
LA-8849-MS

g
.-

>
.-
Co

z>.-

A Philosophy of Supercomputing

DO NOT Cli?CULATEb

PERMANENT

I REQUIRED BY

w,.,.,<. .. S-.W .- -w--. . : L :---

RETENTION

CONTRACT

.../

\

L%?LOSALAMOSSCIENTIFIC LABORATORY
Post Office Box 1663 Los Alamos. New Mexico 87545

—

An Affirmative Action/Equal Opportunity Employer

l)ls(L\l\ll R

Thks report was prcpticd as an x.wunt of wuck sptmwrcd hY an ogtmy d theUnitd StJtcs Ckwwn-
mcnl. Neither the hitLti SIXICS (kwrnmcnl nor any W!WWY thcr.wl. nor any d“ lIICK Cntpbyc.x.
nukL% any wwwnly. CMWMS or Impli.xl. w wmmws any Icgd Iid?ility w rc.spnsih ilily for the xL’ur-
xy. complctwwss. ur usefulness ur any Iniurnutioth appmtus. prtxhwi. ur pruccs didusd, or rtip-
rcfcnts thatits usc would not infringe priwtdy ownd ri@s. Rufcrcncc Iu!win to any spcdfic cum.
mcrdal prcxhml. poxcss. or scrvicr hy trmlc nmnc. trakmrk. numufw’tutec, or uthwwk, IIocs nut

nccussdy mnstitutc or imply its cnthxswucnt. rccommcntldkm or favoring hy NM Llnik+.1 Statt#
GOvcrnmcnt or any a~sncy Iluxof. ‘Tk vkws and upinkuns of uulhors qwcs.wd hcrcln do not ncc-
IXCMily SI”tc or reflect thus.c IIf the United States (;ov.. nmwu IX ‘my agt!ncy lhcrmf.

UNITED STATES

DEPARTMENT OF ENERGY
CONTRACT W-7405-ENG. 36

LA-8849-MS

UC-32
Issued: June 1981

A Philosophy of Supercomputing

Jack Worlton

,.—

..-

.—

. . —.. ------ . ..4. m..-=.

ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the
original report at a 300 dpi resolution. Original
color illustrations appear as black and white images.

For additional information or comments, contact:
Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

A PHILOSOPHY OF SUPERCOMPUTING

by

Jack Worlton

ABSTRACT

This paper is the text of a lecture given
at the Conference on High-Speed Computing,
Glenenden Beach, Oregon, on March 30, 1981,
sponsored by Los Alamos National Laboratory
and Lawrence Livermore National Laboratory.
It critically examines and attempts to clarify
some of the commonly held beliefs about super-
computing, including basic problems, principles,
and motivating concepts.

1. INTRODUCTION

The purpose of studies in the philosophy of technical
subjects, such as the philosophy of science or, in this instance,
the philosophy of supercomputing, is to critically examine and to
attempt to clarify commonly held beliefs about the subject,
including basic problems, methods, principles, and motivating
concepts [1]. The classical role model for such a critical
analysis is provided by the philosopher Socrates, who succeeded so
well in critically examining the beliefs of his time that he was
offered a special after-dinner drink. I trust I will not succeed
that well. The views expressed here are personal views, not the
views of the Los Alamos National Laboratory or the Lawrence
Livermore National Laboratory (referred to herein as the
laboratories) , or the Department of Energy.

The year 1981 marks the 38th anniversary of the founding of
the laboratory at Los Alamos, the 35th anniversary of the
dedication of the first electronic computer (ENIAC), and the 29th
anniversary of the founding of the laboratory at Livermore. In the
years following these events, there has been a “symbiotic”
relationship between science and computing, in which science has

1

provided motivation and funding for the development of
supercomputers, and supercomputers have provided means of solving
problems in science that are otherwise intractable. In this span
of time, the speed of computation has increased from a few
operations per second in the electromechanical computers used at
Los Alamos in the war years, to more than 107 operations per second
in current Class VI supercomputers (see Fig. 1). This change of
some seven orders of magnitude in less than four decades is
unprecedented in the history of technology. Yet we meet here today
to explain to the supercomputer designers that we have an urgent
need for an increase of one to two orders of magnitude in
computation speed in this decade. The effects of this projected
speedup in computer capability would be to:

● Reduce the time needed to complete computationally dependent
Department of Energy (DOE) programs. For example, a problem
that now requires hours of central-processor unit (CPU)
time on a Class VI computer requires several weeks of real
time to complete, because no single problem can be run to
completion in one session, but must be run a few hours per
night. A speedup of 100 to 1 would reduce the real time for
problem completion from several weeks to just one night.
Further, problems that now require 1 hour of CPU time on a
Class VI computer must be run overnight, but these would be
reduced to less than 1 minute and could be done interactively
many times per day. Thus , the programmatic effect of the 100
to 1 reduction in compute time would be to reduce the time to
complete a given project and thereby reduce the time to
complete a given defense or energy program.

Trend hr execution bandwidth

Cray-1

7600

6600

Maniac

I03— Seat

102—

10’—

,.O

2

‘-1940 1950 1960 1970 1980

Fig. 1. Trend in execution bandwidth
at Los Alamos.

●

●

●

Increase the quality of the defence and energy products
produced by DOE. The products with which DOE is concerned are
radically different from ordinary consumer products because
they include such things as the safety and security of nuclear
weapons and nuclear reactors. The proposed 100 to 1 speedup
in computer performance would allow DOE to explore more
options in meeting its programmatic goals and thereby increase
the quality of these products that are of such vital concern
to the nation.

Reduce the cost of achieving a given level of performance in a
defense or energy system. It has been well said that time is ~
money. Reducing the time needed to complete DOE programs
would be one way to reduce the cost of these programs. DOE is
concerned here not only with the cost of computing for a given
project, but with the much larger cost of the project itself.
For example, recent estimates are that the cost of the first
demonstration power plant for magnetic fusion will be about $1
billion. Before such a plant is built, its total operational
environment must be simulated to assure that the optimal
configuration of the plant is used. This will require a
supercomputer of greater computational capability than any now
available.

Increase the productivity of the most valuable resource the
laboratories have-- the scientists and engineers who work on
defense and energy programs. As important as computers and
other physical resources are, their productivity is of
secondary concern to that of people.- No computer has yet had
an idea of how to make a safer nuclear weapon or a safer
nuclear reactor, for example. Only people contribute in this
way.

Although there is little doubt of the need for this increase
in supercomputer capability, we would do well to bear in mind that
improvements in supercomputing include more than just the speed of
the computer hardware. There are many examples in which
improvements in software and algorithms have contributed as much to
large-scale scientific computing as have improvements in hardware.
Indeed, with the slowing rate of advancement in the speed of
semiconductor components, we are faced with an era in which
improvements in supercomputing will have to come largely from
advances in computer structures, software, and algorithms.

2. TECHNOLOGY TRENDS

Innovation in supercomputers is based in part on innovation in
the components of which they are built and in part on,innovation in
the logical structure of the systems. In the past, many of the
advances in supercomputers, such as the transition from the CDC
6600 to the CDC 7600, were based in large measure on faster

3

components, but this option now seems inadequate by itself to meet
our needs.

