBX-9404 hemisphere initiating PBX-9404 in Fig. 3, PBX-9502 (X0290) in Fig. 4, and X0219 in Fig. 5. The experimental¹ and calculated position of the leading wave as a function of distance from the origin is shown in Fig. 6.

The burn can become unstable when it turns a corner. The instability is apparently numerical because it can be eliminated by using an average of nearby cell pressures for the Forest Fire burn rather than the individual cell pressure.

The pressure and mass fraction contours are shown in Fig. 7 for the 1.8- g/cm^3 TATB hemisphere initiating PBX-9502. Very little undecomposed explosive was observed experimentally, in agreement with the calculated results. The contours are shown in Fig. 8 for an X0351 hemisphere initiating PBX-9502. The experimental and calculated regions of partially decomposed PBX-9502 are shown in Fig. 9.

III. CONCLUSIONS

The initiation of propagating detonation in sensitive (PBX-9404) and insensitive (PBX-9502 and X0219) explosives by hemispherical initiators can be described numerically using the two-dimensional Lagrangian code 2DL and the Forest Fire rate. Large regions of partially decomposed explosive occur even when insensitive explosives are initiated by large initiators.

REFERENCES

- 1. James R. Travis, Los Alamos Scientific Laboratory, personal communication.
- 2. Charles L. Mader, <u>Numerical Modeling of Detonations</u> (University of California Press, Berkeley, 1979).

TABLE I

···

2

BKW EQUATION OF STATE FOR X0351

A FORTRAN BICH CALCULATION FOR THE EXPLOSIVE X0351 15/5/80 HMX/KELF/TATB

THE NUMBER OF ELEMENTS IS 6

3

۰.

THE NUMBER OF GAS SPECIES IS 10

THE NUMBER OF SOLID SPECIES IS 1

THE BIGH EQUATION OF STATE PARAMETERS ARE ALPHA= 5.000000000E-01 BETA= 9.5050000000E-02 THETA= 4.000000000E+02 KAPPA= 1.26847111054E+01

THE COMPOSITION OF THE EXPLOSIVE IS 6.9305000000E+00 HOLES OF C 7.30712000000E+00 MOLES OF H 7.3071200000E+00 MOLES OF N 7.3071200000E+00 MOLES OF 0 4.1541000000E-01 HOLES OF F 1.38470000000E-01 HOLES OF CL

THE DENSITY OF THE EXPLOSIVE IS 1.89000000000000000 GRAMS/CC

THE MOLECULAR HEIGHT IS 3.22620000000E+02 GRANS

THE HEAT OF FORMATION AT 0 DEG K 15 -2.9980000000E+04 CALORIES PER FORMULA WEIGHT

2

AI, A2, CI, C2, C3, ATOMIC HT THE SOLID (COHAN) EQUATION OF STATE PARAMETERS VO. AS. 85. CS. DS. ES.

SOL C 4.4444444444444444E-01 8.30935837268E-01 -1.39381809219E+00 6.72569716021E-01 -1.13537262508E-01 6.49155882007E-1 -2.267053+59+6E-01 1.20516569525E-01 8.3160000000E-02 -1.75590000000E-01 1.55310000000E-01 1.2010000000E+1

THE COMPUTED CU PRESSURE IS 2.94902491866E-01 MEGABARS

THE COMPUTED DETONATION VELOCITY IS 7.00963238225E-01 CH/MICROSECOND

THE COMPUTED CUITEMPERATURE IS 2.17522460605E+03 DEGREES KELVIN

THE COMPUTED CJ VOLUNE 3.93785857949E-01 CC/GH OF EXPLOSIVE

THE COMPUTED GAMMA 15 2.91013575853 +00

THE VOLUME OF THE GAS IS 1.17736419375E+01 CC/HOLE OF GAS AND THERE ARE 9.28201924192E+00 HOLES OF GAS

SOLID VOLUME IN CC/OH SOL C 2.98075852255E-01

ı ..

