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THE APPLICATION OF ARTIFICIAL INTELLIGENCE TECHNIQUES
TO THE ACCELERATION OF MONTE CARLO TRANSPORT CALCULATIONS

by

J. L. Macdonald
E. D. Cashwell

ABSTRACT

The techniques of learning theory and
pattern recognition are used to learn splitting
surface locations for the Monte Carlo neutron
transport code MCN. A study is performed to
determine default values for several pattern
recognition and learning parameters. The
modified MCN code is used to reduce computer
cost for several non-trivial example problems.

I. INTRODUCTION

The objective of this research is to apply the artificial intelligence

techniques of learning theoryl and pattern recognitionl’2 to a general-purpose

Monte Carlo particle transport code. Together the techniques are used to reduce

computer cost by learning suitable locations for splitting surfaces, a function

usually considered to require human intuition and experience.

The purpose of this introductory section is to describe the problems en-

countered with Monte Carlo computer cost reduction, explain what is meant by an

~~artificialintelligence” approach, and summarize the remainder of this report.

A. Computer Cost Reduction of Monte Carlo Calculations

The Monte Carlo method has been used since the early 1940s3 for the solu-

tion of particle transport problems. In the past it has gained a reputation of

being computationally expensive and “a method of last resort.’’” However, with

the increasing speed of computers and the increasing demand for more exact three-

dimensional transport calculations, the method is becoming more attractive and

has become a commonpl~e tool for the solution of particle transport problems.

1



Regardless of the speed of a computer calculation, there will always be a

demand for acceleration. This is due not only to the desire for reducing

computer costs, but also to the fact that problems previously considered un-

solvable can be solved. There is certainly no shortage of techniques for reduc-

ing the computer time of Monte Carlo calculations (see Bibliography of Ref. 5).

However, when one looks at the techniques routinely used, the number is small.

This is primarily for the following reasons:

(1)

(2)

(3)

(4)

Many techniques are developed and demonstrated for very simple problems.

When one tries to apply such a technique to “real world” problems, complica-

tions arise which cause the technique to lose its effectiveness.

Some techniques are designed primarily to reduce the variance of a calcula-

tion. Although they may be quite successful in this respect, they may

reduce computer costs only slightly.

A technique may not be used because it is too difficult to use or too easy

to misuse. Techniques with this drawback usually require quantitative input

by the user for which he has no intuition. If the right values are used,

appreciable savings can result. However, if the wrong values are selected,

not only can computer cost reduction be negligible, but the technique may

bias the results.

Another drawback of a technique may be its range of application. Although

the technique may not have any of the previous drawbacks, it may apply to

so few problems that its overall impact is small.

One of the easiest ways to reduce computer costs is to select an efficient

estimator. Point detectors and track length talliess can save large amounts of

computer time with little user input.

Once a suitable estimator has been chosen, the computer cost reduction

problem usually consists of directing particles into that region of state space

(phase space) which must be sampled adequately before a reasonable error can be

obtained. One of the oldest and most popular techniques for doing this is

geometry splitting accompanied by Russian roulette (see Sec. 11.A). Although

quite effective, geometry splitting does have the disadvantage of being limited

to the geometric regions of the problem. In addition, it requires that the user

provide quantitative values for the importance of cells.

B. The Artificial Intelligence Approach

n

.

1-

.

The first phase of this research consists of generalizing geometry split-

ting to include all state space variables in any combination or functional form

2



desired by the user. The practical problem of where to locate the splitting

surfaces is the main topic of this research.

One solution to this problem is to solve the adjoint transport problem for

the importances. Although satisfactory for some problems, this approach is not

only more complicated than a single forward calculation but it can, for some

problems, result in a net increase in computer costs.

If the user could use all the information generated during a calculation,

he would greatly increase his chances of selecting suitable splitting surfaces.

He would recognize from which regions of state space tally contributions were

coming from, allowing him to make quantitative decisions on where to locate

splitting surfaces. However, since Monte Carlo calculations are not generally

run interactively, the user is not aware of this.information.

The artificial intelligence approach consists of replacing the human user

by a system which learns the surface locations by using the same information the

user would. Such a system consists of a pattern recognition scheme with a

controller for monitoring the learning. With such a heuristic approach to a

problem, there is no mathematical analysis and thus no proof of computer costs

reduction. This should not alarm the user since such proofs are rarely if ever

found for the general Monte Carlo problem even when using the most rigorously

derived techniques.

c. Guide to this Report

Section 11 of this report describes the theory of splitting, pattern

recognition, and evaluation of computer costs. For more detailed information on

these topics the reader is referred to Ref. 6.

Before a technique can be realistically evaluated, it must be implemented

in a multipurpose code. Only then do the practical problems of its application

become apparent. The neutron transport code MCN7 was chosen for this research.

Section III describes the modifications necessary to use state space splitting

and pattern recognition. This section is oriented towards the reader who is

interested in the actual mechanics of the techniques and can be skipped by the

casual reader.

In the development of the pattern recognition and learning control systems,

many parameters arise whose values are undetermined for the general problem. In

Sec. IV, a sensitivity study is performed for these parameters and default

values are selected.



The use of the technique is demonstrated in Sec. V using a non-trivial

Monte Carlo problem and the parameter values found in Sec. IV.

Finally, Sec. VI summarizes the results and presents some recommendations

for further use and improvements.

II. THEORY

The goal of this research is to use pattern recognition techniques to learn

splitting surfaces in a Monte Carlo calculation and to determine the computer

savings of such a system. The purpose of this section is to explain the three

phenomena mentioned above, i.e., (1) splitting in a Monte Carlo calculation,

(2) pattern recognition, and (3) computer savings. These subjects will be

described to the extent necessary to understand this research. In the descrip-

tion of splitting, it is assumed that the reader has some familiarity with the

Monte Carlo process as used for particle transport. If this is not the case, the

reader is referred to Ref. 5. No knowledge of pattern recognition is assumed;

however, if more information is desired, there are several texts available on

pattern recognition.1~2$8’g$10 The notation used in this section is summarized

in Appendix B.

A. Splitting in a Monte Carlo Calculation

This section describes the processes of splitting and Russian roulette,

both as they are now used in LASL Monte Carlo codesll and as they are used for

state space splitting. No attempt will be made in this report to describe why

splitting works. This information can be found in Ref. S. Instead, emphasis

will be placed on describing how these functions are performed.

1. Geometry and Energy Splitting. Geometry splitting, accompanied by

Russian roulette, is one of the most commonly used variance reduction techniques.

It consists of dividing the geometry of the problem into regions and assigning

an importance to each region. This “importance” is selected so that particles

in a region of high importance have a higher probability of contributing to a

Monte Carlo tally. A particle of weight wt going from a region of low impor-

tance In to one of greater importance In+l is split at the boundary between the

regions into In+l/In particles, each of weight wt(In/In+l). (The weight of a

particle represents a fraction of a particle, which may be greater or less than

1.) A particle leaving a region of importance In and entering a region of

lesser importance In+l survives with probability In+l/In and weight wt(In/In+l).

4



Figure 11.1 shows an example of splitting planes and importance regions

used with a semi-infinite slab of thickness T. For problems in which T is many

mean free paths, splitting a Russian roulette can be very effective and can lead

to several orders of magnitude reduction in computer time.

9 Splitting and Russian roulette can also be used in “energy space” for

problems in which particular energy regions are more important than others.” An

. example of energy splitting is the tallying (or editing) of U235 thermal fission.

In this case, one would separate energy space into regions which increase in

importance as thermal energies are approached as shown in Fig. 11.2. Particles

are split when they lose energy and cross an energy splitting surface. In the

LASL Monte Carlo codes, particles do not undergo Russian roulette because of an

increase in energy (due to upscattering, fission, etc.).

The popularity of the above techniques can be attributed primarily to the

ease of their implementation. In most cases a guess based on intuition will

lead to a large savings in computer time. Usually the importance regions

specified are already geometrically defined by the problem (different materials,

densities, and shapes) and the user only has to provide the importances.

One problem with these techniques is that they require an educated guess

on the part of the user as to where splitting surfaces should be located.

Although rough guesses help, several “trial and error” Monte Carlo runs are

required if any optimization is to be attempted. Another problem is that these

techniques allow the user to discriminate in energy and spatial coordinates

only. Time and directional variables are not used. Furthermore the energy and

spatial variables are considered only in an independent manner.

2. State Space Splitting. Consider the general Monte Carlo problem in

which particles are characterized by the following state variables:

(a) Spatial coordinates - x, Y,

(b) Angular coordinates - u, v,

the particle line-of-flight

(c) Energy - E
.

(d) Time - t.

and z

and w, where these values are the cosines of

with the x, y, and z axes, respectively

In state space splitting, all variables can be used to determine which
*

regions in state space are more important than others. A practical problem

arises in determining the importances of these state space regions. Users have

enough difficulty with the three spatial coordinates and energy; the complexity
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Fig. 11.1. Geometry Splitting
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Fig. 11.2. Energy Splitting

.

.

.

.

6



involved in determining splitting surfaces in eight (seven independent.)dimen-

sions would certainly confuse even the most experienced user.

A point in state space can be identified by the eight-component vector

h!
x

Y

z

u
X=v—

w

E

t

(11.1)

Seven components would be sufficient since only two of the three direction-

al variables are independent (i.e., U2 + V2 + W2 = 1). In order to split, one

must know to which importance region ~ belongs. This problem can be simplified

somewhat if state space is first transformed to a more efficient space. The

resulting space is termed feature space2 where each component of feature space

consists of a function of state space variables. A point in feature space is

represented by the feature vector

F =—

fl(x,y,z,u,v,w,E,t)

f2(x,y,z,u,v,w,E,t)

.

[

.

.

fR(x,y,z,u,v,w,E,t)

(11.2)

The transformation of state space into feature space is beneficial for several

reasons:

(a) State space variables which are not important in a problem can be eliminat-

ed.

(b) Functions of state space are often easier to relate to an importance region.

For example, the distance from a neutron located at (x,Y,z) to a tally

located at (x*,Y*,z*) is given by

7



f. J(=d= X- ~*)2
1 + (Y - Y*)2 + (z - Z*)2 ●

(c)

(d)

(e)

As a result of (a) and (b), the dimensionality of feature space R can be

made less than seven.

Feature space allows the normalization of state space. Thus variables with

different units (time in seconds, energy in MeV, distance

different ranges can be normalized.

A surface which may have to be represented by a quadratic

often be linearized in feature space.

The problem then is the following: given a vector X and—

in cm) and

in state space can

transforming it to

vector ~, find to which importance region F belongs. This problem is solved by—

the introduction of “discriminant functions.”2 A discriminant function g is

defined so that two regions in feature space are separated by the surface

(11.3)E@sf2, ... fR) = o.

In Monte Carlo problems, feature space is arranged so that for Nc regions of

importance, there will be Nc - 1 discriminant functions separating the regions.

In this research, only linear discriminant functions will be considered, so that

where

F*
— 11

‘1

‘2
.

=0 and

.

‘R
1

w=— . . .

(11.4)

‘R+11. (11.5)

The vector ~ is called the weight vector2 and can be learned by a pattern

recognition system or supplied by the user. The vector E* is referred to as the

augmented feature vector.

.

.

.

