Mitz LA-8372-MS Informal Report **CIC-14 REPORT COLLECTION** c. 3 REPRODUCTION COPY ²⁴²Pu Isotopic Verification University of California A LOS ALAMOS SCIENTIFIC LABORATORY This report was not edited by the Technical Information staff. This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employces, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infinge privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. UNITED STATES DEPARTMENT OF ENERGY CONTRACT W-7408-ENG. 36 LA-8372-MS Informal Report UC-15 Issued: May 1980 # ²⁴²Pu Isotopic Verification T. E. Sampson S. Johnson K. Kroncke ### CONTENTS | ABSTRA | ACT | 1 | | | |------------|---|---------|--|--| | I. | INTRODUCTION | 1 | | | | II. | MINOR ISOTOPIC RATIOS FOR 242 Pu | 2 | | | | III. | GAMMA-RAY SPECTROSCOPIC MEASUREMENT OF ISOTOPIC RATIOS WITH APPLICATION TO 242 Pu | 5 | | | | IV. | 242 _{Pu} VERIFICATION PROBLEMS AT THE LASL TA-55 PLUTONIUM FACILITY | 8
10 | | | | v. | LIMITATIONS OF VERIFICATION METHODS | 13 | | | | REFERENCES | | | | | ### 242Pu ISOTOPIC VERIFICATION by T. E. Sampson, S. Johnson, and K. Kroncke ### **ABSTRACT** We report on measurement methods being developed and implemented to verify nondestructively the isotopic composition of certain batches of plutonium highly enriched in $^{242}\mathrm{Pu}$. High-resolution gamma-ray spectroscopy techniques are used to measure the isotopic ratios of $^{238}\mathrm{Pu}/^{241}\mathrm{Pu}$ and $^{239}\mathrm{Pu}/^{241}\mathrm{Pu}$, which are minor constituents of the enriched $^{242}\mathrm{Pu}$. These ratios uniquely verify the specific batch of $^{242}\mathrm{Pu}$ and can indicate with high sensitivity if the $^{242}\mathrm{Pu}$ has been contaminated with plutonium of the other isotopic compositions. Data are presented that illustrate the successful application of these techniques to samples of arbitrary geometry ranging in mass from ${\sim}0.1$ g to ${>}2$ kg. ### I. INTRODUCTION The presence at Los Alamos Scientific Laboratory (LASL) of significant quantities of plutonium highly enriched in 242 Pu has made it necessary to implement measurement methods for distinguishing between 242 Pu and other plutonium isotopic compositions. The majority of the 242 Pu at LASL is enriched to either $^{\circ}83\%$ 242 Pu or $^{\circ}95\%$ 242 Pu. A method is desired that will distinguish between the 83% and 95% mixtures and that will also verify that the sample has not been cross-contaminated with plutonium of any other isotopic composition. This report gives a preliminary account of the gamma-ray spectroscopic methods that are being be used to verify this material at the LASL TA-55 Plutonium Facility. Since this work is ongoing, changes can be expected in the techniques and results as we gain experience with this new material. ### II. MINOR ISOTOPIC RATIOS FOR 242 Pu Gamma rays at 44.92, 103.50, and 158.80 keV are reported from 242 Pu. These gamma rays are relatively weak because of the long half-life of 242 Pu (376 000 y) and have strong interferences from gamma rays and x rays from other plutonium isotopes. Specific interferences are 240 Pu at 45.23 keV, 241 Am at 102.97 keV, 239 Pu at 103.02 keV, 241 Pu at 103.68 keV, PuK $_{1}$ at 103.75 keV, 241 Pu at 159.96 keV, 239 Pu at 160.19 keV, and 240 Pu at 160.28 keV. Direct spectroscopy on the 242 Pu gamma rays from the 242 Pu isotopic mixtures at LASL is not feasible at this time. However, certain minor isotope ratios that can be measured by gamma-ray spectroscopy techniques seem to be useful in verifying this material. In Table I we show typical isotopic compositions TABLE I Pu ISOTOPIC COMPOSITION FOR Pu FUELS AND LASL 242Pu MIXTURES | Pu Specifications | 238 _{Pu} | 239 _{Pu} | 240 _{Pu} | 241 _{Pu} | 242 _{Pu} | |--------------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | Weapons