THE C-J COMPOSITION OF THE DETONATION PRODUCTS AND THE INPUT COEFFICIENTS TO THE THERMODYNAMIC FITS FOR EACH SPECIE

SPECIE	NO OF HOLES	COEFFICIENTS A.B.C.D	.E. THE INTEGRATION	CONSTANT, HEAT OF FOR	MATION IN CAL/MOLE.C	OVOLUME
ME	9.9.7756603616-03	4.00007100000E+01	1.144502000002-02	-2.2104300000E-06	1.68170500000E-10	0.
		1.17908+88281E+03	-6.4200000000E+04	3.8900000000E+02		
CEN	1 013905327895-01	5.5600860000E+01	3.56363+00000E-02	-6.8981720000E-06	5.16953400000E-10	Ο.
Cr 4		2.03728892709E+02	-2.1000000000E+05	1.3300000000E+03		
52	1.720054983535-08	4.6372490000E+01	1.3958250000E-02	-2.0047500000E-06	2.15033800000E-10	0.
		9.550700572925+02	0.	3.8700000000E+02		
120	T 64825197517E+00	4.2500420000E+01	1.480805000002-02	-2.63910100000E-06	1.92045300000E-10	0.
	5.0.000	1.3+282835158E+03	-5.7107000000E+04	2.5000000000000000000000000000000000000		
сц.	5 142550027345-05	2.9703+700000E+01	1.143829000000-02	-2.201222000005-06	1.67776100000E-10	Ο.
	31.1.200002,012,012,00	1.17500615305E+03	0.	1.000000000000000000000000000000000000		
60	6.873925203975-08	4.7030900000E+01	1.20714700000E-02	-2.50021700000E-06	1.90157000000E-10	0.
~		1.03537647300E+03	0.	3.500000000000000E+02		
5 02	1.82511983588E+00	4.7481120000E+01	1.9544630000E-02	-3.72129600000E-06	2.7703000000E-10	Ο.
C VL		7.462009807502+02	-9.3950000000E+04	6.000000000000000000		
0	8.62237904089E-03	4.5330820000E+01	50-30000018192.1	-2.4164030000E-06	1.92919100000E-10	Ο.
		1.12150030990E+03	-2.7201000000E+0+	3.9000000000E+02		
NH43	6.27898564309E-05	4,20181600000E+01	50-300000538116.1	-3.16433000000E-06	2.1978010000E-10	Ο.
		1.20696121615E+03	-9.3500000000E+03	4.7600000000E+02		
н	1.03040578311E-09	2.63911000000E+01	8.1213720000E-03	-1.6907400000E-06	1.31682300000E-10	0.
••		7.9+631617100E+02	5.1619000000E+04	7.5000000000E+01		
NO	5.79518662335E-06	4. #414980000E+01	1.2693860000E-02	-2.49460000000E-06	1.89321300000E-10	0.
		1.20924970573E+03	2.1477000000E+04	3.8600000000E+02		
N2	3.65352570748E+00	4.3923+000000E+01	50-30000106555.1	-2.3790050000E-06	1.79832200000E-10	Ο.
		1.1391613+096E+03	0.	3.0000000000000000		

··.)

TABLE I (cont)

x \$

.

			•			
OH	1.522633652396-09	4.2417920000E+01	1.1560+700000E-02	-2.22665900000-06	1.6891550000E-10	0.
		1.18351754427E+03	3.5600000000E+03	4.13000000000000+02		
CHE	1.002875893526-06	3.8756860000E+01	2.36401300000E-02	-3.70795700000E-06	2.47071400000E-10	0.
Q		1.042427911466+03	-1.50000000000E+04	5.2900000000000000		
COE 2	1 991167742695-08	5.67523300000E+01	2.67670700000E-02	-5.1359010000E-06	3.03331300000E-10	Ο.
	5.00530772022 00	5.64431820312E+02	-1.5000000000E+05	1.3300000000 0E+ 03		
	8 855222581W-04	4 29355400000E+01	1.18744000000E-02	-2.2964060000E-06	1.7278070000E-10	٥.
	J. OMELEOJA	1.173748596355 +03	-2.2000000000E+04	6.3700000000E+02	••••••••••	
CCI 14	T	5 79474800000E+01	3.94821400000E-02	-7.99415600000E-06	6.13624400000E-10	٥.
	3.433133003042 02	8 240 324 8958 35 +02	-2.5500000000E+04	2.0000000000E+03		
CL 3	3 800715203025-04	5 1121000000E+01	1 4 3955 300000E -02	-2.9639930000F-06	2.34987200000F-10	۵.
LLE	E. BSU/TSEUSUSE - UV	9.902229750005+02	0	9 56000000000000000000000000000000000000		• ·
		-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -	7 179955000005-03	-1 297550000000 -05	9 3499950000F-11	0
SOLU	4.961034031921400	-2 682047897225 +02	0	0	3.3.33335000002 11	•
		-C. 30C (4 303 3C 3C + 0C	v.	v .		

A BKH ISENTROPE THRU BKH CJ PRESSURE FOR X0351 15/5/80 HPX/KELF/TAT8

¥ ••

LNIF1+ -1.50936745306E+00 -2.63522252575E+00LNV 2.95403630537E-01LNV+2 5.64219266745E-02LNV+3 -7.56177447579E-02LNV+4 LNIE1+ -1.50936745306E+00 5.37076400366E-01LNP 9.34679417233E-02LNP+2 0.52247589110E-03LNP+3 3.32705575856E-04LNP+4

