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-. AN EXACT PARTIAL SOLUTION TO THE STEADY-STATE,
COMPRESSIBLE FLUID FLOW PROBLEMS OF

JET FORMATION AND JET PENETRATION

by

Robert R. Karpp

ABSTIL4CT

This report treats analytically the problem of the symmetric impact of two
compressible fluid streams. We assume that the flow is steady, plane, inviscid, and
subsonic and that the compressible fluid is of the Chaplygin (tangent gas) type. In the
analysis, the governing equations are fust transformed to the hodograph plane where an
exact.jclosed-form solution is obtained by standard techniques. The distributions of fluid
properties along the plane of symmetry as well as the shapes of the boundary
streamlines are exactly determined by transforming the solution back to the physical
plane. The problem of a compressible fluid jet penetrating into an infiiite target of
similar material is also exactly solved by considering a limiting case of this solution.
This new compressible flow solution reduces to the classical result of incompressible
flow theory when the sound speed of the fluid is allowed to approach intiity. Several
illustrations of the differences between compressible and incompressible flows of the
type considered are presented.

1. INTRODUCTION

The flow cotilguration involving the symmetric impact of plane jets or the impact of a single jet upon
a rigid plane boundary has significant technological interest. For example, the extremely high velocity
produced by jets from lined-cavity shaped charges has been explained by the steady-state model of
impacting jets,l Even the stretching of the jet has been explained by a variant of this model.z This same
model also explains some of the features associated with the bonding of metals in explosive welding.3

Several finite-difference computer codes exist that can be used to solve the type of problem discussed
above. However, the accuracy of some of these codes sometimes is questioned, especially in regions of
rapidly varying properties. The exact solution of this steady-state problem can be used to check the
accuracy of approximate solutions obtained with hydrodynamic computer codes. In addition to
developing a nontrivial test problem, another purpose of this work is to gain some understanding of how
compressibility affects jet formation and jet penetration.

In this report, we frost state the problem precisely. Then we put the equations governing this flow into a
form suitable for solution and state the boundary conditions. Afler the compressible flow equations are
specialized to a pressure-density relationship of the Chaplygin type, a well-known transformation is used
to cast the governing equations in the form of Cauchy-Riemann equations with the velocity potential and



stream function as dependent variables and the velocity components as independent variables. An exact
solution for the complex stream function, as a function of the velocity components, is then obtained for
the stated problem. However, transformation back to the physical plane has not been found possible for
the entire flow field; only for two specific regions, for the shape of free surface streamlines and for all
properties along the plane of symmetry, has the transformation been achieved. By taking a limiting case
of the exact solution, we also obtain a partial solution to the problem of steady-state jet penetration. Plots
of these solutions are presented for both the jet formation and jet penetration problems, and compressible
and incompressible flows are compared in detail.

IL STATEMENT OF THE PROBLEM

The steady-state, symmetric impact of two fluid jets, in plane flow geometry, is considered. Figure 1
shows the configuration of this problem. The streams of incoming fluid are inclined to the x-axis, which is
the plane of symmetry, at an angle Q where O < a s n. We assume that the fluid is inviscid, thermally
nonconducting, and compressible. The widths of the streams asymptotically approach hl, hz, and hq away
from the stagnation region. The incoming velocity, with magnitude UC,is assumed to be uniform across
the streams far from the stagnation region.

The pressure acting on the free streamlines, which are indicated by vI, vZ, vJ, and Vi in Fig. 1, is taken
to be zero. The pressure within the jets at infinity is also zero. When we apply Bernoulli’s equation, we
find that the magnitude of the velocity along all free streamlines is UC. Applying the conservation
equations of mass and momentum, we obtain the equations

h2 = hl(l + cos a) (1)

and

h3 -hl(l - COS a) , (2)

which relate the widths of the outgoing streams to the widths of the incoming streams and the angle of
incidence a. Thus, the asymptotic conditions of the jets are completely specified, and the problem is to
determine the details of the flow in the region of jet interaction.