Grade | 0.01 | 93.6 | 5.9 | 0.40 | 0.015 | | FFTF Feed | 0.08 | 86.1 | 11.7 | 1.90 | 0.20 | | Spent LWR | 1.10 | 61.6 | 20.9 | 12.6 | 3.8 | | LWR Recycle | 3.3 | 41.1 | 27.6 | 17.6 | 10.4 | | 242 _{Pu} "High" | 0.49 | 0.56 | 2.46 | 1.49 | 94.98 | | 242 _{Pu} "Low" | 1.09 | 1.34 | 10.11 | 5.07 | 82.37 | for plutonium fuels and the 242 Pu mixtures at LASL. The 242 Pu isotopics are averaged over the entire batch. Individual 242 Pu samples may exhibit isotopics different from the averages. In Table II the minor isotope ratios 241 Pu/ 238 Pu and 239 Pu/ 241 Pu are presented. The 241 Pu/ 238 Pu ratio is straightforward to measure with a precision of near 1%. Also, this ratio was constant for all the LASL 242 Pu feed material in both enrichment classes. The measurement of this ratio can be used to distinguish between the two classes of 242 Pu. This ratio is significantly different for the 242 Pu material than for either weapons grade plutonium or Fast Flux Test Facility (FFTF) feed, which are commonly found at LASL. Because of the low 239 Pu content of the 242 Pu mixtures, the 239 Pu/ 241 Pu ratio is very sensitive to contamination with grades of plutonium with high 239 Pu content. The measurement of this ratio assures that contamination has not taken place. TABLE II ISOTOPIC RATIOS | Pu Specification | $\frac{241_{\text{Pu}}/238_{\text{Pu}}}{}$ | 239 _{Pu} /241 _{Pu} | |--------------------------|--|--------------------------------------| | Weapons Grade | 40.0 | 234.0 | | FFTF Feed | 23.75 | 45.3 | | Spent LWR | 11.45 | 4.89 | | LWR Recycle | 5.33 | 2.34 | | 242 _{Pu} "High" | 3.04 | 0.376 | | 242 _{Pu} "Low" | 4.65 | 0.264 | For the ^{242}Pu material this ratio is an order of magnitude or more different from that expected for any other plutonium material available in quantity. The initial feed showed some variability in the 239 Pu/ 241 Pu ratio for both 242 Pu grades, arising mainly from variable 239 Pu. Most of the feed for both grades exhibited a 239 Pu/ 241 Pu ratio of $^{\sim}0.23$. About 25% of the feed in each batch had higher 239 Pu content leading to the averages in Table II. For most of the 242 Pu feed the 239 Pu/ 241 Pu ratio was not significantly different between the two grades. Because this ratio is measured with an uncertainty of $^{\sim}10\%$, it can not be reliably used at this time to distinguish between the two grades of 242 Pu. As the feed material in each grade becomes mixed and blended via reprocessing and recycling, the 239 Pu/ 241 Pu ratios may approach the average values of Table II. If this happens, this ratio may also be able to distinguish between the two grades as well as flagging 239 Pu contamination. In Figs. 1 and 2 the sensitivity of the two isotopic ratios for sensing contamination with weapons grade plutonium is shown. Fig. 1. 238_{Pu/241Pu} ratio is insensitive to contamination with weapons grade Pu. Fig. 2. 239_{Pu}/241_{Pu} ratio is sensitive to contamination with weapons grade Pu. The 238 Pu/ 241 Pu ratio (Fig. 1) is very poor for detecting contamination with weapons grade plutonium. However, the 239 Pu/ 241 Pu (Fig. 2) ratio is sensitive to contamination with a fraction of weapons grade plutonium around 0.1%. The combination of these two ratios provides a very good means of verifying the batch and isotopic purity of the bulk of the 242 Pu material at LASL. These techniques are quite specific for the current 242 Pu at LASL. Any additional 242 Pu mixtures would have to be studied to see if these techniques are applicable. # III. GAMMA-RAY SPECTROSCOPIC MEASUREMENT OF ISOTOPIC RATIOS WITH APPLICATION TO ²⁴²Pu The intrinsic self-calibration method used here to measure isotopic ratios by gamma-ray spectroscopy was developed by Parker and Reilly in 1974. This technique is gaining wide acceptance. $^{2-4}$ Other references may be found in the above references. The main feature of this technique is that it is applicable to samples of arbitrary geometry without recourse to standards. This method determines isotopic ratios from the areas of close-lying peaks in the gamma-ray spectrum from the sample of interest. The ratio of isotope 1 to isotope 2 is given by $$\frac{N_1}{N_2} = \frac{C_1}{C_2} \times \frac{T_1(\frac{l_2}{l_2})}{T_2(\frac{l_2}{l_2})} \times \frac{B_2}{B_1} \times \frac{\varepsilon_2}{\varepsilon_1} \quad , \tag{1}$$ where N = relative number of atoms of indicated isotope, C = photopeak counts from gamma ray from indicated isotope, $T(\frac{1}{2})$ = isotope half-life, B = branching ratio of indicated isotope (gamma rays/ disintegration), and ε = relative efficiency including detector efficiency, sample self-absorption, attenuation in media between sample and detector, and sample-detector geometry. C is measured from the gamma-ray spectrum. $T(\frac{1}{2})$ and B are taken from known nuclear data. The branching ratios of Gunnink⁵ are used for B. ε is determined from a relative efficiency curve found from the spectrum under study by a curve of photopeak area/branching ratio for gamma-ray lines from one of the isotopes in the sample. For 242 Pu samples we determine this curve by using 241 Pu and 241 Pu- 237 U lines at 148.6, 164.6, 208.0, 267.5, 332.4 and 370.9 keV. The shape of the relative efficiency curve depends mainly on Fig. 3. Typical relative efficiency curves determined from ²⁴¹Pu, ²⁴¹Pu, ²⁴¹Pu ines in ²⁴²Pu samples. Smooth curves are drawn to guide the eye. the detector, sample size and configuration, and filtering. The family of relative efficiency curves in Fig. 3 were measured with a 14% coaxial intrinsic germanium detector with filtering from 0.51-mm Ta, 0.76-mm Cd, and 0.38-mm brass. They are normalized to 10.0 for the 164.6-keV gamma ray from 237U. Fig. 4. Gamma-ray pulse-height spectrum from 10-g metal disk of 95% 242Pu. Coaxial intrinsic Ge detector with 14% relative efficiency. In Fig. 4 the gamma-ray pulse-height spectrum from a 10-g metal disk of 95% 242 Pu is shown. Filtering is as described above. Most of the prominent lines in the gamma-ray spectrum arise from the 237 U daughter of 241 Pu. The 148.6-keV line from 241 Pu and the 152.7-keV 238 Pu line are strong. The usually strong 239 Pu lines at 375 and 414 keV are quite weak here because of the low 239 Pu content (0.45%) of the sample. The 239 Pu line at 129.3 keV is not useful because of the high Compton continuum from the 208-keV line and from neutron background in the detector. The 238 Pu/ 241 Pu and 239 Pu/ 241 Pu ratios to be used for verification are determined from the 150-keV region and 370 keV-region, respectively. The ²³⁸Pu/²⁴¹Pu ratio is determined from the 152.7-keV ²³⁸Pu peak and the 148.6-keV ²⁴¹Pu peak. The spectrum is clean in this region and this ratio is straightforward to measure. However, the steepness of the relative efficiency curve makes the relative efficiency correction rather large, typically 20-30%. Figure 5 shows typical data in this energy range. Fig. 5. Typical data from 150-keV region used to determine 238 Pu/241 Pu from 152.7/148.6-keV ratio. Fig. 6. Spectral features of 370-keV region used to determine 239pu/241pu ratio at 375.0/370.9 keV. The 239 Pu/ 241 Pu ratio is measured at 375.0 keV (239 Pu) and 370.9 keV (241 Pu- 237 U) (Fig.6). This region is more complex. The 370.9-keV peak must be stripped from its neighbor at 368.6 keV. The 375.0-keV peak has a high energy shoulder from 241 Am at 376.6 keV. The 413.7-keV line from 239 Pu is also visible and useful in some cases. It, however, rides on the tail of a peak at 416 keV from pileup of the intense 208-keV line. To measure the 239 Pu/ 241 Pu ratio at 375/370.9, one must be certain that the 370.9-keV line from 237 U is in equilibrium with its 241 Pu parent. 