THE CONSTANT ADDED TO ENERGIES HAS 1.0000000000E-01

PRESSURE IMBARSI	VOLUME (CC/GH)	TEMPERATURE IDEG KI	ENERGY+C IMB-CC/GHI	GAMMA I-DLNP/DLNVI	PARTICLE VELOCITY
2.9+002+91066E-01	3.93785866126E-01	2.17522460605E+03	1.19945619785E-01	2.79413469663E+00	1.99727570059E-01
2.05361744306E-01	4.45013525165E-01	2.01819441310E+03	1.07290902121E-01	2.84220249271E+00	2.65965363707E-01
1.44453221014E-01	5.04033129955E-01	1.96222915690E+03	9.70949429620E-02	2.86338385077E+00	3.26547517015E-01
1.01117254710E-01	5.73643525149E-01	1.70872 380623E+ 03	9.96746825563E-02	2.859454636386+00	3.92553957561E-01
7.078207829706-02	6.50390017517E-01	1.58178021637E+03	9.21652941296E-02	2.03404345657E+00	4.30716402993E-01
4.95474548079E-02	7.37719874236E-01	1.46864184370E+03	7.69999210702E-02	2.79001317714E+00	4.73520607073E-01
3.468321836555-02	8.39412354433E-01	1.36410797937E+03	7.27703063997E-02	2.73186379277E+00	5.12304057693E-01
2.42782528559E-02	9.565273273256-01	1.26746612046E+03	6.93091592159E-02	2.65996759026E+00	5.47488879589E-01
1.69947769991E-02	1.09933118975E+00	1.17858211908E+03	6.64624777422E-02	2.57799559494E+00	5.79+66625035E-01
1.18953438994E-02	1.26592216028E+00	1.095+5001188E+03	6.40906059296E-02	2.490426124290+00	6.08507481241E-01
8.327440729575-03	1.464293705586+00	1.01811085298E+03	50-34518368124E-02	2.40200237414E+00	6.349603919862-01
5.92920051070E-03	1.70150705501E+00	9.45885943182E+02	6.046072200 09E-02	2.31071415076E+00	6.59118674130E-01
4.08044595749E-03	1.98524151552E+00	8.78179516689E+02	5.90717545333E-02	2.24771282885E+00	6.01250770140E-01
2.85512170245-03	2.32917+11173E+00	8.14482424576E+02	5.79010340097E-02	2.19737383639E+00	7.01639372893E-01
1 999418519175-03	2.74 348888897E+00	7.54353209114E+02	5.691112109196-02	2.17731978186E+00	7.20498337609E-01
1.39959296342E-03	3.24536935562E+00	6.974459584836+02	5.60716529140E-02	2.19941531059E+00	7.30044786219E-01

S

TABLE I (cont)

3.75250232023E-01	2.230244326155+03	1.25001787855E-01	2.76703806377E+00	Ο.
3.57413796840E-01	2.30271579971E+03	1.32291776777E-01	2.73464559454E+00	Ο.
3.40108368706E-01	2.35005902504E+03	1.39530582383E-01	2.69626373469E+00	0.
3.23122206209E-01	2.43732625221E+03	1.47703292999E-01	2.65070713010E+00	Ο.
3.05921355398E-01	2.51022360011E+03	1.57226623621E-01	2.59513951470E+00	Ο.
2.95597923825E-01	2.6029038+692E+03	1.70214693529E-01	2.51467004526E+00	Ο.
2.70075976505E-01	2.58440650788E+03	1.01507984082E-01	2.44026561179E+00	0.
2.57679360238E-01	2.75189522867E+03	1.91928120027E-01	2.371119998601E+00	0.
	3.75258232023E-01 3.57%137968%0E-01 3.%0108368708E-01 3.05921355398E-01 3.05921355398E-01 2.87587923825E-01 2.70075978505E-01 2.57679360238E-01	3.75298232023E-01 2.23824432615E+03 3.57413798840E-01 2.30271579971E+03 3.40100368705E-01 2.36805902504E+03 3.23122205209E-01 2.43732625221E+03 3.05921355398E-01 2.51022360011E+03 2.95587923825E-01 2.60290384692E+03 2.70075976505E-01 2.58440650788E+03 2.57679350238E-01 2.75199522867E+03	3.75258232023E-01 2.23824432615E+03 1.25801787955E-01 3.57413796840E-01 2.30271579971E+03 1.32291776777E-01 3.40100366706E-01 2.36805902504E+03 1.39530582303E-01 3.23122206209E-01 2.43732625221E+03 1.47703282999E-01 3.05921355398E-01 2.51022360011E+03 1.5722623621E-01 2.69587923825E-01 2.60290384692E+03 1.70214693529E-01 2.70075976505E-01 2.68440650788E+03 1.81507994082E-01 2.57679360238E-01 2.75199522867E+03 1.91928120027E-01	3.75298232023E-01 2.23824432615E+03 1.25901787955E-01 2.76703806377E+00 3.57413796840E-01 2.30271579971E+03 1.32291776777E-01 2.73464559454+00 3.40109368706E-01 2.36695902504E+03 1.32930562398E-01 2.696265373469E+00 3.23122206209E-01 2.43732625221E+03 1.47703292999E-01 2.65070713918E+00 3.05921355398E-01 2.51022360011E+03 1.57226623621E=01 2.59513951470E+00 2.9595398E-01 2.60290394692E+03 1.97228623621E=01 2.59513951470E+00 2.9595979238250-01 2.60290394692E+03 1.01507984082E=01 2.51467004526E+00 2.70075978505E-01 2.68440650798E+03 1.91928120027E=01 2.37111998601E+00 2.57679360238E-01 2.75189522967E+03 1.91928120027E=01 2.37111998601E+00

TABLE II

BKW EQUATION OF STATE FOR 1.7 g/cm³ TATB

* ¹

1.

A FORTRAN BICH CALCULATION FOR THE EXPLOSIVE TATIB TRIAMINO TRINITROBENZENE

THE NUMBER OF ELEMENTS IS 4

۲.

۰.

.