The major design changes in the Class VI computers are an
indication of things to come. Components were not fast enough of
themselves to achieve the required speedup, so the structure of the
computers was changed to include explicit vector operations. This
change in turn required the most far-reaching changes in code
structure since the 1950s when floating point replaced fixed point.

The most often-quoted trend in component technology is
“Moore’s Law,” which states that the number of components per chip
will double every year [2]. This trend continued for a remarkable
number of years. In 1979, however, Gordon Moore of Intel, the
author of Moore’s Law, noted that since 1975 the number of
components per chip has been doubling not every year, but only
every two years [3]. Leo Rideout of IBM also notes this slowing
rate and comments that “Difficulties in designing circuits of much
higher complexity could further diminish the growth rate in the
1980s” [4]. The delays encountered in the development of the 64K
dynamic random access memory chips are symptomatic of this trend.
The literature is full of the design difficulties and the high
costs of developing VLSI component;.

There are, of course, always positive announcements coming out
of the components industry, and some of the developments made in
connection with the Department of Defense’s Very High Speed
Integrated Circuit (VHSIC) program are especially noteworthy for
advances that might be achieved by the middle and the latter half
of this decade. gallium-arsenide and Josephson Junction
technologies also hold promise for the latter part of the decade.
But even the most optimistic views of component development lead us
to the conclusion that components will not become faster by two
orders of magnitude during the 1980s.

Thus , if we desire faster computers, we are led inevitably to
achieving higher speeds in other ways --by changes in the structure
of computers, by advances in software, by new physics models and
algorithms ,“or by some combination of these options. All of these
options have one thing in common--they require major commitments of
manpower by the users.

The first option, changes in the structure of computers, is .

almost sure to affect supercomputer design in this decade in the
form of explicit parallelism. This conclusion has some far-
-reaching consequences. It means, for example, that the major
overhaul of application codes undertaken by the laboratories to
take advantage of vector operations may be followed closely by
another major overhaul to take advantage of explicit parallelism.
The term “explicit parallelism” is used in contrast to the implicit
parallelism that the industry has been using for more than two
decades in designing faster supercomputers. Explicit parallelism
requires the attention of the user. It cannot be ignored as could
many of the implicit parallelism features of the past. Thus, an

4

important part of understanding supercomputing for the 1980s is to
understand parallel processors.

3. TAXONOMY AND NOTATION FOR PAMLLEL PROCESSORS

The commonly used taxonomy of parallel processors is that
proposed by M. Flynn in 1972 [5] and illustrated in Fig. 2. This
taxonomy has been quite useful during the decade of the 1970s, but
it has a serious flaw: the category of Multi-Instruction/Multi-
Data (MIMD) includes not one but three separate architectures. To
see these hidden architectures, consider Fig. 3, in which we
classify computer architectures according to the relative number of
execution units (E) and instruction units (I). With E less than I,
we have a shared resource architecture, and a single instance of
this architecture has a single execution unit serving many
instruction units. With E equal to I, we have a symmetric
architecture, which has provided”the mainstream of computer design
for some three decades. And with E greater than I, we have a
synchronized architecture, in which a single instruction unit
synchronizes the work of many execution units. In Fig. 4, we see
the multiple forms of these basic architectures that clarify the
three MIMD architectures. This taxonomy can be extended to a
12-way classification by classifying the E units according to the
number of results that can be generated for each instruction
issued: if the results/E-unit/instruction-issued equal 1, we have a
scalar architecture; if the results/E-unit/instruction-issued can
be greater than 1, we have a vector architecture.

Computing is sometimes called “computer science,” but its lack
of standard taxonomy and terminology is one of the marks of an
immature science. Other, more mature sciences, are characterized
~fa~aving systematic taxonomies of the objects with which they

. On New Year’s Day of 1730, the dean of the University of
Upsala, Sweden, found on his desk a manuscript by an unknown
student entitled, ‘tPreliminaries on the Marriage of Plants” [6].
This manuscript was written by a.student named Linnaeus, and it
contained an idea for the classification of plants based on their
reproductive methods that Linnaeus later used to classify all
plants. Linnaeus also devised the binomial system of naming plants
and animals using Greek and Latin words. On its way to becoming a
science, computing has yet to find its Linnaeus to help it create a
standard taxonomy.

Computing, however, does have some established nomenclature.
Three items of standard notation for parallel processors commonly
used are

T= the time to complete a task using p processors,
P

s
P = T1’Tp = speedup, and

E
P

= sp/P = efficiency.

5

INSTRUCTION STREAMS

DATA
STREAMS

S I NGLE MULTIPLE

SINGLE 1$ v

SOURCE:

Fig. 2.

M. FLYNN, IEEE TR. COMP., 9/72

Flynn’staxonomyof computer
architecture.

I SINGLE

I SINGLE I MULTIPLE

I SIME I n(SIME)

Fig. 3. A basic taxonomyof computer Fig. 4. An extendedtaxonomyof computer
architecture. architecture.

4. AN HISTORICAL PERSPECTIVE OF PARALLEL PROCESSING

One of the bits of folklore we often hear in discussions about
supercomputers is that our roots lie in serial computation, that
parallel computing is an unnatural way of computing, that humans
just do not think this way, and therefore we will have almost
insuperable difficulties making the transition to parallel
computation. As is often true of folklore, there is some truth in
this statement, but it ignores the frequent use of parallel
processing by human beings. In fact, parallel processing is as
natural as preparing a meal. Any cook who has several dishes to
prepare, each of which takes a different amount of time to cook,
uses parallel processing. The longest-cooking dish is started
first, then the second-longest cooking dish, and so on, with
everything coming out at the same time for the dinner. If a cook

6

can do it, why can’t a computer scientist? Automobile engines are
marvels of parallel processing: the fuel and electrical systems
must work in parallel, and within each of these systems there are
many subsystems that work concurrently. If a mechanic can
understand and work with parallel processing, why can’t a computer
scientist? And, all managers are familiar with parallel processing
because they typically control many projects and many people
working concurrently on each of these projects. If managers can
work with parallel processing, why can’t a computer scientist?

It might be argued that these are not calculating tasks, and
that parallelism in calculation is indeed novel. But is it? In
David Kuck’s “Survey of Parallel Machine Organization and
Programming” written for Computing Surveys in 1977 [7], he pointed
out a number of historical precedents for parallel processing. For
example, Babbage’s Analytical Engine was described by Menabrea in
1842 as being able to prepare several results at once, although
there is some question about whether this idea survived. Kuck ‘S
paper inspired me to think back on other, even earlier, uses of
parallelism in computation; some examples follow.

The earliest instance of a parallel processor I can document
is the so-called “Salamis tablet,” found on the Greek island of
Salamis, and dated to about the second century B.C. [8]. This
device has three calculating positions. We are unsure how the
device was used, but the conclusion is almost inescapable that the
three calculating positions must have been used simultaneously,
either for reliability through calculating the same result or for
faster completion of calculating tasks that had been decomposed
into parts.