.
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If the importance regions or “classes” of feature space are ordered such

that 1 is the least important and Nc is the most important and, for a fixed i on

the range 1 ~ i< N= - 1, if

gi(~’) > 0S

where gi is the discriminant function between regions i and i + 1, F* must belong—

to some class j, where Nc> j > i + 1. Similarly, if

gi(~’) < 0>

F* must belong to a class j, where 1 < j < i. By substituting F* into the g.— — 1’
the class of F* can be identified.—

In this research, the importances of classes 1,2, ... Nc are given the
N -1

values 1,2,22, .... 2 c . When a particle undergoes a collision or intersects

a surface in a Monte Carlo problem it goes from one point in state space to

another. Consequently, it goes from one F~ in feature space to another, F++1”

Using the above procedure for identifying the classes to which I& and F&+l

belong, the importance ratio

I
A

n+1
n,n+l ‘~’

(11.6)

where In is the importance of the region to which ~ belongs, can be calculated.

This ratio is used as follows:

if A = 1, particle is transported unchanged
n,n+l

if An n+l < 1, particle undergoes Russian roulette and
9

is killed with probability (l-An n+l)

if A
n,n+l

> 1, particle is split into An n+l’particles.
Y

In this research, the selection of a functional form for the features is a human

task with the following constraints:

(a) All features must be normalized between O and 1

(b) Features must be oriented such that as the feature increases from O to 1,

.
9



the importance of feature space increases. This results in the most

important point of feature space being located at (1 ... 1) and the least

important point at (O ... O).

The weight vectors Ii, i = 1, .... Nc - 1, for the N - 1 discriminant functionsc
can be supplied by pattern recognition or by the user.

In summary, as a particle in a Monte-Carlo calculation travels through

state space it enters regions of different importance. The ratios of these

importances will decide whether the particle should undergo splitting, Russian

roulette, or continue unchanged.

B. Pattern Recognition

The purpose of this section is to describe a pattern recognition system

suitable for learning state space splitting surfaces.

Before anything can be learned, a pattern recognition system must be

provided with information from a ‘Iteacher.l’Such information consists of a

series of “prototypes.”2

As was mentioned in the previous section, it is the weight vector W that—

is learned. This learning will take place by using prototypes and a suitable

pattern classification algorithm.

In addition to prototypes and classification algorithms, the learning

system must be able to coordinate the learning of several surfaces at once,

determine when a surface has been learned adequately, and when a surface should

be used for splitting. These functions are performed by a control system.

10 Prototypes. A prototype consists of a state space vector ~ (or the

corresponding feature vector ~) and the known classification of ~ (or F_). These

prototypes are used in the learning process as shown in Fig. 11.3. The vector

w. is the weight vector of the i’th discriminant function after the j?th
—l,j
iteration (each prototype produces an iteration).

Prototypes are extracted from the calculation in the following manner:

(1) At the j’th collision or surface intersection a feature vector, ~j, is

generated and stored. The weight of the particle wt., and its tally weight
J

contribution t., are aiso stored. The tj is given by
J

.

.

.

.B

t. =
x ‘b

“ wt. “6
J J b,j ‘

b=l

10

(11.7)



Initial
!A!i,j

v

Receive
Prototype

4

1

Determine Class
According to
Present ~i, j

&

YES
e j=j+i

h

NO

p’&--_J
Fig. 11.3. Learning the Weight Vector

-t
where B = number of tally bins

6b,j
= 1, if a contribution was made to the b’th tally bin before the

j’th collision (or surface intersection) but after the (j-1)’th

= O,if not

Db = a weighting factor applied to the blth tally bin. Db is used to

direct particles preferentially to specific tally bins.

.
t
A tally bin is the lowest level of the tally data structure. For exam le, forY
a surface current tally, a particle crossing a surface at an angle Cos- u, with.
energy E, at time t is placed in bin L,i,j where

l-1~-l< u ~ IJl
Ei-l < E< Ei
tj-1 < t < t-

and Pl, Ei, and tj “+”are tally bin llmits specl led by the user.



(2) When the present particle “track”~ is terminated, the tot”altally weight

contribution T. is evaluated
J

N
P

T. =
J x ‘k ‘

k=i
Wt .

J

(11.8) .

.

where N = the number of prototypes created since the birth of the present
P

source particle.

(3) There are two types of splitting surfaces used in this research. The first

type separates prototypes (or classes containing prototypes) for which

T. = O. The second type separates prototypes for which Tj # O. Let the
J

number of Tj # O surfaces be given by Nu and the number of importance

regions (or classes) by Nc. Then surfaces (Nc - Nu) through (Nc - 1) are

the Nu surfaces used to separate Tj # O prototypes and surfaces 1 through

(Nc - Nu - 2) separate T. = O prototypes. Surface (Nc - Nu - 1) separates
J

T. = O prototypes from Tj # O prototypes.
J
If Nu.# O and Tj # O, Tj is compared to a predetermined set of class weight

contribution thresholds,

;i i= (NC-NU), .... (Nc- 1).

IfTj <ii, then the j’th prototype belongs to some class C, where C < i.

IfO<Tj~iL(L=Nc- ‘U)> C=N-NO If Tj = O, C must be determined
c

as if Nu = O (see below) since it is onl~ known that C < (Nc - Nu).

If Nu = O and Tj # O, C is set to Nc. If Tj = O, the highest importance

class, C~, obtained by any prototype K(K = j + 1, .... Np) is determined by

the discriminant functions g+ (see Sec. 11.A.2). The class C is then set

to CH - 1. If CH = 1, C is ;et to 1.

8

.

i
A “track” is created at
from splitting.

the source, from fission, from (n,xn) reactions, or

12



This procedure for determining the classification of a prototype is more

easily described in terms of the actual programming logic used. This is

done in Sec. 111.C.1.

(4) The vector F_and the class C together provide an information point or

“prototype” to be used by the pattern classification algorithm.

2. Pattern Classification Algorithm. Numerous pattern classification

algorithms, both statistical and deterministic, were investigated in this

research. The unsatisfactory techniques are not discussed in this report. Only

the algorithm which was found suitable for learning Monte Carlo splitting

surfaces is described.

Consider a single linear splitting surface in feature space given by

+ w f + ...
‘lfl 2 2 ‘R+l ‘ o,

W*F* = O.—

where R is the dimensionality of feature space. The vector ~ is adjusted after

the j’th prototype as given by

=yj+c~*,
‘j+l

(11.9)

where

c = O ifNT = NS

c < () ifNT < NS

c > 0 if NT > NS.

NT = the importance class according to the prototype or “teacher” class

NS = the importance class according to the present discriminant functions

or “student” class.

This algorithm is the general form of the sequential deterministic classifier

which is guaranteed to converge if the prototypes are non-overlapping and

linearly separable.2 These requirements are discussed below.

A feature vector ~has associated with it a probability P(~ln) of belong-

ing to class n (according to the teacher),where n = 1, .... Nc. Consider the

example of a feature vector Fl that occurs 100 times in prototypes. IfNT=2—

in 80 prototypes, and NT = 1 in 20 prototypes, then

13



P(FII1) = .2—
p(Fl[2) = .8.
—

For any vector ~,

N

2 P(~]n) = 1.

n=1

In order for classes to be non-overlapping, there must exist an n such that

P(F]n)=l l<n<Nc—

and

P(Fli) =0 i=l, ....Nci—

for all F. The classes for Monte Carlo calculations will—

condition since each classification of a prototype NT is

and can vary statistically.

Consider a two-class problem (N = 2). If a linearc
that for all F on one side of the surface,—

P(~[l) = 1

and for all F on the other side,—

P(~[2) = 1,

# n,

never satisfy this

only a single estimate

surface exists such

the classes are said to be linearly separable. If classes are overlapping, they

cannot be linearly separable. Thus both requirements for convergence are not

satisfied by the classes used in a Monte Carlo calculation.

Although the above algorithm is not guaranteed to converge, it can still

be used statistically to minimize prototype misclassifications. Instead of

using W. for splitting, the average value of W.
–]+1

after J prototypes is used
–]+1

as given by

1

.

a

.

14



J

x ‘j (11.10)
~=j=l =%

J T“

The sum ~ is given by

(11.11)

where

~ is the weight vector before the first prototype and

AIViis the weight vector change due to the irth prototype.

From Eq. (11.9), A~i = c ~i’, where ~i* is the i’th augmented feature vector.

The average splitting surface location can be calculated after J prototypes

provided ~ and 1$ are

classified prototypes,

The magnitude of

tional form determines

given by

stored after each misclassified prototype. (For correctly

AW. = O.)
—1
c in Eq. (11.9) determines the rate of learning. The func-

what quantity is to be minimized. In this research, c is

c=Aff ab’
(11.12)

where

A controls the rate of learning,

‘a=l&
normalizes the adjustment, and

.
— corrects for the uneven distribution of prototypes.

‘b = P&)

Without normalization of the adjustment, prototypes with large 1~*[ have

more influence than those with smaller [F*I. In this research, it is desired to—

treat prototypes equally, regardless of their [~’1.

15



The function P(~) is the probability distribution of prototypes in

feature space. If prototypes are evenly distributed, P(~) = 1. In Monte Carlo

calculations, prototypes are created at some regions of feature space more than

others. For example, a point source creates prototypes at a single geometric

location. If fb were not used, frequently sampled regions of feature space would

dominate the learning of the splitting surface. In the general problem, P(~) is

not known and must be learned during the calculation. This is done by dividing

each feature component axis into ten increments. The resulting feature space is

divided into 10R frequency regions (R is the dimensionality of feature space).

When a prototype is being processed, the frequency region is determined and the

number of prototypes in the region is incremented. The ratio of this number to

the total number of prototypes is used as an approximation to P(~).

c. Computer Savings

The variance of a Monte Carlo estimates is given by

(11.13)

where N is the sample size and o~’ is the variance of the Monte Carlo samples

The CS2can be

Another

time spent in

reduced by either increasing the sample size or decreasing 0s2.

factor of interest in a Monte Carlo calculation is the computer

processing a

where Tc is the total time

particles or sample size.

02 is given by Eq. (11.13)

single particle t . The value of tp is found from
P

Tc

‘P=~ ‘
(11.14)

spent on the calculation and N is again the number of

The number of particles required to achieve a desired

and is

02
N=~.

o’

The time required to perform the calculation to obtain the variance c12is given

by

16



I

as’
Tc=Nt =— t

()
~ (&t

P ~’ P=02 P“
(11.15)

The goal of this research .isto reduce computer cost for a given 02, the cost

being proportional to computer time. Thus the measurement used in this research

()
for the cost of a calculation is given by us2tp . This quantity can be used for

comparing calculations resulting in a relative cost as given by

, .(+P)W
cost

()

9
@

p Wo

(11.16)

where the subscripts refer to values obtained when running the same calculation

with and without variance reduction.

III. IMPLEMENTATION

The Monte Carlo neutron transport code MCN7 is used in this research. The

purpose of this section is to describe the modifications to MCN required to

perform state space splitting and pattern recognition. Although no two Monte

Carlo codes are’identical, these modifications should provide the reader with the

necessary information to modify other codes.

Section 111.A gives a brief description of the MCN code logic prior to any

changes. Section 111.B describes the logic that is necessary for state space

splitting alone. Section 111.C describes the logic for the addition of the

pattern recognition system. Finally, Sec. 111.D describes the logic required

for controlling the learning system. References are frequently made to FORTRAN

variables. These variables are summarized in Appendix C.

A. Description of MCN

The logical flow of MCN that is relevant to this research is illustrated in

Fig. 111.1. Each operation is identified by a number and is briefly described

below.