THE NUMBER OF GAS SPECIES IS 11

THE NUMBER OF SOLID SPECIES IS 1

THE DENSITY OF THE EXPLOSIVE IS 1.7000000000E+00. GRAMS/CC

THE HOLECULAR HEIGHT IS 2.5810000000E+02 GRAMS

THE HEAT OF FORMATION AT 0 DEG K IS -1.7000000000E+04 CALORIES PER FORMULA HEIGHT

THE SOLID (COMAN) EQUATION OF STATE PARAMETERS VO. AS. BS. CS. OS. ES. AI. A2. CI. C2. C3. ATOMIC HT

THE INPUT DETONATION PRODUCT ELEMENTAL COMPOSITION MATRIX

0.	5.0E+00	0.	1.0E+00	0.	5.0E+00	0.	Ο.	0.	Q.	0.	2.0E+00
1.0E+00	Ο.	Ο.	5.0E+00	1.0E+00	Ο.	Ο.	1.0E+CO	Ο.	3.0E+00	1.0E•00	Ο.
0.	1.0E+00	0.	0.	ο.	0.	1.0E+00	1.0E+00	Ο.	Ο.	5.0E+00	Ο.
0.	1.0E+00	Ο.	1.0E+00	1.0E+00	4.0E+00	0.	Ο.	1.0E+00	Ο.	Ο.	0.

TABLE II (cont)

THE COMPUTED CU PRESSURE IS 2.28936158051E-01 HEGABARS

THE COMPUTED DETONATION VELOCITY IS 7.24571592681E-01 CH/HICROSECOND

THE COMPUTED CUITEMPERATURE IS 2.35061526358E+03 DEGREES KELVIN

THE COMPUTED CU VOLUME 4.37348217576E-01 CC/GH OF EXPLOSIVE

THE COMPUTED GAMMA 15 2.89849639989E+00

THE VOLUME OF THE GAS IS 1.27224004502E+01 CC/MOLE OF GAS AND THERE ARE 7.51748535159E+00 MOLES OF GAS

SOLID VOLUME IN CC/GM SOL C 3.20240112536E-01

•

THE C-J COMPOSITION OF THE DETONATION PRODUCTS AND THE INPUT COEFFICIENTS TO THE THERMODYNAMIC FITS FOR EACH SPECIE

COCOLE	NO OF HOLES	COFFEICIENTS & B.C.D	.F. THE INTEGRATION	CONSTANT. HEAT OF FO	RMATION IN CAL/MOLE.	COVOI, UME
120	2 0060 10506076 +00	w 2588420000E+01	1.4808050000E-02	-2.6391 1100000E-06	1.92045300000E-10	0.
neu	2.330838383800072.000	1 342929351555+03	-5.7107000000E+04	2.500000000E+02		
H 2	2 756782807845-01	2 970 B+700000E+01	1 1939290000E-02	-2.201222200000E-06	1.67776100000E-10	Ο.
THE .		1 175008152555-01	0	B.000000000F+01	••••••••••	
02	1 597710970905-07	h 7030900000E+01	1 2971970000000-02	-2.50021700000E-06	1.9015700000E-10	Ο.
UE	1.303/100/3030-0/	1 035375478065+03	0	3.500000000E+02		
603	1	h 74911200000E+01	1 95445300005-02	-3 7212960000E-06	2.7703000000E - 10	0.
	1.483400000732.000	7 4628006897805-02	-9 3959000000000000	5.00000000000000		-
<u> </u>	CO- 34800000 C	h 5330620000E+01	1 2381610000E-02	-2 %16%030000E-06	1.H201010000F-10	Ο.
	3.232300322342 02	1 121500309000-01	-2.7201000000E+04	3.900000000E+02		
NR/T	2 LOG TALGENE 2F - No	N 20191500000E+01	1 9118820000E-02	-3.16433000000F-06	2.19780100000E-10	Ο.
1913		1 205051215155+03	-9 35000000000000000	% 7500000000F+02		
<u>ы</u>	0. 02201220577-00	2 6391100000000000	9 1213720000E-03	-1.6907900000E-05	1.31682300000E-10	Ο.
	3.0000100000000000000000000000000000000	7 945116171885+02	5 161900000000000	%.000000000E+01		
NO	1 410549252485-05	6 96169900000E+01	1 269 3060000 -02	-2 996000000E-06	1.89321300000E-10	0.
		1 200249705785+03	2 1977000000E+09	3.850000000E+02		
ND	2 999957990015+00	N 39236000000F+01	50-300000102551	-2.3790050000E-05	1.79832200000E-1G	Ο.
		1 139161848955+03	0.	3.80000000000000000		•
-	9 15733626096F-11	h 24179200000E+01	1 156897000000-02	-2.226659000000-06	1.6891550000E-10	0.
		1 197517544275+01	3 5600000000F+03	4.130000000E+02		•
C 144	9 979555177275-05	7 97569500000C+01	2 364013000000-02	-3 70795700000E-06	2.47071400000E-10	٥.
C	3.939003133C/L-00	1.062627911665403	-1 50000000000000000000	5.2900000000E+02		
501 C	1 19225193072F	-2 WEIBIO00000E-01	7 17995500000E-03	-1 29755000000E-06	9.34999500000E-11	٥.
302 0	******************************	-2 802012120000000-01	0	0		
		~C.JOCV73033C3C7UC	υ.	v.		