The Europeans used the line abacus as their main means of
calculation until about the 16th century A.D. [8], and the concept
of parallel processing was used in these devices. Three of these
calculating tables with line abaci incised into their surfaces can
be seen in German museums. Each of these has more than one
calculating position, as did the Salamis tablet. There are also
line drawings dating from the 16th century that show several
operators using these positions simultaneously.

We have already noted Babbage’s design of the early 19th
century. Later in that century, Herman Hollerith designed for the
U.S. Bureau of the Census a tabulator that was quite successful,
primarily because he tabulated all of the data on a card in
parallel, using 40 tabulators that worked concurrently [9]. For
example, if there were 10 items of information to be tabulated on a
card, then all 10 of them would be counted at once. The processing
elements are quite simple, being just counting devices, but the use
of parallel processing is clear.

In the 1920s, A. J. Thompson connected four Trimphator
calculators so that the output register of one calculator could
provide input to the next to create a difference engine. He

7

thereby created an interesting instance of a mechanical
multiprocessor [10].

Punched-card accounting machinery was used for scientific
computing at Los Alamos beginning in 1944, and this equipment was
used in a parallel computing mode to shorten the time to complete
the early weapons calculations. Richard Feynman, later a Nobel
Laureate, devised parallel processing methods that increased the
throughput by a factor of 9 [11].

Most people have forgotten that the first electronic computer,
the ENIAC, was capable of parallel operations. It contained 20
adding-storage registers, a multiplier, and a divider/square-
rooter. The control of operations in the ENIAC was implemented
through a “master programmer” that could initiate several
operations simultaneously. A description of the ENIAC published in
1945 states [12, p. 3-3]-

Since the ENIAC contains a number of trunk circuits,
operations between various pairs of ENIAC units can be
carried out simultaneously. This is possible not only
because of this multiple trunk system, but because all
units are synchronized by permanent electrical
connection with the ‘cycling unit. ‘ Therefore if
several operations are started simultaneously between
various units of the ENIAC, and since all of these are
timed from one and the same circuit, the various
operations will end at known times relative to one
another. Thus it is possible to plan the next group
of simultaneous operations with the assurance that all
of the prerequisite steps of the first group have been
completed.

The authors of this report (Eckert, Mauchly, Goldstine, and
Brainerd) discussed several levels of parallelism, including both
single- and multiple-instruction streams. They noted the tradeoffs
between the speed achievable with “multiple” (parallel) operation
and the economy achievable with serial operation [12, pp. 4-3 to
4-5]. They concluded that serial operation was to be preferred in
the post-ENIAC computers for two reasons: (1) new components were
available that were fast enough so the desired speed of operation
could be achieved without the complexity and the expense of
building multiple processing units, and (2) programming for serial
operations would be simpler than for multiple (parallel)
operations. The fact that components are now no longer fast enough
for our needs simply requires us to return to the problems faced by
Eckert and Mauchly in designing the ENIAC. In designing parallel
processors for the 1980s, the computing industry will not be
starting onto a new path, but merely coming full circle onto an old
one.

The descendants of ENIAC helped create the impression that
computing is by its nature a serial activity. A few designs have

8

incorporated explicit parallelism. Kuck mentions the Bell Labs
Model V built by Stibitz and Williams in the late 1940s, a
multioperation processor oriented around a drum memory by Leondes
and Rubinoff in 1952, a drum-memory multiprocessor proposed by
Konrad Zuse of Germany in 1958, and a number of proposed and real
multiprocessors in the 1960s and 1970s [7]. Many vendors offer
more than one processor in their product lines, including CDC, IBM,
Univac, Honeywell, and Burroughs. However, uniprocessor designs
have been the mainstream of computer architecture for some three
decades.

The renewed interest in parallel processing is reminiscent of
the philosopher Platofs theory of learning as anamnesis. Amnesia
refers to forgetting, but anamnesis refers to a remembering of that
which has been forgotten. Plato taught that we do not learn new
things; we merely remember things we have forgotten. Whether this
is true in general may be questioned, but for parallel processing
Plato’s point is well taken.

5. THE PROBLEMS OF PARALLEL PROCESSING

It is inherent in the nature of the future that it contains
both problems and opportunities. In his book Future Shock Alvin
Toffler argues that we can manage the future only to the extent
that we can anticipate it [13]. Thus , it behooves us to try to
anticipate both the problems and the opportunities of parallel
processing.

To analyze the problems of parallel processing, I will use one
of the fundamental principles of supercomputing, one that I call
“Amdahl’s Law.” In 1967 Gene Amdahl presented a paper to the
Spring Joint Computer Conference [14, 15] in which he warned that
when we build computers with two distinct modes of operation, one
high speed and another low speed, we thereby create a processor
whose overall operation will be dominated not by the high-speed
mode but by the low-speed mode, unless the fraction of results
generated in the low-speed mode can be essentially eliminated. He
further argued that eliminating this low-speed fraction would not
be feasible in general-purpose computing. Amdahl’s paper has been
widely quoted and sometimes referred to as folklore, but the
correctness of the basic premise is easy to establish.

The conceptual basis of Amdahl’s Law is illustrated in Fig. 5.
Here we assume that we have a relay team whose members are a
tortoise and a hare. We first have the tortoise run the course of
100 units of distance; it covers the distance in time T, and we
show its relative speed as unity. We then have the tortoise run
only half of the distance, taking time T/2, and the hare--which we
assume here is infinitely fast--run the last half of the course in
zero time. We then pose the question, “How fast is the team as
compared to the tortoise alone?” If we concentrate on the speeds
of the two runners, unity and infinity, we might conclude that the

9

DISTANCE

TIME

DISTANCE

TIME

DISTANCE

TIME

RELATIVE

“?~+” “E:

Fig. 5. The Amdahlrelayteam.

average speed is closer to infinity than to unity. However, if we
note that the total time of the team was T/2, then it is obvious
that the average speed has been increased by just a factor of 2.
If we now have the tortoise run only one-quarter of the distance
and the hare run three-quarters, we will increase the average speed
of the team to just 4 times the speed of the tortoise alone. The
point is just as Amdahl warned us: the slow member of the team
dominates the overall performance.

We can express these ideas somewhat more formally by the
following

B=

where

B=

‘H ‘

‘H =

‘L =

‘L =

simple analytical model.

1
#

‘HTH + ‘LTL

results generated per unit time,

the fraction of results generated in high-speed
mode,

the time to generate a single result in high-
speed mode,

the fraction of results generated in low-speed
mode, and

the time to generate a single result in low-speed
mode.

10

The validity of Amdahl’s Law can be verified by using it to
model existing supercomputers. We have done this for the Control
Data Cyber 205 (see Appendix). Figure 6 compares the predictions
of the model with benchmark data for the operation V = V + S
(vector = vector + scalar), with contiguously stored vectors. The
model also has been used to predict successfully the performance of
the Cyber 205 for noncontiguously stored vectors and for more
complex operations, including the triadic acceleration feature.