III. GOVERNING EQUATIONS

The equations that are assumed to govern steady, plane flow are

:( PU)+; (PV)-O , (3)

qdq+ ;dP=O , (4)

au av o
%-z= ‘

(5)

.
and

P - P(p) , (6)

where q = (U2+ V2)112.In these equations, u and v are the x- and y-components of velocity, q is the speed,

& P is the pressure, and p is the density. Equation (3) is a statement of the conservation of mass, and Eq. (4)
is Bernoulli’s equation. Equation (5) is the condition of irrotationality, and Eq. (6) is the pressure-density
relation for the process. Equations (4) and (5) are used in place of the x- and y-components of the
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momentum equation. This simplificationis justified for inviscid flow if an equation of the form of Eq. (6)
exists and if the incoming flow is irrotational. Equations (3) through (6) are to be solved for the dependent
variables u, v, P, and p.

Before we attempt a solution, we can cast the mathematical problem into a more standard form by
introducing new dependent variables and by transforming to velocity components as independent
variables. Firs4 Eqs. (3), (4), and (6) can be combined to form

where

=2 . dP
-z

(7)

(8)

is the sound speed squared. Equations (4) and (6) can be combined to produce a relation between the

speed q and the density p. This relation combined with the definition of sound speed, Eq. (8), could be
used to produce a relationship of the form

c - c(q) . (9)

The system of equations to be solved is

and

(7)

(5)

where the sound speed c is a function of the particle speed q = (U2+ v~l’l, as indicated by Eq. (9).
Equations (7) and (5) form a system of two equations for the two unknown functions u and v.

However, Eq. (7) is highly nonlinear. This nonlinearity can be removed by transforming to the hodograph
variables u and v as independent variables. In addition, introducing a velocity potential @and a stream
function v is also advantageous. These new dependent variables are defined by

Equations (10) can be combined with Eqs. (5) and (7) to give

and

d+$v+~u)+(’--w)”)” “

(lo)

(11)

(12)

which are the equations for $ and v in the hodograph plane. The detailed derivation of Eqs. ( 11) and ( 12)
is in Ref. 4. These equations take a simpler form when the polar coordinates q and 0 are used in place of
u and v. The variables q and 0 are defined by

U=qcolle . and v-qaine. (13)

With Eqs. (13), Eqs. (11) and(12) become
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(15)

From Eqs. (4) and (6), both c and p/pOcan be expressed as functions of the speed q for any specific form
of Eq. (6). Equations (14) and ( 15) are the two equations to be solved for $(q, 0) and y(q, (3).

Equations (14) and (15) simplify considerably when specialized to particular forms of the
pressure-density relation, Eq. (6).S The greatest simplification, of course, is the specialization to the case
of an incompressible fluid, that is, when p is a constant. For this case, p/pO = 1, q/c = O, and Eqs. (14)
and (15) assume the simple forms

and

y- aw
q aq -53 “

(16)

(17)

Equations (16) and (17) are the Cauchy-Riemann equations, in polar coordinates (q, –9), for the
conjugate harmonic functions $ and y. For the incompressible case, the stated problem reduces to a fairly
standard problem in potential theory, and the exact solution to the complete problem has been obtained.s

For compressible flow, Eqs. (14) and (15) can be similarly simplified if the Chaplygins equation of state
(or tangent gas) is used for Eq. (6). The Chaplygin equation is

P=P*+ ,

where PI and k are constants. When we use Eq. (18), we can write Eqs. (14) and (15) as

~=
ae ()

1+$1’2q:

o

(18)

(19)

(20)

where COis the sound speed at the stagnation point. Equations (19) and (20) can be simplified further by
introducing a new independent variable q,, defined by

2q
qi - .