237 U grows in with a 6.75 day half-life. Ninety-nine percent of equilibrium intensity is achieved in 45 days. Cases where there is no 241 Pu- 237 U equilibrium are discussed in Sec. IV. # IV. 242 Pu VERIFICATION PROBLEMS AT THE LASL TA-55 PLUTONIUM FACILITY In general, the verification problems at TA-55 divide into two classes, (1) those involving aged material ($^{5}45$ days since chemical separation of uranium) where 241 Pu- 237 U equilibrium is present, and (2) those involving fresh material where there is no 241 Pu- 237 U equilibrium. The nonequilibrium case is discussed next. ## A. Verification of Freshly Separated ²⁴²Pu Mixtures The general procedures discussed in Sec. III apply only to material where there is equilibrium between 241 Pu and 237 U. If this does not exist, the 370.9-keV line from 237 U can not be used to indicate 241 Pu and hence the 239 Pu/ 241 Pu ratio at 375.0/370.9 will not be valid. Also, the relative efficiency point at 148.6 keV from 241 Pu will not lie on the same curve as all the other points (164.6, 208.0, 267.5, 332.4, 370.9 keV) that arise from 237 U. This makes the determination of the relative efficiency at 148.6 and 152.7 keV more difficult, because the relative efficiency curve will now have to be extrapolated to 148.6 and 152.7 keV from the nearest points at 164.6 and 208.0 keV. The curvature in typical relative efficiency curves (Fig. 3) in this region makes this extrapolation unreliable. Fortunately the geometry of the freshly separated ²⁴²Pu mixtures enables the use of another technique. Verifications on freshly separated material are desired at three points in the recovery process. The first place is the metal button formed from the reduction of PuO2. This button is about 76 mm diameter with a thickness in the middle of about 13 mm tapering to less than half of that at the outer rim. The second verification point is a cylindrical metal ingot formed by melting and casting several buttons. This ingot is about 60 mm diameter by about 76 mm high. The third verification point is the output of the electrorefining process, which yields a donut-shaped metal piece about 25 mm high with a 14-mm-thick by 100-mm-OD ring. All of these three forms have in common a metal section of \$13 mm inches in thickness. With the mean free path of $\alpha\text{-phase}$ plutonium being 1.5 mm and 1.8 mm at 375 and 414 keV, respectively, we see that all three metal forms are "infinitely thick" for these and other lower energy gamma-ray emissions. This condition means that the isotopic enrichment can be measured directly without recourse to ratios of gamma-ray intensities. A discussion of the principles of enrichment measurements may be found in Ref. 6 and references therein. Enrichment measurements require standards for calibration. A desirable metal standard would be 38-50 mm diameter by 13 mm thick and would require between 300 and 500 g of ²⁴²Pu. This is too much ²⁴²Pu to tie up in permanent calibration standards. Two alternate methods of enrichment calibration will be studied. The first will use an actual ²⁴²Pu metal part (button, ingot, or donut) with mass spectrometry measurement of its isotopic composition. This will be a transient standard because it will disappear after the measurement. The second method will use permanent standard of weapons grade plutonium and a 1% weapons grade Pudepleted uranium alloy. These will be permanent standards that could be used in a measurement control program if desired. The enrichment measurements will measure 239 Pu content using the 375- and 414-keV gamma rays. 241 Pu and 238 Pu will also be measured at 148.6 keV and 152.7 keV using this method. A fixed reproducible geometry is necessary for these