If we divide the numerator and denominator of Amdahl’s law by
TL and let TH go to zero to investigate the effect of infinitely
fast high-speed mode, we have B = BL/FL, where BL = l/TL is the
bandwidth in low-speed mode. That is, the speed of a computer hav-
ing two modes of operation is limited by its low-speed mode divided
by the fraction of results generated in that mode. For example, if
half of the results are generated in low-speed mode, then the over-
all performance will be only a factor of 2 meater than if all
results
mode is

It
by TH.

were generated in law-speed mode,
infinitely fast.

is also instructive to divide the
We get

e;en if the high-speed

numerator and denominator

B ‘H
= FH + FL(TL/TH) ‘

where B = I/TH. This form of the model shows that the ratio
(TL/TH)%as the effect of increasing the fraction of results
generated in low-speed mode. That Is, the
the greater is the effect of the low-speed
Fig. 7.

larger this ratio is,
mode, as shown in

100

90

80

70 1

30

20

10
I

❑ BENCHMARK

— MODEL

o! , , , , =11
1 IO 100 1000 1000o 1000oo

VECTOR LENOTH

Fig. 6. Cyber-205benchmarkdatavs analyticmodel.

11

Bn

BN/2

BM/4

Bn/8

B“/16
I I 1 I 1 I 1 1 I I I
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F.

Fig. 7. Effectof TL/THon performance.

This model can be used to explain why the first generation of
vector processors was not, and why the second generation is, a
marketing success. Figure 8 shows the performance curves of these
two generations, compared to a reference computer, the CDC 7600.
Here we idealize the first-generation vector processors to have a
scalar performance of one-fifth of the reference computer and a
vector performance of 5 times the reference computer (curve A).
The performance curve remains below that of the reference computer
until vectorization is about 83%; only with higher levels of
vectorization is there an advantage to this type of vector computer
as compared to the reference computer. This performance curve does
not describe a useless computer, merely one that is special
purpose; superior performance relative to the reference computer
can be achieved only when this computer is applied to problems that
can be vectorized above 83%. In contrast, the performance curve of
second-generation vector processors is shown by curve B, where we
assume the scalar performance to be a factor of 2 above the
reference computer and the vector performance to be the same as in
the first generation. This performance curve shows an advantage
over the reference computer regardless of the vectorization level.

As the philosopher George Santayana remarked, those who will
not learn from history are condemned to repeat it, and there is a
danger that the errors of the past could be repeated with the
technology of the future. For example, suppose a parallel
processor is developed that has 16 processing elements (PEs), each
of which is a factor of 2 slower than a reference Class VI computer
(such as the Cyber 205 or the Cray-1), so the aggregate of 16 PEs
operating concurrently would give a factor of 8 speedup over the
reference computer. If we now assume that some tasks are done by
just one PE and the rest are done using all 16 PEs, then the
performance curve is as shown in Fig. 9. If a code for the
reference uniprocessor were converted to run on one PE of the
multiprocessor, it would run only half as fast as on the reference

12

Fig. 8.

8-

7-

6-

5-

3-
B

2-

, REFERENCE

A

—

~~
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I

Fv

Performanceof first-and second-
generationvectorprocessors.

4-PE
MULTIPROCESSOR

4-

3-

2

o~
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

- FAAX -

(Fl = I-FMAx)

Fig. 9. Multiprocessoroptions.

13

computer. Even if the code were converted to use 16 PEs for some
fraction of the tasks, no advantage over the reference computer
wotildbe achieved until that fraction exceeds 0.5. In contrast,
suppose another option were to build a multiprocessor with only 4
PEs, each of which is faster than the reference computer by a
factor of 2. Codes converted from the reference uniprocessor to
the parallel processor would run no less than a factor of 2 faster,
and at higher factors as the code is converted to multiprocessing
operation.

There is a potential fallacy in this analysis, as pointed out
by Kuck [16, p. 38]: we have assumed that some portion of the
calculation, however small, would be executed in serial mode, that
is, with only one PE. This is an assumption rather than a fact,
and if it is false, then this analysis is invalid. For example, if
the minimum number of active PEs were 4 in the 16-PE design, its
performance would equal that of the 4-PE design having faster PEs.
Optimizing compilers for parallel processors may help us avoid idle
PEs, and thereby bean important aid in achieving this goal of
essentially eliminating serial processing.

However, even a rather small amount of serial processing can
significantly reduce the effectiveness of a multiprocessor, as
shown by W. Ware in a paper in 1972 [17] and illustrated in Fig.
10. Here we assume that there is some small fraction of serial
processing, k, and compute its effect on the speedup of a
multiprocessor having 100 PEs. With no serial processing, the
maximum speedup would be 100. However, with just 1% serial
processing, the speedup would be reduced to about 50; with 2%

100-1

60-
1

m’ 50-

1
40-

m-

20-

10-

o~
0.000.010.020.030.040.050.00 0.070.000.080.10

-K-

Fig. 10. Ware’smodelof multiprocessors.

serial processing, the speedup would be reduced to about 34; and
with 470serial processing, the speedup would be reduced to about
20. It is this reduction in potential benefits due to even very
small amounts of serial processing that constitutes one of the
problems in certain parallel processing designs and limits their
usefulness to special-purpose computing.

This analysis of potential dangers of multiprocessing leads me
to these conclusions.

● There is less risk in the use of multiprocessors having a
small number of fast processors than there is in the use of
multiprocessors having a large number of slow processors.

● Both vendors and users of multiprocessors should be strongly
supporting compiler research for multiprocessors--the vendors
to minimize marketing problems, and the users to minimize
conversion problems.

6. THE OPPORTUNITIES OF PARALLEL PROCESSING

Even though there are problems in the use of multiprocessors,
there are even greater problems in not using them? namely, we will
not be able to obtain adequate comp~ng capability for our
programmatic needs. Only by using parallelism can we hope to
achieve speed improvements of one to two orders of magnitude in
this decade.

The question of just how much speedup multiprocessing will
actually deliver has been a subject of speculation for some time.
The most well-known speculation is probably that of M. Minsky [18],
who conjectured in 1970 that the speedup due to multiprocessing
would be limited to log

&
of the number of processors used. For

example, if Minsky’s co jecture is correct, 1024 PEs would provide
a speedup of only 10 over serial processing. Except for a small
number of processors, this theory now appears to be overly
pessimistic.

We can use a multiprocessor version of Amdahl’s Law to analyze
this potential:

s =
P

where f. =
fractioks,

~ fi(T1/i) ~1 fi/i
i=1 .=

the fraction of tasks that use i processors. The
f are problem dependent, and we-can esti’mate the range

of perforrnan~~ of a parallel processor by assigning these values to
them:

15

●

●

●

●

f=l.
b

This defines a problem in which only serial
p ocessing is performed; this is the worst case of using a
multiprocessor, because there is no speedup.

fp = 1. This defines a problem in which all PEs are active

all of the time; this is the best case of using a
multiprocessor, because speedup = p.

f. = O for all i except L and H, with L less than H. This is
b~modal processing, one instance of which was analyzed in
Section 5. For the general case, bimodal speedup = l/(f /L +
fH/H) . kThe effect of changing the modes of bimodal proc ssing

is shown in Fig. 11.

f, = l/D for all i. This is uniform multiprocessing, in which.>
i=processors are used for a fraction l/p of the tasks.