•. ÷

ω

TABLE II (cont)

. · ·

1

A BOOL ISENTROPE THRU BIOL CJ PRESSURE FOR TATU TRIAMINO TRINITROBENZENE

: •.

LNIPI= -3.72405229051E+00 -2.59179870077E+00LNV 2.37983807393E-01LNV+2 7.68379923544E-02LNV+3 -2.82219705138E-02LNV+4 LN(T)= 7.32059840736E+00 -4.79994593935E-01LNV 7.48972735099E-02LNV+2 6.69368777648E-03LNV+3 -5.580%5071334E-03LNV+4 LN(E)= -1.54467593100E+00 5.25610432064E-01LNP 9.29343272722E-02LNP+2 8.46907515126E-03LNP+3 3.10702193410E-04LNP+4

THE CONSTANT ADDED TO ENERGIES HAS 1.0000000000E-01

PRESSURE (HBARS)	VOLUME (CC/GH)	TEMPERATURE (DEG K)	ENERGY+C IMB-CC/GHI	GANNA I-DLNP/DLNVI	PARTICLE VELOCITY
2.20036150051E-01	4.37349239625E-01	2.35061526358E+03	1.17271 829353E -01	2.76391479619E+00	1.858588378398-01
1.60255310636E-01	4.94602940279E-01	2.10643207959E+03	1.06299637944E-01	2.77 324535879E+ 00	2.47241677227E-01
1.12178717995E-01	5.59814383498E-C1	2.03525606358E+03	9.753377665532-02	2.76830342293E+00	3.02656885521E-01
7.05251022114E-02	6.34919145171E-01	1.89604844811E+03	9.047776774626-02	2.74986239609E+00	3.52995005178E-01
5.49675715480E-02	7.22347390566E-01	1.76892239567E+03	0.47567771138E-02	2.71 933721709E+ 00	3.99933259310E-01
3.84773000836E-02	8.24748589080E-01	1.65061913106E+03	8.003401527532-02	2.6741414040 9E +00	4.40 83326 4 8 64E-01
2.693+1100565E-02	9.4574 2460083 E-01	1.54203200105E+03	7.61276546180E-02	2.61761 359957E+ 00	4.79125501010E-01
1.80530770410E-02	1.09971067978E+00	1.44251509954E+03	7.287 39745424 E-02	2.549277442432+00	5.14122266751E-01
1.31977139287E-02	1.26217026199E+00	1.35140107 379E+ 03	7.01462369293E-02	2.46990636795E+00	5.46107294150E-01
9.2 3839975 007E-03	1.47012201414E+00	1.26797542583E+03	6.78+50217163E-02	2.39061698550E+00	5.753+8867012E-01
6.46607902505E-03	1.72 304934005E+ 00	1.19236902591E+03	6.59090607360E-02	2.20276076021E+00	10-3808+5555150.6
4.52601507753E~03	2.03148329106E+00	1.12207377472E+03	6.42415114544E-02	2.17884389449E+00	6.26675054944E-01
3.1 6077 111427E-03	2.410 38262103E+0 0	1.05707252348E+03	6.20077690790E-02	2.0714 9997420E+ 00	6.49188603366E-01
2.21813977999E-03	2.87855914916E+00	9.966129921392+02	6.15678548175E-02	1.96430281865E+00	6.69927906418E-01
1.5526878+598E-03	3.45004956630E+00	9.39231469310E+02	6.04771835052E-02	1.86190226770E+00	6.89075817390E-01
1.000000+9220E-03	4.1 8593905700E+ 02	0.05913362311E+02	5.95364520343E-02	1.75912092591E+00	7.06949623373E-01
7.60821944537E-04	5.1001 5672073E+ 00	8.35206633817E+02	5.87088513355E-02	1.69264669738E+00	7.23713906783E-01
5.32575361176E-04	6.25617039096E+00	7.96615372537E+02	5.79764350515E-02	1.63999468507E+00	7.39575279391E-01
3.72002752023E-04	7.7 2572082 231E+00	7.39735276790E+02	5.7 3246 133144E-02	1.61997529129E+00	7.54726661463E-01
2.60961926976E~04	9.6026579+581E+00	6.94246612514E+02	5.67416627799E-02	1.64225781471E+00	7.69336525724E-01
1.82673348883E-04	1.20089233107E+01	6.4 98987970 40E+02	5.62182966980E-02	1.71816261805E+00	7.83528342324E+01
1.27871304218E~04	1.51012269927E+01	6.06493306232E+02	5.57472005569E-02	1.859+1525022E+00	7.97 34813 0003E-01
2.63278581758E-01	4.16714547039E-01	2.41870429518E+03	1.553322451556-01	2.75609090+68E+00	0.
3.0276000022E~01	3.96953772509E-01	5.48924220955E+03	1.27916621310E-01	2.74574490099E+00	0.
3.40103279375E-01	3.77964825746E-01	2. 56227970 +77E+03	1.34084038720E-01	2.73270574175E+00	0.
4.00410771292E-01	3.59636217278E-01	5.6390699935E+03	1.40930445198E-01	2.71673450621E+00	0.
4.60472386974E-01	3.41822332467E-01	2.71706198+2+E+03	1 4 9593475009E-01	2.69746574043E+00	0.
5.29543245020E-01	3.24282424381E-01	2.00020557457E+03	1.57251038336E-01	2.674 24676673E +00	Ο.
6.00079731773E-01	3.06414131852E-01	2.89095172364E+03	1.67412263324E-01	2.64 546897293E+ 00	0.
7.003209+1539E-01	2.85251130651E-01	3.00937809170E+03	1.01291040675E-01	2.60 33229296 4E+00	Ο.
8.05369082770E-01	2.69250475440E-01	3.11480166055E+03	1.93253763162E-01	2.56444740260E+00	Ο.
9.26174445185E-01	2.56597539725E-01	3.20322090236E+03	2.04175816091E-01	2.52959999422E+00	Ο.