1. Calculate Source Parameters. This operation produces a neutron at

some point (x,Y,z), with a direction (u,v,w), an energy E, at time t, and with

weight wt.

17
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NO
9 SET NEW

PARAMETERS

14

Fig. 111.1. The MCN Code

2. Point Detector and Energy Split. The point detector is a tally (or

edit) in MCN used for calculating flux at a points After each collision and at

the source, the flux contribution of a neutron scattering at a point in space

(Xo,yo,zo) toward the detector and reaching it without further collision is cal-

culated. The neutron then continues with its normal transport. Energy splitting

was explained earlier. When a neutron undergoes energy splitting, it is split

into Ne neutrons (Ne is determined by the input),each with a weight wt/Ne (wt

18



is the neutron?s weight before splitting). One of the Ne neutrons continues with

the transport; (Ne - 1) neutrons are sent to the bank (see 11 below).

3. Energy Cut. If a neutronls energy E falls below a predetermined

level Ecut the neutron’s transport is terminated.

4. Collision and Surface Distances, Cell Tallies. The distance Ds from

a neutron’s present position (x,y,z) along its flight path (u,v,w) to the nearest

geometric surface intersection is calculated. The distance to the next col-

lision Dc is then sampled. The shorter of these distances is used in any track

length cell tallies selected by the user.

5. Update Neutron. At this point, the neutron is moved to its new loca-

tion (x,y,z) as determined by D= or Ds. The time t of the neutron is also

incremented.

6. Collision. If Dc < Ds, a collision occurs. If Dc > Ds, the neutron is

transported to a geometric surface.

7. Surface Tally, New Cell, Geometry Split. When a neutron crosses a

surface, any surface tallies specified by the user are updated. The code then

determines which geometric region or cell the neutron is entering. If the new

cell has a greater importance than the old, the neutron is split into N
g

neutrons, each with weight wt/N One neutron is allowed to continue, (N - 1)
g“ g

are banked. If the importances are the same, the neutron continues unchanged.

If the new importance is less, Russian roulette is played to see if the neutron

is killed or allowed to continue with increased weight.

8. Loss to Escape, Russian Roulette, or Time Cutoff. If the new cell

zero importance, if the neutron is lost to Russian roulette, or if the time

of the neutron is greater than a predetermined Tcut, the neutron’s transport

terminated. If not, the neutron’s transport continues.

9. Find Nuclide and Reaction Tne. The nuclide with which the neutron

has

t

is

collided is first determined. The weight wt of the neutron is reduced by the

capture probability. The reaction type (fission, inelastic, or elastic scat-

tering) is then determined. If additional

(n,xn)), the extra neutrons are banked. A

(u,v,w) is calculated.

10. Loss to Weight or Time Cutoffs.

the neutron’s transport is terminated. If

neutrons are born (fission and

new energy (E) and direction vector

If the time is greater than Tcut,

the neutron’s weight is below a pre-

determined cutoff Wcut, it undergoes Russian roulette. If it is lost to Russian

roulette, the history is terminated.

19



11. The Bank. Whenever a neutron is split (see operations 2 and 7) or

undergoes multiplication from fission and (n,xn) (see operation 9), separate

!Itracks!?are created. These tracks are placed in a bank until the present

neutron has completed its transport. At this time the bank is checked to see if

any tracks remain.

12. Bank Empty. If the bank is

source neutron is finished and control

of the code.

13. Set New Parameters. If the

empty, the transport process for this

is returned to the non-transport functions

bank is not empty, the last track placed

in the bank is taken out. The parameters that were stored with the track

(x,y,z, .... etc.) are reset and transport continues.

14. Return. After a source neutron history has been completed, all tally

information is processed.

B. MCN Modifications Required for State Space Splitting

The major operations of state space splitting are performed by subroutines

FEATEX and CLASS. Subroutine FEATEX (for an example, see Appendix A) is a user-

supplied subroutine which contains the FORTRAN expressions for converting state

space variables into a feature vector F. Subroutine CLASS (see Appendix A)—

evaluates the discriminant functions gi = ~io~ (i = 1, .... N= - 1) and deter-

mines to which importance region or class ~ belongs.

A flow diagram of MCN with state space splitting is shown in Fig. 111.2.

The operations which have changed from the regular MCN code are enclosed in

double boxes. The details of these changes are given below.

1. Calculate Source Parameters (Operation 1). After calculating the state

space parameters (x,y,x,u,v,w,E,t),calls are made to subroutines FEATEX and

CLASS to determine the source class Cs“
2. State Space Splitting at Collisions and at the Source (Operation 2).

After a collision, a neutron?s state space description has changed. Subroutines

FEATEX and CLASS are called to determine the neutron?s new classification
CN“

This classification is compared to the classification Co that the neutron had

before the collision. The neutron undergoes splitting, Russian roulette, or is

continued.

At the source, the class Co does not exist. Instead the source class CS

is compared to a user-supplied class Cu to determine if splitting should take

place.

.

.

●

✎
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Fig. 111.2. State Space Splitting

When a neutron is split, the classification of the neutron is banked along

with the usual information. Energy splitting is eliminated.

3. State Space Splitting at Surface (Operation 7). When a neutron is

transported to a surface, calls to FEATEX and CLASS are made to determine the

neutron’s new classification. The same logic that takes place after a collision

is then used. Geometry splitting can be performed through the FEATEX and CLASS

subroutines if desired.

—
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4. State Space Splitting at Multiple Reactions (Operation 9). If a

reaction occurs which produces additional neutrons ((n,xn) or fission), the

additional neutrons are banked. Before banking, FEATEX and CLASS are called and

the classification of the newly created neutron is compared with the class of the

neutron which entered the reaction. The same logic that is used after collisions

and at surfaces is then repeated here.

s. Setting Parameters (Operation 13). The classification of a neutron is

withdrawn from the bank along with the usual information.

c. MCN Modifications Required for Pattern Recognition

The coding for adding pattern recognition is concerned

(1) prototype handling, and (2) the pattern classification

Fig. 111.3 shows the MCN program logic after the addition of

with two functions:

algorithm.

pattern recognition,

Operations that must be changed to add pattern recognition to state space split-

ting are surrounded by a single solid frame. The double frame surrounds opera-

tions which must be changed when adding state space splitting to the regular MCN

code. Note that to learn state space splitting surfaces requires a change in

every nondecision operation. However, because no decision operation is altered,

the structure of MCN remains the same.

1. Coding Required for Prototypes. Figure 111.4 illustrates a typical

history of a neutron in a Monte Carlo calculation. Each point between the

directed line segments represents a collision or surface intersection. The

circled points with more than one branch are points at which new tracks are

created (by fission, (n,xn), or splitting). These new tracks are banked (stored)

until the remaining track is terminated. In this particular example ten proto-

types (N = 10) are created.
P

When the track is terminated the total tally weight

contributions of prototypes P8, P9, and Plo can be evaluated

t8+t

T8 =
9 + ’10

wt8 s

‘9 + ’10
‘9 = wt9

, and

_ ’10
‘lo

‘tlo ‘

.

.
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Fig. 111.3. Pattern Recognition

where T, t,and wt are defined in Sec.11.B.l. Once this branch has been proces-

sed, prototypes P8, P9, and PIO can be forgotten; however, the total accumulated

tally contribution (t8 + t9 + tlO) for the branch must be saved. Only if all

three branches after prototype 7 have been processed can the prototypes prior to

8 be processed.
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To keep track of this branching data and to allow for non-equal tally

importances, the following data structure is used.

TWT(I) = a weight assigned to the Ith tally bin. This weight can be used to

give tallies preferential treatment. A bin with a high weight rela-

tive to the others will have more particles directed towards it.

Equivalent to Db in Eq. (11.7).

PROTO(I) = a storage block used to save prototype feature vectors, weights, and

tally weight contributions.

NPROTO = No. of prototypes stored in PROTO. Equivalent to N in Eq. (11.8).
P

NODS(I) = the prototype number where the Ith branch has occurred. For the

example of Fig. 111.4, NODS(I) = 1, NODS(2) = 5, and NODS(3) = 8.

Note that the source track is counted as a branching intersection.

NNODS = No. of branching intersections. For the example, NNOlls= 3.

NBNOD(I) = No. of branches remaining unprocessed on the Ith branching intersec-

tion . For the example, NBNOD(l) = 1, NBNOD(2) = 2, and NBNOD(3) = 2

(after P8, P9, and PIO are processed).

TAL(I) = the tally contribution accumulated at the Ith branching intersection.

For the example, TAL(l) = O, TAL(2) = O, and TAL(3) = t8 + t9 + tlo.

IHCNOD(I)= the highest class (importanceregion) obtained by any prototype on the

branches of the Ith branching intersection. Equivalent to CH

(Sec. 11.B.1) for all branches of an intersection.

,,?po’’’”n

.

.

.

.

‘Bank Track

Fig. 111.4. Branching Prototypes
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Immediatelypreceding the updating of a particle (Operation 5, Fig. 111.3)

either at a surface intersection or at a collision, the following operations are

performed:

N = NPROTO X (R + 2), where R = dimensionality of feature space

Pl!OTO(Nw+ I) = F(I), where F(I) is Ith component of the feature vector

PROTO(NW + R + 1) = wt, where wt is the present weight of the particle

PROTO(NW + R + 2) = t, where t is the present tally weight contribution to

all cell tallies

NPROTO = NPROTO + 1

After surface tallies have been processed (Operation 7, Fig. 111.3) and after

point detector tallies have been processed (Operation 2, Fig. 111.3), the tally

contribution is updated as given by

PROTO(NW + R + 2) = PROTO(NW + R + 2) + t,

where t is the present tally weight contribution to all surface tallies or point

detectors.

Whenever a track is created either by fission (n,xn) or splitting (Opera-

tions 2, 7, and 9 of Fig. 111.3), the following operations

NNODS = NNODS + 1

NODS (NNODS] = NPROTO

NBNOD(NNODS) =

where Nt is the number of additional tracks

When a neutron track has been killed,

Nt+l,

created.

all prototypes

are performed:

created by that track

are processed (Operation 11, Fig. 111.3) before going to the bank for the next

track. This processing is performed by subroutine PRPROT (see Appendix A). The

number of prototypes processed at this time is given by

JDIF = NPROTO - NODS (NNODS) + I.

This processing begins with prototype NPROTO and ends with prototype NODS(NNODS).

The accumulated tally weight contribution from the prototype being

to and including the prototype NPROTO is stored in variable BTAL.

TTAL is equivalent to Tj (Eq. (11.8)) and is given by

processed up

The variable
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TTAL = BTAL/wt,

where wt is the weight of the neutron stored in the PROTO array. When a proto-

type is being processed, its feature vector ~ is extracted from the PROTO array

and sent with TTAL to the pattern classification subroutine LEARN.

When all the prototypes on a branch have been processed, the branch is

“trimmed” by the operations

NBNOD(NNODS) = NBNOD(NNODS) - 1

NPROTO = NPROTO - JDIF ,

and the branching intersection information is updated by the operations

TAL(NNODS) = TAL(NNODS) + BTAL

IHCNOD(NNODS) = The maximum of IHCNOD(NNODS) and IHC.

The maximum class obtained on a branch, or the value of C~ (see Sec. 11.B.1) for

a branch, is given by IHC.

If no more branches exist at the NNODS intersection, processing is

continued back to the (NNODS - 1) intersection and the NNODS intersection is

trimmed.