R. Lee notes that
harmonic number;

~ = 1 + 1/2 +1/3+... +1/p is thepth
that Hp = 2n p + .57721... + O(1) = .Ln (1.78p);

and that H goes to Zn p as p goes beyond bound [19]. Thus, for
Yuniform mu tiprocessing, speedup is given by

‘1 P
Sp=p

‘P

~ (11P)(T1/i) ~ (l/i)

i=z i=l

~ p/(l?n1.78P) ~ p/in p .

These categories are summarized in Table I.

TABLE I

SOME GENERAL MULTIPROCESSING CATEGORIES

f. s Description
1 P

‘1=1
1 Uniprocessing

fp=l P Maximum multiprocessing

‘L = I-fH l/(fH/H + fL/L) Bimodal multiprocessing

f. = l/p l/(.tn1.78p)
1

Uniform multiprocessing

16

20

1

o~
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I

-FH -
Fig. 11. Bimodalmultiprocessing.

In work reported in 1972, Kuck concluded that, for a set of
ordinary Fortran programs he studied, it was possible to achieve a
speedup of more than 10 using only 32 processors, and that larger
programs offered opportunities for even higher efficiency [16].
These data are plotted in Fig. 12. If it is indeed possible to
achieve an efficiency of at least 3070for the large-scale
application codes used at the laboratories, then multiprocessors
with a large number of PEs would be attractive.

Figure 13 summarizes several performance projections for
parallel processors as a function of the number of processors used.
For purposes of illustration, the scale for the number of
processors has been extended to 1000. However, a given calculation
may reach its limit of parallelism before this number is reached,
in which case the speedup would not increase for a larger number of
processors.

Whether multiprocessors will be effective for the work of the
laboratories is, of course, problem dependent, and the overall
benefits are still unknown. Some problem categories now show
promise, as will be reported by other speakers, [20]. However, in
making these evaluations of the effectiveness of multiprocessing,
we must bear in mind Amdahl’s original warning. It is not just an
algorithm or a set of algorithms that we must evaluate, but the
total problem environment, including what Amdahl calls the “data
management housekeeping.”

17

45

1
40-

35-

30-

25-

20-

15-

■
40

●
30

■

8 EIS
NUME

’20

ALL
■

10- JAN

■■■
TIME= w Mlsc

LOG2(P)

5- OYS

0 I 1 I I I I 1 I I 1
0 15 30 45 60 75 90 105 120 135 150

NUMBER OF PROCESSORS

Fig. 12.Kuck’sspeedupanalysisfor ordinaryFortran
programs.

1000

1002

g
1

!3
-1

n
144
m
n.

‘“ 10,

1
/

1 , [1

1 10
-

100 1000 10000

* PROCESSORS (p)

Fig. 13. Comparisonof severalspeedupprojections.

7. COMPUTATIONAL PHYSICS: THE SOFTWARE PROBLEM

There are frequent references in the literature to the
“software problem” --to problems such as the high variability

18

in the

productivity of programmers, the time and cost overruns in the
production of software, and the unreliable nature of software.
Programmers often discuss the software problem in terms of GO-TO,
IF-THEN-ELSE, modularity, and in general what is called structured
programming. All of the benefits of structured programming are
necessary for the solution of the software problem, but they are
not sufficient. Software problems afflict computational physics
quantitatively through duplication of effort, and qualitatively
through the inadequate languages computational physicists are
forced to use.

Duplication of effort in software development occurs primarily
because so much software is not reusable. In this context it is
helpful to distinguish between ad hoc software and generic
software. Ad hoc software is software that is developed for a
special purpose, software that is not well documented or tested,
software whose existence is not well publicized outside the
organization that produced it. It is “throwaway” software [21].
Because of these characteristics, this kind of software is a major
cause of low programmer productivity. Even if it were produced
with careful attention to the best practices of structured
programming, it would still cause low programmer productivity
because the same code would be produced repeatedly. Software is
often deliberately not publicized to outside parties because of the
time and cost needed to prepare it for use by others and because of
the worry about external demands on the time of the developer.
These are valid concerns, but the long-term effect is to lower the
productivity of all programmers.

Generic software, on the other hand, is characterized by (1)
the intention to solve some problem so well that it need not be
done over again, (2) the excellence of the programmi”ng that
produced it, (3) the documentation of its functions, usage
information, and source code, (4) the testing and certification of
the code, and (5) the publication of this information so that
others can use it with a minimum of effort. Examples of generic
software are the EISPACK [22] and the LINPACK [23] routines. For
users of eigensystems and linear systems, the excellence of these
routines makes it unnecessary to program them again. They
constitute a solved problem in software.

Computer science, in general, and computational physics, in
particular, are characterized by a relatively small body of generic
software and a relatively large body of ad hoc software. This is
to be contrasted with science and engineering, in which there is a
large body of generic knowledge, with ad hoc investigations aimed
at becoming generic knowledge. In part, this contrast between
computer science and most other fields of science is the result of
the longer time that scientists and engineers have had to produce
generic knowledge as compared to computer scientists. However, it
exists also because programmers are not disciplined to develop
generic software. They create programs to meet their own limited
needs rather than considering the needs of the larger community of
users.

Some programs belong in the ad hoc category because we do not
yet know how to do them adequately. Many of the codes used at Los
Alamos and Livermore are in this category because the laboratories
wqrk at the frontiers of science and they are exploring new fields.
It would be premature to package these codes, because they do not
represent solved problems. However, even here it is possible to
move some portions of these codes into the generic category. Many
of the major production codes at the laboratories are already
decompose{i into generic code modules of modest size. For areas
that are not changing, these generic modules could be used as
building blocks for the development of future codes, not only in
the organization that produced them but for others as well. The
documentation, certification, and publication of these modules
would mean that each laboratory could take better advantage of work
at the other laboratory and thereby reduce duplication of effort.

An additional advantage of this approach to code development
would be that the generic modules might be usable for parallel
processing because decomposition of major codes into smaller,
independent, generic modules is an important part of converting
codes from uniprocessing to multiprocessing.

Another task that needs to be done to solve the software
problems of computational physics is the development of a high-
level language for the use of physicists. Why is it that it often
takes 50 000 to 100 000 lines of Fortran to communicate a code
specification to a computer? In part it is because of the vast gap
between the knowledge base of a scientist and the knowledge base of
a computer. One indicator of that gap is vocabulary. There are
more than half a million words in the English language, and a Ph.D.
physicist has a recognition vocabulary of some 80 000 to 100 000
words. By contrast, a child entering school may have a vocabulary
of only 3000 to 4000 words [24]. A computer system, including the
hardware and system software, has a recognition vocabulary that I
estimate to be on the order of 2000 words. Even if we assume that
this estimate is off by a factor of 4 to 5, this still leaves a
computer with a vocabulary that is an order of magnitude smaller
than that of a physicist. The image that comes to mind is one
suggested by James George --Albert Einstein trying to communicate
relativity to a child using pidgin English.* One of the reasons
why physicists need code developers is that they cannot communicate
directly with a computer at their own level. In a religious
context this kind of person is a shaman or priest, someone who can
communicate with some mysterious and powerful entity that is
impossible for ordinary people to talk to.

Oliver McBryan of New York University, a speaker at a recent
workshop on computer modeling at Los Alamos, made the following
point [25].