•

TABLE III

BKW EQUATION OF STATE FOR 1.8 g/cm³ TATB

A FORTRAN BIGH CALCULATION FOR THE EXPLOSIVE TATE TRIANING TRINITROBENZENE

THE NUMBER OF ELEMENTS IS 4

THE NUMBER OF GAS SPECIES IS 11

THE NUMBER OF SOLID SPECIES IS

: ..

THE DENSITY OF THE EXPLOSIVE IS 1.800000000E+00. GRAMS/CC

THE HOLECULAR HEIGHT IS 2.5810000000E+02 GRAMS

THE HEAT OF FORMATION AT 0 DEG K IS -1.7000000000000000 +04 CALORIES PER FORMULA HEIGHT

THE SOLID (COMAN) EQUATION OF STATE PARAMETERS VO. AS. BS. CS. OS. ES. AI. A2. CI. C2. C3. ATOMIC WT

SOL C 4.44444444444444446-01 8.30935837268E-01 -1.39381809219E+00 6.72569716021E-01 -1.13537262508E-01 6.49155882007E+ -2.26705345948E-01 1.20516569525E-01 8.3160000000E-02 -1.75590000000E-01 1.55310000000E-01 1.2010000000E+

THE INPUT DETONATION PRODUCT ELEMENTAL COMPOSITION MATRIX

0 .	2.0E+00	Ο.	1.0E+00	0.	5.0E+00	Ο.	Ο.	Ο.	0.	0.	2.0E+00
1.0E+00	0.	0.	2.06+00	1.0E+00	Ο.	0.	1.0E+00	Ο.	3.0E+00	1.0E+00	0.
0.	1.0E+00	ō.	0.	0.	0.	1.0E+00	1.0E+00	Ο.	Ο.	5.0E+00	0.
0.	1.0E+00	0.	1.0E+00	1.0E+00	4.0E+00	0.	0.	1.0E+00	0.	0.	Ο.

·. Y

TABLE III (cont)

••* •

THE COMPUTED CU PRESSURE IS 2.62334113015E-01 HEGABARS

THE COMPUTED DETONATION VELOCITY IS 7.55551363678E-01 CM/MICROSECOND

THE COMPUTED CUITEMPERATURE IS 2.23925687971E+03 DEGREES KELVIN

THE COMPUTED CU VOLUME 4.137216325895-01 CC/GH OF EXPLOSIVE

THE COMPUTED GAMMA 15 2.91692922384E+00

THE VOLUME OF THE GAS IS 1.20051822376E+01 CC/MOLE OF GAS AND THERE ARE 7.50765517275E+00 MOLES OF GAS

SOLID VOLUME IN CC/GM SOL C 3.08622308022E-01

: .