2. Coding Required for Pattern Recognition. During processing, proto-

types are sent to subroutine LEARN for adjustment of the splitting surface weight

vectors. Subroutine LEARN (see Appendix A) has three major functions: (1)

determine the classification of a prototype ~ according to the present splitting

surface (i.e., the student classification = NS), (2) determine the classifica-

tion as given by TTAL or the highest class obtained (i.e., the teacher class-

ification = NT), and (3) make adjustments to ~ if NT # NS.

The value of NS is determined by using the same logic as found in sub-

routine CLASS. Values of g. = lViO~ are evaluated starting with the uppermost1
surface until gi is positive. The student class is given by NS = i + 1.

Determination of NT is more complicated as illustrated by Fig. 111.5. The

variable FLG is the surface number of the lowest surface used to separate proto-

types for which Tj # O and is equivalent to Nc - Nu (see Sec. 11.B.1). If

FLG = O, surface N - 1 is used to separate non-zero T
c j from zero Tj (i.e.,

.

.

,
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;N ~= o). If FLG # O, surface FLG - 1 separates non-zero T. from zero T.. The
J J

va$iables NCLT = N=, FLG, and ~ are specified by the user or by default values.

If FLG = O and TTAL # 0.0, the prototype is placed in class NCLT; if TTAL

= O, the class must be determined from the highest class obtained. The result of

this procedures that an ~ in class NCLT has a greater than 50% chance of

contributing to a tally, an ~ in class (NCLT - 1) has a greater than SO% chance

of leading to a prototype in.class NCLT, an ~ in class (NCLT - 2) has a greater

than 50% chance of leading to a prototype in class (NCLT - 1) or class NCLT, and

SO forth. An ~ in class 1 has a less than 50% chance of leading to a prototype

outside of class 1.

If FLG # O, then surface (FLG - 1) is learned the same as surface (NCLT -1)

is when FLG = O, surface (FLG - 2) is the same as (NCLT - 2), etc. Surfaces FLG

through (NCLT - 1) are used to subdivide that region of feature space that has a

greater than 50% chance of leading to a tally. Each one of the FLG through

(NCLT - 1) surfaces has associated with it a ~ (see Sec. 11.B.1) which determines

the classification of the prototype. For example if

NCLT = 5,

FLG = 3,
A

:4
= .5, and

‘3
= .25,

and a prototype was found to have TTAL = .21, the teacher class NT would be 3.

A hypothetical division of two-dimensional feature space is shown in Fig. 111.6

for the surfaces given above. The probability P(F_+~”> 3) is the probability

that an ~will lead to an F“ in class 3 or greater.—

The variables used to store information for splitting surface weight

adjustment

NPRO =

NPR(K,L) =

are

total number of prototypes sent to pattern classifier since the cal-

culation began,

the number of prototypes whose feature vector components (f1,f2) fall

between

.

.

●

✎

(K - 1)/10 < fl < K/10

(L - 1)/10 < f2 < L/10 ,
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TPR(M,I) =

RPR(M,I) =
*

F(I) =

f 2

0.< Tj < .25 over 50%

P(&~’23)>50’Yo

Tj=o.

f I

Fig.‘111.6. An Example of Splitting Surfaces

where K=l, .... 10

L=l, .... 10 .

If feature space is dimensioned greater than two, the dimensionality

of NPR must be increased. This variable is used to estimate fb

(Eq. (11.12)).

the I’th component for the ~ of the Mlth splitting surface {HJ is

defined in Sec. 11.B.2)

the I’th component for the ~ of the M’th splitting surface (R. is‘J

defined in Sec. 11.B.2)

the I’th feature vector component of ~’ for the current prototype

where I=l, ....R+l

M=l, ....NC-l.

DIV= 1~*1 =~F(l)2 + F(2)2 + ... + 1 . (111.1)
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The variable DIV is equivalent to l/fa (Sec. 11.B.2). Whenever NS > NT,

TPR(M,I) = TPR(M,I) - ~::;~~&~~j)*D1v ,

whereM=NT, ....NS- 1

I 1,= .OO, R+l,

and whenever NT > NS,

In both cases,

When a source

locations are

where

D. Control

TPR(M,I) = TPR(M,I) +
~*NpR()*F(I)
1OO*NPR(K,L) *DIV”’

where M=NS, ....NT-l

I 1,= ..,, R+l.

(111.2)

(111.3)

RPR(M,I) = RPR(M,I) + TPR(M,I). (111.4)

neutron’s transport is complete, new average splitting surface

found from

ADFWT(M,I) = DFWT(M,I) + RPR(M,I)/NPRO ,

ADFWT(M,I) = I’th component of the average

weight vector ~ of the Mrth

splitting surface after NPRO

prototypes.

DFWT(M,I) = Ifth component of the initial

weight vector ~ of the M~th

splitting surfaces.

I 1,= .... R+l

M=l, ....N1-l.

of Pattern Recognition Learning

Control of the pattern recognition system takes place after

(Fig. 111.3) and consists of (1) setting the rate of learning of

(111.S)

.

.

,

operation 14

each splitting
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surface, (2) determining when a surface has been learned, and (3) deciding when

to use a surface for splitting.

The rate of learning is determined by the learning parameter A (see Eq.

(11.12)). The following variables are used when adjusting A.

. XAMDA(I) =

XFAC(J) J = 1, .... 4=

. XMCLR(I) =

XCLASA(I) =

XCLASB(I) =

ICONV =

IDCONV =

Whenever a prototype is

A for the I’th splitting surface

constants used to set XAMDA

the misclassification rate of the Itth splitting surface

the number of

surface I but

the number of

surface I but

the number of

prototypes that the teacher said were above

the student disagreed

prototypes that the teacher said was below

the student disagreed

prototypes that must be processed before

the XAMDA(I) can be adjusted

the number of prototypes (since the last XAMDA(I) adjust-

ment) that must be processed before XAMDA(I) can be

adjusted again.

misclassified XCLASA and XCLASB are incremented by

NPRO
NPR(K,L)

where (K,L) corresponds to the feature

array must be increased or decreased.

types has been normalized by P(F_)(see

“ 10-R ,

components (f1,f2). If R # 2, the NPR

Thus the number of misclassified proto-

Sec. IIOB.2). When the number of proto-

types exceeds ICONV, the following operations are performed.

XMCLR(I) = (XCLAS(I) + XCLASB(I))/NPRO (111.6)

XAMDA(I) = XFAC(l)*XMCLR(I) + XFAC(2)

if XAMDA(I) > XFAC(3) then XAMDA(I) = XFAC(3)

if XAMDA(I) < XFAC(4) then XAMDA(I) = XFAC(4)

forI=l, ....N -1.
c

NPRO is defined in the previous section. After the A adjustments, ICONV is

incremented by IDCONV and the calculation continues. The sign of XFAC(l) is

negative which causes a surface with larger misclassification to be learned

slowly.

lapping

Typical

This is necessary since some of the misclassifications are due to over-

and non-linearly separable classes, and not to actual misclassification.

values for XFAC are discussed in Sec. IV.
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The following variables are

ICONVT =

BOA(I) =

CONV =

the number of prototypes

terminated

used to terminate the learning of a surface:

that must be processed before learning can be

XCLASB(I)/XCLASA(I) for surface I. BOA is a measure of how well a

surface has been learned. When BOA = 1, the same number of prototypes

are being misclassified on each side of the surface and the surface is

considered to be learned.

the maximum deviation of BOA from 1 allowed for a surface to be learned,

After ICONV prototypes, the threshold ICONVT is checked. If NPRO > ICONVT then

BOA(I) is calculated. If

1 - CONV < BOA(I) < 1 + CONV,

then XAMDA(I) is set to zero. When XAMDA(I) is set to zero, the position of

surface I is no longer altered. When all XAMDA(I) = O (I =

flag is set in the code which terminates the collection and

types. The code then performs state space splitting but no

The decision of when to use the splitting sufaces for

1, .,., Nc - 1), a

processing of proto-

pattern recognition.

splitting is made by

comparing the number of source particles NPS with a threshold NPSLRN. If

NPS > NPSLRN, the surfaces are used.

Values for XAMDA, XFAC, ICONV, IDCONV, ICONVT, CONV, and NPSLRN are

discussed in Sec. IV.

IV. PARAMETER STUDY

In the previous two sections, many parameters are described, but no

quantitative values are given. It is the purpose of this section to describe

briefly how the pattern recognition system reacts to variations in these para-

meters. This description cannot possibly cover the infinite possibilities that ‘

can arise in the general Monte Carlo problem. Instead only one very simple and

non-time-consuming example is used. The parameters to be investigated are the

following:

(1) initial location of the splitting surfaces and value of the learning

parameter A,

(2) values for the control parameters XFAC, ICONV, IDCONV, ICONVT, CONV, and

(3) selection of the number and type of splitting surfaces and NPSLRN.
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A. The Sample Problem

.

The sample problem consists of the semi-infinite slab shown in Fig. IV.1.

A neutron source exists at the surface x = O and is directed in the positive x

direction. The tally consists of the current of neutrons, integrated over all

time, crossing the surface at x = 10 cm.

The slab material has total and scattering macroscopic cross sections of

.S and .4 cm-l. All scattering is isotropic in the laboratory system of

coordinates and the neutron energy is unchanged by collisions. Because of the

nature of this problem the state space variables Y,z,v,w,E, and t are not impor-

tant for splitting. Only the variables x and u are used in the transformation

to feature space which is shown in Fig. IV.2 along with examples of three

different kinds of splitting surfaces. Feature space is oriented so that the

region above and to the right of a splitting surface is the most important

region. This problem was chosen primarily because of its small computer time

requirements. After starting 10 000 source neutrons and using less than a

minute of computer time, the probability (= .037) of a neutron crossing the

tally surface has a 3.5% relative error (1 o). Such a “quick” problem is

necessary for the numerous calculations used in this parameter study. The

Source A Tally 01’1 this
C Surface

L x+ =.5 cm-l

x~= ,4 cm-’

X=o x= 10 cm
Fig. IV.1. The Sample Problem
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IV.2. Feature Space for the Sample Problem

P(F) is estimated as described inprobability distribution of prototypes _

Sec. 11.B.2 and is given by

P(g = pm~(flIf2) “ pn(f2) ,
>

(IV.1)

where Pn(f2) is the probability that a prototype is created with

.l(n - 1) <f2< .ln n=l, .... 10

and Pm ~(f1[f2) is the probability that a prototype with an f2 corresponding to

m has in fl with

.l(m - 1) ~fl s .lm m=l, .... 10.

Because scattering is isotropic in the sample problem all Pm n(fl[f2) = .1

except in the source region (n = 1). At the source, neutron; are created at a

34



single point (f~,f*) = (1,0). If R~ is the ratio of the number of source

neutrons to the total number of prototypes, then Pm ~(f1]f2) is givenby
9

P~1(f11f2) = .1 (p1(f2) -Rs) form= 1, .... 9 and

p10;1(f11f2) = .1 (p1(f2) - Rs) + Rs.

A plot of Pn(f2) is given in Fig. IV.3. Unlike the collision density, this

distribution does not drop off exponentially because it does not depend on the

neutron’s weight. The pn(f2) for the same problem but with a surface added at

x= 2 cm (f =
2

.2) is also shown in Fig. IV.3. The result of this surface

addition is to greatly increase the number of prototypes at f2 = .2. The

purpose of splitting is to alter the distribution by lowering P(F) for small

]~] and increasing it for larger IF].—

The tally weight contribution for this problem (see Eq. (11.7))is given by

““r———l
0.3

I
o Surface

-.. I;1

“ “4

I urface at 20
“,2 =- !