*Personal communication, James George, Los Alamos National Lab-
oratory (1981).

20

The present almost universally awful operating
systems and languages have repelled most outstanding
physicists and have helped to give the whole area of
computational physics a bad name. .. . A computer
language for the use of theoretical physicists should
be considerably more powerful than Fortran.

Our commitment to Fortran is almost total, because we have
such a large set of working codes in that language, not because
of the excellence of the language. Often the attitude is “if it
works, leave it alone; if it is fast, it is outstanding” and
“better is the enemy of good.”

The problem this conservatism causes is well illustrated by
the following parable. A lumberjack was hired at a lumber camp,
and the first week he cut down more trees than anyone else in the
camp, so the foreman was well pleased with his work. The second
week, however, his output dropped to the same level as the other
lumberjacks, and the third week, his output dropped even lower.
The foreman called him in to warn him that unless he increased the
number of trees he cut down, he would be fired. The lumberjack
said he couldn’t understand it, that he was working as hard the
third week as he was the first week. The foreman then asked him
how long it had been since he had sharpened his axe, to which the
lumberjack indignantly replied, “Sharpen my axe! I’m too busy
cutting down trees to sharpen my axe!”

Just SO, by taking the view that we cannot afford to change
the way we do things, we run the risk of low productivity--not only
for programmers but more importantly for the scientists and
engineers on whose work the success of the laboratories depends.

We must get beyond programming languages to languages that
allow scientists and engineers to describe the results desired,
rather than merely how to carry out the steps of the computation
[26]. A better language than Fortran need not mean abandoning
Fortran; a high-level language can be used in conjunction with
Fortran. Only when we have such a high-level language will we
really solve the software problem for computational physics. We
must stop forcing physicists to speak Fortran and teach computers
to understand physics and mathematics.

In summary, to solve the software problems of computational
physics at the laboratories, we must

decompose our major codes into modules of generic value, so
they can be used as building blocks for future use;

document, certify, and publicize these modules, so that their
existence and characteristics are known and they can be used
with a minimum of effort;

● form an interlaboratory library of generic application
modules; and

8.

● develop a high-level language for the use of physicists that
allows them to deal more directly and simply with computing
resources.

BALANCING THE SUPERCOMPUTING BUDGET

The problems with software for computational physics raise a
question about whether we have our budgets for supercomputing in
the proper balance. As noted earlier, there are many instances in
which improvements in software and algorithms have achieved
improvements in supercomputing that match improvements in hardware.
To cite a recent example, Thomas Jordan of Los Alamos found a way
to vectorize an equation-of-state interpolation routine that
previously was thought to be not vectorizable [271. He thereby
reduced the running time by a factor of 3 to 4 over the original
code, and in that one action he advanced the state-of-the-art for
that area by a supercomputer generation. Unfortunately, there are
too few people with these skills. We have an urgent need to hire
and train more people to help us achieve similar gains in other
areas.

The problem of inadequate support for code development and
algorithm research was strongly emphasized in the recommendations
of a code review panel at Los Alamos published in January 1981
[28]. Some examples follow.

Fundamental advances in the capabilities and
efficiency of the plasma simulation codes will
require basic research in numerical methods. This is
perhaps our weakest area at present; adequate
manpower is simply not available for investment in
long-range studies.

. . . the process of winnowing, implementing, and
testing new algorithms is quite time consuming
If we wish to pursue numerical research, some
augmentation of manpower is essential.

No computer is so powerful that it can carry the burden of
inadequate software and algorithms. In the jargon of the street,
the word “user” refers to a person who is addicted to some drug,
and “speed” refers to one of these addicting drugs. The
application of these terms to supercomputer users is all too clear:
we are addicted to supercomputer speed, and we periodically need a
fix of this drug or we have withdrawal symptoms and go to our
pushers to convince them to give us another shot. Computational
physics might be healthier in the long term if it were to invest
additional. resources in algorithm and software improvements, even
if this investment requires limitations on hardware budgets.

22

9. LIMITS TO SUPERCOMPUTING SPEED

The growth curve in Fig. 1 that traces the history of the
22increase in computing speed approaches a limit of e , or about 3.6

9Xlo. This is merely an empirical curve, and it might be
unrelated to future trends. However, the fact that trends in
component technology are exhibiting the same shape is an indication
that there may be underlying causes for this growth curve that will
limit the speed that can be achieved in future supercomputers.
Some of the barriers to such increases are discussed below and in
Refs. 30 and 31.

● As binary elements become smaller, they become subject to
spontaneous switching of their state; the spontaneous
switching time depends exponentially on the size of the
element, so binary elements cannot be made arbitrarily small.

o For a bistable element to maintain its state after it has been
switched, it must be able to dissipate the energy that enabled
it to surmount the potential barrier. Otherwise, this energy
might be absorbed by a neighboring element, which would then
undergo an unwanted change.

● Logic elements must transfer their heat to a larger solid
body, which in turn typically transfers it to a liquid that
can carry it away. The temperature rise experienced by a
logic element when it switches state is inversely proportional
to the square of the diameter of the element, so this is
another reason that the elements cannot be made arbitrarily
small.

● As devices get smaller, uniformity in fabrication becomes
increasingly difficult to achieve; a flaw that was unimportant
in a large element may become decisive in a small element.
Fabrication will become an increasingly difficult problem in
achieving smaller dimensions.

A question of immediate concern is whether these and other
limits will prevent the achievement of the speeds needed in the
next decade. This does not now seem likely; in fact, it is
generally believed that fundamental limits will not be encountered
in this century [29-31].

Some of the factors that will offer opportunities for
significant growth of performance in this decade include:

● Component costs. Component costs have been declining by about
18% per year. If this decline were to continue through this
decade, designers would be able to use four to five times as
many components in a supercomputer as are currently used, at
constant cost. Lower component costs will therefore enhance
the benefits of parallel processing.

23

● Faster silicon technology. The current line widths of about
5 Pm in silicon technology are now thought to be reducible

b; about a factor of 10 by the year 2000 [30]. The scaling
laws of silicon technology reduce both switching time and
transmission delays as line widths are reduced in size and as
more circuits are fabricated on each chip. However,
resistance increases as line widths are reduced, and it may be
necessary to use lower temperatures to counteract this effect.
Although these improvements alone will not yield the speed
increases required in this decade, they will make an important
contribution.

● Parallelism. Parallelism, combined with component cost
decreases and improved silicon component technologies, seems
capable of providing performance improvements in general-
purpose supercomputers of factors of 5 to 10 by the middle of
the decade, and even greater improvements by the latter half
of the decade.

● New circuit technologies. The contenders here are gallium
arsenide and Josephson Junction (JJ) technologies, with JJ
apparently offering opportunities for greater advances. By
about 1990, the JJ ‘technology appears capable of producing a
computer that is about a factor of 10 faster than the current
supercomputers, using current architectures. The combination
of JJ and parallel architecture offers hope of more than a
factor of 10 increase in the speed of supercomputers.