1 + (1 + tl%c:)”z

Equations (19) and (20) become

(21)

(22)

and

*=+ .
‘i aqi

(23)
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Note the similarity between the system of Eqs. (22) and (23), which are the governing equations for the
steady, plane flow of a compressible fluid with a pressure-density relation given by Eq. (18), and the
system of Eqs. (16) and (17), which are the governing equations for incompressible flow. Because of this
similarity, the speed variable ql plays the role of an incompressible speed. The jet formation problem is
solved by obtaining a solution to Eqs. (22) and (23) that is consistent with appropriate boundary
conditions.

IV. BOUNDARY CONDITIONS

The stream function V, defined by Eqs, (10), has a constant value along streamlines. Also, the mass
rate of flow per unit depth between two streamlines is proportional to the difference in the values of the
stream function on those streamlines. The specific formula for the mass rate of flow per unit depth
between two arbitrary streamlines is

●

‘A-B = PO(% - $A) , (24)

where VAand VBare the values of the stream function along the two streamlines. Figure 2 shows the free
streamlines in the hodograph plane. The value of the stream function is constant along each free
streamline. The physical positions of these streamlines are indicated in Fig. 1.

Because the stream function is determined only to within an arbitrary constant, the value of VI will be
taken as zero. The remaining values of v along the free streamlines are determined from Eq. (24) with due
account taken of the flow direction. The values of v along the free streamlines are, therefore,

$1-0 ● *2 - ~chlp-bo , $3 “ -ucol - h3) o-1o. ,

(25)

These equations represent the boundary conditions for v.

V. THE COMPLEX STREAM FUNCTION IN THE HODOGRAPH PLANE

Because Eqs. (22) and (23) are the Cauchy-Riemann equations in the polar coordinates (q,, –0) for the
functions 1$and V, these equations guarantee that ~ and v can be combined into a single complex function
f of a single complex variable S, as

f(=) - l$(qf, -e) + f$(qi s-e) 9 (26)

where S = qie-ie. Any function of the form of Eq. (26) will satisfy the governing flow equations, Eqs. (22)
and (23). The explicit form of the solution f is specified by the boundary conditions, Eqs. (25), and can be
computed from the formula of Schwarz.c This formula expresses the value of a function F(z) at a point z
inside a circle of radius R > Iz[ in terms of the values of its real part on the circle. If F(z)= U + iV, then
we have

2H

~

~eif3 + z
F(z) = ~ U(Rei8) d13 ,

2R ~eit? _ ~
o

(27)

where the contour of integration is the circle of radius R centered at z = O. By applying this equation to
our system with F(z) = —if(z),we obtain
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(28)

21r

1

\

uie’~ + ii
.— $( Uiei6) d(3

211 uiei8 - ;

o

[/

a
Uie”+i ‘

/

Uieis +G1
‘z $1

Uiei’ -iid’+ *2 Uiei6-tid’
o a

2x-a 2r

/

Uiei B + ii

/

U,ei B + ii
+ +3 da + +Q 1dB ,

Uieb - ~ “’eis - ~

W 2w-a

where UI is the transformed maximum speed, that is,

Ui - 2u=/[ 1 + (1 + u:/c:) 1/21 , (29)

obtained from Eq. (21). The integrated form of Eq, (28) can be written, to within a constant, as

P. Uc

[
f(m -—y (*1 -

Po ‘2) ‘n (1 -+)

() ( )]+(*4 -*l)h l-~+ ($2- #13)ZII1+2 . (30)
Ui Qi

If we use the boundary values of v from Eqs. (25), we can put the complex stream function f into the form

+h, tn(i--)

(31)

Equation (31) represents the exact solution to the stated problem in the hodograph plane. When this
expression for f is divided into real and imaginary parts, we obtain the velocity potential $ and the stream
function v that satisfy the governing equations, Eqs. (22) and (23). The stream function also satisfies the
boundary conditions given by Eqs. (25).

W. PARTIAL SOLUTION IN THE PHYSICAL PLANE

We have obtained the exact solution in the hodograph plane; now we need to transform the solution
back to the physical plane (z = x + iy). To this end, consider the expression

6



~~-ie (jZ - (u - iV) dz

-udx+vdy-i(vdx -udy).’