I11I
1

L--

--
0. I 1 1 1

0 0.2 0.4 0.6 0.8 1.0

Feature Component f2

Fig. IV.3. Sample Problem Prototype Distribution



t. = Wt
J j 61, j )

where for the single tally bin, D1 = 1.

B. Effects of the Learning Parameter and Initial Weight Vector

The effect of varying A (see Eq. 11.12) and the initial weight vector M&

(see Eq. (11.11)) on the performance of the pattern recognition system cannot be

determined in general. What is done in this section is to demonstrate how these

parameters affect the sample problem described in the previous section.

Consider a single surface which separates feature space into two classes:

(1) if Tj = O, the prototype i.ssaid to belong to class 1; (2) if Tj > 0, the

prototype belongs to class 2. This surface is similar to surface 2 in Fig.

111.6. The surface is defined by a weight vector ~, originally given by ~.

Since feature space is two-dimensional (R = 2), ~ is given by

.

.

11‘3

The discriminant function (see Eq. (11.4)) is given by

g(~) = Wlfl + w2f2 + W3.

The splitting surface is defined by g(~) = O and is given by

Wlfl + ‘2f2 + ‘3 = 0’ ‘r

‘1 ‘2

5fl+<f2+ 1=0”

Because of the required orientation of feature space (see Sec. 11.A.2), WI and

W2 must be positive and W3 must be negative. In this research, the initial

value of ws is always set to -1 which reduces Eq. (IV.2) to

‘lfl ‘w2f2- 1=0”

(IV.2)
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The initial value of V& depends on two values, WI and W2. The ratio w2/wl

determines the slope of the splitting surface in feature space. A “logical

guess” for w2/wl is

. w /w = 1.
21

The remaining single parameter to set is WI = W2. Three choices of WI are shown

in Fig. IV.4. These three initial V&’s were used with A = 10-s. The splitting

surfaces learned after 10000 source neutrons are shown in Fig. IV.4. A plot of

BOA (see Sec. 111.D) versus the number of source neutrons is shown in Fig. IV.5

for these three runs and for three runs using A = 10-Q. As can be se,enfrom

these plots, the value of A has much more effect on the convergence rate than

does the initial ~. Runs

being unstable.

Similar calculations

type of surface is similar

-2
made with A = 10 result in the surface learning

were performed for a surface for which ~ = .5. This

to surface 4 in Fig. 111.6. The results are similar

to those shown in Fig. IV.4 For this surface, convergence is too slow when

A = 10-3. With A = 10-2, the convergence is very rapid, yet still stable. With

A = 10-1, the surface learning is unstable.

Before an optimum A can be found, a measure of instability must be defined.

The following scheme is used in this research. During the learning of a surface,

BOA should converge to 1 monotonically when approached from above (see Fig. IV.5).

The measure of instability used is the number of times that BOA increases during

this initial approach to one. A plot ~f instability versus A is shown in Fig.

IV.6 for the surface learned in Fig. IV.5 using WI = 2.0. Also shown in Fig.

IV.6 is the number of source neutrons (NPS) required before BOA < 1.1. When

calculating the instability shown in Fig. IV.6, BOA is checked after every 200

source particles for 10 000 source particles thus producing 50 data points. If

the behavior of BOA were purely random, the instability would be 25. AAis

desired which minimizes convergence time but does not cause the learning to be

unstable. For this surface A ~ 10-3 is suitable. For the ~ = .5 surface, the
-3

value of A selected was 8 x 10 . A third surface was learned similar to surface

1 of Fig. 111.6. For this surface the optimum X was also ~ 10-3. These results

are sumarized below.
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b ~
A=IO-4,WI =1

A=IO-3,WI =1
1.0

~= 10-3, WI = .67

~=lo-4, WI = .67

0.1 /,
1 I I

o 2000 4000 6000 8000 10000

Number of Source Neutrons
Fig. IV.5. Initial Condition and Learning Parameter

Effects on Convergence Rate

Using the above data and Eq. (111.7) results in the following recommended values

XFAC(l) = -.0434

XFAC(2) = .014076 (IV.3)
XFAC(3) = .05

XFAC(4) = 1 x 10-3.

Although this heuristic approach to a variable A is not optimal, it does relieve

the user of specifying a A for each surface. Whether the above constants for X

are generally applicable will be seen in Sec. V.
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Fig. IV.6. Selecting a Suitable Learning Parameter

In summary, Eq. (111.7) is used to select a A using the values given in

Eq. (IV.3). The (R + 1)’st weight

is always set to -1. A reasonable

tion is

=W
‘1 2

vector component for the initial weight vector

“guess“ to use for the initial surface loca-

=..O =W = c.
RI’

where Ci is a constant for the i’th splitting surface. These constants are

selected so as to distribute splitting surfaces uniformly across feature space.

For example, if there are three surfaces, suitable Ci’s would be
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c1 = 2’

‘2
= 1, and

C3
= .67.

Of course, if the user has a priori information concerning optimal surface

locations, this information should be used to reduce learning time.

c. Control Parameters

The value of XMCLR (see Eq. (111.6)) must be learned during the calculation

,before it can be used in Eq. (111.7). An initial A is assigned until ICONV proto-

types have been processed. The effect of varying ICONV is shown in Fig. IV.7

for the surface learned in the previous section using ~ = .5 and an initial R& =

[.75 .75 -l]. Initially, A is set to 10
-3

. This value is chosen since it is

safe to use for most surfaces (i.e., it is small enough to be stable)? For

2.0

I.c

0.(

I I I I I I I I

CONV= 20000

\ ~lCONv=5000

L ICONV= 100

I I I I I I I I I

o 2000 4000 6000 8000 10000

Number of Source Neutrons

Fig. IV.7. Effect of ICONV on
Convergence Rate
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these four runs, IDCONV = 500. As seen from the figure, the ICONV = 100 run

appears to be the most desirable. However, this depends on how good the

estimate of XMCLR after 100 prototypes is to the true value. Because of this,

it would be dangerous to use ICONV = 100 in a general problem. The curve for

which ICONV = 5000 drops rapidly after 5000 prototypes to the ICONV = 100 curve.

The difference in the two curves is caused by the bias in BOA due to the first

5000 prototypes. When ICONV = 20 000, the convergence is improved very little

from the ICONV = ~ curve.

All runs were found to be relatively insensitive to the value of IDCONV.

This is because XMCLR is well known after ICONV prototypes. With too small an

IDCONV, computer time is wasted. If too large, XMCLR may not be represented

accurately. An IDCONV anywhere from a few 100 to a few 1000 was found to be

sufficient.

As seen from Fig. IV.7, there will always be some fluctuation of BOA even

after convergence. These fluctuations are caused by statistical deviations in

the prototypes and exist even with a fixed splitting surface. The fluctuations

are usually less than 5% but can be greater. Because of this, the value of CONV

should be a minimum of .05. The value of ICONVT should be large enough to

prevent a llfalseconvergence” from being used. An example of a false conver-

gence is shown by the ICONV = 100 curve of Fig. IV.7. This problem is similar

to the problem encountered when trying to stop a Monte Carlo calculation when

the relative error is below a threshold. In this sample problem, a value of

ICONVT = 20 000 was found to be safe, provided the surface learning is stable.

Using ICONVT = 20 000, the CONV parameter was varied resulting

CONV Source Neutrons Required for Learning

.05 4336

.10 2870

.15 1569

in the following:

be if the run

increases, the

In all three cases, the surface was not located where it would

were continued indefinitely. As the number of source neutrons

movement in surface location becomes small compared to the initial changes.

Thus although a small CONV does result in a “more optimal” location, the

improvement is small compared to the additional source neutrons required.

.

.

42



.

.

.

.

In summary, for the problem considered, the following parameters are

found to be satisfactory:

ICONV = 5000,

IDCONV = 1000,

ICONVT = 20000, and

CONV = .10.

D. Splitting Surface Selection and NPSLRN

The user is required to specify the number of surfaces (Nc - 1) and the

type of surfaces (FLG, see Sec. 111.C.2) that he wishes to use. There are two

types of surfaces: (1) those for which ~i = O and those for which ii > 0 ‘

~i=l, .... NC-l). The value of FLG is the lowest surface number for which

Ti > (), Thus surfaces i = FLG, FLG + 1, .... (Nc - 1) have ii > 0. It follows

that surfaces i = 1, .... (FLG - 1) have ii = O. If FLG = O, all surfaces have
A
Ti = O. For the sample problem described earlier, three surfaces are inves-

tigated ‘inthis section:

Surface Description

c ;i = .5, i = l,2,0r 3

B ;i=o., i=lor2

A ;l=O., below A P(F + F-z 3) < 50%,———

Note that surface A cannot be

definition depends on surface

tions are possible:

above A P(F + F“ ~ 3) > 50%.—.

used unless surface B is specified since its

B. Thus with these three surfaces, five combina-

Run Surface FLG Nc-l

1 c 1 1

2 B 0 1

3 C and B 2 2

4 B and A o 2

5 A,B, and C 3 3
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To determine which of these surface combinations

were first learned using the parameters recommended in

The learned surface locations are:

Surface
‘1 ‘2— —

c 1.10 1.48

B .82 .88

A .61 .80

is best, the surfaces

the previous two sections.

These locations were then used in the above five runs using state space split-

ting only (i.e.,the surface locations were not modified). The results are given

below relative to run 4 (see Sec.

Run Relative o
2
s

11.C

1 2.16

2 2.10

3 1.88

4 1.0

5 .93

As expected, the variance decreases as

computer time per neutron increases.

for a definition of the terms).

Relative t Relative Cost

The above data does not include the

splitting surface. STO include this cost,

selected. The maximum value of NPSLRN is

.53 1.13

.59 1.15

.69 1.30

1.0 1.0

1.19 1.11

the number of surfaces increases and the

computer time required to learn the

an NPSLRN (see Sec. 111.D) must be

the value at which the splitting

surfaces have been learned and all A“s = O. The minimum value possible is zero.

With NPSLRN = O, the splitting surfaces are used for splitting throughout the

calculation. This is desirable if the initial “guess” for the surface location

is a good one. However, splitting with surfaces from a poor guess could waste

computer time on unproductive splitting.

Using run 4 with learning and three different values of NPSLRN results in

the following:
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The above

runs were

learning,

lustrates

number of

NPSLRN Cost (Relative)

2000 1.05

1000 1.00

0 1.00

values are relative to the previous run 4 made without learning. All

performed for 30 000 source neutrons. If splitting is not used during

1943 neutrons are required to learn the surfaces. Figure IV.8 il-

computer time and variance (relative to run 4) as a function of the

source neutrons for the NPSLRN = 2000 run. After the surfaces are

learned (1943 neutrons) but before they are used (2000 neutrons), the relative

computer time drops below one because neither splitting nor learning is taking

place. During the learning of splitting surfaces, about 8% more computer time

is used. Averaged over the entire run, this amount of time is negligible. The

sample variance without splitting is approximately 70% higher than with. After

splitting starts, the variance

(72=
s

is given by

N
Wo(”wo’-uw’) ‘Now’

N 9 (IV.4)

where o 2 =
Wo
Cf’=

N:. =

N=

sample variance of the calculation if no splitting is used

sample variance if splitting is used throughout the calculation

number of source neutrons started while the surface is being

learned, but before splitting is started

total number of neutrons started.