THE C-J COMPOSITION OF THE DETONATION PRODUCTS AND THE INPUT COEFFICIENTS TO THE THERMODYNAMIC FITS FOR EACH SPECIE

	NO OF HOLES	COFFEICIENTS & B.C.D	.F. THE INTEGRATION	CONSTANT, HEAT OF FO	RMATION IN CAL/MOLE.	COVOLUME
JECHE	3 000016777175+00		1 48080500000F-02	-2.63919100000E-06	1.9204530000E-10	Ο.
HEU	2.990016/33130+00	1 242929261565+03	-5 7107000000E+04	2.50000000000000000	•	
		3 970 8-700000 -01	1 16 382900000E -02	-2-201222200005-06	1.67776100000E-10	0.
HC	1.044310303046-03	2.97094700000E*01	0	B 000000000000000000000000000000000000		
		1.1/309013303C*03	1 307167000005-02	-2 500217000005-05	1-90157000000F-10	0.
02	8.84284327133L-08	4.7030900000000000	1.28/14/000002-02	T 5000170000000 +02		
		1.033370473982+03	1. OF UNE 700000E - 02	-1 7212960000000-02	2 7703000000F-10	0.1
C05	1.495452488036+00	4./481120000E+01	1.93448300000E-0E	5 000000000 00		•
		7.46280908/500+02	-9.3968000000000000	B. 000000000000000000000000000000000000	1 92919100000F-10	n
CO	1.431063718732-02	4.5330920000E+01	1.2301610000000-02	-2.410403000002-00		0.
		1.12158830990E+03	-2. /201000000000000	3.9000000000000000000000000000000000000	2 102001000005-10	0
NH3	8.98085989069E-05	4.2010160000E+01	1.91166200000E-02	-5.164330000000000000	2.19/8010000E-10	υ.
		1.20696121615E+03	-9.3680000000E+03	4.760000000E+02		•
н	5.44860972415E-10	5.63911000000E+01	0.12137200000E-03	-1.6907400000E-06	1.31085300000E-10	υ.
		7.94631617199E+02	5.1619000000E+04	4.0000000000E+01		
NO	7.47633553468E-06	4.84149800000E+01	1.26939600000E-02	-2.49460000000E-06	1.89321300000E-10	0.
		1.20924970573E+03	2.1477000000E+04	3.86000000000000		_ i
N2	2.99995135753E+00	4.3923400000E+01	1.22250100000E-02	-2.3790050000E-06	1.79832200000E-10	0.
		1.13916134896E+03	0.	3.8000000000E+02		
OH	3.855801453256-10	4.2417920000E+01	1.15684700000E-02	-2.22665900000E-06	1.69915500000E-10	C.
		1.18351754427E+03	3.5600000000E+03	4.1300000000E+02		
CH R +	2.018471973998-06	3.87568600000E+01	2.36401300000E-02	-3.70795700000E-06	2.47071400000E-10	Ο.
		1.04242791146E+03	-1.5000000000E+04	5.2900000000E+02		
SOL C	4.49225485629E+00	-2.46151900000E-01	7.17985500000E-03	-1.29755000000E-06	9, 34999500000E - 11	Ο.
		-2.5620+389323E+02	0.	0.		

.

A BICH ISENTROPE THRU BICH CJ PRESSURE FOR TATO TRIANINO TRINITROBENZENE

LNIPI# -3.77999581511E+00	-2.64275097989E+00LNV	2.37019602784E-01LNV+2	8.26760800509E+02LNV+3 -3.05845127183E+02LN++4
LNITI+ 7.23117772892E+00	-5.00269717709E-01LNV	6.49199742507E-02LNV*2	0.23572478691E-03LNV*3 -6.18626956109E-03LNV*4
LN(E)= -1. 566 12716340E+00	5.36464548171E-01LNP	9.60475159250E-02LNP+2	0.75007889874E-03LNP+3 3.18881552649E 04_NP+4

THE CONSTANT ADDED TO ENERGIES HAS 1.00000000000-01

	VOLUME (CC/GM)	TEMPERATURE (DEG K)	ENERGY+C IMB-CC+GMI	GAMMA I DENP/DENVI	PARTICLE VELOCITY
2 627341130195-01	4.13721632022E-01	2.23925687971E+03	1.18604008912E-01	2.78382666451E+00	1.928934326986-01
1 93633979111F-01	4.67270067662E-01	2.0 932622 4720E+03	1.06830195741E-01	5 802222192822195 500 500 500 500 500 500 500 500 500 5	2.56407444926E-01
1 2004 2715 2705 - 01	5 277595399795-01	1.93983156137E+03	9.75224827148E-02	2.01246761957E+00	3.13470294135E-01
	5 95996159020E-01	1.80528161225E+03	9.007800935426-02	2.80450 986945E+ 00	3.65113677037E-01
6 2006h206260C-02	6 76709226114F-01	1.68192648660E+03	0.40630055771E-02	2.7 8275986547E+00	4.12056210534E-01
0. E300 VE03300E - 02	7 597510191778-01	1.56906191759E+03	7.91009071451E-02	2.74761976910E+00	4.54869397880E-0;
7.0007356065200-02	9 788455502185-01	1.46380958098E+03	7.51471355274E-02	2.69957098556E+00	4.93863494742E-01
3, UUS33VOUDEEE=0E	1 007791099105+00	1.36691350862E+03	7.18101170564E-02	2.63906107153£+00	5.29429966825E-01
2.100434224332-02	1 16118263085.00	1.27771125741E+03	6.90315896525E-02	2.56670034296E+00	5.61962374673E-01
1.512303057052-02	1 700027112026+00	1 195512605296+03	6.67040421688E-02	2.40371621035E+00	5.91432626710E-01
	1.544837778512+00	1 11959789394F+03	6.47429611554E-02	2.39126115496E+00	6.18599015293E-01
7.410209309522-03	1.02207224205510	1 049247724145+03	6.308145849955-02	2.29131419031E+00	6.43009903543E-01
5.18/2025/20/2-03	1.033972243932*00	0.01770010445E+02	6 16662788324E-02	2.186386288965+00	6.65499197664E-01
3.631041000072-03	2.160273300362×00	0. 205227000265+02	5 045474045965-02	2.07968814078E+00	6.86099059001E-01
2.54172926061E-03	2.339630084862400	9,223227050202°02	5 941236359465-02	1.97519390266E+00	7.05030922931E-01
1.779210402426-03	5. (300 1 30 3 / 302 + 00	0.043630647336*06	5.951109973955-02	1.877689901286+00	7.22511913005E-01
1.24544733770E-03	5.65/6999933£+00	7 8050 200 26005 + 02	5 772797697195-02	1.79292509515£+00	7.38752741220E-01
9.71813136300E-04	4.411000909.94E+00		5.704426416615-02	1 727169372586+00	7.539549263886-01
6.10269195472E-04	5.3506725222.400	7.09200414176E+02	5.7044E047051C 0C	1 699263324555+00	7,68306211363E-01
4.27100430030E-04	6.52757571039E+00	0.010/2300010E*02	5.644407220512 UC	1 694619486496+00	7.81973064965E-01
2.99031905781E-04	8.00730115144E+00	6.13004402100L+U2	5.551005071546-00	1 725607239275+00	7.95088003519E-01
5.0 335533 4047E-04	9.07200543042E+00	5.715525602258.*02	5.54505510340E-02	1.021170530000+00	8.07729645604E-01
1.46525633833E-04	1.22278225843E+01	5.280246004 / /2 +02	2.30391310E30E-0E	1 001270021935.00	A 19995-99795E-01
1.025679 +3683 E-04	1.51978430966L+01	4.836/61/9181E+U2	5.40/33203208C-02	3 770-0-276555+00	0
3.0160+229966E-01	3.94295071984E-01	2.30365042342E+03	1.2406/8095192-01	2.770484278032276400	0
3.46030064463E-01	3.75605315680E-01	2.37019400969E+03	1.301164586256-01	2.7342448013.2*00	0
3.9897739+132E-01	3.57540112911E-01	2.43995474946E+03	1.35840382448E-01	2.734830822392+00	0.
4.50024003252E-01	3.39952221161E-01	2.51029269+70E+03	1.44369473120E-01	2.711015941652.00	0.
5.27647603740E-01	3.22509145147E-01	2.50509996799E+03	1.52919296885E-01	2.684421813/0E+00	0.
6.06794744301E-01	3.04779481884E-01	5.66644130089E+03	1.63012354920E-01	5.02005340130E+00	U.
6.978139559+6E-01	2.83344130491E-01	2.77 391244805E+ 03	1.77011367482E-01	2.600745818916+00	U.
0.02485049338E-01	5.0011004005E-01	2.86315306446E+03	1.88369169615E-01	2.557922531286 •00	<u> </u>
9.22959956739E-01	2.55712699491E-01	2.93928735384E+03	1.99033077400E+01	2.51769040143£+30	ι.