measurements. Also, pileup and deadtime effects arising from count-rate variations must be accounted for. A 109Cd source is used to normalize the data and correct for count-rate-associated effects. The analysis software also corrects for the decay of the 109Cd source between the enrichment calibration measurement date and the measurement date of an unknown sample. To allow for small differences between the geometry of the permanent standards and that of the unknowns, we have incorporated an additional adjustable parameter in the enrichment calculation expression. If the geometry is not constant between the enrichment calibration and the measurement of an unknown, the enrichment results will be invalid. However, the isotopic ratio of $^{238} \mathrm{Pu}/^{241} \mathrm{Pu}$ can still be measured at 152.7/148.6 keV. This is done independently of the enrichment measurement to provide additional verification capability. The use of thick samples and the low energy of the $^{238} \mathrm{Pu}$ and $^{241} \mathrm{Pu}$ gamma rays should make it possible to perform this ratio measurement with a single multiplicative calibration constant. This means that we do not have to worry about extrapolation of the relative efficiency curve for the nonequilibrium measurements. As of this writing no 242 Pu metal has been produced at LASL that requires nonequilibrium or enrichment measurements. The testing and refinement of the enrichment techniques will have to await production of freshly separated metal. ## B. Verification of ²⁴²Pu Mixtures with ²⁴¹Pu-²³⁷U in Equilibrium. Details and Results Equilibrium 242 Pu mixtures are verified using the principles discussed in Secs. II and III. For measurements on equilibrium material where gamma-ray lines from 237 U can be used for 241 Pu verification, the sample may be of arbitrary geometry and composition. The sample spectrum is self-calibrating with gamma-ray lines at 164.6, 208.0, 267.5, 332.4, 335.4, 368.6, and 370.9 keV from 237 U and 148.6 keV from 241 Pu being used to define the relative efficiency curve. The 238 Pu/ 241 Pu ratio is determined from the 152.7-keV 238 Pu line and 148.6-keV 241 Pu line. The relative efficiency at 152.7 keV is determined by a quadratic fit to the relative efficiency points at 148.6, 164.6, and 208.0 keV. For the 239 Pu/ 241 Pu ratio at 375.0/370.9 keV the relative efficiency at 375.0 keV is determined from a linear extrapolation of the efficiency points at 332.4 and 370.9 keV. Before the relative efficiency points are computed, all ^{237}U lines are corrected for their ^{241}Am content. This correction is made using $^{241}\text{Pu}/^{241}\text{Am}$ ratios computed from pairs of neighboring lines that each have contributions from both isotopes. The 332-335 complex is used 1 to determine the correction for the 164-, 208-, 267-, 332-, and 335-keV lines. In a similar fashion the 368-371 complex is used to determine the correction for the 368- and 371-keV lines. For material that is \sim l yr old this correction is only a few tenths of a percent for the 164-, 208-, 267-, and 332-keV lines. The correction is about 3% for 37l keV whereas the lines at 335 and 368 keV have larger corrections of about 25%. At the present time the 241 Pu/ 241 Am ratios from the 332 and 368 complexes are not as consistent as expected. The agreement gets poorer as the 241 Am content gets lower. Some of the branching ratios used may be in error. However, the $^{\sim}25\%$ corrections that have been applied to the 335- and 368-keV lines in Fig. 3 do seem to bring these points into agreement with the remainder of the curve. We have been able to accumulate a reasonable amount of data on a wide range of samples that have attained $^{241}\mathrm{Pu}^{-237}\mathrm{U}$ equilibrium. The relative efficiency curves for some of these samples have been shown in Fig. 3. In Table III a comparison of measured $^{238}\mathrm{Pu}^{/241}\mathrm{Pu}$ ratios to those found from mass spectrometry is shown. The average of all the mass spec/measured ratios has been used to normalize this ratio. This normalization parameter is TABLE III ISOTOPIC RATIOS 238pu/241pu | Sample | Measured | Mass Spec | Measured/