Equation (IV.4) can be used provided no splitting takes place until learning is

complete. If this is not the case, aw’ must be replaced by 6W2 where 6W2 is the

variance obtained from splitting after NPSLRN source neutrons. If the number of

neutrons during which learning and splitting both take place is small compared

to the number for which splitting takes place without learning, then Ow—2 SO 2 ,

w“

As is seen from the data, the value of NPSLRN has little effect on the computer

costs provided it is small compared to the total number of neutrons started

(30 000 for these calculations). A value of 1 000 is suitable since most

Monte Carlo runs are on the order of 10 000 or greater.
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In summary, the selection of the number and type of splitting

a nontrivial problem. For the sample problem used in this section,

(Nc - 1) = 2 appear to be the best values. However, this selection

doubtedly be problem dependent.

E. Summary

surfaces is

FLG = O and

will un-

Of the parameters described in this report, only two must be selected by

the user.

(1) (Nc - 1), the number of splitting surfaces, and

(2) FLG, the type of splitting surfaces.

All other parameters can be assigned default values. If a user wishes to supply

his own values instead of the defaults, he may. In fact, for such parameters as
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the initial surface locations, the user can save computer time if he provides

values better than the default. In addition, the user must provide the feature

space description and the tally whose variance is to be reduced.

v. SAMPLE PROBLEMS

It is the purpose of this section to demonstrate how the previously

described technique can be used to solve a variety of Monte Carlo problems.

There is no attempt to try to represent all classes of Monte Carlo problems.

Instead, the geometry of a single Monte Carlo problem is used (Sec. V.A). For

this geometry, several different tallies are investigated that require different

feature space approaches. Each tally is investigated in an independent cal-

culation. The reason for this approach is that it allows a single description

of a geometry for several different feature space examples. If it was desired

to solve all tallies in a single run, one would use the feature space configura-

tion for the tally with the highest relative error.

In all problems, the parameter values chosen in the previous section are

used. The user must select feature space functions, the number of splitting

surfaces, the type of surface, and the tally bins whose variances are to be

reduced. All surfaces are initially located uniformly across feature space.

A. The Geometry

The geometry and material compositions used for the example problems are

those of a double ring thermal neutron coincidence counter.12 This problem was

selected because: (1) it has tallies which are infrequent enough to require

splitting; (2) neutron energies cover the full range from a few MeV to thermal;

(3) time response is important; (4) the geometry is reasonably complex; (5) the

problem is.not excessively expensive to run yet it is not trivial (10 to 25

minutes on a CDC 7600 computer).

The geometry is illustrated in Fig. V.1 and the material compositions are

given in Table V.1.

spontaneous fission

investigated:

(1) the current of

CH2,

(2) the current of

region of CH2,

The PU02 sample consists of several isotopes of Pu. The

of 240Pu provides the source of neutrons. Four tallies are

neutrons leaving the outside surface of the outer region of.

neutrons leaving the top and bottom surfaces of the outer
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Material

PU02

Al

CH2

cd

He3

TABLE V.1

MATERIAL COMPOSITIONS

g/cm3 (Atoms/cm3)x10-24

1.5 1.OOX1O-2

2.7 6.03x10-2

.91 1017X10-1

8.64 4.63x10-2

5.4X10-4 1.07X10-4

(3) the heating due to induced fissions in the PU02 (a track length estimate)

and,

(4) the flux (track length) of thermal neutrons as a function of time in the

outside region of CH2.

Tallies 1 and 2 are integrated over all outward directions. Tallies 1, 2, and

3 are divided into four energy bins:

(1) o to 4 x 10-7 MeV,

(2) 4X 10-7 to 1 x 10-3 MeV,

(3) 1 x 10-3 to 1 MeV, and

(4) 1 to 20 MeV.

Tallies 1, 2, and 3 are integrated over all time whereas taily 4 is divided into

10 time bins of .1 ms width from 1 to 2 ms. Tally 4 has one energy bin from

O to 4 x 10-7 MeV.

B. Distance Splitting

One of the most common features found in Monte Carlo problems is distance.

In distance splitting, the feature consists of the distance from the particles

present position to the desired tally region. Geometry splitting is a form of

distance splitting where the geometric regions closest to the tally have higher

importances than those farther away. In this section, two examples of distance

splitting are presented using tallies 1 and 2.

Without splitting, the largest relative error for tally 1 is 9.8% for the

second energy bin after 10 000 neutron histories. For tally 2, the largest

error is 25% for the second energy bin of the lower surface after 20 000
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histories. Since these maximum errors determine the running time of the cal-

culation, they will be used for computer cost comparisons.

1. Tally 1. The distance d from a point (x,y,z) to the tally surface is

given by

d= 26.68 --- (V.1)

For this example, splitting will be limited to the outside CH2 region, i.e.,

O<d4 10.68. After normalizing to 1 and orienting the feature so that the

importance increases as the feature increases (see Sec. 11.A.2), the resulting

feature is given by

10.68-d
‘1 = 10.68

If fl < 0 or fl > 1, the feature vector is not

neutron is treated as if it were in the class of

This capability of excluding selected regions of

learning results in more efficient sampling.

. (v.2)

used as a prototype and the

lowest importance (class 1).

state space from splitting and

It should be noted that for this example, state space splitting is

equivalent to geometry splitting. However, if one used geometry splitting, he

would have to select splitting surface locations and subdivide the outer CH2 in-

to a number of smaller regions.

Having selected the feature, the next step is to select the tally bins

whose variances are to be reduced, the number of splitting surfaces, and the

type of surfaces. The selection of tallies is done by setting the variable TWT

(see Sec. 111.C.1). For this problem the TWT for the four energy bins of the

outside surface tally are set to 1. All other TWT are set to zero. This prob-

lem was run with (Nc - 1) = 1, 2 and FLG = O, 1. The results obtained after

10 000 histories are presented in Table V.2. All data are for the second energy

group and are relative to

Although the variance was

from only 11 to 35%. The

increase in the number of

the calculation made without state space splitting.

reduced from 29 to 56%, the computer cost was reduced

increased computer time was due primarily to the

tracks.

.

.

.

For the (Nc - 1) = 2, FLG = 1 case, the upper surface (separatingclass 2

from 3) converged to fl = .727 and was learned after 1 000 histories (58 000
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TABLE V.2

RESULTS FOR SAMPLE PROBLEMS

Relative

Tally Feature (Nc - 1) FLG 0: t O:t

1 Distance 2 0 .44 2.02 .89
2 1 .52 1.25 .65
1 0 .65 1.34 .87
1 1 .71 1.11 .79

2 Distance 2 0 .35 1.08 .37
3 0 .18 1.31 .24

2 Energy 2 0 .74 1.10 .81
3 0 .64 1.16 .74

3 Direction 2 0 .48 1.09 .53

4 Time 2 0 .38 1.36 .52

2 Distance & 3 0 .27 1.10 .29
Energy

4 Direction & 2 0 .46 1.08 .50
Energy

prototypes). The lower surface converged to .716 after 1 320 histories (84 000 .

prototypes).

2. Tally 2. In this example, it is desired to direct neutrons in two

different directions. The feature used is

f _ IZ-30.5[ ~
1- 15.09 - “

(V.3)

Like the previous example, splitting is allowed only in the outer CH2 region.

From Eq

product:

surface

(V.3), if 15.41 < Z< 45.59, fl < 0. Thus splitting and prototype

on take place only when a neutron is within 15.09 cm from a tally

The TWT for all energy bins for top and bottom tally surfaces were set

51



to 1. Because very few neutrons arrive at the tally, only FLG = O surfaces are

used. The results after 20 000 histories using N= = 3 and 4 are given in Table

V.2. These values are relative to those obtained for the second energy bin of

the lower surface without splitting.

For (Nc - 1) = 3, the upper two surfaces (separating class 2 from 3 and

class 3 from 4) were learned after 1 100 histories (20 000 prototypes). Their

final locations were at fl = .5 and fl = .73. The lower surface was not learned

after 20 000 histories (656 000 prototypes) and was located at fl = .04.

c. Energy Splitting

In this example, it is desired to reduce the variance of the second energy

bin of tally 2. Thus TWT = 1 for the second bin and TWT = O for the others. As

in the previous two examples, splitting and prototype production are limited to

the outer CH2 region. In this region the feature is given by

()- (loglo : + 2)

‘1 = 5
. (V.4)

Eq. (V.4) further restricts splitting to neutrons with energies from 4 x 10-2 to

4 x 10-7 MeV. A neutron with an energy outside this range is placed in class 1.

Results after 20 000 histories are presented in Table V.2 for FLG = O and

(Nc - 1) = 2 and 3. As can be seen, for this tally, energy splitting appears to

be far less effective than distance splitting. Thus the selection of features

greatly influences the performance of state space splitting.

The middle splitting surface for (Nc - 1) = 3 was learned after 6 000

histories (62 000 prototypes) and had a final location of fl = .86. The lowest

surface (between classes 1 and 2) was unlearned after 20 000 histories (208 000

prototypes) at which time BOA(1) = O. It was located at fl = .08. The highest

surface was also unlearned after 20 000 histories with BOA(3) = 7.6. Its final ‘

location was fl = .99.

D. Direction Splitting

Next to distance features, direction features are probably the most common.

In direction splitting, it is desired to produce more neutrons that are travel-

ing towards the tally region. The variable used is the cosine p of the angle

between the present neutron direction (u,v,w) and the direction to the desired

tally (~jVT,wT)o

.

-

.

.
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●

✎

Tally 3 was used

location at the center

The value of u and the

for this example. The distance from (x,y,z) to a point

of the PU02 is given by

d=~x2+y2+ (z-28)2. (V.5)

feature is given by

‘1 ‘p= ‘u (i)‘v (0‘w (53- (V.6)

Splitting is limited to the region where 15 < z c 60 and~x~< 8.2. If

fl < 0, the neutron is placed in class 1.

The results obtained after 10 000 histories using (Nc - 1) = 2 and FLG = O

are presented in Table V.2. These values are relative to a calculation made

without splitting and are for the second energy bin. Without splitting, the

relative error obtained is 14% after 10 000 histories.

Neither surface was learned after 10 000 histories (30 000 prototypes).

The values of BOA(I) were 6 and > 10 at this point indicating that few particles

contribute“tothe tally even in the most important region of feature space. The

final surface locations were at fl = .76 and fl = .99.

E. Time Splitting

Tally 4 was used for this example. The relative errors obtained without

splitting after,10 000 histories are presented in Table V.3. In practice one

would split so as to create more neutrons past 1.6 ms. However, even with

splitting, this would take extremely long computer runs. For demonstration

purposes, it was decided to reduce the 1.3-1.4 ms bin. Therefore, the TWT for

this bin was set to 1, all others zero.

Splitting was restricted to the outer CH2 region. Within this region the

feature is given by

fl = t/1.4, (V.7)

where t is time in ms. If fl > 1, the neutron is placed in class 1.