-. ( PO a~-%x+$ dy-i-— —dx PO a+
ax )

-——dy
P ax P ay

=d#+i$d$ . (32)

If we restrict this discussion to a single, arbitrary streamline, then dw = O, and along that streamline

& _ ~ eie d+ (33)
fl

and df = d+. Using Eqs. (31) and (21), we can write Eq. (33) as

Because of the factor q~, the right-hand side of the above expression is not a function solely of the

complex variable @.Therefore, to integrate Eq. (34), we must divide the expression on the right-hand side
into its real and imaginary parts. Equation (34) can be written as

dz - F[qi.O)(@-ied% - iqie-ie de) o (35) ,

where F(ql, 0) is the complex function preceding dti in Eq. (34). The relationship between q, and 0, which
is necessary to integrate Eq. (35), can be obtained, in principle, from Eq. (31). For any particular
streamline,w = constant = JC, Eq. (31) furnishes a relation between q, and 6, namely

$= = Im [f(G)] . (36)

For a general streamline, it is ditlicult algebraically to solve Eq. (36) for q, as a function of 0. At this point
in the analysis, the problem has been reduced to one of solving an ordinary differential equation. This
solution could be accomplished by numerical techniques. However, two particular cases, the case of free
streamlines and the case of flow along the plane of symmetry, are treated exactly.

For free streamlines, ql = U, (a constant), and dq, = O. Equation (35) then becomes

dz - F(Ui,8)(-iUie -16 de) (37)

or, when expanded,

The solution to Eq. (38) is

P-
z-zo. —

{
hle -la In

lrPo

- h2 to [eie -

(38)

[ei(WO - l]+hle ia ;n [ei(e-a) - 1 ]

l]+h3 fn [e 18+ 1]} . (39)

Equation (39) gives the physical shape of the free surface streamlines in terms of the parameter 0. For
example, the streamline indicated by VI in Fig. 1 is described by letting 0 vary from -a+ to 0- in Eq.
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(39). Similarly, the streamline V, is described by allowing 6 to vary from –a- to -(z/2)+. We can obtain
the constant of integration, ZO,in I@ (39) by specifying that y + ( l/2)hz as 0 + 0- and that the distance
between the centerline of the incoming stream and the free streamline, as indicated in Fig. 1, should
approach (1/2)hl as 0 + -a ‘. The constant of integration that satisfies these conditions, for the free
streamline ~1, is

al -~hlcosa+~ hl sin a k [(COS
.

+ hl cos a tan-l
(c:s:a~l)- ‘2

and

bl - ~hl sin a+~hl cos a tn [(COS

2a - 1)2 + sin2 2a]

‘an-’(c~s:~,)+hs ‘an-’(c:’::l)

2a - 1)2 + sin2 2a]

- h~ sin a tan-l
%)-+hz ‘“ ‘(cos a- 1)2+ sin2a]

+$h3 In [(COS a+l)2+sin2 a] .

In a similar manner, we can obtain the constant of integration for the streamline Vz by specifying that y

+ ( l/2)hj as 8 + —(n/2)+ and that the distance between the centerline of the incoming stream and the
free streamline Vz approaches ( l/2)hl as (3~ –a-. For these conditions, the constant of integration for
the free streamline qrzbecomes

where

a’ --~h cosa+$21 hl sin a An [(COS 2a - 1)2 + sin2 2a]

+ h3 tan-1
(C:S:+”J

and

b2 = -~hlsina+y 1 hl COS a 2n [(.0s 2a - 1)2 + sin2 2a]

- hl ain a tan-l
(c:s:a~)

1 h An [(..s a-1)2+ sin2 a]-~ 2

+~h3 tn [(..s a+ 1)2+ sin2 a] .
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Equation (39) together with the constants defined by Eqs. (40) and (41) specifies the shape of the free
streamlines in the upper half plane Im z >0. We then can determine the free streamlines in the lower half
plane by reflecting the solution in the upper half plane about the x-axis.