Mass Spec | |--------------------|------------------------|----------------------------|-------------------------| | 0.5 g
95% metal | 0.3270 <u>+</u> 0.0028 | 0.3312
0.3254
0.3307 | 0.987
1.005
0.989 | | 2 g
83% oxide | 0.2199 <u>+</u> 0.0012 | 0.2234
0.2222 | 0.984
0.990 | | 2 g
95% oxide | 0.3335 <u>+</u> 0.0019 | 0.3312
0.3254
0.3307 | 1.007
1.025
1.008 | | 10 g
95% metal | 0.3374 <u>+</u> 0.0015 | 0.3421
0.3380 | 0.986
0.998 | | 20 g
95% oxide | 0.3289 <u>+</u> 0.0014 | 0.3312
0.3254
0.3307 | 0.993
1.011
0.995 | | 2 kg
95% metal | 0.3364 <u>+</u> 0.0032 | 0.3360
0.3373 | 1.001
0.997 | | 2 kg
95% metal | 0.3354 <u>+</u> 0.0032 | 0.3367
0.3329 | 0.996
1.008 | | 80 g
95% oxide | 0.3368 <u>+</u> 0.0025 | 0.3544
0.3370 | 0.950*
0.999 | | 240 g
95% oxide | 0.3324 <u>+</u> 0.0035 | 0.3312
0.3254
0.3307 | 1.004
1.022
1.005 | | | • | mean
std. dev | 1.000
0.011 | ^{*}omitted from average 1.0317. That this parameter is not 1.0 is attributed to an error in the published 5 branching ratio for the 152.7-keV gamma ray of 238 Pu. These measurements of this branching ratio discrepancy are in good agreement with those of other investigators. 3,4 Examination of Table III shows the following: (1) estimated precision ranges from 0.5-1.0%, (2) the experimental precision is about 1% and is probably consistent with the estimated precision considering that the mass spectrometry values are not without errors, and (3) mass spectrometry measurements of this ratio are not significantly better than the gamma-ray measurements. Indeed the mass spectrometry values have been plagued by problems with possible sample inhomogeneity. The gamma-ray measurements average over a much greater volume than the mass spectrometry values. Sample inhomogeneity will show up in a more pronounced fashion in the 239 Pu/ 241 Pu ratios shown in Table IV. Because the initial feed shows variablity in the 239 Pu/ 241 Pu ratio, poor mixing could result in inhomogeneous samples. Also, during sample preparation the small mass spectrometry samples are very susceptible to contamination with weapons grade plutonium. These factors, plus the fact that the gamma ray measurement is imprecise because of the weak 239 Pu peak at 375 keV, lead to a much greater spread in the measured/mass spec values for the 239 Pu/ 241 Pu ratios in Table IV. No normalization has been applied to the measured/mass spec ratio. More measurements need to be compared to mass spectrometry results to understand fully if mixing and contamination are serious problems. ### V. LIMITATIONS OF VERIFICATION METHODS In Sec. II we stressed that the methods described here are useful for the specific 242 Pu mixtures now at LASL. These methods are not designed to work on highly enriched 242 Pu rich mixtures of arbitrary isotopic composition. The major limitation that currently could affect verification measurements is the lack of a proven technique to verify TABLE IV ISOTOPIC RATIOS 239Pu/241Pu | Sample | Measured | Mass Spec | Measured/
Mass Spec | |--------------------|------------------------|----------------------------|-------------------------| | 2 g
83% oxide | 0.2614 <u>+</u> 0.0055 | 0.2920
0.2942 | 0.895
0.889 | | 10 g
95% metal | 0.3412 <u>+</u> 0.0077 | 0.3266
0.3094 | 1.045
1.103 | | 2 kg
95% metal | 0.3880 <u>+</u> 0.0130 | 0.3853
0.3889 | 1.007
0.998 | | 2 kg
95% metal | 0.3950 <u>+</u> 0.0130 | 0.3894
0.3922 | 1.014
1.007 | | 0.5 g
95% metal | 0.4960 <u>+</u> 0.0150 | 0.4561