The cost reduction obtained for the 1.3-1.4 ms bin with (Nc - 1) = 2,

and FLG = O and 10 000 histories is given in Table V.2. The effect on the
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Time Bin

J!!!Q_-

1.0-1.1

1.1-1.2

1.2-1.3

1.3-1.4

1.4-1.s

1.S-1.6

1.6-1.7

all others

TABLE V.3

RESULTS FOR TIME SPLITTING

Relative Error
Without Splitting With Splitting

14% 8.3%

16% 10%

18% 12%

21% 15%

29% 26%

51% 36%

No contributions 50%

No contributions No contributions

variance of the bther bins is seen from Table V.3. Although only a single bin

was specified for cost reduction, the variances of all tally bins were reduced.

Both surface locations were learned within 500 histories (30 000 proto-

types). The final surface locations were at fl = .45 and fl = .73.

F. Two-Dimensional Feature Space

In the previous examples, the feature vector F consists of a single—

component
‘1“

The only additional input required for multidimensional feature

space is the additional feature components.

1. Distance and Energy Splitting. All input (except for the feature

specifications) is identical to the example described in Sec. V.B.2 using

(Nc- 1) =3. Feature component fl is given by Eq.(V.3), f2 by Eq. (V.4). Split-

ting is restricted to the outer CH2 region.

Results after 20 000 histories are given in Table V.2. This feature space

configuration is not as effective as the distance feature alone for the same

number of surfaces. The initial and final surface locations are shown in

Fig. V.2. After 20 000 histories (41 000 prototypes), none of the surfaces was

learned.

2. Direction and Energy Splitting. All input

ifications) is identical to the example described in

Feature components fl and f2 are given by Eqs. (V.6)

(except for feature spec-

Sec. V.D using (Nc - 1) =2.

and (V.4), respectively.

Splitting was restricted as described in Sees. V.D and V.C.
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Fig. V.2. Splitting Surface Locations for
Distance and Energy Splitting

Results after 10 000 histories are presented in Table V.2. The cost is

slightly less than direction splitting alone. After 10 000 histories (12 146

prototypes), neither surface was learned. Final locations are shown in Fig. V.3.

G. Summary

Several conclusions are made below concerning computer costs, surface

learning, and surface selection. These conclusions are based on the experience

obtained from the previous examples.

1. Computer Cost Reduction. From Eq. (11.16), the relative computer cost

can be expressed as

R = RO*R
cost t

40s’~
Ra =

(
0s’ ~.

1+

tw
Rt = .

‘p Wo

(V.8)
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Fig. V.3. Splitting Surface Locations for
Direction and Energy Splitting

The variance factor Ra is given by

.

.

(V.9)

where Rss is the Ra that would be obtained using state space splitting alone and

R is the additional reduction obtained because surfaces are located by pattern
pr
recognition. The value of R~~ must be determined for the average user, a study

beyond the scope of this research. For the sample problems considered, .18 <

Ro< .74.

The computer time factor Rt is given by

Rt = RSPORL , (V.lo) ‘

.

where RSP is the ratio of computer times for particle transport only and RL is

given by
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%=
‘LtL + ‘T%

‘TtT
> (V.11)

. where NT = total number of histories

NL = number of histories required for surface learning

‘L
= computer time per history required for learning

‘T
= computer time per history required for transport.

For cases in which NL = NT, RL -1.1. As NT >> NL, RL approaches 1. The value

of R
SP

varies depending on the relative amount of splitting and Russian

roulette taking place. If more splitting occurs, RSP > 1, if more roulette,

‘SP< 1“
For the sample problems considered, 1.08 ~ Rt ~ 2.02.

The resultant value of Rcost ranged from .89 to .24. Table V.4 presents

the best Rcost obtained for each tally. The relative errors obtained without

splitting after 10 000 histories are also listed. The data indicate that the

slower the calculations, the greater the improvement.

When comparing the estimated variance of two calculations, the reliability

of these estimates is important. In this research, the variances were observed

throughout the calculation. Only after the sample variance had become relative-

ly constant, were the variances used. The estimated mean obtained with split-

ting was within 10 of the mean obtained without splitting for all runs compared.

2. Surface Learning. Of the 25 surfaces summarized in Table V.2, 14 of

the surfaces were learned before completion of the Monte Carlo calculation

(10 000 or 20 000 histories).

Of the 11 unlearned surfaces, 6 had converged but the BOA criterion (see

Sec. IV.C) was not satisfied (i.e., either BOA > 1.1 or BOA < .9). These 6

TABLE V.4

COST REDUCTION VS PROBLEM DIFFICULTY

Relative Error
Best Rcost (10 000 Histories) Tally

.65 9.8% 1

.53 14% 3

.50 21% 4

.24 33% 2
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are summarized in Table V.5. The surfaces are of two types - those for which

BOA > 1.1 and those for which BOA = O. When BOA > 1, the surface location

approaches ~ = [1 1 ... 1]. If feature space is constructed so that no region

(or an infinitesimally small region about [1 1 ... 1])satisfies the conditions

for class Nc, then BOA cannot converge to 1. For the cases for which BOA = O, no

prototypes belonged to class 1 (according to the teacher classification,NT). In

this situation, surface 1 approaches [0 O ... O] at a rate proportional to the

production rate of prototypes below the surface. In both of these cases, the

control system should recognize the situation and stop the learning of the

surfaces involved.

The number of histories required for a surface to be learned depends on the

number of prototypes produced per history, Ph. The value of Ph varied from 1.2

to 107 for the sample problems. The remaining 5 unlearned surfaces were

in which Ph = 1.2 and 2.1. The surfaces that were learned required from

13 000 histories (20 000 to 2S0 000 prototypes). Prototypes are created

surface intersections and collisions. Thus problems in which the number

for runs

373 to

at

of

collisions and intersections per history is large should have rapid learning.

3. Selection of the Type and Number of Splitting Surfaces. When the

majority of feature space contains prototypes which contribute to a tally greater

than 50% of the time, the important region should be subdivided by setting

FLG # O. In the previous examples, this was done only for tally 1 since there

were few contributions for the other tallies. In most cases when FLG + O is

required, the Monte Carlo problem probably does

TABLE V.5

CONVERGED BUT UNLEARNED

EILY

2

2

3

2

2

2

No. of Surfaces
(Nc - 1)

2

3

2

3

3

3

Surface
No.

2

3

2

1

1

1

not require splitting. An

SURFACES

Number of
Prototypes

121 887

207 837

29 728

6S5 612

207 837

41 169

Surface
BOA Location

2.03 .99

1.58 .99

> 10 .99

0.0 .039

0.0 .082

0.0 .37/.37

.
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1

exception is the point detector tally for which all collision points yield a

contribution. Because of this, FLG = O should be used as a default for all

tallies except the point detector.

The number of surfaces selected is dependent on the type of problem being
.

solved. For the sample problems used in this research, 1 to 3 surfaces were

used. If for surface 1, BOA = O, additional surfaces would be of little value..
This criterion should be used to allow the controller to select the number of

surfaces. This could be done by starting with a large number of surfaces and

eliminating all except

In summary, both

surfaces should be set

user.

one of those for which BOA = O.

the surface type specification (FLG) and the number of

by the control system unless otherwise desired by the

VI. CONCLUSIONS AND RECOMMENDATIONS

A patterxirecognition system has been implemented in the MCN computer code

and used successfully to learn state space splitting surface locations. For the

sample problems considered, computer cost was reduced from 11% to 75%. As with

conventional geometry splitting, the more difficult the problem, the greater the

savings.

Required user input consists of

(1) the feature vector description,

(2) the tally bins whose variances are to be reduced, and

(3) the number and type of splitting surfaces.

The number and type of surfaces

The user is relieved of much of

variance reduction schemes.

The general applicability

ness of the user in selecting a

could be selected automatically if desired.

the quantitative input usually required by

of the technique depends somewhat on the clever-

good feature space configuration. Further

studies are required to determine how optimal features can be selected.

There are many areas of possible improvements: (1) non-linear splittingD
surfaces,(2) a more efficient pattern recognition algorithm, (3) multiple

feature space configurations for a single problem, (4) a better learning.
criterion, etc. Although such improvements are desirable, they are not

required before the technique can be used. It is recommended that the tech-

nique be used by general users before any improvements are made in order to

determine any user-oriented problems that may exist.
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FORTRAN SUBROUTINE LISTINGS

SUBROUTINE PRPROT

SUBROUTINE PRPROT PROCESSES THE PROTOTYPES BY DECIPHERING

THE PROTO ARRAY AND SENDING PROTOTYPES TO SUBROUTINE LEARN

ONE PROTOTYPR AT A TIME

BTAL=O.O

IHC=O

JDIF = NO. OF PROTOTYPES TO BE PROCESSED

JDIF=NPROTO-NODS(NNODS)+l

SEND PROTOTYPES TO SUBROUTINE LEARN

DO 60 J=l,JDIF

JM = PROTOTYPE BEING PROCESSED

JM=NPROTO+l–J

NPNW=JM.(NWT+l )

BTAL = TALLY OF THIS BRANCH OF PROTOTYPES

TTAL = IMPORTANCE OF PROTOTYPE

PROTO(NPNW) = TALLY OF PROTOTYPE BEING PROCESSED

PROTO(NPNW–1) = WEIGHT OF PROTOTYPE

BTAL=BTAL+PROTO(NPNW)

TTAL=BT,4L/PROTo(NpNV/-l )

CALL LEARN(TTAL, IHC, PROTO(NPNW–NWT) )

CONTINUE

A BRANCH HAS BEEN TRIMMED

NBNOD(NNODS)=NBNOD (NNODS)–1

IHCNOG(NNCJDS)=MAXO (IHcNOD(NNODS) ,IHc)

TAL(NNODS) = TALLY ACCUMULATED AT THE NNODS INTERSECTION

TAL(NNODS)=TAL (NNODS)+dTAL

NPROTO=NPROTO–JDIF

IF(NBNOD(NNODS) .EQ.0) 15,14

NO MORE BRANCHES TO PROCESS ON NNODS BRANCH

CONTINUE

BTAL=TAL(NNODS)

IHC=IHCNOD(NNODS)

TAL(NNODS)=O. O

IHCNOD(NNODS)=O
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NNODS=NNODS–l

IF(NNODS.GT.0) GO TO 59

c

14

c

c

c

c

c

c

c

c

c

20

10

30

CONTINUE

NPRSV=NPROTO

IF(NPRSV.EQ.0) NPRSV=l .

u

RETURN

END

SUBROUTINE CLASS

PEAT(I) =ITH FEATURE VECTOR COMPONENT

ADFWT(I,J) = JTH WEIGHT OF DISCRIMINANT FUNCTION FOR CLASS 1,1+1

NWT = NUMBER OF WEIGHTS = NUMBER OF FEATURES + 1

NCLM1 = NUMBER OF CLASSES - 1

NCLC = CURRENT CLASS

NCLO = PREVIOUS CLASS

NFI = NUMBER OF FEATURES THAT CHANGE AT INTERSECTIONS

DIMENSION G2(10)

ENTRY CLASS2

IF(MPRFLG.EQ.2) GO TO 71

IF(FEAT(l).EQ.–l. ) GO TO 71

DO 10 K=l,NCLM1

I=NCLT–K

G=ADFWT(I,NWT )

DO 20 J=l,NWTM1

G=G+ADFWT(I,J) .FEAT(J)

IF(G) 10,10,30

CONTINUE

1=0

NCLC=I+l

RETURN

71 NCLC=FIO(IA)

RETURN

END

SUBROUTINE FEATEX

c

c FEATURES USED FOR TWO DIMENSIONAL SLAB EXAMPLE

c

.
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c

c

c

c

c

c

c

c

20

10

30

c
I

c

800
●

801

900

901

I

I

I

;NTRY FEATEX2

‘EAT(l)=(u+l.)/2.