In the second case for which Eq. (35) can be integrated, flow along the plane of symmetry y = O, Eq.
(35) can be simplified because 0 equals either O or –n depending upon whether the point considered is to
the right or left of the stagnation point. Consider first the streamline of symmetry to the right of the
stagnation point. For this case, 13= O along the streamline and, therefore, dO = O. Equation (35) then
becomes

dz - F(qi, t)) dqi

or

4C:

(

-q: Ilc Pm. hl
dz = ——-

~c:qi ~ P. Uleia - qi

The integrated form of this equation is

hl h2 h3
+ —-

-la )
dqi .

Uie - qi Ui - qi Ui + qi

u pm
z-z.2—0 Ui Xpo [(‘1

,-ia ‘$’’)1. (eia-~)

(42)

(43)

Equation (43) links the position along the x-axis with the magnitude of velocity qr The constant of
integration, ZO= XO+ iyO,can be adjusted to position the stagnation point as desired. In this analysis, we
have been unable to link the position of the speed distribution with the position of the free streamlines. If

yO= O, then the imaginary part of Eq. (43) vanishes, and that equation represents a relationship between
x and qr If desired, XOcan be determined such that x = O is the stagnation point q, = O. Equation (21)
then links q and q.

Equation (43) applies only to flow along the x-axis in the positive direction. For the remaining portion
of the streamline of symmetry where flow is in the negative x-direction, 0 = —z, and we can again
integrate Eq. (35). The result of this integration is the same as Eq. (43) except that ql is replaced by -qI
and the right-hand side of Eq. (43) is preceded by a minus sign.

Once the velocity distribution along the plane of symmetry is determined, the remaining quantities of
interest can be determined from the pressure-density relation, Eq. (18), and Bernoulli’s equation, Eq. (4).
The relevant relationships are

P2 - k2/c2 s P -P1-k2/p ~

and

E -E_- P1 (1/P - l/P@) + 1/2 k2(l/p2 - 1/9:) , (44)

where E is the specific internal energy. The last relationship is determined from the energy equation dE =
–P d( I/p). All properties, therefore, are determined along the plane of symmetry.

9



Summarizing this section, we find that the shape of the free surface streamlines is given by Eq. (39),
with constants of integration prescribed by Eq. (40) or Eq. (41). The velocity distribution along the plane
of symmetry is given by Eq. (43). Once the velocity distribution is determined, Eqs. (44) can be used to
obtain the distribution of all other relevant quantities.

VII. PARTIAL SOLUTION TO THE JET PENETRATION PROBLEM

The foregoing solution can be specialized to the problem of the steady-state penetration of a jet into an
infinite target by taking a limiting case of that solution. This limiting case is achieved by first allowing the
angle of inclination a to approach zero while holding the jet thickness h~ constant and then reversing the
direction of flow. To be consistent, the thicknesses hl and hz must approach infinity. Fig~e 3 shows the
resulting flow configuration. For incompressible flow, this transition from the jet formation problem to
the jet penetration problem has been discussed by Birkhoff.s

In this limit, that is, a + O with h~ = constant, the expression for the free streamlines, Eq. (39),
becomes

[

Z= Z+ PJ13 Z(z-e-ie)+lneie+l
o

‘oH (1 - e-io)2 1eie-~“
To satisfy the condition that y + (1/2)hj as 9 + –n, we must take

()YO+3 1-: .
0

(45)

(46)

The constant XOin ZOmerely sets the position, in the horizontal direction, of the stagnation point. The
distribution of velocity along the plane of symmetry is obtained from Eq. (43) by the above limiting
process. The resulting equation is

PJ131Jc

/( )[

Uf In Ui + q~ 2qi

1

4 (1 + u:/4c:)
x- x-—0 1- % —+ +

I

(47)
Pollui

9
‘1 - qi Ui (1 - qi/ui)2 1 - qilui

for flow in the positive x-direction. For flow in the negative x-direction, an equation similar to Eq. (47)
holds with q, replaced by –qi and a minus sign preceding the right-hand side of Eq. (47). As before, we
have established no link between the position coordinates in Eqs. (45) and (47). As in the previous
section, the distribution of other relevant properties along the plane of symmetry is determined by Eqs.
(44), once the velocity qi, and therefore q, has been determined.