The point here is that there are no barriers in technology to
achieving increases of one to two orders of magnitude in the speed
of operation of supercomputers. The only question is, “How soon
can these increases be”achieved?” Combining the potential advances
of parallelism, lower costs, and new circuit technologies indicates
that speeds of several billion operations per second should be
achievable in the long term.

10. SHOULD THE LABORATORIES BUILD THEIR OWN SUPERCOMPUTERS?

The laboratories are in the defense and energy research
business, not the computing business, so it would be a major change
of role for them to develop supercomputers. In the early history
of electronic computing, many laboratories and universities
developed their own computers because there were no adequate
commercial offerings. This question is relevant because, again, we
feel strongly that commercial offerings are inadequate. The very
holding of this conference is a strong message to the vendors that
their current offerings are inadequate for our needs. Also, the
development of the S-1 computer at Livermore shows that the needs
we are discussing here are taken very seriously. There is some
feeling at the laboratories that the supercomputer vendors are
driven more by marketing considerations than by the desire to
achieve the highest possible performance. An orderly factor of 4

24

improvement in each supercomputer generation may fit the vendors’
marketing needs, but an orderly factor of 10 would fit the
laboratories’ needs much better.

In any discussion about building our own supercomputers, we
need to bear in mind the hazards inherent in the attempt to build a
supercomputer, hazards the supercomputer vendors live with
routinely, including

● a nonzero probability that the computer will never be
completed at all;

● even if it is completed, the time for completion may be much
longer than predicted;

● even if it should be completed reasonably on time, the costs
may be much higher than expected;

● even if time and costs are in line with expectations, the
performance may be disappointing; and

● even if all else goes well, the reliability and
maintainability of the computer may not be satisfactory.

It is our hope that we will not find it necessary to develop
our own supercomputers, but the probability is not zero. The
laboratories may be forced into this role because of the lack of
adequate products from the vendors.

American computer vendors have had a monopoly on this market
for about 20 years, but the announced intentions of the Japanese
computer manufacturers to build supercomputers [32, 33] may require
a change in the development and marketing plans of American
supercomputer vendors. It would be highly regrettable for the
American supercomputer business to suffer the impact from foreign
competition that has been experienced by the American steel,
stereo, and automotive industries.

11. CONCLUSIONS

(1) Increases of one to two orders of magnitude in the operating
speed of supercomputers cannot be attained in this decade
without changing the logical structure of these computers.
This in turn will require major commitments of manpower by
users to adapt software and algorithms to the new structures.

(2) There is less risk in the use of multiprocessors having a small
number of fast processors than in the use of multiprocessors
having a large number of slow processors.

(3) Both the vendors and the users of supercomputers should be
strongly supporting compiler research for multiprocessors--the
vendors to minimize marketing problems, and the users to
minimize conversion problems.

25

(4)

(5)

(6)

The laboratories should decompose their major codes into
documented, certified, and publicized modules of generic value,
so that these modules can be used as building blocks for future
use, including parallel processing.

The laboratories should support the development of a language
for computational physics that is much more powerful than
Fortran. Fortran should not be the only language of computa-
tional.physics.

The laboratories should place increased emphasis on improve-
ments in software and algorithms, even at the expense of lower
budgets for hardware.

Progress in technology typically occurs when someone has a
vision of how to create new tools and techniques for the solution
of practical problems. It is the sweep and the clarity of this
vision that carries others along and leads to action. Action in
turn leads to a better understanding of the improved technology and
the nature of the problems to be solved. Finally, this better
understanding alters our vision of what can and should be done.
Vision, action, and understanding thus form a feedback loop through
which we pass repeatedly in the development of new and improved
technologies [34].

The computing industry has benefited from the visions and the
actions of many people, including Thomas J. Watson, Sr. , of IBM,
whose vision helped create the data-processing industry; William
Norris and other founders of CDC, whose vision created a new source
of large-scale computers for the using community; Seymour Cray,
whose vision spans supercomputer design from cooling to components
to architecture; and Gene Amdahl, whose vision created a new
segment of the computing industry. That we are able to meet and
discuss improvements to supercomputers is due in large part to
these and others who had the courage to risk their finances and
careers in bringing their visions into being. In expressing our

vision of better supercomputers to the computing industry, we also
need to express our appreciation to them for what they have already
achieved.

The laboratories need to formulate their own vision of the
future of supercomputing, including

● a clear understanding of the problems and opportunities of
parallel processing,

● the need to support research now to prepare for parallel
processing,

● the need to develop generic software for computational
physics,

26

● the need to provide more powerful languages for computational
physics, and

● the need to provide support for algorithm and software
improvements commensurate with our support for hardware
improvements .

We need to invent the future, not merely forecast it. We need
to visualize the future in terms of what could be done, and then
make it happen.

Given
high-speed
Cyber 205,

Let

APPENDIX

AN ANALYTIC MODEL OF THE CYBER 205

Amdahl’s Law, we expand the time to generate a result in
mode to reflect the vector result-generation time of the
as follows.

t = the vector result-generation time for 64-bitv operands using a single pipe,

n= the number of vector pipes,

x= the fraction of results generated in triadic mode,
and

Y= the fraction of results generated in 32-bit mode.

Then t /[n(l+x)(l+y)] is the time to generate a result using n
pipes,vwith a fraction x of triadic operations, and a fraction y of
32-bit operands.

Let t = the gather/scatter time, and
g

G= the number of gather/scatter operations per
vector operation.

Then tgG is the time that must be added to the vector result-

generation time to account for noncontiguous operands.

Let S = the

L= the

Then (S/L)(l+G) is the
result-generation time
operations. We assume
constant.

vector startup

vector length.

time that must
to account for

time, and

be added to thd vector
startup of vector and gather

here that these startup times are equal and

27

Let t~ =

Fv =

1-F =v

z =

Then (l-F)t (l-z)
scalar op~ra?ions.

the time to generate a scalar result,

the fraction of results generated in vector mode,

the fraction of results generated in scalar
mode, and

the fraction of scalar operations overlapped
vector operations.

is the time per result required to generate

with

Combining these timing contributions, and inserting them into
Amdahl’s Law, we have

1

B=–
.

[

tv
Fv (S/L)(l+G) + tgG + n(l+x)(l+yd+(l-Fv)ts(l-z)

Som~ standard values for the model parameters are as follows.

s=

L=

G=

t
g=

tv =

t~ =

n=

x=

Y=

z=

1.0 KS (varies from 0.8 to 1.0 PS);

problem dependent (typically varies from 10 to
10 000);

problem dependent (O for contiguous data, 1 if a
single operand-vector must be gathered/scattered
per vector operation, 2 if two operand-vectors
must be gathered/scattered, etc.);

0.030 ps;

0.020 #s;

0.225 @;

1, 2 or 4;

problem dependent (1 if all operations are
triadic);

problem dependent (1 if all operands are 32-bit);
and

problem dependent (1 if all scalar operations are
overlapped with vector operations).

28

These are preliminary values subject to revision; they are
based on a limited set of benchmarks run by Los Alamos National
Laboratory [35] and on data published by Control Data Corporation
[36].

REFERENCES

1. Ernest Nagel, “The Nature and Aim of Science,” in
Philosophy of Science Today, Sidney Morganbesser, Ed. (Basic
Books , New York, 1967) , pp. 3-13.