FEAT(2)=x/sRc(l)

RETURN

END

SUBROUTINE LEARN(T,IHC,XX)

THIS SUf3ROUTINE ADJUSTS THE DISCRIMINANT FUNCTIONS

IF A PROTOTYPE HAS BEEN MISCLASSIFIED

DIMENSION XX(MNOFT),G(MNOSF)

DATA BSFN/MNOSF”O./

DATA ASFN/MNOSF~O./

DATA XCLASA/MNOSF”O./

DATA XCLASB/MNOSF*O./

DATA NPLOST/O/,NPOOR/O/

DATA NPRO/O/

DATA BINFO/MNOSFH”O.O/,NPR/100”0/

SEE IF PROTOTYPE IS WITHIN RANGE

IF(XX(l).EQ.–l. ) GO TO 403

FIND CLASS ACCORDING TO STUDENT = NS

DO 10 K=l,NCLM1

I=NCLT–K

G(I)=ADFWT(I,NWT)

DO 20 J=l,NWTM1

G(I)=G(I)+ADFWT(I,J).XX(J)

IF(G(I)) 10,10,30

CONTINUE

1=0

NS=I+l

FIND CLASS ACCORDING TO TEACHER = NT

IF(IFRFLG-1) 1000,900,800

IF(T.EQ.O. ) 801,250

IF(IFRFLG.E().2) GO TO 901

IF(Ns. LT. IFRFLG.AND.IHc.LE .IFRFLG) GO TO 22o

NT=IFRFLG–1

GO,TO 300

IF(T.NE.O.) GO TO 250

NT=l

GO TO 300
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c USE THIS SECTION FOR SELDOM OCCURING TALLIES

1000 IF(T.EQ.0) GO TO 200

NT=NCLT

GO TO 300

200 IF(NS. NE.NCLT .AND.NCLT.NE .2) GO TO 220

NT=NCLM1

GO TO 300

220

240

c

250

251

255

c

260

c

c

c

c

300

310

315

IF(IHCeEQ.0) GO TO 260

IF(IHC.NE.1) GO TO 240

NT=l

GO TO 300

NT=IHC–1

GO TO 300

USE THIS SECTION FOR FREQUENT TALLIES

DO 255 NT=IFRFLG,NCLT

IF(T.LE .XIMP(2,NT)) 251,255

IF(T.GE .XIMP(l,NT)) 300,402

CONTINUE

GO TO 402

LOST PROTOTYPE

NS=IFRFLG–1

IF(IFRFLG.EQ.0) NS=NCLM1

NT=NS

IFLOST=l

FILL IN FREQUENCY ARRAYS

BSFN(K)=NO. OF PROTOTYPES

ASFN(K)=NO. OF PROTOTYPES

IFEAT=(XX( l)”lO, )+1

JFEAT=(XX(2) ”1O.)+1

IF(NWT.EQ.2) JFEAT=l

NPRO=NPRO+l

BELOW SURFACE K ACCORDING TO TEACHER

ABOVE SURFACE K ACCORDING TO TEACHER

NPR(IFEAT,JFEAT)=NPR(IFEAT ,JFEAT)+l.

AvENPR=NPRO/RVl( 1)

FACl=AVENPR/NPR(IFEAT ,JFEAT)

IF(NT.EQ.NCLT) GO TO 315

DO 310 K=NT,NCLM1

BINFO(K,IFEAT ,JFEAT)=BINFO(K,IFEAT,JFEAT)+l .

BSFN(K)=BSFN(K)+FAC1

IF(IFLOST.EQ.1) GO TO 402

IF(NT.EQ.1) GO TO 325

NTM1=NT–1

.

“

.

.
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320

325

%

330

c

c

c

c

340

348

34Q

c

c

c

c

350

358

e 359

d c

402

DO 320 K=I,NTM1

ASFN(K)=ASFN(K)+FAC1

IF(NT.EQ.NS) GO TO 400

DIV=l .

DO 330 K=l,NWTM1

DIV=DIV+XX(K).*2

CORFAC=FACl/SQRT (DIV)

IF(NT–NS) 350,400,340

STUDENT HAS UNDER-CLASSIFIED

XCLASA(J) = PROTOTYPES BELOW SURFACE J (SAYS STUDENT)

ABOVE SURFACE J (SAYS TEACHER)

DO 349 J=NS,NTM1

XCLASA(J)=XCLASA(J )+FAC1

IF(XAMDA(J). EQ.O.) GO TO 349

DO 348 I=l,NWTM1

TPR(J, I)=TPR(J, I)+XX(I) .CORFAC.XAMDA(J )

RPR(J, I)=RPR(J, I)+TPR(J,I)

TPR(J,NWT)=TPR(J ,NWT)+CORFAC.XAMDA(J)

RPR(J, NWT)=RPR(J,NWT)+TPR(J ,NWT)

CONTINUE

GO TO 400

STUDENT HAS OVER–CLASSIFIED

XCLASB(J) = PROTOTYPES ABOVE SURFACE J (SAYS STUDENT)

BELOW SURFACE J (SAYS TEACHER)

NSM1=NS–1

DO 359 J=NT,NSM1

XCLASB(J)=XCLASB(J )+FAC1

IF(XAMDA(J). EQ.O.) GO TO 359

DO 358 I=l,NWTM1

TPR(J, I)=TPR(J, I)–XX(I) @CORFAC.XAMDA(J )

RPR(J, I)=RPR(J, I)+TPR(J,I)

TPR(J,NWT)=TPR(J ,NWT)–CORFAC.XAMDA(J )

RPR(J.NWT)=RPR(J,NWT)+TPR(J ,NWT)

CONTINUE

GO TO 400

NPLOST=NPLOST+l

IFLOST=O

c

400 CONTINUE

IHC=MAXO(NS,IHC)
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RETURN

403 NPOOR=NPOOR+l

RETURN

END

.?

.

,

.
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APPENDIX B

VARIABLE SUMMARY

Variable

Aj’j+l
.

B

c

c
i

‘c-

CH

CN

co

c~

Cu

‘b

D=

D~

E

Ecut

fa

‘b

F—

F*
—

%

g

Description

Ratio of class importances for feature vectors
and F.~j+l ‘J

Total number of tally bins in a problem

Pattern classification algorithm adjustment
factor

Initial splitting surface location parameter
i’th surface

for

Highest class obtained by a branch of prototypes

New class

Old class

Source class

Source splitting class

Weighting factor for b’th tally bin

Distance to collision

Distance to surface intersection

Energy of a particle

Energy cutoff

Normalization factor for pattern classification
algorithm

Distribution factor for pattern classification
algorithm

Feature vector

Augmented feature vector

Feature vector of j!th prototype

Discriminant function

Discriminant function of i’th splitting surface

Page

9

11

13

40

12

20

20

20

20

11

19

19

5

19

15

15

7

8

9

8

9
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%

In

N

N=

Ne

N
g

N
P

Nu

NS

NT

Nt

Nw

P(F_)

P(Eln)

P(F+F” ~ n)——

‘h

R

Rcost

~

R~

68

Sum of weight vector changes after j prototypes

For geometry splitting, importance of region n
For state space splitting, importance of class
to which vector ~ belongs

Number of histories in a Monte Carlo calcula-
tion

Total number of classes (importanceregions)

Splitting ratio for energy splitting

Splitting ratio for geometry splitting

Number of prototypes created from a source
particle until the termination of the present
track being followed

Number of Tj # O splitting surfaces

Prototype classification according to the
student

Prototype classification according to the
teacher

No. of new tracks created by splitting, (n,xn),
or fission

No. of words of PROTO array previously used

Probability density of feature vectors in
feature space

Probability that feature vector F belongs to—
class n

Probability that feature F leads to a feature
vector

No. of

Dimens:

F- ~hich is in cla~s n or greater—

prototypes produced per neutron history

onality of feature space

Relative computer cost

Sum of all weight vectors through prototype
J less J*!O

Ratio of source neutrons to total number of
prototypes

1s

4

16

8

18

19

12

12

13

13

25

25

16

13

28

58 “

8

17

15

35



1

t

t.
J

4
,< t

P

-4
T
cut

T.
J

u

v

w

Wt

Wt.
J

w—

w.
—1

w.
‘J

‘i3j

ii—

x

x—

Y

z

a’

Sum of all weight vectors through prototype J

Time of a particle

Tally weight contribution of prototype j

Computer time/particle history

Time cutoff

Total tally weight contribution from prototype
j and all its progeny

Tally weight contribution threshold for class i

Direction cosine with x-axis

Direction cosine with y-axis

Direction cosine with z-axis

Particle weight

Weight of particle used in j’th prototype

Discriminant function weight vector

Weight vector for i’th splitting surface

Weight vector after jtth prototype

Weight vector of i~th splitting surface after
jlth prototype

Average weight vector
r

Original weight vector

x-coordinate location of particle

State space vector

y-coordinate of particle

z-coordinate of particle

variance of a Monte Carlo estimate

variance of the Monte Carlo sample

learning parameter

15

5

10

16

19

12

12

5

5

5

4

10

8

20

13

10

15

15

5

7

5

5

16

16

15
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APPENDIX C

Variable

ADFWT(M,I)

BOA(I)

BTAL

CONV

DFWT(M,I)

DIV

F(J)

ICONV

ICONVT

IDCONV

IHCNOD(I)

JDIF

NBNOD(I)

NNODS

NODS(I)

NPR(K,L)

NPRO

70

FORTRAN VARIABLE SUMMARY

Description

~e I’th component of the average weight vector
~ of the Mrth splitting surface

XCLAB(I)/XCLASA(I), the variable used to
measure learning

The accumulated tally weight contribution from
the prototype being processed up to and
including the prototype NPROTO

The maximum deviation
for learning

Ilth component of the
of the M’th splitting

of BOA from 1 required

initial weight vector ~ “
surface

Magnitude of the vector F*—

Jtth component of feature vector ~

The number of prototypes that must be processed
before the A can be adjusted

The number of prototypes that must be processed
before learning can be terminated.

The number of prototypes that must be processed
(since the last A adjustment) before the A can
be adjusted again

The maximum class (NS) obtained at a branching
intersection.

Number of prototypes being processed

No. of branches remaining unprocessed on the
Ilth branching intersection

No. of branching intersections

The prototype No. of the I’th branching inter-
section

Approximation used for P(E)

Total No. of prototypes created

Page

30

32

25

32

30

29

25

31

32

31

26

2s

24

24

24

28

28 ,



24

32

32

13

13

24

29

NPROTO No. of prototypes stored in PROTO

No. of source particles startedNPS

NPSLRN Threshold histories for using splitting surfaces

‘9
NS Student prototype classification

Teacher prototype classification& NT

PROTO(I) Array for prototype storage

RPR(M,I) The Ilth component for the ~ of the M’th
splitting surface

The I1th component for the ~ of the M’th
splitting surface

29TPR(M,I)

Total tally weight contribution for a prototype 25

24

31

31

TTAL

TWT(I)

,
XAMDA(I)

I’th tally bin weight

Learning parameter for Irth surface

Number of misclassified prototypes above surface
I (according to NT)

XCLASA(I)

XCLASB(I) Number of misclassified prototypes below surface
I (according to NT)

31

XFAC(J)

XMCLR(I)

Constants used to vary A 31

31Misclassification rate of I’th splitting surface
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