VIII. RESULTS AND CONCLUSION

The shapes of free surface streamlines are illustrated in Figs. 3-5. Figure 3 shows streamlines for jet
penetration evaluated from Eq. (45). The streamlines shown in Figs. 4 and 5 were calculated from Eq.
(39); they represent jet formation at impact angles of 90° and 45°, respectively. The parameters used for
all calculations of compressible flow in this work are kz = 12.18 X 10s GPa wkg/m3, pm = 8.9X 103
kg/m3, cm = 3.92 km/s, P’ = k2/pm, UC= 3.53 km/s (I% = UC/c ~ = 0.9). These values are appropriate
for copper at normal initial conditions; however, they are not representative of copper at high pressures
because the Chaplygin equation is a linear relation between p ~d l/P. Therefore, these calculations
generally overestimate the amount of compression that would occur in copper. We use hl = 10.Omm for
Figs. 4 and 5 and 2h3 = 10.0 mm for Fig. 3. We also can obtain incompressible flow from these equations
by assuming that kz + co. In Figs. 3-5, the shapes of free surface streamlines for compressible flow (Mm

10
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= 0.9) and incompressible flow (Mm = 0.0) are compared. From this work we conclude that the
curvature of the compressible flow streamlines is greater than the curvature of incompressible
streamlines, in regions of high curvature. This effect is evident directly from the factor pm /pO in Eqs. (39)
and (45). This factor is unity for incompressible flow and less than unity for compressible flow. Thus, the
geometry of the streamlines is scaled down for compressible flow, and therefore, curves which are mild
for incompressible flow become sharp for compressible flow.

Figures 6-15 show the distribution of properties along the plane of symmetry for the flow
configurations illustrated in Figs. 3-5. Figures 6-10 give the property distributions of pressure, velocity,
strain rate in the x-direction (8 u/i3x), specific internal energy, and density for compressible and
incompressible flows at normal incidence (Fig. 4 shows the streamlines). These values are calculated from
Eqs. (43) and (44). In addition to the obvious large difference in the distributions of density and internal
energy between compressible and incompressible flows, there appears to be a sign~lcant difference in the
strain-rate distribution. As shown in Fig. 8, the maximum values of strain rate occur some distance from
the point of symmetry for compressible flow. For incompressible flow, the maximum is at the point of
symmetry. The strain rate for the compressible flow is about 50?40higher than that for incompressible
flow at the velocities considered. The pressure distribution also follows this trend. In Fig. 6, the region of
significant pressure is confined to a smaller interval along the x-axis for a compressible flow than for an
incompressible flow. The velocity and other properties also follow this trend.

Figures 11 and 12 show the pressure and strain-rate distributions along the plane of symmetry for a
flow with an incidence angleof450 (Fig. 5 shows the streamlines). The strain-rate distribution in Fig. 12
indicates that the compressible flow has a maximum value about twice as great as the incompressible flow
maximum, and that the two distributions are qualitatively different.

Figures 13-15 show the pressure, velocity, and strain-rate distributions along the plane of symmetry for
the jet penetration problem illustrated in Fig. 3. The differences in distributions between compressible and
incompressible flows are similar to those for the jet impact configurations.

Summarizing the results, we find that the curvature of free surface streamlines is greater for
compressible flow than for incompressible flow. The pressure and strain-rate distributions along the plane
of symmetry are greater for compressible flow than for incompressible flow. And, the strain-rate
distribution is qualitatively different for compressible flow.
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