2. Robert N. Noyce, “Microelectronics, ltScientific Americanj 237
No. 3, p. 65 (September 1977).

3. Gordon Moore, “VLSI: Some Fundamental Challenges,” IEEE
Spectrum I_&,No. 4, 30-37 (April 1979).

4. V. Leo Rideout, “Limits to Improvement of Silicon Integrated
Circuits,” Digest of Papers, IEEE Compcon (San Francisco, CA,
Spring 1980> pp. 2-6.

5. M. Flynn, “Some computer organizations and their effective-
ness,” IEEE Trans. on Computers, C-21, No. 9, 948-960
(September 1972).

6. D. D. Runes, “Carolus Linnaeus,” A Treasury of Philosophy 11
(Grolier, Inc., New York, 1955), pp. 717-719.

—

7. D. J. Kuck, “A Survev of Parallel Machine Organization and

8.

9.

10.

11.

12.

Programming ,“ ACM Co;puting Surveys, ~, No. ~, 29-59 (March
1977).

Karl Menninger, Number Words and Number Symbols (MIT Press,
Cambridge, Mass., 1969) pp. 299-303.

Jack Worlton, “Pre-Electronic Aids to Digital Computation,” in
Computers and Their Role in the Physical Sciences, S. Fernbach
and J. Taub, Eds. (Gordon and Breach, New York, 1970), pp.
40-41.

Charles Eames and Ray Eames, A Computing Perspective (Harvard
University Press, Cambridge, Mass. , 1973), pp. 94-95.

Richard P. Fevnman. “Los Alamos From Below.” in En~ineerin~
and Science, ~anuary-February 1976, pp.

J. P. Eckert, Jr., J. W. Mauchly, H. H.
Brainerd, “Description of the ENIAC and
Digital Computing Machines,” AMP Report
1945) .

25127. - -

Goldstine, and J. G.
Comments on Electronic
171.2R (November 30,

29

13. Alvin Toffler, Future Shock (Bantam Books, New York, 1970),
379.

14. Gene Amdahl, “The Validity of the Single Processor Approach
Achieving Large-Scale Computing Capabilities,” AFIPS Conf.
Proc. , 30 (1967) pp. 483-485.— —

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

P“

to

Gene Amdahl, “Advances in Computer Technology,” Future Systems
Vol. 2, Infotech International, Ltd. (Nicholson House,
Maidenhead, Berkshire, England, 1977), pp. 2-25.

D. J. Kuck, “Multioperation Machine Computational Complexity,”
in Complexity of Sequential and Parallel Numerical Algorithms,
J. F. Traub, Ed. (Academic Press, New York, 1973), PP” 1/-47”

Willis H. Ware, “The Ultimate Computer,” IEEE Spectrum, ~, No.
3, 84-91 (March 1972).

M. Minsky, “Form and Content in Computer Science,” ACM Turing
Lecture, Journal of the ACM, 17 No. 2, 197-215 (February
1970).

—

R. Lee, “Performance Bounds in Parallel Processor
Organizations ,“ in High Speed Computer and Algorithm
Organization, D. Kuck, D. Lawrie, and A. Sameh, Eds. (Academic
Press, New York, 1977), pp. 453-455.

B. Euzbee and G. Michael, Abstracts of the Conference on
High Speed Computing (March 31 to April 2, 1981, Glenenden
Beach, Oregon).

Peter J. Denning, “Throwaway Programs,” Commun ACM ~, No. 2,
57-58 (February 1981).

B. Smith, J. Boyle, B. Garbow, Y. Ikebe, V. Kleme, and C.
Moler, Matrix Eigensystem Routines--EISPACK Guide, Lecture
Notes in Comput Sci, Vol. (Springer-Verlag, New York, 1976).

J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart,
LINPACK Users’ Guide (SIAM, Philadelphia, 1979).

“Vocabulary ,“ The World Book Encyclopedia, 20, (Field
Enterprises Educational Corp., Chicago, 197n, p. 337.

Oliver McBryan, “O crating System and Software Support,” notes
for a presentationpto the Computer Modeling Working Group, Los
Alamos National Laboratory, January 21, 1981.

Terry Winograd, “Beyond Programming Languages,” Commun ACM ~,
No. 7, 391-401 (July 1979).

30

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

B. L. Buzbee, T. L. Jordan, and Jack Worlton, “The Challenge
of Vector Computers,” Los Alamos National Laboratory report
(to be published).

H. H. Rogers, “Panel B Code Review Summary,” Internal Los
Alamos National Laboratory memo, January 7, 1981.

M. J. Freiser and P. M. Marcus, “A Survey of Some Physical
Limitations on Computer Elements,” IEEE Trans on Mag MAG-5,
No. 2, 89-90 (June 19,69).

Robert W. Keyes, “physical Problems and Limits in Computer
Logic,” IEEE Spectrum, ~, No. 5, 36-45 (May 1969).

James D. Meindl, Electronic Engineering Times, Monday, March
2, 1981, p. 16.

Gina Bari Kolat”a, “Who Will Build the Next Supercomputer?” Sci
211, 268-269 (16 January 1981).

Japan Information Processing Development Center (JIPDEC)
Report, Tokyo, Japan, Summer 1980.

Peter F. Drucker, The Age of Discontinuity (Harper & Row, New
York, 1968).

Ann Hayes, “Preliminary Report on Cyber 205 Benchmark,” Los
Alamos National Laboratory internal memorandum, February 18,
1981.

Michael J. Kascic, Jr. , “Vector Processing: Problem or
Opportunity?” Digest of Papers,IEEE Compcon (San Francisco,
Spring 1980), pp. 70-276.

ftU.S. GOVERNMENT PRINTING 0FFlCE:1981-O-777-022/8S 31

—

Domestic ?42-1s
Page Range Rice PriceCode

001432s $ S.oo A02
026.0S0 6.00 A03
0s1.07s 7.00 A04
076-100 8.00 AOS
101-12s 9.00 A06
126-1s0 10.00 A07

Printed h the United States of Ametba
Available from

Natlmal Technical Informatbn Mce
US Department of Commc.rcn

S28S PotiRoYa! Road
Sprintileld, VA 22161

Mbmffche S350 (AO1)

Domestic NT3S DOmestlc ?43-1s
Page Range Rice Rice Code Page Range Rice Ri= Code

1s1-17s SIloo A08 301-32s S17.00 A14-
176-200 12.MI A09 326-3s0 18.00 AIS
201-22s 13.00 A1O 3s1-37s 19.00 A16
226-2S0 14.00 All 376400 20.00 A17
2S1-27S 1s.00 A12 40142S 21.00 AIS
276-300 16.00 A13 4264S0 22.00 AJ9

Domestic N-l-Is
Pago Rsnge Rice Price Code

4s147s $23.00 A20
476-SOO 24.00 A21
SO1-S2S 2s.00 A22
S26-SS0 26.00 A23
SS1-S7S 27.00 A24
S7643 2s.00 A2S
601-uP t A99

tAdd S1.00 for each xtditbnd 2s.F9ge inc?ement or p.xtbn thacof from 601 pages up.

7-
CK .- .

‘d
--J