0.4819
0.4605 | 1.087
1.029
1.077 | | 2 g
95% oxide | 0.4740 <u>+</u> 0.0110 | 0.4561
0.4819
0.4605 | 1.039
0.984
1.029 | | 20 g
95% oxide | 0.4584 <u>+</u> 0.0083 | 0.4561
0.4819
0.4605 | 1.005
0.951
0.995 | | 240 g
95% oxide | 0.4520 <u>+</u> 0.0140 | 0.4561
0.4819
0.4605 | 0.991
0.938
0.981 | | | | mean
std. dev | 1.003
0.056 | nonequilibrium (241 Pu- 237 U) samples of arbitrary geometry. The major problem arises in trying to determine the relative efficiency curve at 148 and 152 keV when the nearest points available are 164, 208, and 267 keV. An extrapolation from 164 and 208 keV to 148 and 152 keV will be unreliable because of the curvature of the relative efficiency curves in this region (see Fig. 3). This case is still under study. Large samples (>500 g or so) present a problem from the high neutron background associated with the spontaneous fission of 242 Pu. This neutron background degrades the quality of the data by increasing backgrounds and adding tailing to the peaks. Consequently, the results will be somewhat poorer for large samples than for small samples. For all samples the precision of the results is affected by the length of time the sample is counted. The 238 Pu/ 241 Pu ratio at 152/148 keV can be determined very quickly (a few hundred seconds) for rough verification purposes. The 239 Pu/ 241 Pu ratio is much more difficult and takes longer, especially with large high neutron background samples. The count time is variable and we have used 1000-3000 seconds for routine assays at TA-55. For these count times the lower limit of sample mass that is feasible to count is probably somewhat less than 0.1 q. ### REFERENCES - 1. "Nuclear Analysis Research and Development Program Status Report, January-April 1974," Los Alamos Scientific Laboratory report LA-5675-PR (August 1974). - 2. Raymond Gunnink, "A Simulation Study of Plutonium Gamma Ray Groupings for Isotopic Ratio Determinations," Lawrence Livermore Laboratory report UCRL-51605 (June 1974). - 3. H. Ottmar and E. Eberle, "Determination of Plutonium Isotopic Composition by Gamma Spectrometry: Results from Interlaboratory Comparison Measurements Organized by ESARDA," 1st Annual ESARDA Symp. Safeguards and Nuclear Materials Management, ESARDA 10, April 1979. See also INMM Journal VIII (July 1979). - 4. John G. Fleissner, John F. Lemming, and Jack Y. Jarvis, "Study of a Two-Detector Method for Measuring Plutonium Isotopics," Proc. Am. Nucl. Soc. Topical Conference on Measurement Technology for Safeguards and Materials Control, Kiawah Island, South Carolina, Nov. 26-29, 1979 (to be published). - 5. R. Gunnink, J. E. Evans, and A. L. Prindle, "A Reevaluation of the Gamma-Ray Energies and Absolute Branching Intensities of 237U, 238,239,240,241pu, and 241Am," Lawrence Livermore Laboratory report UCRL-52139 (1976). - 6. R. H. Auguston and T. D. Reilly, "Fundamentals of Passive Nondestructive Assay of Fissionable Material," Los Alamos Scientific Laboratory report LA-5651-M (September 1974). Printed in the United States of America. Available from National Technical Information Service US Department of Commerce 5285 Port Royal Road Springfield, VA 22161 ### Microfiche \$3.00 | 001-025 | 4.00 | 126-150 | 7.25 | 251-275 | 10.75 | 376-400 | 13.00 | 501-525 | 15.25 | |---------|------|---------|------|---------|-------|---------|-------|---------|-------| | 026-050 | 4.50 | 151-175 | 8.00 | 276-300 | 11.00 | 401-425 | 13.25 | 526-550 | 15.50 | | 051-075 | 5.25 | 176-200 | 9.00 | 301-325 | 11.75 | 426-450 | 14.00 | 551-575 | 16.25 | | 076-100 | 6,00 | 201-225 | 9,25 | 326-350 | 12,00 | 451-475 | 14,50 | 576-600 | 16,50 | | 101-125 | 6.50 | 226-250 | 9.50 | 351-375 | 12.50 | 476-500 | 15 00 | 601 -un | | Note: Add 52,50 for each additional 100-page increment from 601 pages up.