··. 🍾

12

-

: ..

.:

:..

٠.

Fig. 2 The Forest Fire decomposition rates as a function of shock pressure.

:.

٠,

٠.

The pressure and mass fraction contours at various times for a hemispherical initiator of 6.35-mm-radius PBX-9407 surrounded by 6.35 mm of PBX-9404 initiating PBX-9404. The pressure contour interval is 50 kbar and the mass fraction contour is 0.1.

Fig. 3. (cont)

16

•.

٠.

:.

÷

.:

The pressure and mass fraction contours at various times for a hemispherical initiator of 6.35-mm-radius PBX-9407 surrounded by 6.35 mm of PBX-9404 initiating PBX-9502 (X0290). The pressure contour interval is 50 kbar and the mass fraction contour is 0.1.

·

:.

•.

٠.

Fig. 4. (cont)

...

The pressure and mass fraction contours at various times for a hemispherical initiator of 6.35-mm-radius PBX-9407 surrounded by 6.35 mm of PBX-9404 initiating X0219. The pressure contour interval is 50 kbar and the mass fraction contour is 0.1.

:..

~

۰.

.:

•__

Fig. 6.

The experimental and calculated position of the leading wave from the top of the explosive block as a function of the distance of the leading front of the wave from the origin.

:..

٠.

The pressure and mass fraction contours at various times for a hemispherical initiator of 6.35-mm-radius TATB at 1.7 g/cm³ surrounded by 19.05 mm of TATB at 1.8 g/cm³ initiating PBX-9502. The pressure contour interval is 50 kbar and the mass fraction contour is 0.1.

.:

· ---

Fig. 8.

The pressure and mass fraction contours at various times for a hemispherical initiator of 16-mm-radius X0351 initiating PBX-9502. The pressure contour interval is 50 kbar and the mass fraction contour is 0.1.

:.

5

:

•_

Fig. 8. (cont)

.:

æ

•

۰.

...

Fig. 9. The calculated and experimental region of partially decomposed PBX-9502 when initiated by an X0351 initiator.

Printed in the United States of America. Available from National Technical Information Service US Department of Commerce 5285 Port Royal Road Springfield, VA 22161

•

Microfiche \$3.00

001-025	4.00	126-150	7.25	251-275	10.75	376-400	13.00	501-525	13.23
026-050	4.50	151-175	8.00	276-300	11.00	401-425	13.25	526-550	15.50
051-075	5.25	176-200	9.00	301-325	11.75	426-450	14.00	551-575	16.25
076-100	6.00	201-225	9.25	326-350	12.00	451-475	14.50	576-600	16.50
101-125	6.50	226-250	9.50	351-375	12.50	476-500	15 00	601-up	

Note: Add \$2,50 for each additional 100-page increment from 601 pages up.

....

•#

•

.

. .

| # u

1

•

•.

.

.